Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute
University of Oxford 2022

Lecture 10

Von Neumann stability

In certain situations, practical stability is too restrictive and we need a less demanding notion of stability.

Von Neumann stability

In certain situations, practical stability is too restrictive and we need a less demanding notion of stability.

Definition (von Neumann stability)

We shall say that a finite difference scheme for the unsteady heat equation on the time interval $[0, T]$ is von Neumann stable in the ℓ_{2} norm, if there exists a positive constant $C=C(T)$ such that

$$
\left\|U^{m}\right\|_{\ell_{2}} \leq C\left\|U^{0}\right\|_{\ell_{2}}, \quad m=1, \ldots, M=\frac{T}{\Delta t}
$$

where

$$
\left\|U^{m}\right\|_{\ell_{2}}=\left(\Delta x \sum_{j=-\infty}^{\infty}\left|U_{j}^{m}\right|^{2}\right)^{1 / 2}
$$

Clearly, practical stability implies von Neumann stability, with stability constant $C=1$.

Clearly, practical stability implies von Neumann stability, with stability constant $C=1$.

As the stability constant C in the definition of von Neumann stability may dependent on T, and when it does then, typically, $C(T) \rightarrow+\infty$ as $T \rightarrow+\infty$, it follows that, unlike practical stability which is meaningful for $m=1,2, \ldots$, von Neumann stability makes sense on finite time intervals $[0, T]$ (with $T<\infty$) and for the limited range of $0 \leq m \leq T / \Delta t$, only.

Von Neumann stability of a finite difference scheme can be easily verified by using the following result.

Von Neumann stability of a finite difference scheme can be easily verified by using the following result.

Lemma

Suppose that the semidiscrete Fourier transform of the solution $\left\{U_{j}^{m}\right\}_{j=1}^{\infty}$, $m=0,1, \ldots, \frac{T}{\Delta t}$, of a finite difference scheme for the heat equation satisfies

$$
\hat{U}^{m+1}(k)=\lambda(k) \hat{U}^{m}(k)
$$

and

$$
|\lambda(k)| \leq 1+C_{0} \Delta t \quad \forall k \in[-\pi / \Delta x, \pi / \Delta x] .
$$

Then the scheme is von Neumann stable. In particular, if $C_{0}=0$ then the scheme is practically stable.

Proof: By Parseval's identity for the semidiscrete Fourier transform

$$
\begin{aligned}
\left\|U^{m+1}\right\|_{\ell_{2}} & =\frac{1}{\sqrt{2 \pi}}\left\|\hat{U}^{m+1}\right\|_{L_{2}}=\frac{1}{\sqrt{2 \pi}}\left\|\lambda \hat{U}^{m}\right\|_{L_{2}} \\
& \leq \frac{1}{\sqrt{2 \pi}} \max _{k}|\lambda(k)|\left\|\hat{U}^{m}\right\|_{L_{2}}=\max _{k}|\lambda(k)|\left\|U^{m}\right\|_{\ell_{2}} .
\end{aligned}
$$

Proof: By Parseval's identity for the semidiscrete Fourier transform

$$
\begin{aligned}
\left\|U^{m+1}\right\|_{\ell_{2}} & =\frac{1}{\sqrt{2 \pi}}\left\|\hat{U}^{m+1}\right\|_{L_{2}}=\frac{1}{\sqrt{2 \pi}}\left\|\lambda \hat{U}^{m}\right\|_{L_{2}} \\
& \leq \frac{1}{\sqrt{2 \pi}} \max _{k}|\lambda(k)|\left\|\hat{U}^{m}\right\|_{L_{2}}=\max _{k}|\lambda(k)|\left\|U^{m}\right\|_{\ell_{2}} .
\end{aligned}
$$

Hence,

$$
\left\|U^{m+1}\right\|_{\ell_{2}} \leq\left(1+C_{0} \Delta t\right)\left\|U^{m}\right\|_{\ell_{2}}, \quad m=0,1, \ldots, M-1
$$

Proof: By Parseval's identity for the semidiscrete Fourier transform

$$
\begin{aligned}
\left\|U^{m+1}\right\|_{\ell_{2}} & =\frac{1}{\sqrt{2 \pi}}\left\|\hat{U}^{m+1}\right\|_{L_{2}}=\frac{1}{\sqrt{2 \pi}}\left\|\lambda \hat{U}^{m}\right\|_{L_{2}} \\
& \leq \frac{1}{\sqrt{2 \pi}} \max _{k}|\lambda(k)|\left\|\hat{U}^{m}\right\|_{L_{2}}=\max _{k}|\lambda(k)|\left\|U^{m}\right\|_{\ell_{2}} .
\end{aligned}
$$

Hence,

$$
\left\|U^{m+1}\right\|_{\ell_{2}} \leq\left(1+C_{0} \Delta t\right)\left\|U^{m}\right\|_{\ell_{2}}, \quad m=0,1, \ldots, M-1 .
$$

Therefore,

$$
\left\|U^{m}\right\|_{\ell_{2}} \leq\left(1+C_{0} \Delta t\right)^{m}\left\|U^{0}\right\|_{\ell_{2}}, \quad m=1, \ldots, M
$$

Proof: By Parseval's identity for the semidiscrete Fourier transform

$$
\begin{aligned}
\left\|U^{m+1}\right\|_{\ell_{2}} & =\frac{1}{\sqrt{2 \pi}}\left\|\hat{U}^{m+1}\right\|_{L_{2}}=\frac{1}{\sqrt{2 \pi}}\left\|\lambda \hat{U}^{m}\right\|_{L_{2}} \\
& \leq \frac{1}{\sqrt{2 \pi}} \max _{k}|\lambda(k)|\left\|\hat{U}^{m}\right\|_{L_{2}}=\max _{k}|\lambda(k)|\left\|U^{m}\right\|_{\ell_{2}} .
\end{aligned}
$$

Hence,

$$
\left\|U^{m+1}\right\|_{\ell_{2}} \leq\left(1+C_{0} \Delta t\right)\left\|U^{m}\right\|_{\ell_{2}}, \quad m=0,1, \ldots, M-1
$$

Therefore,

$$
\left\|U^{m}\right\|_{\ell_{2}} \leq\left(1+C_{0} \Delta t\right)^{m}\left\|U^{0}\right\|_{\ell_{2}}, \quad m=1, \ldots, M
$$

As $\left(1+C_{0} \Delta t\right)^{m} \leq \mathrm{e}^{C_{0} m \Delta t} \leq \mathrm{e}^{C_{0} T}$, it follows that

$$
\left\|U^{m}\right\|_{\ell_{2}} \leq \mathrm{e}^{C_{0} T}\left\|U^{0}\right\|_{\ell_{2}}, \quad m=1,2, \ldots, M
$$

implying von Neumann stability, with $C=\mathrm{e}^{C_{0} T}$.

Boundary-value problems for parabolic problems

When a parabolic PDE is considered on a bounded spatial domain, one needs to impose boundary conditions on the boundary of the domain.

Boundary-value problems for parabolic problems

When a parabolic PDE is considered on a bounded spatial domain, one needs to impose boundary conditions on the boundary of the domain. We shall consider the simplest case, when a Dirichlet boundary is imposed at both endpoints of the spatial domain, which we take to be the nonempty bounded open interval (a, b).

Boundary-value problems for parabolic problems

When a parabolic PDE is considered on a bounded spatial domain, one needs to impose boundary conditions on the boundary of the domain. We shall consider the simplest case, when a Dirichlet boundary is imposed at both endpoints of the spatial domain, which we take to be the nonempty bounded open interval (a, b).

Consider the heat equation:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad a<x<b, \quad 0<t \leq T
$$

subject to the initial condition

$$
u(x, 0)=u_{0}(x), \quad x \in[a, b]
$$

and the Dirichlet boundary conditions at $x=a$ and $x=b$:

$$
u(a, t)=A(t), \quad u(b, t)=B(t), \quad t \in(0, T] .
$$

Remark

The Neumann initial-boundary-value problem for the heat equation is:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad a<x<b, \quad 0<t \leq T
$$

subject to the initial condition

$$
u(x, 0)=u_{0}(x), \quad x \in[a, b]
$$

and the Neumann boundary conditions

$$
\frac{\partial u}{\partial x}(a, t)=A(t), \quad \frac{\partial u}{\partial x}(b, t)=B(t), \quad t \in(0, T] .
$$

θ-scheme for the Dirichlet initial-boundary-value problem

 Our aim is to construct a numerical approximation of the Dirichlet initial-boundary-value problem based on the θ-scheme.
θ-scheme for the Dirichlet initial-boundary-value problem

 Our aim is to construct a numerical approximation of the Dirichlet initial-boundary-value problem based on the θ-scheme.Let $\Delta x=(b-a) / J$ and $\Delta t=T / M$, and define

$$
x_{j}:=a+j \Delta x, \quad j=0, \ldots, J, \quad t_{m}:=m \Delta t, \quad m=0, \ldots, M .
$$

θ-scheme for the Dirichlet initial-boundary-value problem

 Our aim is to construct a numerical approximation of the Dirichlet initial-boundary-value problem based on the θ-scheme.Let $\Delta x=(b-a) / J$ and $\Delta t=T / M$, and define

$$
x_{j}:=a+j \Delta x, \quad j=0, \ldots, J, \quad t_{m}:=m \Delta t, \quad m=0, \ldots, M
$$

We approximate the Dirichlet initial-boundary-value problem with the θ-scheme:

$$
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}=(1-\theta) \frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}+\theta \frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{(\Delta x)^{2}}
$$

for $j=1, \ldots, J-1, m=0,1, \ldots, M-1$,

$$
\begin{gathered}
U_{j}^{0}=u_{0}\left(x_{j}\right), \quad j=1, \ldots, J-1 \\
U_{0}^{m+1}=A\left(t_{m+1}\right), \quad U_{J}^{m+1}=B\left(t_{m+1}\right), \quad m=0, \ldots, M-1
\end{gathered}
$$

To implement this scheme it is helpful to rewrite it as a system of linear algebraic equations to compute the values of the numerical solution on time-level $m+1$ from those on time-level m. We have:

To implement this scheme it is helpful to rewrite it as a system of linear algebraic equations to compute the values of the numerical solution on time-level $m+1$ from those on time-level m. We have:

$$
\begin{aligned}
{\left[1-\theta \mu \delta^{2}\right] U_{j}^{m+1} } & =\left[1+(1-\theta) \mu \delta^{2}\right] U_{j}^{m}, \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), \quad 1 \leq j \leq J-1, \\
U_{0}^{m+1}=A\left(t_{m+1}\right), & U_{j}^{m+1}=B\left(t_{m+1}\right), \quad 0 \leq m \leq M-1,
\end{aligned}
$$

where

$$
\delta^{2} U_{j}:=U_{j+1}-2 U_{j}+U_{j-1}
$$

Consider the symmetric tridiagonal $(J-1) \times(J-1)$ matrix:

$$
\mathcal{A}=\left(\begin{array}{ccccccccc}
-2 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & -2
\end{array}\right)
$$

Consider the symmetric tridiagonal $(J-1) \times(J-1)$ matrix:

$$
\mathcal{A}=\left(\begin{array}{ccccccccc}
-2 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & -2
\end{array}\right)
$$

Let $\mathcal{I}=\operatorname{diag}(1,1,1, \ldots, 1,1)$ be the $(J-1) \times(J-1)$ identity matrix.

Consider the symmetric tridiagonal $(J-1) \times(J-1)$ matrix:

$$
\mathcal{A}=\left(\begin{array}{ccccccccc}
-2 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & -2
\end{array}\right)
$$

Let $\mathcal{I}=\operatorname{diag}(1,1,1, \ldots, 1,1)$ be the $(J-1) \times(J-1)$ identity matrix. Then, the θ-scheme can be written as

$$
(\mathcal{I}-\theta \mu \mathcal{A}) \mathbf{U}^{m+1}=(\mathcal{I}+(1-\theta) \mu \mathcal{A}) \mathbf{U}^{m}+\theta \mu \mathbf{F}^{m+1}+(1-\theta) \mu \mathbf{F}^{m}
$$

for $m=0,1, \ldots, M-1$, where

$$
\mathbf{U}^{m}=\left(U_{1}^{m}, U_{2}^{m}, \ldots, U_{J-2}^{m}, U_{J-1}^{m}\right)^{\mathrm{T}}
$$

and

$$
\mathbf{F}^{m}=\left(A\left(t_{m}\right), 0, \ldots, 0, B\left(t_{m}\right)\right)^{\mathrm{T}}
$$

