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The discrete maximum principle

Theorem (Discrete maximum principle for the θ-scheme)

The θ-scheme for the Dirichlet initial-boundary-value problem for the heat
equation, with 0 ≤ θ ≤ 1 and µ(1− θ) ≤ 1

2 , yields a sequence of numerical
approximations {Um

j }j=0,...,J; m=0,...,M satisfying

Umin ≤ Um
j ≤ Umax

where

Umin = min
{

min{Um
0 }Mm=0, min{U0

j }Jj=0, min{Um
J }Mm=0

}
and

Umax = max
{

max{Um
0 }Mm=0, max{U0

j }Jj=0, max{Um
J }Mm=0

}
.
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Proof: We rewrite the θ-scheme as

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j ,

and recall that, by hypothesis,

θµ ≥ 0 (1− θ)µ ≥ 0, 1− 2(1− θ)µ ≥ 0.

Suppose that U attains its maximum value Um+1
j at an internal mesh

point (xj , tm+1) where j ∈ {1, . . . , J − 1}, m ∈ {0, . . . ,M − 1}. If this
is not the case, the proof is complete.

We define
U? := max{Um+1

j+1 , Um+1
j−1 , Um

j+1, U
m
j−1, U

m
j }.
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Then,

(1 + 2θµ)Um+1
j ≤ 2θµU? + 2(1− θ)µU?

+ [1− 2(1− θ)µ]U? = (1 + 2θµ)U?,

and therefore
Um+1
j ≤ U?.

However, also,

U? ≤ Um+1
j ,

as Um+1
j is assumed to be the overall maximum value. Hence,

Um+1
j = U?.
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Thus the maximum value is also attained at all mesh points neighbouring
(xj , tm+1) present in the stencil of the θ-scheme.

The same argument then applies to these neighbouring points, and we can
then repeat this process until the boundary at x = a or x = b or at t = 0
is reached, in a finite number of steps.

The maximum is therefore attained at a boundary point.

By an identical argument the minimum is attained at a boundary point. �
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In summary then, for

µ(1− θ) ≤ 1

2

the θ-scheme satisfies the discrete maximum principle.

This condition is clearly more demanding than the `2-stability condition:

µ(1− 2θ) ≤ 1

2
for 0 ≤ θ ≤ 1

2 .

E.g., the Crank-Nicolson scheme is unconditionally stable in the `2 norm,
yet it only satisfies the discrete maximum principle when µ := ∆t

(∆x)2 ≤ 1.
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Convergence of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation
in one space-dimension with the convergence analysis of the θ-scheme for
the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j .

The scheme is considered subject to the initial condition

U0
j = u0(xj), j = 0, . . . , J,

and the boundary conditions

Um+1
0 = A(tm+1), Um+1

J = B(tm+1), m = 0, . . . ,M − 1.

7 / 17



Convergence of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation
in one space-dimension with the convergence analysis of the θ-scheme for
the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j .

The scheme is considered subject to the initial condition

U0
j = u0(xj), j = 0, . . . , J,

and the boundary conditions

Um+1
0 = A(tm+1), Um+1

J = B(tm+1), m = 0, . . . ,M − 1.

7 / 17



Convergence of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation
in one space-dimension with the convergence analysis of the θ-scheme for
the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j .

The scheme is considered subject to the initial condition

U0
j = u0(xj), j = 0, . . . , J,

and the boundary conditions

Um+1
0 = A(tm+1), Um+1

J = B(tm+1), m = 0, . . . ,M − 1.

7 / 17



The consistency error for the θ-scheme is defined by

Tm
j =

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2

− θ
um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

{
j = 1, . . . , J − 1,
m = 0, . . . ,M − 1,

where umj ≡ u(xj , tm),

and therefore

(1 + 2θµ) um+1
j = θµ

(
um+1
j+1 + um+1

j−1

)
+ (1− θ)µ

(
umj+1 + umj−1

)
+ [1− 2(1− θ)µ] umj + ∆tTm

j ,

{
j = 1, . . . , J − 1,
m = 0 . . . ,M − 1.
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Define the global error, that is the discrepancy at a mesh-point between
the exact solution and its numerical approximation, by

emj := u(xj , tm)− Um
j ,

{
j = 0, . . . , J,
m = 0, . . . ,M.

It then follows that

em+1
0 = 0, em+1

J = 0, e0
j = 0, j = 0, . . . , J,

and

(1 + 2θµ) em+1
j = θµ

(
em+1
j+1 + em+1

j−1

)
+ (1− θ)µ

(
emj+1 + emj−1

)
+ [1− 2(1− θ)µ] emj + ∆tTm

j ,

{
j = 1, . . . , J − 1,
m = 0, . . . ,M − 1.

We define,

Em = max
0≤j≤J

|emj | and Tm = max
1≤j≤J−1

|Tm
j |.
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As, by hypothesis,

θµ ≥ 0, (1− θ)µ ≥ 0, 1− 2(1− θ)µ ≥ 0,

we have that

(1 + 2θµ)Em+1 ≤ 2θµEm+1 + Em + ∆tTm.

Hence,
Em+1 ≤ Em + ∆t Tm.

As E 0 = 0, upon summation,

Em ≤ ∆t
m−1∑
n=0

T n

≤ m∆t max
0≤n≤m−1

T n

≤ T max
0≤m≤M−1

max
1≤j≤J−1

|Tm
j |,

which then implies that

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ T max

1≤j≤J−1
max

0≤m≤M−1
|Tm

j |.
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Recall that the consistency error of the θ-scheme is

Tm
j =

{
O
(
(∆x)2 + (∆t)2

)
for θ = 1/2,

O
(
(∆x)2 + ∆t

)
for θ 6= 1/2.

For the explicit/implicit Euler schemes, for which

Tm
j = O

(
(∆x)2 + ∆t

)
,

one has the following bound on the global error:

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ Const.

(
(∆x)2 + ∆t

)
,

while for the Crank–Nicolson scheme, which has consistency error

Tm
j = O

(
(∆x)2 + (∆t)2

)
,

one has

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ Const.

(
(∆x)2 + (∆t)2

)
.
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Finite difference approximation in two space-dimensions

Consider the heat equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (x , y) ∈ Ω := (a, b)× (c , d), t ∈ (0,T ],

subject to the initial condition

u(x , y , 0) = u0(x , y), (x , y) ∈ [a, b]× [c , d ],

and the Dirichlet boundary condition

u|∂Ω = B(x , y , t), (x , y) ∈ ∂Ω, t ∈ (0,T ],

where ∂Ω is the boundary of Ω.

We begin by considering the explicit Euler finite difference scheme for this
problem.
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The explicit Euler scheme

Let
δ2
xUij := Ui+1,j − 2Uij + Ui−1,j ,

and
δ2
yUij := Ui ,j+1 − 2Uij + Ui ,j−1.

Let, further, ∆x := (b−a)/Jx , ∆y := (d − c)/Jy , ∆t := T/M, and define

xi = a + i∆x , i = 0, . . . , Jx ,

yj = c + j∆y , j = 0, . . . , Jy ,

tm = m∆t, m = 0, . . . ,M.
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The explicit Euler finite difference scheme for the unsteady heat equation
on the space-time domain Ω× [0,T ] is then:

Um+1
ij − Um

ij

∆t
=
δ2
xU

m
ij

(∆x)2
+
δ2
yU

m
ij

(∆y)2
,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1,

subject to
the initial condition

U0
ij = u0(xi , yj), i = 0, . . . , Jx , j = 0, . . . , Jy ,

and the boundary condition

Um
ij = B(xi , yj , tm), at the boundary mesh points, for m = 1, . . . ,M.
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The implicit Euler scheme

Let ∆x := (b − a)/Jx , ∆y := (d − c)/Jy , ∆t := T/M, and define
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,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1,
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