B4.3 Distribution Theory MT20

Lecture 11: Distributions whose first derivatives are regular distributions

- 1. Distributions whose first derivative is a regular distribution (one-dimensional case)
- 2. Absolute continuity and the fundamental theorem of calculus revisited
- 3. Distributions whose first order partial derivatives are regular distributions (higher dimensional case)
- 4. Definition of Sobolev functions

The material corresponds to pp. 51-55 in the lecture notes and should be covered in Week 6.

Recall from previous lectures that a regular distribution on an open non-empty subset Ω of \mathbb{R}^n is a distribution

$$\mathscr{D}(\Omega) \ni \phi \mapsto \int_{\Omega} f \phi \, \mathrm{d} x$$

where $f \in L^1_{loc}(\Omega)$. Because this distribution uniquely determines $f \in L^1_{loc}(\Omega)$ (by the fundamental lemma of the calculus of variations) we identify the distribution with f and we use the same symbol for both interpretations. In fact, the symbol 'f' then stands for three different objects: the distribution, the local L¹ function, and any of its representatives.

What is intended follows from the given context or must be explicitly mentioned.

Main theme of lecture:

Let $u \in \mathscr{D}'(\Omega)$, where Ω is a non-empty open subset of \mathbb{R}^n . What can we say about those u for which the distributional partial derivatives

 $\partial_1 u, \, \ldots, \, \partial_n u$

are all regular distributions on Ω ?

We will see that the answer depends on the dimension *n*. In the proofs we assume that $\Omega = \mathbb{R}^n$, but the results remain true in the general case.

Recall from previous lectures:

- if $u \in \mathscr{D}'(\Omega)$ and $\nabla u \in C(\Omega)$, then $u \in C^1(\Omega)$.
- if $u \in \mathscr{D}'(a, b)$ and $u' \in L^1_{loc}(a, b)$, then for some constants $x_0 \in (a, b), c \in \mathbb{C}$ we have

$$u(x) = c + \int_{x_0}^x u'(t) dt$$
 a.e.

• if $f \in L^1_{loc}(a, b)$, then the function

$$F(x) = \int_{x_0}^x f(t) \,\mathrm{d}t \quad (x_0 \in (a, b))$$

is continuous and its distributional derivative F' = f.

Definition: A function $u: (a, b) \to \mathbb{C}$ is absolutely continuous if there exist a function $f \in L^1(a, b)$ and constants $x_0 \in (a, b)$, $c \in \mathbb{C}$ such that

$$u(x) = c + \int_{x_0}^x f(t) \,\mathrm{d}t$$

holds for all $x \in (a, b)$. It is **locally absolutely continuous** when only $f \in L^1_{loc}(a, b)$ above.

Corollaries:

- A function f: (a, b) → C is locally absolutely continuous *iff* it is continuous and its distributional derivative f' ∈ L¹_{loc}(a, b).
- A distribution u ∈ D'(a, b) has derivative u' ∈ L¹_{loc}(a, b) iff u is a regular distribution with a locally absolutely continuous representative.
- If f: (a, b) → C is locally absolutely continuous, then the distributional derivative f' ∈ L¹_{loc}(a, b) and for all c, d ∈ (a, b) we have

$$f(d)-f(c)=\int_c^d f'(t)\,\mathrm{d}t.$$

Weak derivatives

When $f: (a, b) \to \mathbb{C}$ is locally absolutely continuous its distributional derivative is often also called its weak derivative. More generally, $u \in L^1_{loc}(a, b)$ is said to have a weak derivative if its distributional derivative $u' \in L^1_{loc}(a, b)$.

Similar terminology is used in higher dimensions: $u \in L^1_{loc}(\Omega)$ has a weak partial derivative with respect to x_j if the distributional partial derivative $\partial_j u \in L^1_{loc}(\Omega)$. Note: This terminology is not universal and sometimes weak derivative is understood in a wider sense.

Example The function f(x) = |x|, $x \in \mathbb{R}$, has the weak derivative f'(x) = x/|x|.

The Heaviside function $H \colon \mathbb{R} \to \mathbb{R}$ has no weak derivative since $H' = \delta_0 \notin L^1_{loc}(\mathbb{R}).$

Example Assume $u \in \mathscr{D}'(\mathbb{R})$ and $u' \in L^1_{loc}(\mathbb{R})$. Then u is a regular distribution with a locally absolutely continuous representative. We claim that

$$rac{ au_h u - u}{h}
ightarrow u' ext{ in } \mathsf{L}^1_{\mathrm{loc}}(\mathbb{R}) ext{ as } h
ightarrow 0,$$

that is, for each a < b,

$$\int_a^b \left| \frac{u(x+h)-u(x)}{h} - u'(x) \right| \, \mathrm{d} x \to 0 \text{ as } h \to 0.$$

Fix a < b and assume that u is the locally absolutely continuous representative, so that for each $x \in (a, b)$ and $h \neq 0$,

$$\frac{u(x+h)-u(x)}{h}=\frac{1}{h}\int_{x}^{x+h}u'(t)\,\mathrm{d}t.$$

If u had been C¹, then the above difference quotient would converge locally uniformly in $x \in \mathbb{R}$ to u'(x) as $h \to 0$, and the claim would in particular follow. In order to deal with the general case we use mollification.

Let $(\rho_{\varepsilon})_{\varepsilon>0}$ be the standard mollifier on \mathbb{R} and denote $u_{\varepsilon} = \rho_{\varepsilon} * u$. Then

$$\frac{(\tau_h-I)u}{h} = \frac{(\tau_h-I)u_{\varepsilon}}{h} + \frac{(\tau_h-I)(u-u_{\varepsilon})}{h}$$

and so subtracting u', integrating over $x \in (a, b)$ and using the triangle inequality we get

$$\begin{split} \int_{a}^{b} \left| \frac{(\tau_{h} - I)u(x)}{h} - u'(x) \right| \, \mathrm{d}x &\leq \int_{a}^{b} \left| \frac{(\tau_{h} - I)u_{\varepsilon}(x)}{h} - u'_{\varepsilon}(x) \right| \, \mathrm{d}x \\ &+ \int_{a}^{b} \left| u'_{\varepsilon}(x) - u'(x) \right| \, \mathrm{d}x \\ &+ \int_{a}^{b} \left| \frac{(\tau_{h} - I)(u - u_{\varepsilon})(x)}{h} \right| \, \mathrm{d}x \\ &=: I + II + III, \end{split}$$

say.

Estimates for I and II: Let $\tau > 0$.

According to Proposition 2.7 in the lecture notes we can find $\varepsilon_{\tau} > 0$ so

$$\int_{a-1}^{b+1} \left| u' - \rho_{\varepsilon} * u' \right| \mathrm{d}x < \tau$$

for $\varepsilon \in (0, \varepsilon_{\tau}]$.

Since $u_{\varepsilon}' = \rho_{\varepsilon} * u'$ it follows that

$$II = \int_a^b \left| u_{\varepsilon}'(x) - u'(x) \right| \mathrm{d}x < \tau$$

for such ε and all $h \neq 0$.

Fix $\varepsilon = \varepsilon_{\tau}$. For this fixed ε we have since $u_{\varepsilon} \in C^{\infty}(\mathbb{R})$ that for some $h_{\tau} \in (0, 1)$,

$$I = \int_{a}^{b} \left| \frac{(\tau_{h} - I)u_{\varepsilon}(x)}{h} - u_{\varepsilon}'(x) \right| \, \mathrm{d}x < \tau$$

holds for all $0 < |h| < h_{\tau}$.

In order to estimate III we use that for locally absolutely continuous v we have the fundamental theorem of calculus:

$$\frac{v(x+h)-v(x)}{h} = \frac{1}{h} \int_{x}^{x+h} v'(t) \,\mathrm{d}t$$

holds for all $x \in \mathbb{R}$ and $h \in \mathbb{R} \setminus \{0\}$, where v' is the distributional derivative. With $v = u - u_{\varepsilon}$ this yields:

$$III = \int_{a}^{b} \left| \frac{1}{h} \int_{x}^{x+h} (u'(t) - u_{\varepsilon}'(t)) dt \right| dx$$
$$\leq \int_{a}^{b} \frac{1}{|h|} \int_{x-|h|}^{x+|h|} |u'(t) - u_{\varepsilon}'(t)| dt dx$$

We use Tonelli's theorem to swap the integration order:

$$\begin{split} III &\leq \int_{a}^{b} \frac{1}{|h|} \int_{x-|h|}^{x+|h|} |u'(t) - u_{\varepsilon}'(t)| \, \mathrm{d}t \, \mathrm{d}x \\ &= \int_{a-|h|}^{b+|h|} \int_{a}^{b} \frac{1}{|h|} \mathbf{1}_{(x-|h|,x+|h|)}(t) |u'(t) - u_{\varepsilon}'(t)| \, \mathrm{d}x \, \mathrm{d}t \\ &= \int_{a-|h|}^{b+|h|} \int_{a}^{b} \frac{1}{|h|} \mathbf{1}_{(t-|h|,t+|h|)}(x) |u'(t) - u_{\varepsilon}'(t)| \, \mathrm{d}x \, \mathrm{d}t \\ &\leq 2 \int_{a-1}^{b+1} |u'(t) - u_{\varepsilon}'(t)| \, \mathrm{d}t \end{split}$$

since $0 < |h| < h_{\tau}$ and $h_{\tau} < 1$. By our choise of ε this is less than 2τ for all $0 < |h| < h_{\tau}$. This concludes the proof.

Remarks: It follows from the example that there exists a null sequence $h_i \rightarrow 0$ so

$$\frac{u(x+h_j)-u(x)}{h_j} \to u'(x) \text{ as } j \to \infty$$
(1)

pointwise in almost all $x \in \mathbb{R}$.

According to Lebesgue's differentiation theorem we have

$$\frac{1}{h}\int_{x}^{x+h} u'(t)\,\mathrm{d}t \to u'(x) \text{ as } h\to 0$$

pointwise in almost every $x \in \mathbb{R}$. It therefore follows that in fact (1) holds for the full limit $h \to 0$ pointwise outside a null set. Consequently, a locally absolutely continuous function is differentiable almost everywhere in the usual sense and its almost everywhere defined usual derivative is a representative for its distributional derivative. What happens in higher dimensions?

Example Let

$$u(x,y) = rac{1}{\sqrt{x^2 + y^2}}$$
 for $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$

Then $u \in L^1_{loc}(\mathbb{R}^2)$ and one can show (as in Example 5.22 in lecture notes) that

$$\nabla u = -\frac{(x,y)}{\left(x^2 + y^2\right)^{\frac{3}{2}}} \in \mathsf{L}^1_{\mathrm{loc}}(\mathbb{R}^2)$$

Note that u has no continuous representative! This is different from the one-dimensional case where we saw that distributions whose first derivative was regular had a locally absolutely continuous representative. In the above example we started with a regular distribution—what if u is a distribution whose first order partial distributional derivatives $\partial_j u$ are all regular, then what can we say about u?

Lecture 11 (B4.3)

Theorem Let Ω be a non-empty open subset of \mathbb{R}^n where we assume the dimension n > 1. Suppose $u \in \mathscr{D}'(\Omega)$ and that

$$\partial_j u \in L^1_{loc}(\Omega)$$
 for each $1 \leq j \leq n$.

Then $u \in L^1_{loc}(\Omega)$.

Remark It can be shown that $u \in L_{loc}^{\frac{n}{n-1}}(\Omega)$ and that u admits a representative (denoted again by) u whose restrictions to almost all lines parallel to the coordinate axes are locally absolutely continuous. The latter means that for each $1 \le i \le n$ and for \mathscr{L}^{n-1} almost all $x' \in \mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n$ the function $t \mapsto u(x' + te_i)$ is locally absolutely continuous on $\{t \in \mathbb{R} : x' + te_i \in \Omega\}$. The partial derivatives $\partial u / \partial x_i$ therefore exist in the usual sense \mathscr{L}^n almost everywhere and coincide with the distributional partial derivatives. Such functions are called local ACLfunctions (abbreviation for *absolutely continuous on lines*). [The contents of this remark isn't examinable.]

Proof of theorem: We only give the proof in the case $\Omega = \mathbb{R}^n$ and use mollification. We also make use of the following result:

Fischer's Completeness Theorem: Let $p \in [1, \infty]$ and A be a measurable subset of \mathbb{R}^n . Then $L^p(A)$ is a complete space. (In the terminology of the course Functional Analysis 1 it is therefore a *Banach space*.)

Let $(\rho_{\varepsilon})_{\varepsilon>0}$ be the standard mollifier on \mathbb{R}^n and put $u_{\varepsilon} = \rho_{\varepsilon} * u$. Then $u_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$ and

٦

$$\nabla u_{\varepsilon} = \rho_{\varepsilon} * \nabla u.$$

Fix ε' , $\varepsilon'' > 0$ and put $v = u_{\varepsilon'} - u_{\varepsilon''}$. Then $v \in C^{\infty}(\mathbb{R}^n)$ and for $x, y \in \mathbb{R}^n$ the fundamental theorem of calculus yields

$$v(x) = v(y) + \int_0^1 \nabla v ((1-t)y + tx) \cdot (x-y) \,\mathrm{d}t.$$

Multiply by $\rho(y)$ and integrate over $y \in \mathbb{R}^n$:

$$\mathbf{v}(\mathbf{x}) = \langle \mathbf{v}, \rho \rangle + \int_{\mathbb{R}^n} \int_0^1 \nabla \mathbf{v} \big((1-t)\mathbf{y} + t\mathbf{x} \big) \cdot (\mathbf{x} - \mathbf{y}) \, \mathrm{d}t \rho(\mathbf{y}) \, \mathrm{d}\mathbf{y},$$

hence

$$ig| \mathbf{v}(x) ig| \leq ig| \langle \mathbf{v},
ho
angle ig| + \int_{\mathbb{R}^n} \int_0^1 ig|
abla \mathbf{v} ig((1-t)y + txig) \cdot (x-y) ig| \, \mathrm{d}t
ho(y) \, \mathrm{d}y.$$

Fix R > 1 and write $B_R = B_R(0)$. We now integrate over $x \in B_R$, estimate the right-hand side using Cauchy-Schwartz' inequality and that $\operatorname{supp}(\rho) = \overline{B_1} \subset B_R$:

$$\int_{B_R} |\mathbf{v}(x)| \, \mathrm{d}x \leq (I) + (II),$$

where

$$(I) := |\langle \mathbf{v}, \rho \rangle | \mathscr{L}^n(B_R)$$

and

$$(II) := 2R \max \rho \int_{B_R} \int_{B_R} \int_0^1 \left| \nabla v \big((1-t)y + tx \big) \right| \mathrm{d}t \, \mathrm{d}y \, \mathrm{d}x.$$

Recall that $v = u_{\varepsilon'} - u_{\varepsilon''}$ with $u_{\varepsilon} = \rho_{\varepsilon} * u$, so

$$(I) \rightarrow 0$$
 as $\varepsilon', \varepsilon'' \searrow 0$.

We claim the same is true for (II).

Put $c = 2R \max \rho$. Rewrite (*II*) and use Tonelli's theorem to swap integration orders:

$$(II) = c \int_0^{\frac{1}{2}} \int_{B_R} \int_{B_R} |\nabla v ((1-t)y + tx)| \, \mathrm{d}y \, \mathrm{d}x \, \mathrm{d}t + c \int_{\frac{1}{2}}^{1} \int_{B_R} \int_{B_R} |\nabla v ((1-t)y + tx)| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t =: c II_i + c II_{ii}$$

In order to estimate the two multiple integrals II_i and II_{ii} on the right-hand side we use substitutions in the inner integrals. For II_i we substitute in the inner y-integral for each $t \in (0, \frac{1}{2})$ and $x \in B_R$:

$$\begin{cases} y' = (1-t)y + tx \\ dy = (1-t)^{-n} dy' \le 2^n dy' \\ y' \in (1-t)B_R + tx \subset B_R. \end{cases}$$

Hereby

$$\begin{split} II_i &\leq 2^n \int_0^{\frac{1}{2}} \int_{B_R} \int_{B_R} \!\! \left| \nabla v(y') \right| \mathrm{d}y' \, \mathrm{d}x \, \mathrm{d}t \\ &= 2^{n-1} \mathscr{L}^n(B_R) \int_{B_R} \!\! \left| \nabla v(y') \right| \mathrm{d}y'. \end{split}$$

The estimate for H_{ii} is similar. We substitute in the inner x-integral for each $t \in (\frac{1}{2}, 1)$ and $y \in B_R$:

$$\begin{cases} x' = (1-t)y + tx \\ dx = t^{-n}dx' \le 2^n dx' \\ x' \in (1-t)y + tB_R \subset B_R, \end{cases}$$

whereby

$$II_{ii} \leq 2^{n-1} \mathscr{L}^n(B_R) \int_{B_R} |\nabla v(x')| \, \mathrm{d} x'.$$

We combine the obtained bounds and have in terms of the new constant $c_1 = 2^{n+1} R \mathscr{L}^n(B_R) \max \rho$:

$$(II) \leq c_1 \int_{B_R} |\nabla v(x)| \, \mathrm{d}x.$$

Recall that $v = u_{\varepsilon'} - u_{\varepsilon''}$ and $u_{\varepsilon} = \rho_{\varepsilon} * u$, so

$$\nabla \mathbf{v} = \rho_{\varepsilon'} * \nabla \mathbf{u} - \rho_{\varepsilon''} * \nabla \mathbf{u}.$$

By virtue of Proposition 2.7 from the lecture notes (applied to each of $\mathbf{1}_{B_{R+1}}\partial_j u \in \mathsf{L}^1(\mathbb{R}^n)$) we have that $\rho_{\varepsilon} * \nabla u \to \nabla u$ in $\mathsf{L}^1(B_R)$ as $\varepsilon \searrow 0$, and therefore that

$$(II) \rightarrow 0$$
 as $\varepsilon', \varepsilon'' \searrow 0.$

Consequently we have the Cauchy property:

$$\int_{B_R} \left| u_{\varepsilon'} - u_{\varepsilon''} \right| \mathrm{d} x \to 0 \text{ as } \varepsilon' \,, \, \varepsilon'' \searrow 0.$$

It follows by completeness of $L^1(B_R)$ that there exists $w_R \in L^1(B_R)$ so $u_{\varepsilon} \to w_R$ in $L^1(B_R)$ as $\varepsilon \searrow 0$. Now this is true for any R > 1, so corresponding to any pair 1 < r < R we find $w_r \in L^1(B_r)$, $w_R \in L^1(B_R)$ with

$$\left\{ \begin{array}{ll} (\rho_{\varepsilon} \ast u)|_{B_r} \to w_r \ \text{in} \ \mathsf{L}^1(B_r) & \text{ as } \varepsilon \searrow 0 \\ (\rho_{\varepsilon} \ast u)|_{B_R} \to w_R \ \text{in} \ \mathsf{L}^1(B_R) & \text{ as } \varepsilon \searrow 0. \end{array} \right.$$

It follows that $w_r = w_R|_{B_r}$ almost everywhere, and so we may consistently define $w \in L^1_{loc}(\mathbb{R}^n)$ by $w|_{B_r} = w_r$ for r > 1. Because also $\rho_{\varepsilon} * u \to u$ in $\mathscr{D}'(\mathbb{R}^n)$ as $\varepsilon \searrow 0$ we conclude that

$$\langle u, \phi \rangle = \lim_{\varepsilon \searrow 0} \int_{\mathbb{R}^n} (\rho_{\varepsilon} * u) \phi \, \mathrm{d}x = \int_{\mathbb{R}^n} w \phi \, \mathrm{d}x$$

holds for all $\phi \in \mathscr{D}(\mathbb{R}^n)$ finishing the proof.

Definition of Sobolev functions: (Sergei Lvovich Sobolev, 1908-1989)

Let Ω be a non-empty open subset of \mathbb{R}^n , $m \in \mathbb{N}$ and $p \in [1, \infty]$.

A W^{*m,p*} Sobolev function on Ω is any $u \in L^{p}(\Omega)$ for which $\partial^{\alpha} u \in L^{p}(\Omega)$ for each multi-index $\alpha \in \mathbb{N}_{0}^{n}$ of length $|\alpha| \leq m$.

The set of all $W^{m,p}$ Sobolev functions on Ω is denoted by $W^{m,p}(\Omega)$ and is called a *Sobolev space*. It is not difficult to see that it is a vector subspace of $L^{p}(\Omega)$ and that it is normed by

$$\|u\|_{\mathsf{W}^{m,p}} = \begin{cases} \left(\sum_{|\alpha| \le m} \|\partial^{\alpha} u\|_{p}^{p}\right)^{\frac{1}{p}} & \text{if } p < \infty \\ \max_{|\alpha| \le m} \|\partial^{\alpha} u\|_{\infty} & \text{if } p = \infty \end{cases}$$

It can be shown that $W^{m,p}(\Omega)$ hereby is complete.