Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute
University of Oxford 2022

Lecture 13

The implicit scheme: stability, consistency and convergence

For $M \geq 2$, we define $\Delta t:=T / M$, and for $J \geq 2$ the spatial step is taken to be $\Delta x:=(b-a) / J$. We let $x_{j}:=a+j \Delta x$ for $j=0,1, \ldots, J$ and $t_{m}:=m \Delta t$ for $m=0,1, \ldots, M$.

On the space-time mesh $\left\{\left(x_{j}, t_{m}\right): 0 \leq j \leq J, 0 \leq m \leq M\right\}$ we consider the finite difference scheme

$$
\begin{array}{rlrl}
\frac{U_{j}^{m+1}-2 U_{j}^{m}+U_{j}^{m-1}}{\Delta t^{2}}-c^{2} \frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{\Delta x^{2}} & =f\left(x_{j}, t_{m+1}\right) & \text { for }\left\{\begin{array}{l}
j=1, \ldots, J-1, \\
m=1, \ldots, M-1,
\end{array}\right. \\
U_{j}^{0} & =u_{0}\left(x_{j}\right) & \text { for } j=0,1, \ldots, J, \\
U_{j}^{1} & =U_{j}^{0}+\Delta t u_{1}\left(x_{j}\right) & \text { for } j=1,2, \ldots, J-1, \\
U_{0}^{m}=0 & \text { and } \quad U_{J}^{m} & =0 & \text { for } m=1, \ldots, M . \tag{1}
\end{array}
$$

The second numerical initial condition, featuring in equation (1) $)_{3}$, stems from the observation that if $\frac{\partial^{2} u}{\partial t^{2}} \in C([a, b] \times[0, T])$ then

$$
\begin{aligned}
\frac{u\left(x_{j}, \Delta t\right)-U_{j}^{0}}{\Delta t} & =\frac{u\left(x_{j}, \Delta t\right)-u\left(x_{j}, 0\right)}{\Delta t} \\
& =\frac{\partial u}{\partial t}\left(x_{j}, 0\right)+\mathcal{O}(\Delta t)=u_{1}\left(x_{j}\right)+\mathcal{O}(\Delta t)
\end{aligned}
$$

thus, by ignoring the $\mathcal{O}(\Delta t)$ term and replacing $u\left(x_{j}, \Delta t\right)$ by its numerical approximation U_{j}^{1} we obtain $(1)_{3}$.

Once the values of U_{j}^{m-1} and U_{j}^{m}, for $j=0, \ldots, J$, have been computed (or have been specified by the initial data, in the case of $m=1$), the subsequent values $U_{j}^{m+1}, j=0, \ldots, J$, are computed by solving a system of $J-1$ linear algebraic equations for the $J-1$ unknowns U_{j}^{m+1}, $j=0, \ldots, J-1$, for $m=0, \ldots, M-1$. The finite difference scheme (1) is therefore referred to as the implicit scheme for the initial-boundary-value problem.

Stability of the implicit scheme

Consider the inner products

$$
\begin{aligned}
& (U, V):=\sum_{j=1}^{J-1} \Delta x U_{j} V_{j}, \\
& (U, V]:=\sum_{j=1}^{J} \Delta x U_{j} V_{j},
\end{aligned}
$$

and the associated norms, respectively, $\|\cdot\|$ and $\| \cdot]$, defined by $\|U\|:=(U, U)^{\frac{1}{2}}$ and $\left.\| U\right] \left\lvert\,:=(U, U]^{\frac{1}{2}}\right.$.

Note that for two mesh functions A and B defined on the computational mesh $\left\{x_{j}: j=1, \ldots, J-1\right\}$ one has that

$$
(A-B, A)=\frac{1}{2}\left(\|A\|^{2}-\|B\|^{2}\right)+\frac{1}{2}\|A-B\|^{2} .
$$

Thus, by taking $A=U^{m+1}-U^{m}$ and $B=U^{m}-U^{m-1}$, we have

$$
\begin{aligned}
& \left(U^{m+1}-2 U^{m}+U^{m-1}, U^{m+1}-U^{m}\right) \\
& =\frac{1}{2}\left(\left\|U^{m+1}-U^{m}\right\|^{2}-\left\|U^{m}-U^{m-1}\right\|^{2}\right)+\frac{1}{2}\left\|U^{m+1}-2 U^{m}+U^{m-1}\right\|^{2}
\end{aligned}
$$

Similarly as above, for two mesh functions A and B defined on the computational mesh $\left\{x_{j}: j=1, \ldots, J\right\}$ we have that

$$
\left.\left.\left.(A-B, A]=\left.\frac{1}{2}(\| A]\right|^{2}-\| B\right]\left.\right|^{2}\right)+\frac{1}{2} \| A-B\right]\left.\right|^{2}
$$

Hence, by summation by parts and taking $A=D_{x}^{-} U^{m+1}$ and $B=D_{x}^{-} U^{m}$:

$$
\begin{aligned}
\left(-D_{x}^{+} D_{x}^{-} U^{m+1}, U^{m+1}-U^{m}\right)= & \left(D_{x}^{-} U^{m+1}, D_{x}^{-}\left(U^{m+1}-U^{m}\right)\right] \\
= & \left(D_{x}^{-} U^{m+1}-D_{x}^{-} U^{m}, D_{x}^{-} U^{m+1}\right] \\
= & \left.\left.\left.\frac{1}{2}\left(\| D_{x}^{-} U^{m+1}\right]\right|^{2}-\| D_{x}^{-} U^{m}\right]\left.\right|^{2}\right) \\
& \left.+\frac{1}{2} \| D_{x}^{-}\left(U^{m+1}-U^{m}\right)\right]\left.\right|^{2} .
\end{aligned}
$$

By taking the (\cdot, \cdot) inner product of $(1)_{1}$ with $U^{m+1}-U^{m}$ and using the identities stated above we therefore obtain:

$$
\begin{align*}
& \frac{1}{2}\left(\left\|\frac{U^{m+1}-U^{m}}{\Delta t}\right\|^{2}-\left\|\frac{U^{m}-U^{m-1}}{\Delta t}\right\|^{2}\right)+\frac{1}{2} \Delta t^{2}\left\|\frac{U^{m+1}-2 U^{m}+U^{m-1}}{\Delta t^{2}}\right\|^{2} \\
& \left.\left.\left.\quad+\left.\frac{c^{2}}{2}\left(\| D_{x}^{-} U^{m+1}\right]\right|^{2}-\| D_{x}^{-} U^{m}\right]\left.\right|^{2}\right)+\frac{c^{2}}{2} \Delta t^{2} \| D_{x}^{-}\left(\frac{U^{m+1}-U^{m}}{\Delta t}\right)\right]\left.\right|^{2} \\
& \quad=\left(f\left(\cdot, t_{m+1}\right), U^{m+1}-U^{m}\right) . \tag{2}
\end{align*}
$$

In the special case when f is identically zero the equality (2) gives

$$
\begin{equation*}
\left.\left.\left\|\frac{U^{m+1}-U^{m}}{\Delta t}\right\|^{2}+c^{2} \| D_{x}^{-} U^{m+1}\right]\left.\right|^{2} \leq\left\|\frac{U^{m}-U^{m-1}}{\Delta t}\right\|^{2}+c^{2} \| D_{x}^{-} U^{m}\right]\left.\right|^{2} \tag{3}
\end{equation*}
$$

Let us define:

$$
\left.\mathcal{M}^{2}\left(U^{m}\right):=\left\|\frac{U^{m+1}-U^{m}}{\Delta t}\right\|^{2}+c^{2} \| D_{x}^{-} U^{m+1}\right]\left.\right|^{2}
$$

With this notation (3) becomes

$$
\mathcal{M}^{2}\left(U^{m}\right) \leq \mathcal{M}^{2}\left(U^{m-1}\right), \quad \text { for all } m=1, \ldots, M-1
$$

and therefore

$$
\mathcal{M}^{2}\left(U^{m}\right) \leq \mathcal{M}^{2}\left(U^{0}\right), \quad \text { for all } m=1, \ldots, M-1
$$

The mapping

$$
U \mapsto \max _{m \in\{0, \ldots, M-1\}}\left[\mathcal{M}^{2}\left(U^{m}\right)\right]^{1 / 2}
$$

is a norm on the linear space of mesh functions U defined on the space-time mesh $\left\{\left(x_{j}, t_{m}\right): j=0,1, \ldots, J, m=0,1, \ldots, M\right\}$ such that $U_{0}^{m}=U_{J}^{m}=0$ for all $m=0,1, \ldots, M$, called the discrete energy norm.

Thus we have shown that when f is identically zero the implicit scheme (1) is (unconditionally) stable in this norm.

We now return to the general case when f is not identically zero. Our starting point is the equality (2). By the Cauchy-Schwarz inequality,

$$
\begin{align*}
\left(f\left(\cdot, t_{m+1}\right)\right. & \left., U^{m+1}-U^{m}\right) \leq\left\|f\left(\cdot, t_{m+1}\right)\right\|\left\|U^{m+1}-U^{m}\right\| \\
& =\sqrt{\Delta t T}\left\|f\left(\cdot, t_{m+1}\right)\right\| \sqrt{\frac{\Delta t}{T}}\left\|\frac{U^{m+1}-U^{m}}{\Delta t}\right\| \tag{4}\\
& \leq \frac{\Delta t T}{2}\left\|f\left(\cdot, t_{m+1}\right)\right\|^{2}+\frac{\Delta t}{2 T}\left\|\frac{U^{m+1}-U^{m}}{\Delta t}\right\|^{2},
\end{align*}
$$

where in the transition to the last line we used the elementary inequality

$$
\alpha \beta \leq \frac{1}{2} \alpha^{2}+\frac{1}{2} \beta^{2}, \quad \text { for } \alpha, \beta \in \mathbb{R}
$$

Substituting (4) into (2) we deduce that

$$
\begin{align*}
& \left.\left.\left(1-\frac{\Delta t}{T}\right)\left(\left\|\frac{U^{m+1}-U^{m}}{\Delta t}\right\|^{2}+c^{2} \| D_{x}^{-} U^{m+1}\right]\right|^{2}\right) \tag{5}\\
& \left.\quad \leq\left\|\frac{U^{m}-U^{m-1}}{\Delta t}\right\|^{2}+c^{2} \| D_{x}^{-} U^{m}\right]\left.\right|^{2}+\Delta t T\left\|f\left(\cdot, t_{m+1}\right)\right\|^{2}
\end{align*}
$$

By recalling the definition of $\mathcal{M}^{2}\left(U^{m}\right)$ we can rewrite (5) in the following compact form:

$$
\left(1-\frac{\Delta t}{T}\right) \mathcal{M}^{2}\left(U^{m}\right) \leq \mathcal{M}^{2}\left(U^{m-1}\right)+\Delta t T\left\|f\left(\cdot, t_{m+1}\right)\right\|^{2}
$$

As, by assumption, $M \geq 2$, it follows that $\Delta t:=T / M \leq T / 2$, whereby $\Delta t / T \leq 1 / 2$. By noting that

$$
1-x \geq \frac{1}{1+2 x} \quad \forall x \in\left[0, \frac{1}{2}\right]
$$

it follows with $x=\Delta t / T$ that

$$
\begin{aligned}
\mathcal{M}^{2}\left(U^{m}\right) & \leq\left(1+\frac{2 \Delta t}{T}\right) \mathcal{M}^{2}\left(U^{m-1}\right)+\Delta t T\left(1+\frac{2 \Delta t}{T}\right)\left\|f\left(\cdot, t_{m+1}\right)\right\|^{2} \\
& \leq\left(1+\frac{2 \Delta t}{T}\right) \mathcal{M}^{2}\left(U^{m-1}\right)+2 \Delta t T\left\|f\left(\cdot, t_{m+1}\right)\right\|^{2}
\end{aligned}
$$

We need the following result, which is easily proved by induction.

Lemma

Suppose that $M \geq 2$ is an integer, $\left\{a_{m}\right\}_{m=0}^{M-1}$ and $\left\{b_{m}\right\}_{m=1}^{M-1}$ are nonnegative real numbers, $\alpha>0$, and

$$
a_{m} \leq \alpha a_{m-1}+b_{m} \quad \text { for } m=1,2, \ldots, M-1
$$

Then,

$$
a_{m} \leq \alpha^{m} a_{0}+\sum_{k=1}^{m} \alpha^{m-k} b_{k} \quad \text { for } m=1,2, \ldots, M-1
$$

We shall apply Lemma 1 with

$$
a_{m}=\mathcal{M}^{2}\left(U^{m}\right), \quad b_{m}=2 \Delta t T\left\|f\left(\cdot, t_{m+1}\right)\right\|^{2}, \quad \alpha=1+\frac{2 \Delta t}{T}
$$

to deduce that, for $m=1,2, \ldots, M-1$,

$$
\mathcal{M}^{2}\left(U^{m}\right) \leq\left(1+\frac{2 \Delta t}{T}\right)^{m} \mathcal{M}\left(U^{0}\right)+2 \Delta t T \sum_{k=1}^{m}\left(1+\frac{2 \Delta t}{T}\right)^{m-k}\left\|f\left(\cdot, t^{k+1}\right)\right\|^{2}
$$

We note that

$$
\left(1+\frac{2 \Delta t}{T}\right)^{m} \leq\left(1+\frac{2 \Delta t}{T}\right)^{M}=\left(1+\frac{2 \Delta t}{T}\right)^{\frac{T}{\Delta t}} \leq \mathrm{e}^{2}
$$

where the last inequality follows from the inequality

$$
(1+2 x)^{\frac{1}{x}} \leq e^{2} \quad \forall x \in\left(0, \frac{1}{2}\right]
$$

with $x=\Delta t / T$.

Thus we deduce the following stability result for the implicit scheme (1).

Theorem

The implicit finite difference approximation (1) of the initial-boundaryvalue problem, on a finite difference mesh of spacing $\Delta x=(b-a) / J$ with $J \geq 2$ in the x-direction and $\Delta t=T / M$ with $M \geq 2$ in the t-direction, is (unconditionally) stable in the sense that, for $m=1, \ldots, M-1$,

$$
\mathcal{M}^{2}\left(U^{m}\right) \leq \mathrm{e}^{2} \mathcal{M}^{2}\left(U^{0}\right)+2 \mathrm{e}^{2} T \sum_{k=1}^{m} \Delta t\left\|f\left(\cdot, t_{k+1}\right)\right\|^{2},
$$

independently of the choice of Δx and Δt.

Consistency of the implicit scheme

We define the consistency error of the scheme by
$T_{j}^{m+1}:=\frac{u_{j}^{m+1}-2 u_{j}^{m}+u_{j}^{m-1}}{\Delta t^{2}}-c^{2} \frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+2 u_{j-1}^{m+1}}{\Delta x^{2}}-f\left(x_{j}, t_{m+1}\right)$,
and

$$
T_{j}^{1}:=\frac{u_{j}^{1}-u_{j}^{0}}{\Delta t}-u_{1}\left(x_{j}\right), \quad j=1, \ldots, J-1
$$

where $u_{j}^{m}:=u\left(x_{j}, t_{m}\right)$.

By Taylor series expanions with remainder terms:

$$
\left|T_{j}^{m+1}\right| \leq \frac{1}{12} c^{2} \Delta x^{2} M_{4 x}+\frac{5}{3} \Delta t M_{3 t}, \quad\left\{\begin{array}{l}
j=1, \ldots, J-1 \tag{6}\\
m=1, \ldots, M-1
\end{array}\right.
$$

where
$M_{4 x}:=\max _{(x, t) \in[a, b] \times[0, T]}\left|\frac{\partial^{4} u}{\partial x^{4}}(x, t)\right| \quad$ and $\quad M_{3 t}:=\max _{(x, t) \in[a, b] \times[0, T]}\left|\frac{\partial^{3} u}{\partial t^{3}}(x, t)\right|$.
Furthermore, again by Taylor series expansion with a remainder term:

$$
\left|T_{j}^{1}\right| \leq \frac{1}{2} \Delta t M_{2 t}, \quad j=1, \ldots, J-1
$$

where

$$
M_{2 t}:=\max _{(x, t) \in[a, b] \times[0, T]}\left|\frac{\partial^{2} u}{\partial t^{2}}(x, t)\right| .
$$

Convergence of the implicit scheme

We define the global error

$$
e_{j}^{m}:=u\left(x_{j}, t_{m}\right)-U_{j}^{m}, \quad\left\{\begin{array}{l}
j=0, \ldots, J, \\
m=0, \ldots, M
\end{array}\right.
$$

It follows from the definitions of T_{j}^{m+1} and T_{j}^{1} that

$$
\frac{e_{j}^{m+1}-2 e_{j}^{m}+e_{j}^{m-1}}{\Delta t^{2}}-c^{2} \frac{e_{j+1}^{m+1}-2 e_{j}^{m+1}+2 e_{j-1}^{m+1}}{\Delta x^{2}}=T_{j}^{m+1}
$$

for $j=1, \ldots, J-1$ and $m=1, \ldots, M-1$, and

$$
e_{j}^{1}=e_{j}^{0}+\Delta t T_{j}^{1}, \quad j=1, \ldots, J-1
$$

Furthermore, $e_{j}^{0}=0$ for $j=0,1, \ldots, J$, and $e_{0}^{m}=e_{J}^{m}=0$ for $m=1, \ldots, M$.

Hence, the global error e satisfies an identical finite difference scheme as U, but with $f\left(x_{j}, t_{m+1}\right)$ replaced by $T_{j}^{m+1}, U_{j}^{0}=u_{0}\left(x_{j}\right)$ replaced by $e_{j}^{0}=0$, and $u_{1}\left(x_{j}\right)$ replaced by T_{j}^{1}.

Theorem 2 with U^{m} replaced by e^{m}, U^{0} replaced by e^{0} and $f\left(x_{j}, t_{k+1}\right)$ replaced by T_{j}^{k+1} for $j=1, \ldots, J-1$ and $k=1, \ldots, M-1$, gives that
$\mathcal{M}^{2}\left(e^{m}\right) \leq \mathrm{e}^{2} \mathcal{M}^{2}\left(e^{0}\right)+2 \mathrm{e}^{2} T \sum_{k=1}^{m} \Delta t\left\|T^{k+1}\right\|^{2}, \quad$ for $m=1, \ldots, M-1$.
It remains to bound the terms on the r.h.s. of this inequality.

Because ($J-1) \Delta x \leq b-a$, it follows from (6) that

$$
\begin{aligned}
\max _{1 \leq k \leq m}\left\|T^{k+1}\right\|^{2} & =\max _{1 \leq k \leq m} \sum_{j=1}^{J-1} \Delta x\left|T_{j}^{k+1}\right|^{2} \\
& \leq(b-a)\left[\frac{1}{12} c^{2} \Delta x^{2} M_{4 x}+\frac{5}{3} \Delta t M_{3 t}\right]^{2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\mathcal{M}^{2}\left(e^{0}\right) & \left.\left.=\left\|\frac{e^{1}-e^{0}}{\Delta t}\right\|^{2}+\| D_{x}^{-} e^{1}\right]\left.\right|^{2}=\left\|T^{1}\right\|^{2}+\| D_{x}^{-} e^{1}\right]\left.\right|^{2} \\
& \left.\leq(b-a)\left[\frac{1}{2} \Delta t M_{2 t}\right]^{2}+\| D_{x}^{-} e^{1}\right]\left.\right|^{2} .
\end{aligned}
$$

Since

$$
\begin{aligned}
D_{x}^{-} e_{j}^{1} & =D_{x}^{-} e_{j}^{0}+\Delta t D_{x}^{-} T_{j}^{1}=\Delta t D_{x}^{-} T_{j}^{1}=\int_{0}^{\Delta t}(\Delta t-t) D_{x}^{-} \frac{\partial^{2} u}{\partial t^{2}}\left(x_{j}, t\right) \mathrm{d} t \\
& =\frac{1}{\Delta x} \int_{0}^{\Delta t}(\Delta t-t) \int_{x_{j-1}}^{x_{j}} \frac{\partial^{3} u}{\partial x \partial t^{2}}(x, t) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

we have that

$$
\left|D_{x}^{-} e_{j}^{1}\right| \leq \frac{1}{2} \Delta t^{2} M_{1 \times 2 t}, \quad \text { where } \quad M_{1 \times 2 t}:=\max _{(x, t) \in[a, b] \times[0, T]}\left|\frac{\partial^{3} u}{\partial x \partial t^{2}}\right|
$$

whereby

$$
\left.\| D_{x}^{-} e^{1}\right]\left.\right|^{2} \leq(b-a)\left[\frac{1}{2} \Delta t^{2} M_{1 \times 2 t}\right]^{2}
$$

Therefore,

$$
\mathcal{M}^{2}\left(e^{0}\right) \leq(b-a)\left[\frac{1}{2} \Delta t M_{2 t}\right]^{2}+(b-a)\left[\frac{1}{2} \Delta t^{2} M_{1 \times 2 t}\right]^{2} .
$$

Hence, finally,

$$
\begin{aligned}
\mathcal{M}^{2}\left(e^{m}\right) \leq & \mathrm{e}^{2}(b-a)\left[\frac{1}{2} \Delta t M_{2 t}\right]^{2}+\mathrm{e}^{2}(b-a)\left[\frac{1}{2} \Delta t^{2} M_{1 \times 2 t}\right]^{2} \\
& +2 \mathrm{e}^{2} T^{2}(b-a)\left[\frac{1}{12} c^{2} \Delta x^{2} M_{4 x}+\frac{5}{3} \Delta t M_{3 t}\right]^{2}
\end{aligned}
$$

for $m=1, \ldots, M-1$. Thus, provided that $M_{2 t}, M_{1 \times 2 t}, M_{4 x}$ and $M_{3 t}$ are all finite, we have that

$$
\max _{m \in\{1, \ldots, M-1\}}\left[\mathcal{M}^{2}\left(u^{m}-U^{m}\right)\right]^{\frac{1}{2}}=\mathcal{O}\left(\Delta x^{2}+\Delta t\right)
$$

Summary:

The implicit scheme exhibits second order convergence with respect to the spatial discretization step Δx and first-order convergence with respect to the temporal discretization step Δt in the norm $\max _{m \in\{1, \ldots, M-1\}}\left[\mathcal{M}^{2}(\cdot)\right]^{\frac{1}{2}}$.

Thanks to the unconditional stability of the implicit scheme, its convergence is also unconditional in the sense that there is no limitation on the size of the time step Δt in terms of the spatial mesh-size Δx for convergence of the sequence of numerical approximations to the solution of the wave equation to occur as Δx and Δt tend to 0 .

