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Definition (von Neumann stability)

We shall say that a finite difference scheme for the unsteady heat equation
on the time interval [0, T] is von Neumann stable in the ¢, norm, if
there exists a positive constant C = C(T) such that
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Clearly, practical stability implies von Neumann stability, with stability
constant C = 1.
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As the stability constant C in the definition of von Neumann stability
may dependent on T, and when it does then, typically, C(T) — +oo as
T — 400, it follows that, unlike practical stability which is meaningful for
m=1,2,..., von Neumann stability makes sense on finite time intervals
[0, T] (with T < 00) and for the limited range of 0 < m < T /At, only.
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Lemma

Suppose that the semidiscrete Fourier transform of the solution {U["}72,,

m=20,1,..., %, of a finite difference scheme for the heat equation
satisfies
U™ (k) = A(k)U™(k)

and
IAN(Kk)| <1+ GAt  Vk e [-n/Ax,7/Ax].

Then the scheme is von Neumann stable. In particular, if Co = 0 then the
scheme is practically stable.




PROOF: By Parseval's identity for the semidiscrete Fourier transform
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PROOF: By Parseval's identity for the semidiscrete Fourier transform

1 ~ 1 o
Um+1 — Um+1 — )\Um
U™y = =107 = o= A0y
< 0™, = k ™,
< = max A 107, = max MG U7
Hence,

U™ g, < (1+ GAD|U™le,,  m=0,1,...,M—1.
Therefore,
U™, < (1 + GoAt)™||U°e,, m=1,..., M.
As (14 CAt)™ < eCmAt < oGT it follows that
Ul <TI0, m=1,2,..., M,

implying von Neumann stability, with C = e®7T. o
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Boundary-value problems for parabolic problems

When a parabolic PDE is considered on a bounded spatial domain, one
needs to impose boundary conditions on the boundary of the domain. We
shall consider the simplest case, when a Dirichlet boundary is imposed at

both endpoints of the spatial domain, which we take to be the nonempty
bounded open interval (a, b).

Consider the heat equation:

2
gi:gxg, a<x<b, 0<t<T,

subject to the initial condition
U(X¢ 0) = UU(X)7 X € [37 b]a
and the Dirichlet boundary conditions at x = a and x = b:

u(a, t) = A(t), u(b,t)= B(t), te (0, T]



Remark

The Neumann initial-boundary-value problem for the heat equation is:

du  0%u

Ezﬁ, a<x<b 0<t<T,

subject to the initial condition
u(x,0) = up(x), x € [a, b,
and the Neumann boundary conditions

ou du
o (@D =A@), =-(b1t)=B(), te(0T]
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f-scheme for the Dirichlet initial-boundary-value problem

Our aim is to construct a numerical approximation of the Dirichlet
initial-boundary-value problem based on the #-scheme.

Let Ax = (b—a)/J and At = T /M, and define
xj:=a+jAx, j=0,...,J, tm i =mAt, m=20,..., M.

We approximate the Dirichlet initial-boundary-value problem with the
f-scheme:

m—+1 m m m m m—+1 m+1 m—+1
Uj _Uf :(1_0) Uj+1_2Uj +UJI*1 + 0 UJ"H- _2UJ +UJI*1
At (Ax)? (Ax)? ’

forj=1,....,J—-1, m=0,1,....M -1,
U =uwlx), Jj=1...,J-1,

gt = Altmar). UTH = B(tmer), m=0,...,M—1.



To implement this scheme it is helpful to rewrite it as a system of linear
algebraic equations to compute the values of the numerical solution on
time-level m 4+ 1 from those on time-level m. We have:



To implement this scheme it is helpful to rewrite it as a system of linear
algebraic equations to compute the values of the numerical solution on
time-level m 4+ 1 from those on time-level m. We have:

[L—us UM = [L+ (1 O)us?|UP,

U = wlyg), 1<j<J-1,

Ut = Atmse1), U =B(tmt1), 0<m< M -1,

where
82U = Ujp1 — 2Uj + Uj_1.



Consider the symmetric tridiagonal (J — 1) x (J — 1) matrix:

-2 1 0 0 © 0 0 O
1 -2 1 0 0 0 0 O
1 -2 1
A= 0 0 0 0 O
0o 0 0 0 0 1 -2 1
0o o0 0 o0 ©O 0 1 -2
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Consider the symmetric tridiagonal (J — 1) x (J — 1) matrix:

-2 1 0 0 © 0 0 O
1 -2 1 0 0 0 0 O
1 -2 1
A= 0 0 0 0 O
o o0 o0 o0 o0 .. 1 =21
o o0 o0 o0 o0 ... O 1 -2

Let Z = diag(1, 1, 1,..., 1, 1) be the (J — 1) x (J — 1) identity matrix.
Then, the §-scheme can be written as

(Z — 0pAU™ = (T4 (1 — O)uA)U™ + 0uF™ ™ + (1 — O)uF™
form=0,1,...,M —1, where
u” = (U1m> Uéna KR U_r/n—2v UT—I)T

and
F™ = (A(tm), 0, ..., 0, B(tm))T.
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