Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute
University of Oxford 2022

Lecture 15

First-order hyperbolic equations:

 initial-boundary-value problem and energy estimateLet Ω be a bounded open set in $\mathbb{R}^{n}, n \geq 1$, with boundary $\Gamma=\partial \Omega$, and let $T>0$. In $Q=\Omega \times(0, T]$, we consider the initial boundary-value problem

$$
\begin{align*}
\frac{\partial u}{\partial t}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} & +c(x, t) u=f(x, t), \quad x \in \Omega, \quad t \in(0, T] \tag{1}\\
u(x, t) & =0, \quad x \in \Gamma_{-}, \quad t \in[0, T] \tag{2}\\
u(x, 0) & =u_{0}(x) \quad x \in \bar{\Omega} \tag{3}
\end{align*}
$$

where

$$
\Gamma_{-}=\{x \in \Gamma: b(x) \cdot \nu(x)<0\}
$$

$b=\left(b_{1}, \ldots, b_{n}\right)$ and $\nu(x)$ denotes the unit outward normal to Γ at $x \in \Gamma$. Γ_{-}will be called the inflow boundary. Its complement, $\Gamma_{+}=\Gamma \backslash \Gamma_{-}$, will be referred to as the outflow boundary.

Continuous dependence of the solution on the data

We shall assume that

$$
\begin{align*}
& b_{i} \in C^{1}(\bar{\Omega}), \quad i=1, \ldots, n, \tag{4}\\
& c \in C(\bar{Q}), \quad f \in L_{2}(Q), \tag{5}\\
& u_{0} \in L^{2}(\Omega) . \tag{6}
\end{align*}
$$

In order to ensure consistency between the initial and the boundary condition, we shall suppose that $u_{0}(x)=0, x \in \Gamma_{-}$.

We make the additional hypothesis:

$$
\begin{equation*}
c(x, t)-\frac{1}{2} \sum_{i=1}^{n} \frac{\partial b_{i}}{\partial x_{i}}(x) \geq 0, \quad x \in \bar{\Omega}, \quad t \in[0, T] . \tag{7}
\end{equation*}
$$

By taking the inner product in $L_{2}(\Omega)$ of the equation (1) with $u(\cdot, t)$, performing partial integration and noting the boundary condition (2):

$$
\begin{align*}
& \left(\frac{\partial u}{\partial t}(\cdot, t), u(\cdot, t)\right)+\left(c(\cdot, t)-\frac{1}{2} \sum_{i=1}^{n} \frac{\partial b_{i}}{\partial x_{i}}(\cdot), u^{2}(\cdot, t)\right) \\
& \quad+\frac{1}{2} \int_{\Gamma_{+}}\left[\sum_{i=1}^{n} b_{i}(x) \nu_{i}(x)\right] u^{2}(x, t) \mathrm{d} s(x)=(f(\cdot, t), u(\cdot, t)) \tag{8}
\end{align*}
$$

where $\nu(x)=\left(\nu_{1}(x), \ldots, \nu_{n}(x)\right)$ is the unit outward normal vector to Γ at $x \in \Gamma$.

By virtue of (7) and noting that

$$
\begin{aligned}
\left(\frac{\partial u}{\partial t}, u\right) & =\int_{\Omega} \frac{\partial u}{\partial t}(x, t) u(x, t) \mathrm{d} x \\
& =\int_{\Omega} \frac{1}{2} \frac{\partial}{\partial t} u^{2}(x, t) \mathrm{d} x=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} u^{2}(x, t) \mathrm{d} x \\
& =\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u(\cdot, t)\|^{2},
\end{aligned}
$$

it follows from (8) that

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u(\cdot, t)\|^{2}+\frac{1}{2} \int_{\Gamma_{+}}\left[\sum_{i=1}^{n} b_{i}(x) \nu_{i}(x)\right] u^{2}(x, t) \mathrm{d} s(x) \leq(f, u) .
$$

By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
(f, u) & \leq\|f(\cdot, t)\|\|u(\cdot, t)\| \\
& \leq \frac{1}{2}\|f(\cdot, t)\|^{2}+\frac{1}{2}\|u(\cdot, t)\|^{2},
\end{aligned}
$$

and therefore, for any $t \in[0, T]$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|u(\cdot, t)\|^{2}+\int_{\Gamma_{+}}\left[\sum_{i=1}^{n} b_{i}(x) \nu_{i}(x)\right] u^{2}(x, t) \mathrm{d} s(x)-\|u(\cdot, t)\|^{2} \leq\|f(\cdot, t)\|^{2} .
$$

Multiplying both sides by e^{-t}, this inequality can be rewritten as follows:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t}\|u(\cdot, t)\|^{2}\right)+\mathrm{e}^{-t} \int_{\Gamma_{+}}\left[\sum_{i=1}^{n} b_{i}(x) \nu_{i}(x)\right] u^{2}(x, t) \mathrm{d} s \leq \mathrm{e}^{-t}\|f(\cdot, t)\|^{2}
$$

Integrating this inequality w.r.t. t and noting the initial condition (3),

$$
\begin{aligned}
& \mathrm{e}^{-t}\|u(\cdot, t)\|^{2}+\int_{0}^{t} \mathrm{e}^{-\tau} \int_{\Gamma_{+}}\left[\sum_{i=1}^{n} b_{i}(x) \nu_{i}(x)\right] u^{2}(x, \tau) \mathrm{d} s(x) \mathrm{d} \tau \\
& \quad \leq\left\|u_{0}\right\|^{2}+\int_{0}^{t} \mathrm{e}^{-\tau}\|f(\cdot, \tau)\|^{2} \mathrm{~d} \tau, \quad t \in[0, T]
\end{aligned}
$$

It therefore follows that

$$
\begin{align*}
& \|u(\cdot, t)\|^{2}+\int_{0}^{t} \mathrm{e}^{t-\tau} \int_{\Gamma_{+}}\left[\sum_{i=1}^{n} b_{i}(x) \nu_{i}(x)\right] u^{2}(x, \tau) \mathrm{d} s(x) \mathrm{d} \tau \\
& \quad \leq \mathrm{e}^{t}\left\|u_{0}\right\|^{2}+\int_{0}^{t} \mathrm{e}^{t-\tau}\|f(\cdot, \tau)\|^{2} \mathrm{~d} \tau, \quad t \in[0, T] \tag{9}
\end{align*}
$$

This 'energy inequality' expresses continuous dependence of the solution to (1)-(3) on the data. It also implies uniqueness of the solution.

Let us consider a particularly important case when

$$
c \equiv 0, \quad f \equiv 0, \quad \text { and } \operatorname{div} b=\sum_{i=1}^{n} \frac{\partial b_{i}}{\partial x_{i}} \equiv 0
$$

where $b(x)=\left(b_{1}(x), \ldots, b_{n}(x)\right)$. Then, thanks to the identity (8),

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u(\cdot, t)\|^{2}+\frac{1}{2} \int_{\Gamma_{+}}[b(x) \cdot \nu(x)] u^{2}(x, t) \mathrm{d} s(x)=0
$$

and therefore,

$$
\|u(\cdot, t)\|^{2}+\int_{0}^{t} \int_{\Gamma_{+}}[b(x) \cdot \nu(x)] u^{2}(x, \tau) \mathrm{d} s(x) \mathrm{d} \tau=\left\|u_{0}\right\|^{2}
$$

which can be viewed as an identity expressing 'conservation of energy' for the initial-boundary-value problem (1)-(3).

Explicit finite difference approximation

We focus on a special case of the problem: the constant- coefficient hyperbolic equation in one space dimension

$$
\begin{equation*}
\frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=f(x, t), \quad x \in(0,1), \quad t \in(0, T] \tag{10}
\end{equation*}
$$

subject to the boundary and initial conditions

$$
\begin{array}{ll}
u(x, t)=0, & x \in \Gamma_{-}, t \in[0, T] \\
u(x, 0)=u_{0}(x), & x \in[0,1] \tag{12}
\end{array}
$$

If $b>0$ then $\Gamma_{-}=\{0\}$, and if $b<0$ then $\Gamma_{-}=\{1\}$. Let us assume, for example, that $b>0$. Then the appropriate boundary condition is

$$
\begin{equation*}
u(0, t)=0, \quad t \in[0, T] \tag{13}
\end{equation*}
$$

To construct a finite difference approximation of (10)-(13) let $\Delta x:=1 / J$ be the mesh-size in the x-direction and $\Delta t:=T / M$ the mesh-size in the time-direction, t. Let us also define

$$
x_{j}:=j \Delta x, \quad j=0, \ldots, J, \quad t_{m}:=m \Delta t, \quad m=0, \ldots, M
$$

At the mesh-point $\left(x_{j}, t_{m}\right),(10)$ is approximated by the explicit finite difference scheme

$$
\begin{array}{r}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}+b D_{x}^{-} U_{j}^{m}=f\left(x_{j}, t_{m}\right), \quad j=1, \ldots, J \tag{14}\\
m=0, \ldots, M-1
\end{array}
$$

subject to the boundary and initial condition, respectively:

$$
\begin{align*}
U_{0}^{m} & =0, & & m=0, \ldots, M \tag{15}\\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & & j=0, \ldots, J . \tag{16}
\end{align*}
$$

Equivalently, this can be written as follows:

$$
U_{j}^{m+1}=(1-\mu) U_{j}^{m}+\mu U_{j-1}^{m}+\Delta t f\left(x_{j}, t_{m}\right), \quad\left\{\begin{array}{l}
j=1, \ldots, J, \\
m=0, \ldots, M-1
\end{array}\right.
$$

in conjunction with

$$
\begin{aligned}
U_{0}^{m} & =0, & m=0, \ldots, M \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & j=0, \ldots, J
\end{aligned}
$$

where

$$
\mu=\frac{b \Delta t}{\Delta x}
$$

μ is called the CFL (or Courant-Friedrichs-Lewy) number.
The explicit finite difference scheme (14) is frequently called the first-order upwind scheme.

We shall explore the stability of this scheme in the discrete maximum norm. Suppose that $0 \leq \mu \leq 1$; then

$$
\begin{aligned}
\left|U_{j}^{m+1}\right| & \leq(1-\mu)\left|U_{j}^{m}\right|+\mu\left|U_{j-1}^{m}\right|+\Delta t\left|f\left(x_{j}, t_{m}\right)\right| \\
& \leq(1-\mu) \max _{0 \leq j \leq J}\left|U_{j}^{m}\right|+\mu \max _{1 \leq j \leq J+1}\left|U_{j-1}^{m}\right|+\Delta t \max _{0 \leq j \leq J}\left|f\left(x_{j}, t_{m}\right)\right| \\
& =\max _{0 \leq j \leq J}\left|U_{j}^{m}\right|+\Delta t \max _{0 \leq j \leq J}\left|f\left(x_{j}, t_{m}\right)\right|
\end{aligned}
$$

Thus we have that

$$
\max _{0 \leq j \leq J}\left|U_{j}^{m+1}\right| \leq \max _{0 \leq j \leq J}\left|U_{j}^{m}\right|+\Delta t \max _{0 \leq j \leq J}\left|f\left(x_{j}, t_{m}\right)\right|
$$

Let us define the mesh-dependent norm

$$
\|U\|_{\infty}:=\max _{0 \leq j \leq J}\left|U_{j}\right| ;
$$

then

$$
\left\|U^{m+1}\right\|_{\infty} \leq\left\|U^{m}\right\|_{\infty}+\Delta t\left\|f\left(\cdot, t_{m}\right)\right\|_{\infty}, \quad m=0, \ldots, M-1
$$

Summing through m, we get

$$
\begin{equation*}
\max _{1 \leq k \leq M}\left\|U^{k}\right\|_{\infty} \leq\left\|U^{0}\right\|_{\infty}+\sum_{m=0}^{M-1} \Delta t\left\|f\left(\cdot, t_{m}\right)\right\|_{\infty} \tag{17}
\end{equation*}
$$

which expresses the stability of the finite difference scheme (14)-(16) under the condition

$$
\begin{equation*}
0 \leq \mu=\frac{b \Delta t}{\Delta x} \leq 1 \tag{18}
\end{equation*}
$$

Thus we have proved that the finite difference scheme (14)-(16) is conditionally stable, the condition being that the CFL number $\mu \in[0,1]$.

It is possible to show that the scheme (14)-(16) is also stable in the mesh-dependent L_{2}-norm, $\left.\| \cdot\right] \mid$, defined by

$$
\| V]\left.\right|^{2}=\sum_{i=1}^{J} \Delta x V_{i}^{2}
$$

The associated inner product is

$$
(V, W]:=\sum_{i=1}^{J} \Delta x V_{i} W_{i}
$$

Since

$$
U_{j}^{m}=\frac{U_{j}^{m}+U_{j-1}^{m}}{2}+\frac{U_{j}^{m}-U_{j-1}^{m}}{2},
$$

and $U_{0}^{m}=0$, it follows that

$$
\begin{align*}
\left(D_{x}^{-} U^{m}, U^{m}\right] & =\sum_{j=1}^{J} \Delta x \frac{U_{j}^{m}-U_{j-1}^{m}}{\Delta x} U_{j}^{m} \\
& =\frac{1}{2} \sum_{j=1}^{J}\left\{\left(U_{j}^{m}\right)^{2}-\left(U_{j-1}^{m}\right)^{2}\right\}+\frac{\Delta x}{2} \sum_{j=1}^{J} \Delta x\left(\frac{U_{j}^{m}-U_{j-1}^{m}}{\Delta x}\right)^{2} \tag{19}\\
& \left.=\frac{1}{2}\left(U_{j}^{m}\right)^{2}+\frac{\Delta x}{2} \| D_{x}^{-} U^{m}\right]\left.\right|^{2} .
\end{align*}
$$

In addition, since

$$
U_{j}^{m}=\frac{U_{j}^{m+1}+U_{j}^{m}}{2}-\frac{U_{j}^{m+1}-U_{j}^{m}}{2}
$$

for $m=0, \ldots, M-1$, we have for such m that

$$
\begin{equation*}
\left.\left.\left.\left(\frac{U^{m+1}-U^{m}}{\Delta t}, U^{m}\right]=\left.\frac{1}{2 \Delta t}\left(\| U^{m+1}\right]\right|^{2}-\| U^{m}\right]\left.\right|^{2}\right)-\frac{\Delta t}{2} \| \frac{U^{m+1}-U^{m}}{\Delta t}\right]\left.\right|^{2} \tag{20}
\end{equation*}
$$

By taking the $(\cdot, \cdot]$-inner product of (14) with U^{m} and using (19) and (20):

$$
\begin{align*}
\left.\| U^{m+1}\right]\left.\right|^{2} & \left.\left.+\Delta t b\left(U_{J}^{m}\right)^{2}+b \Delta x \Delta t \| D_{x}^{-} U^{m}\right]\left.\right|^{2}-\| U^{m}\right]\left.\right|^{2} \\
& \left.-\Delta t^{2} \| \frac{U^{m+1}-U^{m}}{\Delta t}\right]\left.\right|^{2}=2 \Delta t\left(f^{m}, U^{m}\right], \quad m=0, \ldots, M-1 \tag{21}
\end{align*}
$$

First suppose that $f \equiv 0$; then,

$$
\frac{U^{m+1}-U^{m}}{\Delta t}=-b D_{x}^{-} U^{m}
$$

and by substituting this into the last term on the left-hand side of the equality (21) we have that, for $m=0, \ldots, M-1$,

$$
\left.\left.\left.\| U^{m+1}\right]\left.\right|^{2}+\Delta t b\left|U_{J}^{m}\right|^{2}+b \Delta x \Delta t(1-\mu) \| D_{x}^{-} U^{m}\right]\left.\right|^{2}=\| U^{m}\right]\left.\right|^{2} .
$$

Summing through m,

$$
\begin{equation*}
\left.\left.\left.\| U^{k}\right]\left.\right|^{2}+\sum_{m=0}^{k-1} \Delta t b\left|U_{j}^{m}\right|^{2}+b \Delta x(1-\mu) \sum_{m=0}^{k-1} \Delta t \| D_{x}^{-} U^{m}\right]\left.\right|^{2}=\| U^{0}\right]\left.\right|^{2} \tag{22}
\end{equation*}
$$

for $k=1, \ldots, M$, which proves the stability of the scheme in the case when $f \equiv 0$ whenever

$$
0 \leq \mu=\frac{b \Delta t}{\Delta x} \leq 1
$$

In particular, if $\mu=1$, we have from (22) that

$$
\left.\left.\| U^{k}\right]\left.\right|^{2}+\sum_{m=0}^{k-1} \Delta t b\left|U_{j}^{m}\right|^{2}=\| U^{0}\right]\left.\right|^{2}, \quad k=1, \ldots, M
$$

which is the discrete version of the identity (9), and expresses 'conservation of energy' in the discrete sense.

More generally, for $0 \leq \mu \leq 1$, (22) implies

$$
\left.\left.\| U^{k}\right]\left.\right|^{2}+\sum_{m=0}^{k-1} \Delta t b\left|U_{J}^{m}\right|^{2} \leq \| U^{0}\right]\left.\right|^{2}, \quad k=1, \ldots, M .
$$

Now consider the question of stability in the $\| \cdot] \mid$-norm for $f \not \equiv 0$. Since

$$
\begin{aligned}
\left.\| \frac{U^{m+1}-U^{m}}{\Delta t}\right]\left.\right|^{2} & \left.\left.\left.=\| f^{m}-b D_{x}^{-} U^{m}\right]\left.\right|^{2} \leq\left\{\| f^{m}\right] \mid+b \| D_{x}^{-} U^{m}\right] \mid\right\}^{2} \\
& \left.\left.\leq\left(1+\frac{1}{\epsilon^{\prime}}\right) \| f^{m}\right]\left.\right|^{2}+\left(1+\epsilon^{\prime}\right) b^{2} \| D_{x}^{-} U^{m}\right]\left.\right|^{2}, \quad \epsilon^{\prime}>0
\end{aligned}
$$

and

$$
\left.\left.\left.\left.\left(f^{m}, U^{m}\right] \leq \| f^{m}\right] \mid \| U^{m}\right] \left\lvert\, \leq \frac{1}{2}\right. \| f^{m}\right]\left.\right|^{2}+\frac{1}{2} \| U^{m}\right]\left.\right|^{2}
$$

it follows from the equality (21) that

$$
\begin{aligned}
\left.\| U^{m+1}\right]\left.\right|^{2}+\Delta t b\left|U_{n}^{m}\right|^{2} & \left.+b \Delta x \Delta t\left[1-\left(1+\epsilon^{\prime}\right) \frac{b \Delta t}{\Delta x}\right] \| D_{x}^{-} U^{m}\right]\left.\right|^{2} \\
& \left.\left.\leq \Delta t\left[\left(1+\frac{1}{\epsilon^{\prime}}\right) \Delta t+1\right] \| f^{m}\right]\left.\right|^{2}+(1+\Delta t) \| U^{m}\right]\left.\right|^{2}
\end{aligned}
$$

Letting $\epsilon=1-1 /\left(1+\epsilon^{\prime}\right) \in(0,1)$ and assuming that

$$
0 \leq \mu=\frac{b \Delta t}{\Delta x} \leq 1-\epsilon
$$

we have, for $m=0, \ldots, M-1$, that

$$
\left.\left.\left.\left.\| U^{m+1}\right]\left.\right|^{2}+\Delta t b\left|U_{J}^{m}\right|^{2} \leq \| U^{m}\right]\left.\right|^{2}+\Delta t\left(1+\frac{\Delta t}{\epsilon}\right) \| f^{m}\right]\left.\right|^{2}+\Delta t \| U^{m}\right]\left.\right|^{2}
$$

Upon summation of this inequality over $m=0, \ldots, k-1$, we deduce that

$$
\begin{align*}
\left.\| U^{k}\right]\left.\right|^{2}+\left(\sum_{m=0}^{k-1} \Delta t b\left|U_{J}^{m}\right|^{2}\right) \leq & \left.\left.\| U^{0}\right]\left.\right|^{2}+\left(1+\frac{\Delta t}{\epsilon}\right) \sum_{m=0}^{k-1} \Delta t \| f^{m}\right]\left.\right|^{2} \tag{23}\\
& \left.+\sum_{m=0}^{k-1} \Delta t \| U^{m}\right]\left.\right|^{2}
\end{align*}
$$

for $k=1, \ldots, M$.

To complete the proof of stability of the finite difference scheme we require the next lemma, which is easily proved by induction.

Lemma (Discrete Gronwall lemma)

Let $\left(a_{k}\right),\left(b_{k}\right),\left(c_{k}\right)$ and $\left(d_{k}\right)$ be four sequences of non-negative numbers such that the sequence $\left(c_{k}\right)$ is non-decreasing and

$$
a_{k}+b_{k} \leq c_{k}+\sum_{m=0}^{k-1} d_{m} a_{m}, \quad k \geq 1 ; \quad a_{0}+b_{0} \leq c_{0}
$$

Then

$$
a_{k}+b_{k} \leq c_{k} \exp \left(\sum_{m=0}^{k-1} d_{m}\right), \quad k \geq 1
$$

By applying this lemma to the inequality (23) with

$$
\begin{aligned}
& \left.a_{k}:=\| U^{k}\right]\left.\right|^{2}, \quad k \geq 0, \\
& b_{k}:=\sum_{m=0}^{k-1} \Delta t b\left|U_{j}^{m}\right|^{2}, \quad k \geq 1 ; \quad b_{0}=0, \\
& \left.\left.\left.c_{k}:=\| U^{0}\right]\left.\right|^{2}+\left(1+\frac{\Delta t}{\epsilon}\right) \sum_{m=0}^{k-1} \Delta t \| f^{m}\right]\left.\right|^{2}, \quad k \geq 1 ; \quad c_{0}=\| U^{0}\right]\left.\right|^{2}, \\
& d_{k}:=\Delta t, \quad k=1,2, \ldots, M,
\end{aligned}
$$

we obtain for $k=1, \ldots, M$:

$$
\left.\left.\left.\| U^{k}\right]\left.\right|^{2}+\sum_{m=0}^{k-1} \Delta t b\left|U_{J}^{m}\right|^{2} \leq\left.\mathrm{e}^{t_{k}}\left(\| U^{0}\right]\right|^{2}+\left(1+\frac{\Delta t}{\epsilon}\right) \sum_{m=0}^{k-1} \Delta t \| f^{m}\right]\left.\right|^{2}\right)
$$

where $t_{k}=k \Delta t$. Hence we deduce stability of the scheme, in the sense that
$\left.\left.\left.\left.\max _{1 \leq k \leq M}\left(\| U^{k}\right]\right|^{2}+\sum_{m=0}^{k-1} \Delta t b\left|U_{J}^{m}\right|^{2}\right) \leq\left.\mathrm{e}^{T}\left(\| U^{0}\right]\right|^{2}+\left(1+\frac{\Delta t}{\epsilon}\right) \sum_{m=0}^{M-1} \Delta t \| f^{m}\right]\left.\right|^{2}\right)$.

