Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute
University of Oxford 2022

Lecture 11

The discrete maximum principle

Theorem (Discrete maximum principle for the θ-scheme)
The θ-scheme for the Dirichlet initial-boundary-value problem for the heat equation, with $0 \leq \theta \leq 1$ and $\mu(1-\theta) \leq \frac{1}{2}$, yields a sequence of numerical approximations $\left\{U_{j}^{m}\right\}_{j=0, \ldots, J ; m=0, \ldots, M}$ satisfying

$$
U_{\min } \leq U_{j}^{m} \leq U_{\max }
$$

where

$$
U_{\min }=\min \left\{\min \left\{U_{0}^{m}\right\}_{m=0}^{M}, \min \left\{U_{j}^{0}\right\}_{j=0}^{J}, \min \left\{U_{j}^{m}\right\}_{m=0}^{M}\right\}
$$

and

$$
U_{\max }=\max \left\{\max \left\{U_{0}^{m}\right\}_{m=0}^{M}, \max \left\{U_{j}^{0}\right\}_{j=0}^{J}, \max \left\{U_{J}^{m}\right\}_{m=0}^{M}\right\} .
$$

Proof: We rewrite the θ-scheme as

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} & =\theta \mu\left(U_{j+1}^{m+1}+U_{j-1}^{m+1}\right) \\
& +(1-\theta) \mu\left(U_{j+1}^{m}+U_{j-1}^{m}\right)+[1-2(1-\theta) \mu] U_{j}^{m}
\end{aligned}
$$

and recall that, by hypothesis,

$$
\theta \mu \geq 0 \quad(1-\theta) \mu \geq 0, \quad 1-2(1-\theta) \mu \geq 0
$$

Proof: We rewrite the θ-scheme as

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} & =\theta \mu\left(U_{j+1}^{m+1}+U_{j-1}^{m+1}\right) \\
& +(1-\theta) \mu\left(U_{j+1}^{m}+U_{j-1}^{m}\right)+[1-2(1-\theta) \mu] U_{j}^{m}
\end{aligned}
$$

and recall that, by hypothesis,

$$
\theta \mu \geq 0 \quad(1-\theta) \mu \geq 0, \quad 1-2(1-\theta) \mu \geq 0
$$

Suppose that U attains its maximum value U_{j}^{m+1} at an internal mesh point $\left(x_{j}, t_{m+1}\right)$ where $j \in\{1, \ldots, J-1\}, m \in\{0, \ldots, M-1\}$. If this is not the case, the proof is complete.

Proof: We rewrite the θ-scheme as

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} & =\theta \mu\left(U_{j+1}^{m+1}+U_{j-1}^{m+1}\right) \\
& +(1-\theta) \mu\left(U_{j+1}^{m}+U_{j-1}^{m}\right)+[1-2(1-\theta) \mu] U_{j}^{m}
\end{aligned}
$$

and recall that, by hypothesis,

$$
\theta \mu \geq 0 \quad(1-\theta) \mu \geq 0, \quad 1-2(1-\theta) \mu \geq 0
$$

Suppose that U attains its maximum value U_{j}^{m+1} at an internal mesh point $\left(x_{j}, t_{m+1}\right)$ where $j \in\{1, \ldots, J-1\}, m \in\{0, \ldots, M-1\}$. If this is not the case, the proof is complete.

We define

$$
U^{\star}:=\max \left\{U_{j+1}^{m+1}, U_{j-1}^{m+1}, U_{j+1}^{m}, U_{j-1}^{m}, U_{j}^{m}\right\}
$$

Then,

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} \leq & 2 \theta \mu U^{\star}+2(1-\theta) \mu U^{\star} \\
& +[1-2(1-\theta) \mu] U^{\star}=(1+2 \theta \mu) U^{\star}
\end{aligned}
$$

and therefore

$$
U_{j}^{m+1} \leq U^{\star} .
$$

Then,

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} \leq & 2 \theta \mu U^{\star}+2(1-\theta) \mu U^{\star} \\
& +[1-2(1-\theta) \mu] U^{\star}=(1+2 \theta \mu) U^{\star}
\end{aligned}
$$

and therefore

$$
U_{j}^{m+1} \leq U^{\star} .
$$

However, also,

$$
U^{\star} \leq U_{j}^{m+1}
$$

as U_{j}^{m+1} is assumed to be the overall maximum value.

Then,

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} \leq & 2 \theta \mu U^{\star}+2(1-\theta) \mu U^{\star} \\
& +[1-2(1-\theta) \mu] U^{\star}=(1+2 \theta \mu) U^{\star}
\end{aligned}
$$

and therefore

$$
U_{j}^{m+1} \leq U^{\star} .
$$

However, also,

$$
U^{\star} \leq U_{j}^{m+1}
$$

as U_{j}^{m+1} is assumed to be the overall maximum value. Hence,

$$
U_{j}^{m+1}=U^{\star} .
$$

Thus the maximum value is also attained at all mesh points neighbouring $\left(x_{j}, t_{m+1}\right)$ present in the stencil of the θ-scheme.

Thus the maximum value is also attained at all mesh points neighbouring $\left(x_{j}, t_{m+1}\right)$ present in the stencil of the θ-scheme.

The same argument then applies to these neighbouring points, and we can then repeat this process until the boundary at $x=a$ or $x=b$ or at $t=0$ is reached, in a finite number of steps.

Thus the maximum value is also attained at all mesh points neighbouring $\left(x_{j}, t_{m+1}\right)$ present in the stencil of the θ-scheme.

The same argument then applies to these neighbouring points, and we can then repeat this process until the boundary at $x=a$ or $x=b$ or at $t=0$ is reached, in a finite number of steps.

The maximum is therefore attained at a boundary point.

Thus the maximum value is also attained at all mesh points neighbouring $\left(x_{j}, t_{m+1}\right)$ present in the stencil of the θ-scheme.

The same argument then applies to these neighbouring points, and we can then repeat this process until the boundary at $x=a$ or $x=b$ or at $t=0$ is reached, in a finite number of steps.

The maximum is therefore attained at a boundary point.
By an identical argument the minimum is attained at a boundary point.

In summary then, for

$$
\mu(1-\theta) \leq \frac{1}{2}
$$

the θ-scheme satisfies the discrete maximum principle.

In summary then, for

$$
\mu(1-\theta) \leq \frac{1}{2}
$$

the θ-scheme satisfies the discrete maximum principle.
This condition is clearly more demanding than the ℓ_{2}-stability condition:

$$
\mu(1-2 \theta) \leq \frac{1}{2} \quad \text { for } \quad 0 \leq \theta \leq \frac{1}{2}
$$

In summary then, for

$$
\mu(1-\theta) \leq \frac{1}{2}
$$

the θ-scheme satisfies the discrete maximum principle.
This condition is clearly more demanding than the ℓ_{2}-stability condition:

$$
\mu(1-2 \theta) \leq \frac{1}{2} \quad \text { for } \quad 0 \leq \theta \leq \frac{1}{2}
$$

E.g., the Crank-Nicolson scheme is unconditionally stable in the ℓ_{2} norm, yet it only satisfies the discrete maximum principle when $\mu:=\frac{\Delta t}{(\Delta x)^{2}} \leq 1$.

Convergence of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation in one space-dimension with the convergence analysis of the θ-scheme for the Dirichlet initial-boundary-value problem.

Convergence of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation in one space-dimension with the convergence analysis of the θ-scheme for the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} & =\theta \mu\left(U_{j+1}^{m+1}+U_{j-1}^{m+1}\right) \\
& +(1-\theta) \mu\left(U_{j+1}^{m}+U_{j-1}^{m}\right)+[1-2(1-\theta) \mu] U_{j}^{m}
\end{aligned}
$$

Convergence of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation in one space-dimension with the convergence analysis of the θ-scheme for the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

$$
\begin{aligned}
(1+2 \theta \mu) U_{j}^{m+1} & =\theta \mu\left(U_{j+1}^{m+1}+U_{j-1}^{m+1}\right) \\
& +(1-\theta) \mu\left(U_{j+1}^{m}+U_{j-1}^{m}\right)+[1-2(1-\theta) \mu] U_{j}^{m}
\end{aligned}
$$

The scheme is considered subject to the initial condition

$$
U_{j}^{0}=u_{0}\left(x_{j}\right), \quad j=0, \ldots, J,
$$

and the boundary conditions

$$
U_{0}^{m+1}=A\left(t_{m+1}\right), \quad U_{J}^{m+1}=B\left(t_{m+1}\right), \quad m=0, \ldots, M-1
$$

The consistency error for the θ-scheme is defined by

$$
\begin{aligned}
T_{j}^{m}= & \frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}-(1-\theta) \frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{(\Delta x)^{2}} \\
& -\theta \frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{(\Delta x)^{2}}, \quad\left\{\begin{array}{l}
j=1, \ldots, J-1 \\
m=0, \ldots, M-1,
\end{array}\right.
\end{aligned}
$$

where $u_{j}^{m} \equiv u\left(x_{j}, t_{m}\right)$,

The consistency error for the θ-scheme is defined by

$$
\begin{aligned}
T_{j}^{m}= & \frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}-(1-\theta) \frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{(\Delta x)^{2}} \\
& -\theta \frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{(\Delta x)^{2}}, \quad\left\{\begin{array}{l}
j=1, \ldots, J-1 \\
m=0, \ldots, M-1
\end{array}\right.
\end{aligned}
$$

where $u_{j}^{m} \equiv u\left(x_{j}, t_{m}\right)$, and therefore

$$
\begin{aligned}
(1+2 \theta \mu) u_{j}^{m+1}= & \theta \mu\left(u_{j+1}^{m+1}+u_{j-1}^{m+1}\right)+(1-\theta) \mu\left(u_{j+1}^{m}+u_{j-1}^{m}\right) \\
& +[1-2(1-\theta) \mu] u_{j}^{m}+\Delta t T_{j}^{m}, \quad\left\{\begin{array}{c}
j=1, \ldots, J-1 \\
m=0 \ldots, M-1
\end{array}\right.
\end{aligned}
$$

Define the global error, that is the discrepancy at a mesh-point between the exact solution and its numerical approximation, by

$$
e_{j}^{m}:=u\left(x_{j}, t_{m}\right)-U_{j}^{m}, \quad\left\{\begin{array}{l}
j=0, \ldots, J, \\
m=0, \ldots, M
\end{array}\right.
$$

Define the global error, that is the discrepancy at a mesh-point between the exact solution and its numerical approximation, by

$$
e_{j}^{m}:=u\left(x_{j}, t_{m}\right)-U_{j}^{m}, \quad\left\{\begin{array}{l}
j=0, \ldots, J, \\
m=0, \ldots, M
\end{array}\right.
$$

It then follows that

$$
e_{0}^{m+1}=0, e_{J}^{m+1}=0, e_{j}^{0}=0, \quad j=0, \ldots, J
$$

and

$$
\begin{aligned}
(1+2 \theta \mu) e_{j}^{m+1}= & \theta \mu\left(e_{j+1}^{m+1}+e_{j-1}^{m+1}\right)+(1-\theta) \mu\left(e_{j+1}^{m}+e_{j-1}^{m}\right) \\
& +[1-2(1-\theta) \mu] e_{j}^{m}+\Delta t T_{j}^{m}, \quad\left\{\begin{array}{l}
j=1, \ldots, J-1 \\
m=0, \ldots, M-1
\end{array}\right.
\end{aligned}
$$

Define the global error, that is the discrepancy at a mesh-point between the exact solution and its numerical approximation, by

$$
e_{j}^{m}:=u\left(x_{j}, t_{m}\right)-U_{j}^{m}, \quad\left\{\begin{array}{l}
j=0, \ldots, J, \\
m=0, \ldots, M
\end{array}\right.
$$

It then follows that

$$
e_{0}^{m+1}=0, e_{J}^{m+1}=0, e_{j}^{0}=0, \quad j=0, \ldots, J
$$

and

$$
\begin{aligned}
(1+2 \theta \mu) e_{j}^{m+1}= & \theta \mu\left(e_{j+1}^{m+1}+e_{j-1}^{m+1}\right)+(1-\theta) \mu\left(e_{j+1}^{m}+e_{j-1}^{m}\right) \\
& +[1-2(1-\theta) \mu] e_{j}^{m}+\Delta t T_{j}^{m}, \quad\left\{\begin{array}{c}
j=1, \ldots, J-1 \\
m=0, \ldots, M-1
\end{array}\right.
\end{aligned}
$$

We define,

$$
E^{m}=\max _{0 \leq j \leq J}\left|e_{j}^{m}\right| \quad \text { and } \quad T^{m}=\max _{1 \leq j \leq J-1}\left|T_{j}^{m}\right| .
$$

As, by hypothesis,

$$
\theta \mu \geq 0, \quad(1-\theta) \mu \geq 0, \quad 1-2(1-\theta) \mu \geq 0
$$

we have that

$$
(1+2 \theta \mu) E^{m+1} \leq 2 \theta \mu E^{m+1}+E^{m}+\Delta t T^{m}
$$

As, by hypothesis,

$$
\theta \mu \geq 0, \quad(1-\theta) \mu \geq 0, \quad 1-2(1-\theta) \mu \geq 0
$$

we have that

$$
(1+2 \theta \mu) E^{m+1} \leq 2 \theta \mu E^{m+1}+E^{m}+\Delta t T^{m}
$$

Hence,

$$
E^{m+1} \leq E^{m}+\Delta t T^{m} .
$$

As, by hypothesis,

$$
\theta \mu \geq 0, \quad(1-\theta) \mu \geq 0, \quad 1-2(1-\theta) \mu \geq 0
$$

we have that

$$
(1+2 \theta \mu) E^{m+1} \leq 2 \theta \mu E^{m+1}+E^{m}+\Delta t T^{m}
$$

Hence,

$$
E^{m+1} \leq E^{m}+\Delta t T^{m}
$$

As $E^{0}=0$, upon summation,

$$
\begin{aligned}
E^{m} & \leq \Delta t \sum_{n=0}^{m-1} T^{n} \\
& \leq m \Delta t \max _{0 \leq n \leq m-1} T^{n} \\
& \leq T \max _{0 \leq m \leq M-1} \max _{1 \leq j \leq J-1}\left|T_{j}^{m}\right|,
\end{aligned}
$$

As, by hypothesis,

$$
\theta \mu \geq 0, \quad(1-\theta) \mu \geq 0, \quad 1-2(1-\theta) \mu \geq 0
$$

we have that

$$
(1+2 \theta \mu) E^{m+1} \leq 2 \theta \mu E^{m+1}+E^{m}+\Delta t T^{m}
$$

Hence,

$$
E^{m+1} \leq E^{m}+\Delta t T^{m}
$$

As $E^{0}=0$, upon summation,

$$
\begin{aligned}
E^{m} & \leq \Delta t \sum_{n=0}^{m-1} T^{n} \\
& \leq m \Delta t \max _{0 \leq n \leq m-1} T^{n} \\
& \leq T \max _{0 \leq m \leq M-1} \max _{1 \leq j \leq J-1}\left|T_{j}^{m}\right|,
\end{aligned}
$$

which then implies that

$$
\max _{0 \leq j \leq J} \max _{0 \leq m \leq M}\left|u\left(x_{j}, t_{m}\right)-U_{j}^{m}\right| \leq T \max _{1 \leq j \leq J-1} \max _{0 \leq m \leq M-1}\left|T_{j}^{m}\right| .
$$

Recall that the consistency error of the θ-scheme is

$$
T_{j}^{m}= \begin{cases}\mathcal{O}\left((\Delta x)^{2}+(\Delta t)^{2}\right) & \text { for } \theta=1 / 2 \\ \mathcal{O}\left((\Delta x)^{2}+\Delta t\right) & \text { for } \theta \neq 1 / 2\end{cases}
$$

Recall that the consistency error of the θ-scheme is

$$
T_{j}^{m}= \begin{cases}\mathcal{O}\left((\Delta x)^{2}+(\Delta t)^{2}\right) & \text { for } \theta=1 / 2 \\ \mathcal{O}\left((\Delta x)^{2}+\Delta t\right) & \text { for } \theta \neq 1 / 2\end{cases}
$$

For the explicit/implicit Euler schemes, for which

$$
T_{j}^{m}=\mathcal{O}\left((\Delta x)^{2}+\Delta t\right)
$$

one has the following bound on the global error:

$$
\max _{0 \leq j \leq J} \max _{0 \leq m \leq M}\left|u\left(x_{j}, t_{m}\right)-U_{j}^{m}\right| \leq \text { Const. }\left((\Delta x)^{2}+\Delta t\right)
$$

Recall that the consistency error of the θ-scheme is

$$
T_{j}^{m}= \begin{cases}\mathcal{O}\left((\Delta x)^{2}+(\Delta t)^{2}\right) & \text { for } \theta=1 / 2 \\ \mathcal{O}\left((\Delta x)^{2}+\Delta t\right) & \text { for } \theta \neq 1 / 2\end{cases}
$$

For the explicit/implicit Euler schemes, for which

$$
T_{j}^{m}=\mathcal{O}\left((\Delta x)^{2}+\Delta t\right)
$$

one has the following bound on the global error:

$$
\max _{0 \leq j \leq J} \max _{0 \leq m \leq M}\left|u\left(x_{j}, t_{m}\right)-U_{j}^{m}\right| \leq \text { Const. }\left((\Delta x)^{2}+\Delta t\right),
$$

while for the Crank-Nicolson scheme, which has consistency error

$$
T_{j}^{m}=\mathcal{O}\left((\Delta x)^{2}+(\Delta t)^{2}\right)
$$

one has

$$
\max _{0 \leq j \leq J} \max _{0 \leq m \leq M}\left|u\left(x_{j}, t_{m}\right)-U_{j}^{m}\right| \leq \text { Const. }\left((\Delta x)^{2}+(\Delta t)^{2}\right) .
$$

Finite difference approximation in two space-dimensions

Consider the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}, \quad(x, y) \in \Omega:=(a, b) \times(c, d), \quad t \in(0, T]
$$

subject to the initial condition

$$
u(x, y, 0)=u_{0}(x, y), \quad(x, y) \in[a, b] \times[c, d]
$$

and the Dirichlet boundary condition

$$
\left.u\right|_{\partial \Omega}=B(x, y, t), \quad(x, y) \in \partial \Omega, \quad t \in(0, T]
$$

where $\partial \Omega$ is the boundary of Ω.

Finite difference approximation in two space-dimensions

Consider the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}, \quad(x, y) \in \Omega:=(a, b) \times(c, d), \quad t \in(0, T]
$$

subject to the initial condition

$$
u(x, y, 0)=u_{0}(x, y), \quad(x, y) \in[a, b] \times[c, d]
$$

and the Dirichlet boundary condition

$$
\left.u\right|_{\partial \Omega}=B(x, y, t), \quad(x, y) \in \partial \Omega, \quad t \in(0, T]
$$

where $\partial \Omega$ is the boundary of Ω.

We begin by considering the explicit Euler finite difference scheme for this problem.

The explicit Euler scheme

Let

$$
\delta_{x}^{2} U_{i j}:=U_{i+1, j}-2 U_{i j}+U_{i-1, j},
$$

and

$$
\delta_{y}^{2} U_{i j}:=U_{i, j+1}-2 U_{i j}+U_{i, j-1}
$$

The explicit Euler scheme

Let

$$
\delta_{x}^{2} U_{i j}:=U_{i+1, j}-2 U_{i j}+U_{i-1, j}
$$

and

$$
\delta_{y}^{2} U_{i j}:=U_{i, j+1}-2 U_{i j}+U_{i, j-1}
$$

Let, further, $\Delta x:=(b-a) / J_{x}, \Delta y:=(d-c) / J_{y}, \Delta t:=T / M$, and define

$$
\begin{array}{ll}
x_{i}=a+i \Delta x, & \\
y_{j}=c+j \Delta y, & j=0, \ldots, J_{x} \\
t_{m}=m \Delta t, & \\
m=0, \ldots, M
\end{array}
$$

The explicit Euler finite difference scheme for the unsteady heat equation on the space-time domain $\bar{\Omega} \times[0, T]$ is then:

$$
\frac{U_{i j}^{m+1}-U_{i j}^{m}}{\Delta t}=\frac{\delta_{x}^{2} U_{i j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m}}{(\Delta y)^{2}},
$$

$$
\text { for } i=1, \ldots, J_{x}-1, j=1, \ldots, J_{y}-1, m=0,1, \ldots, M-1
$$

The explicit Euler finite difference scheme for the unsteady heat equation on the space-time domain $\bar{\Omega} \times[0, T]$ is then:

$$
\frac{U_{i j}^{m+1}-U_{i j}^{m}}{\Delta t}=\frac{\delta_{x}^{2} U_{i j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m}}{(\Delta y)^{2}},
$$

for $i=1, \ldots, J_{x}-1, j=1, \ldots, J_{y}-1, m=0,1, \ldots, M-1$, subject to the initial condition

$$
U_{i j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i=0, \ldots, J_{x}, \quad j=0, \ldots, J_{y}
$$

The explicit Euler finite difference scheme for the unsteady heat equation on the space-time domain $\bar{\Omega} \times[0, T]$ is then:

$$
\frac{U_{i j}^{m+1}-U_{i j}^{m}}{\Delta t}=\frac{\delta_{x}^{2} U_{i j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m}}{(\Delta y)^{2}},
$$

for $i=1, \ldots, J_{x}-1, j=1, \ldots, J_{y}-1, m=0,1, \ldots, M-1$, subject to the initial condition

$$
U_{i j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i=0, \ldots, J_{x}, \quad j=0, \ldots, J_{y}
$$

and the boundary condition

$$
U_{i j}^{m}=B\left(x_{i}, y_{j}, t_{m}\right), \text { at the boundary mesh points, for } m=1, \ldots, M \text {. }
$$

The implicit Euler scheme

Let $\Delta x:=(b-a) / J_{x}, \Delta y:=(d-c) / J_{y}, \Delta t:=T / M$, and define

$$
\begin{aligned}
x_{i} & =a+i \Delta x, & & i=0, \ldots, J_{x} \\
y_{j} & =c+j \Delta y, & & j=0, \ldots, J_{y} \\
t_{m} & =m \Delta t, & & m=0, \ldots, M
\end{aligned}
$$

The implicit Euler scheme

Let $\Delta x:=(b-a) / J_{x}, \Delta y:=(d-c) / J_{y}, \Delta t:=T / M$, and define

$$
\begin{aligned}
x_{i} & =a+i \Delta x, & & i=0, \ldots, J_{x} \\
y_{j} & =c+j \Delta y, & & j=0, \ldots, J_{y} \\
t_{m} & =m \Delta t, & & m=0, \ldots, M .
\end{aligned}
$$

The implicit Euler finite difference scheme for the problem is then

$$
\frac{U_{i j}^{m+1}-U_{i j}^{m}}{\Delta t}=\frac{\delta_{x}^{2} U_{i j}^{m+1}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m+1}}{(\Delta y)^{2}},
$$

for $i=1, \ldots, J_{x}-1, j=1, \ldots, J_{y}-1, m=0,1, \ldots, M-1$,
subject to the initial condition

$$
U_{i j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i=0, \ldots, J_{x}, \quad j=0, \ldots, J_{y}
$$

and the boundary condition

$$
U_{i j}^{m+1}=B\left(x_{i}, y_{j}, t_{m+1}\right)
$$

at the boundary mesh points,

$$
\text { for } m=0, \ldots, M-1
$$

The θ-scheme

Let $\Delta x:=(b-a) / J_{x}, \Delta y:=(d-c) / J_{y}, \Delta t:=T / M$, and, for $\theta \in[0,1]$, consider the finite difference scheme

$$
\frac{U_{i j}^{m+1}-U_{i j}^{m}}{\Delta t}=(1-\theta)\left(\frac{\delta_{x}^{2} U_{i j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m}}{(\Delta y)^{2}}\right)+\theta\left(\frac{\delta_{x}^{2} U_{i j}^{m+1}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m+1}}{(\Delta y)^{2}}\right)
$$

for $i=1, \ldots, J_{x}-1, j=1, \ldots, J_{y}-1, m=0,1, \ldots, M-1$,

The θ-scheme

Let $\Delta x:=(b-a) / J_{x}, \Delta y:=(d-c) / J_{y}, \Delta t:=T / M$, and, for $\theta \in[0,1]$, consider the finite difference scheme

$$
\frac{U_{i j}^{m+1}-U_{i j}^{m}}{\Delta t}=(1-\theta)\left(\frac{\delta_{x}^{2} U_{i j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m}}{(\Delta y)^{2}}\right)+\theta\left(\frac{\delta_{x}^{2} U_{i j}^{m+1}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m+1}}{(\Delta y)^{2}}\right)
$$

for $i=1, \ldots, J_{x}-1, j=1, \ldots, J_{y}-1, m=0,1, \ldots, M-1$, subject to the initial condition

$$
U_{i j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i=0, \ldots, J_{x}, \quad j=0, \ldots, J_{y}
$$

The θ-scheme

Let $\Delta x:=(b-a) / J_{x}, \Delta y:=(d-c) / J_{y}, \Delta t:=T / M$, and, for $\theta \in[0,1]$, consider the finite difference scheme

$$
\frac{U_{i j}^{m+1}-U_{i j}^{m}}{\Delta t}=(1-\theta)\left(\frac{\delta_{x}^{2} U_{i j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m}}{(\Delta y)^{2}}\right)+\theta\left(\frac{\delta_{x}^{2} U_{i j}^{m+1}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i j}^{m+1}}{(\Delta y)^{2}}\right)
$$

for $i=1, \ldots, J_{x}-1, j=1, \ldots, J_{y}-1, m=0,1, \ldots, M-1$, subject to the initial condition

$$
U_{i j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i=0, \ldots, J_{x}, \quad j=0, \ldots, J_{y}
$$

and the boundary condition

$$
\begin{array}{r}
U_{i j}^{m+1}=B\left(x_{i}, y_{j}, t_{m+1}\right), \text { at the boundary mesh points, } \\
\text { for } m=0, \ldots, M-1 .
\end{array}
$$

