
B4.3 Distribution Theory MT20

Lecture 11: Distributions whose first derivatives are regular distributions

1. Distributions whose first derivative is a regular distribution
(one-dimensional case)

2. Absolute continuity and the fundamental theorem of calculus revisited
3. Distributions whose first order partial derivatives are regular

distributions (higher dimensional case)
4. Definition of Sobolev functions

The material corresponds to pp. 51-55 in the lecture notes and should be
covered in Week 6.
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Recall from previous lectures that a regular distribution on an open
non-empty subset Ω of Rn is a distribution

D(Ω) ∋ ϕ 7→
∫
Ω
f ϕ dx

where f ∈ L1
loc(Ω). Because this distribution uniquely determines

f ∈ L1
loc(Ω) (by the fundamental lemma of the calculus of variations) we

identify the distribution with f and we use the same symbol for both
interpretations. In fact, the symbol ’f ’ then stands for three different
objects: the distribution, the local L1 function, and any of its
representatives.
What is intended follows from the given context or must be explicitly
mentioned.
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Main theme of lecture:

Let u ∈ D ′(Ω), where Ω is a non-empty open subset of Rn. What can we
say about those u for which the distributional partial derivatives

∂1u, . . . , ∂nu

are all regular distributions on Ω?

We will see that the answer depends on the dimension n. In the proofs we
assume that Ω = Rn, but the results remain true in the general case.
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Recall from previous lectures:
• if u ∈ D ′(Ω) and ∇u ∈ C(Ω), then u ∈ C1(Ω).
• if u ∈ D ′(a, b) and u′ ∈ L1

loc(a, b), then for some constants
x0 ∈ (a, b), c ∈ C we have

u(x) = c +

∫ x

x0

u′(t) dt a.e.

• if f ∈ L1
loc(a, b), then the function

F (x) =

∫ x

x0

f (t) dt (x0 ∈ (a, b))

is continuous and its distributional derivative F ′ = f .
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Definition: A function u : (a, b) → C is absolutely continuous if there
exist a function f ∈ L1(a, b) and constants x0 ∈ (a, b), c ∈ C such that

u(x) = c +

∫ x

x0

f (t) dt

holds for all x ∈ (a, b). It is locally absolutely continuous when only
f ∈ L1

loc(a, b) above.

Corollaries:
• A function f : (a, b) → C is locally absolutely continuous iff it is

continuous and its distributional derivative f ′ ∈ L1
loc(a, b).

• A distribution u ∈ D ′(a, b) has derivative u′ ∈ L1
loc(a, b) iff u is a

regular distribution with a locally absolutely continuous representative.
• If f : (a, b) → C is locally absolutely continuous, then the

distributional derivative f ′ ∈ L1
loc(a, b) and for all c , d ∈ (a, b) we have

f (d)− f (c) =

∫ d

c
f ′(t) dt.
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Weak derivatives

When f : (a, b) → C is locally absolutely continuous its distributional
derivative is often also called its weak derivative. More generally,
u ∈ L1

loc(a, b) is said to have a weak derivative if its distributional
derivative u′ ∈ L1

loc(a, b).

Similar terminology is used in higher dimensions: u ∈ L1
loc(Ω) has a weak

partial derivative with respect to xj if the distributional partial derivative
∂ju ∈ L1

loc(Ω). Note: This terminology is not universal and sometimes
weak derivative is understood in a wider sense.

Example The function f (x) = |x |, x ∈ R, has the weak derivative
f ′(x) = x/|x |.

The Heaviside function H : R → R has no weak derivative since
H ′ = δ0 /∈ L1

loc(R).
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Example Assume u ∈ D ′(R) and u′ ∈ L1
loc(R). Then u is a regular

distribution with a locally absolutely continuous representative. We claim
that

τhu − u

h
→ u′ in L1

loc(R) as h → 0,

that is, for each a < b,∫ b

a

∣∣u(x + h)− u(x)

h
− u′(x)

∣∣ dx → 0 as h → 0.

Fix a < b and assume that u is the locally absolutely continuous
representative, so that for each x ∈ (a, b) and h ̸= 0,

u(x + h)− u(x)

h
=

1
h

∫ x+h

x
u′(t) dt.

If u had been C1, then the above difference quotient would converge locally
uniformly in x ∈ R to u′(x) as h → 0, and the claim would in particular
follow. In order to deal with the general case we use mollification.
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Let
(
ρε
)
ε>0 be the standard mollifier on R and denote uε = ρε ∗ u. Then

(τh − I )u

h
=

(τh − I )uε
h

+
(τh − I )(u − uε)

h

and so subtracting u′, integrating over x ∈ (a, b) and using the triangle
inequality we get∫ b

a

∣∣∣∣(τh − I )u(x)

h
− u′(x)

∣∣∣∣ dx ≤
∫ b

a

∣∣∣∣(τh − I )uε(x)

h
− u′ε(x)

∣∣∣∣ dx

+

∫ b

a

∣∣u′ε(x)− u′(x)
∣∣ dx

+

∫ b

a

∣∣∣∣(τh − I )(u − uε)(x)

h

∣∣∣∣ dx

=: I + II + III ,

say.
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Estimates for I and II : Let τ > 0.

According to Proposition 2.7 in the lecture notes we can find ετ > 0 so∫ b+1

a−1

∣∣u′ − ρε ∗ u′
∣∣ dx < τ

for ε ∈ (0, ετ ].

Since u′ε = ρε ∗ u′ it follows that

II =

∫ b

a

∣∣u′ε(x)− u′(x)
∣∣ dx < τ

for such ε and all h ̸= 0.

Fix ε = ετ . For this fixed ε we have since uε ∈ C∞(R) that for some
hτ ∈ (0, 1),

I =

∫ b

a

∣∣∣∣(τh − I )uε(x)

h
− u′ε(x)

∣∣∣∣ dx < τ

holds for all 0 < |h| < hτ .
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In order to estimate III we use that for locally absolutely continuous v we
have the fundamental theorem of calculus:

v(x + h)− v(x)

h
=

1
h

∫ x+h

x
v ′(t) dt

holds for all x ∈ R and h ∈ R \ {0}, where v ′ is the distributional
derivative. With v = u − uε this yields:

III =

∫ b

a

∣∣∣∣1h
∫ x+h

x

(
u′(t)− u′ε(t)

)
dt
∣∣∣∣ dx

≤
∫ b

a

1
|h|

∫ x+|h|

x−|h|

∣∣u′(t)− u′ε(t)
∣∣ dt dx
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We use Tonelli’s theorem to swap the integration order:

III ≤
∫ b

a

1
|h|

∫ x+|h|

x−|h|

∣∣u′(t)− u′ε(t)
∣∣ dt dx

=

∫ b+|h|

a−|h|

∫ b

a

1
|h|

1(x−|h|,x+|h|)(t)
∣∣u′(t)− u′ε(t)

∣∣ dx dt

=

∫ b+|h|

a−|h|

∫ b

a

1
|h|

1(t−|h|,t+|h|)(x)
∣∣u′(t)− u′ε(t)

∣∣ dx dt

≤ 2
∫ b+1

a−1

∣∣u′(t)− u′ε(t)
∣∣ dt

since 0 < |h| < hτ and hτ < 1. By our choise of ε this is less than 2τ for
all 0 < |h| < hτ . This concludes the proof.
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Remarks: It follows from the example that there exists a null sequence
hj → 0 so

u(x + hj)− u(x)

hj
→ u′(x) as j → ∞ (1)

pointwise in almost all x ∈ R.

According to Lebesgue’s differentiation theorem we have

1
h

∫ x+h

x
u′(t) dt → u′(x) as h → 0

pointwise in almost every x ∈ R. It therefore follows that in fact (1) holds
for the full limit h → 0 pointwise outside a null set. Consequently, a locally
absolutely continuous function is differentiable almost everywhere in the
usual sense and its almost everywhere defined usual derivative is a
representative for its distributional derivative.
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What happens in higher dimensions?

Example Let

u(x , y) =
1√

x2 + y2
for (x , y) ∈ R2 \ {(0, 0)}

Then u ∈ L1
loc(R2) and one can show (as in Example 5.22 in lecture notes)

that
∇u = − (x , y)(

x2 + y2
) 3

2
∈ L1

loc(R2)

Note that u has no continuous representative! This is different from the
one-dimensional case where we saw that distributions whose first derivative
was regular had a locally absolutely continuous representative. In the above
example we started with a regular distribution–what if u is a distribution
whose first order partial distributional derivatives ∂ju are all regular, then
what can we say about u?
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Theorem Let Ω be a non-empty open subset of Rn where we assume the
dimension n > 1. Suppose u ∈ D ′(Ω) and that

∂ju ∈ L1
loc(Ω) for each 1 ≤ j ≤ n.

Then u ∈ L1
loc(Ω).

Remark It can be shown that u ∈ L
n

n−1
loc (Ω) and that u admits a

representative (denoted again by) u whose restrictions to almost all lines
parallel to the coordinate axes are locally absolutely continuous. The latter
means that for each 1 ≤ j ≤ n and for L n−1 almost all
x ′ ∈ Rn−1 × {0} ⊂ Rn the function t 7→ u

(
x ′ + tej

)
is locally absolutely

continuous on {t ∈ R : x ′ + tej ∈ Ω}. The partial derivatives ∂u/∂xj
therefore exist in the usual sense L n almost everywhere and coincide with
the distributional partial derivatives. Such functions are called local ACL
functions (abbreviation for absolutely continuous on lines).
[The contents of this remark isn’t examinable.]
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Proof of theorem: We only give the proof in the case Ω = Rn and use
mollification. We also make use of the following result:

Fischer’s Completeness Theorem: Let p ∈ [1,∞] and A be a
measurable subset of Rn. Then Lp(A) is a complete space.
(In the terminology of the course Functional Analysis 1 it is therefore a
Banach space.)

Let
(
ρε
)
ε>0 be the standard mollifier on Rn and put uε = ρε ∗ u. Then

uε ∈ C∞(Rn) and
∇uε = ρε ∗ ∇u.
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Fix ε′, ε′′ > 0 and put v = uε′ − uε′′ . Then v ∈ C∞(Rn) and for x , y ∈ Rn

the fundamental theorem of calculus yields

v(x) = v(y) +

∫ 1

0
∇v

(
(1 − t)y + tx

)
· (x − y) dt.

Multiply by ρ(y) and integrate over y ∈ Rn:

v(x) = ⟨v , ρ⟩+
∫
Rn

∫ 1

0
∇v

(
(1 − t)y + tx

)
· (x − y) dtρ(y) dy ,

hence∣∣v(x)∣∣ ≤ ∣∣⟨v , ρ⟩∣∣+ ∫
Rn

∫ 1

0

∣∣∇v
(
(1 − t)y + tx

)
· (x − y)

∣∣ dtρ(y) dy .
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Fix R > 1 and write BR = BR(0). We now integrate over x ∈ BR , estimate
the right-hand side using Cauchy-Schwartz’ inequality and that
supp(ρ) = B1 ⊂ BR : ∫

BR

|v(x)| dx ≤ (I ) + (II ),

where
(I ) :=

∣∣⟨v , ρ⟩∣∣L n(BR)

and

(II ) := 2R max ρ

∫
BR

∫
BR

∫ 1

0

∣∣∇v
(
(1 − t)y + tx

)∣∣ dt dy dx .

Recall that v = uε′ − uε′′ with uε = ρε ∗ u, so

(I ) → 0 as ε′ , ε′′ ↘ 0.

We claim the same is true for (II ).
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Put c = 2R max ρ. Rewrite (II ) and use Tonelli’s theorem to swap
integration orders:

(II ) = c

∫ 1
2

0

∫
BR

∫
BR

∣∣∇v
(
(1 − t)y + tx

)∣∣ dy dx dt

+c

∫ 1

1
2

∫
BR

∫
BR

∣∣∇v
(
(1 − t)y + tx

)∣∣ dx dy dt

=: cIIi + cIIii

In order to estimate the two multiple integrals IIi and IIii on the right-hand
side we use substitutions in the inner integrals. For IIi we substitute in the
inner y -integral for each t ∈ (0, 1

2) and x ∈ BR :
y ′ = (1 − t)y + tx
dy = (1 − t)−ndy ′ ≤ 2ndy ′

y ′ ∈ (1 − t)BR + tx ⊂ BR .
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Hereby

IIi ≤ 2n
∫ 1

2

0

∫
BR

∫
BR

∣∣∇v(y ′)
∣∣ dy ′ dx dt

= 2n−1L n(BR)

∫
BR

∣∣∇v(y ′)
∣∣ dy ′.

The estimate for IIii is similar. We substitute in the inner x-integral for
each t ∈ (1

2 , 1) and y ∈ BR :
x ′ = (1 − t)y + tx
dx = t−ndx ′ ≤ 2ndx ′

x ′ ∈ (1 − t)y + tBR ⊂ BR ,

whereby

IIii ≤ 2n−1L n(BR)

∫
BR

∣∣∇v(x ′)
∣∣ dx ′.
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We combine the obtained bounds and have in terms of the new constant
c1 = 2n+1RL n(BR)max ρ:

(II ) ≤ c1

∫
BR

∣∣∇v(x)
∣∣ dx .

Recall that v = uε′ − uε′′ and uε = ρε ∗ u, so

∇v = ρε′ ∗ ∇u − ρε′′ ∗ ∇u.

By virtue of Proposition 2.7 from the lecture notes (applied to each of
1BR+1∂ju ∈ L1(Rn)) we have that ρε ∗ ∇u → ∇u in L1(BR) as ε ↘ 0, and
therefore that

(II ) → 0 as ε′ , ε′′ ↘ 0.

Consequently we have the Cauchy property:∫
BR

∣∣uε′ − uε′′
∣∣ dx → 0 as ε′ , ε′′ ↘ 0.
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It follows by completeness of L1(BR) that there exists wR ∈ L1(BR) so
uε → wR in L1(BR) as ε ↘ 0. Now this is true for any R > 1, so
corresponding to any pair 1 < r < R we find wr ∈ L1(Br ), wR ∈ L1(BR)
with {

(ρε ∗ u)|Br → wr in L1(Br ) as ε ↘ 0
(ρε ∗ u)|BR

→ wR in L1(BR) as ε ↘ 0.

It follows that wr = wR |Br almost everywhere, and so we may consistently
define w ∈ L1

loc(Rn) by w |Br = wr for r > 1. Because also ρε ∗ u → u in
D ′(Rn) as ε ↘ 0 we conclude that

⟨u, ϕ⟩ = lim
ε↘0

∫
Rn

(ρε ∗ u)ϕ dx =

∫
Rn

wϕ dx

holds for all ϕ ∈ D(Rn) finishing the proof. □

Lecture 11 (B4.3) MT20 21 / 22



Definition of Sobolev functions: (Sergei Lvovich Sobolev, 1908-1989)

Let Ω be a non-empty open subset of Rn, m ∈ N and p ∈ [1,∞].

A Wm,p Sobolev function on Ω is any u ∈ Lp(Ω) for which ∂αu ∈ Lp(Ω)
for each multi-index α ∈ Nn

0 of length |α| ≤ m.

The set of all Wm,p Sobolev functions on Ω is denoted by Wm,p(Ω) and is
called a Sobolev space. It is not difficult to see that it is a vector subspace
of Lp(Ω) and that it is normed by

∥u∥Wm,p =


(∑

|α|≤m ∥∂αu∥pp
) 1

p if p < ∞
max|α|≤m ∥∂αu∥∞ if p = ∞.

It can be shown that Wm,p(Ω) hereby is complete.
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