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1. Solving polynomial equations by radicals

1.1. Quadratic equations. Everyone knows how to solve a quadratic equation

ax2 + bx+ c = 0.

You complete the square, writing

a

(
x2 + 2

b

2a
x+

b2

4a2

)
=
b2

4a
− c

so that (x+ b
2a )2 = b2−4ac

4a2 and deduce the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

1.2. Cubic equations. In the 16th century, Ferro and Tartaglia found a way to

similarly solve the cubic equation

(1.1) ax3 + bx2 + cx+ d = 0.

After making the change of variable y = x+ b
3a , we obtain an equation of the form

y3 + py + q = 0.

Now we make the inspired substitution

y = z − p

3z
.

Then we obtain (
z − p

3z

)3

+ p
(
z − p

3z

)
+ q = 0.

Expanding out the left hand side gives

z3 − 3z2 · p
3z

+ 3z · p
2

9z2
− p3

27z3
+ pz − p2

3z
+ q = 0

and this miraculously simplifies down to a quadratic equation in z3, namely

z6 + qz3 − p3

27
= 0.

Hence1 z3 = − q2 +
√

q2

4 + p3

27 and we obtain the Ferro-Tartaglia2 formula

y =
3

√
−q

2
+

√
q2

4
+
p3

27
− p

3
3

√
− q2 +

√
q2

4 + p3

27

.

Thanks go to Keyang Li for spotting many typos in these notes.
1making the other choice of sign in the quadratic formula leads to the same solutions
2popularised by Cardano in a book called The Great Art, 1545
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1.3. Quartic equations. At around the same time (1540?) Cardano’s student

Ferrari discovered a method for solving quartic equations

(1.2) ax4 + bx3 + cx2 + dx+ e = 0.

The substitution y = x+ b
4a reduces this to the equation

x4 + px2 + qx+ r = 0.

We introduce a new variable θ, and try rewrite the above equation in the form

(x2 + θ)2 = (τx+ σ)2

for certain τ, σ depending only on θ, p, q and r. Now, if x4 + px2 + qx+ r = 0, then

(x2 + θ)2 = x4 + 2x2θ+ θ2 = 2θx2 + θ2− px2− qx− r = (2θ− p)x2− qx+ (θ2− r).

The right hand side equals (τx+ σ)2 = τ2x2 + 2τσx+ σ2 if and only if

τ2 = 2θ − p, 2τσ = −q, and σ2 = θ2 − r.

Using the first and third of these equations to define τ and σ, we deduce that

4(2θ − p)(θ2 − r) = 4τ2σ2 = (2τσ)2 = q2.

Dividing through by 8, we see that this holds if and only if

θ3 − p

2
θ2 − rθ +

pr

2
− q2

8
= 0.

This equation is called the resolvent cubic of the quartic, and can be solved using

the Ferro-Tartaglia formula. Given θ, we can then form τ :=
√

2θ − p and σ :=

− q
2
√

2θ−p = − q
2τ , and then factorise our original quartic in the form

(1.3) (x2 + τx+ θ + σ)(x2 − τx+ θ − σ) = 0.

The two quadratics can now be solved separately.

1.4. Quintic equations. Since the middle of the 16th century, for over two hun-

dred years mathematicians have tried to extend the methods of the Italians to solve

polynomial equations of higher degree, starting with the quintic

ax5 + bx4 + cx3 + dx2 + ex+ f = 0.

Everyone failed. Eventually, by the end of the 18th century, people became con-

vinced that this is impossible. And indeed, in around 1800 Ruffini and then Abel

proved that it is impossible to solve this equation, in full generality, using radical

expressions similar to the quartic and the cubic. But what does this mean?

Definition 1.1. Given y ∈ C, let Q(y) be the smallest subfield of C containing both

Q and y. Similarly, given y1, · · · , ym ∈ C and a subfield F of C, then F (y1, · · · , ym)

denotes the smallest subfield of C containing both F and {y1, · · · , ym}.
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Definition 1.2. Let F be a subfield of C and y ∈ C. We say that y is algebraic

over F if there exist a0, a1, · · · , ad ∈ F with ad 6= 0, such that

ady
d + ad−1y

d−1 + · · ·+ a1y + a0 = 0.

If no such equation exists, then we say that y is transcendental over F .

Explicitly: if y is transcendental over Q, then Q(y) consists of rational functions

f(y)/g(y) for polynomials f(y), g(y) ∈ Q[y] with g(y) 6= 0; and if y is algebraic

over Q, with, say d being the least possible degree of a monic polynomial equation

satisfied by y with coefficients in Q, then

Q(y) = {λ0 + λ1y + · · ·+ λd−1y
d−1 : λ0, · · · , λd−1 ∈ Q}.

In the case of the cubic (1.1), let’s assume for simplicity that the coefficients p, q of

the cubic equation are rational numbers. Then we can form the chain of fields

Q ⊂ Q(
√

∆) ⊂ Q(
√

∆, z) ⊂ C

where ∆ := q2

4 + p3

27 and z3 = − q2 +
√

∆ ∈ Q(
√

∆). Then by what we did above,

Q(
√

∆, z)

contains at least one 3 of the complex roots of (1.1). Similarly in the case of the

quartic (1.2), starting with rational coefficients p, q, r, we form the chain of subfields

Q ⊂ Q(
√

∆) ⊂ Q(
√

∆, z) ⊂ Q(
√

∆, z, τ) ⊂ Q(
√

∆, z, τ,
√

∆1) ⊂ Q(
√

∆, z, τ,
√

∆1,
√

∆2) ⊂ C

where ∆ and z are the radicals in the Ferro-Tartaglia formula for θ, τ :=
√

2θ − p,
∆1 := τ2−4(θ− q

2τ ) and ∆2 := τ2−4(θ+ q
2τ ) are the discriminants of the quadratic

factors of the quartic visible in (1.3). Then we can say that

Q(
√

∆, z, τ,
√

∆1,
√

∆2).

contains at least one of the roots of the quartic (1.2).

Definition 1.3. Let F be a subfield of C and let α ∈ C be algebraic over F . We

say that α is solvable by radicals over F if there exists a chain of subfields

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn

such that α ∈ Fn, and

• for all i = 1, · · · , n, there exists an element αi ∈ Fi and a positive integer

di, such that

Fi = Fi−1(αi) and αdii ∈ Fi−1.

3Recall from the Fundamental Theorem of Algebra (a theorem from the Complex Analysis

course A2) that any polynomial with complex coefficients splits into a product of linear factors

over C
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Clearly, to determine whether or not α is solvable over F , we have to understand

the intermediate subfields F ⊂ L ⊂ F (α). Recall that a field extension K/F is said

to be finite if K is a finite dimensional F -vector space; in this case [K : F ] :=

dimF K is called the degree of the field extension.

Problem 1.4. Let K/F be a finite field extension. How can we effectively classify

the intermediate subfields F ⊆ L ⊆ K?

1.5. An overview of Galois theory. The fundamental insight of Galois is that

the solution to Problem 1.4 is controlled, at least in all favourable cases, by the

group of symmetries of the larger field. More precisely:

Definition 1.5. Let F ⊂ C be a subfield, and let f ∈ F [x] be a non-constant

polynomial.

(a) The splitting field of f over F is the subfield of C generated by F together with

all the roots of f in C.

(b) A finite field extension K of F is said Galois if there exists some non-constant

polynomial f ∈ F [x] such that K is the splitting field of f .

(c) Let K/F be a Galois extension. The Galois group of K/F , written

Gal(K/F )

is the group of all F -linear field automorphisms4 of K. The group operation is

composition of automorphisms.

(d) The Galois group of the polynomial f over F is defined to be

GalF (f) := Gal(K/F )

where K is the splitting field of f over F .

Remark 1.6. Let K be a field extension of F and let ϕ : K → K be a field

automorphism. Then ϕ is F -linear if and only if ϕ fixes F pointwise.

Example 1.7. (a) GalQ(x2 − 2) is cyclic of order 2..

(b) Let F := Q and let f = x3 − 2. Let α := 3
√

2 ∈ R ⊂ C and let ω := e2πi/3 ∈ C.

Then f factors in C[x] as

f = (x− α)(x− ωα)(x− ω2α)

so the splitting field of f is K = Q(α, ω). If σ : K → K is an F -linear automor-

phism, then f(σ(α)) = σ(f(α)) = σ(0) = 0 shows that σ(α) ∈ {α, ωα, ω2α}.
This shows that every σ ∈ G := Gal(K/F ) induces a permutation σ of the roots

of f . Since the roots of f , together with F , generate K as a field, we see that

if σ is the identity permutation, then σ is the identity automorphism. Thus,

the map σ 7→ σ gives an injective group homomorphism

G ↪→ S3.

4That is, the bijective ring homomorphisms σ : K → K that fix F pointwise
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In fact, in this example we will see later that this map is also surjective.

Using the language of groups acting on sets, we will prove the following easy

Proposition 1.8. Let K/F be a finite Galois extension. Then Gal(K/F ) is a finite

group.

What do intermediate fields have to do with symmetries of the roots? Well,

if f ∈ F [x] and K is the splitting field of f over F , and if F ⊆ L ⊆ K is an

intermediate field, then K is still the splitting field of f over L. In other words, if

K/F is Galois, then so is K/L.

Lemma 1.9. Let F ⊆ L ⊆ K be an intermediate field in a Galois extension K/F .

(a) Gal(K/L) is a subgroup of Gal(K/F ).

(b) If F ⊆ L1 ⊆ L2 ⊆ K are two intermediate fields, then

Gal(K/L2) 6 Gal(K/L1).

In this way, we obtain a rule which associates with each intermediate field L the

subgroup Gal(K/L) of the Galois group:{
intermediate fields

F ⊆ L ⊆ K

}
−→

{
subgroups

H 6 Gal(K/F )

}
and this function reverses inclusions: the larger the intermediate field L, the smaller

the associated Galois group.

Definition 1.10. Let H be a subgroup of Gal(K/F ). The fixed field of H is

KH := {x ∈ K : σ(x) = x for all σ ∈ H}.

It is easy to see that KH is indeed a subfield of K containing F .

Theorem 1.11. [Main Theorem of Galois Theory 1] Let F ⊆ L ⊆ K be an

intermediate field in a Galois extension K/F . Then we have L = KGal(K/L), so the

map L 7→ Gal(K/L) is injective.

In other words, the subgroup Gal(K/L) of Gal(K/F ) completely determines the

intermediate field L. Combining Theorem 1.11 with Proposition 1.8, we obtain the

interesting

Corollary 1.12. A finite Galois extensionK/F has only finitely many intermediate

subfields L.

In fact, the map L 7→ Gal(K/L) also turns out to be surjective!

Theorem 1.13. [Main Theorem of Galois Theory 2] Let K/F be a Galois extension

and let H 6 Gal(K/F ). Let L := KH . Then F ⊆ L ⊆ K, and Gal(K/L) = H.
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In other words, at least for Galois extensions, the intermediate subfields corre-

spond bijectively with the subgroups of the Galois group.

But what does this have to do with understanding whether some α ∈ C which

is algebraic over a subfield F is solvable over F? Recall that a group G is said to

be solvable if there exists a chain

{1} = G0 / G1 / G2 / · · · / Gm = G

for some subgroups G0, G1, · · · , Gm of G such that:

• Gi−1 is normal in Gi for all i = 1, · · · ,m, and

• the factor group Gi/Gi−1 is abelian for all i = 1, · · · ,m.

Example 1.14. (a) S3 is solvable: we have the chain

{1} / A3 / S3

with A3 cyclic of order 3, and S3/A3 cyclic of order 2.

(b) S4 is solvable: we have the chain

{1} / 〈(12)(34)〉 / V4 / A4 / S4.

(c) An and Sn are not solvable for any n ≥ 5.

(d) Let q be a prime power and let Fq be a finite field of order q. The group of

upper-triangular invertible matrices

Bn(Fq) = {g ∈ GLn(Fq) : gij = 0 for all i > j}

is solvable for all n ≥ 1.

Using Theorems 1.11 and 1.13, we will prove the following group-theoretic char-

acterisation of solvability.

Theorem 1.15. Let F be a subfield of C and let α be algebraic over F , with

minimal polynomial mF,α(t) over F . Then the following are equivalent:

(1) α is solvable by radicals over F ,

(2) the Galois group GalF (f) is a solvable group.

Theorem 1.15 explains why certain quintic equations do not admit solutions by

radicals. In fact, we will later on see an explicit example of a polynomial f ∈ Q[x]

whose Galois group over Q is S5.

2. Background from algebra

Definition 2.1. Let K/F be a field and let α ∈ K be algebraic over F . The

minimal polynomial of α over F is the monic polynomial mF,α ∈ F [t] of least

degree such that mF,α = 0.
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Remark 2.2. We always have the evaluation map evα : F [t] → K, given by

evα(g) = g(α) for each g ∈ F [t]. The condition that α is algebraic over F is

equivalent to ker evα being non-zero. But ker evα is an ideal of F [t], which is a

principal ideal domain. In this way, we see that ker evα = 〈mF,α〉 and in fact mF,α

is the unique monic generator of ker evα.

This viewpoint on the minimal polynomial implies the following important

Corollary 2.3. Let h ∈ F [t]. Then h(α) = 0⇔ mF,α divides h.

The following is fundamental.

Lemma 2.4. Let K/F be a finite extension and let α ∈ K. Then α is algebraic

over F .

Proof. Let n = [K : F ]. Then {1, α, α2, · · · , αn} is linearly dependent over F . So

we can find λn, λn−1, · · · , λ0 ∈ F such that λnα
n + · · ·+ λ1α+ λ0 = 0. �

Let F [α] be the subring of K generated by F and α. In other words, this is just

the image of evα : F [t]→ K.

Lemma 2.5. F [α] ∼= F [t]/〈mF,α〉 as rings.

Proof. This follows from the First Isomorphism Theorem for rings. �

Lemma 2.6. Let d := degmF,α. Then {1, α, · · · , αd−1} is basis for F [α] over F ,

so dimF F [α] = d.

Proof. By the division algorithm, for every f ∈ F [t], there are unique q, r ∈
F [t] with deg r < d := degmF,α such that f = q mF,α + r. So, the image of

{1, t, · · · , td−1} in F [t]/〈mF,α〉 is an F -basis. Now use Lemma 2.5. �

Lemma 2.7. If α ∈ K is algebraic over F , then F (α) = F [α].

Proof. F [α] is an integral domain, being a subring of the field K. Let 0 6= x ∈ F [α];

then the multiplication-by-x map Lx : F [α] → F [α] is injective. Now, dimF F [α]

is finite by Lemma 2.6, so Lx is also surjective by Rank-Nullity. So, there exists

y ∈ F [α] such that Lx(y) = 1. But Lx(y) = xy, so x is invertible in F [α]. So, F [α]

is already a field, and hence is the subfield F (α) of K generated by F and α. �

Corollary 2.8. If α ∈ K is algebraic over F , then mF,α is irreducible over F .

Proof. Since F (α) ∼= F [t]/ ker evα is field, ker evα = 〈mF,α〉 is a maximal ideal.

Hence mF,α is irreducible. �

Remark 2.9. You may wonder why the minimal polynomials mT of linear trans-

formations T : V → V that you encountered in Part A Linear Algebra were in

general not irreducible. The reason is that whilst it is still the case that mT is
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the monic generator of the ideal ker evT of F [t], where evT : F [t]→ End(V ) is the

evaluation at T map, the codomain of evT is the ring End(V ) of linear maps from

V → V , which is isomorphic to a matrix ring Mn(F ) (after choosing a basis for V ),

and which has zero-divisors as soon as n ≥ 2.

Definition 2.10. Let K/F be a field extension. Then the degree of K over F is

[K : F ] := dimF K.

Corollary 2.11. For all α algebraic over F , we have [F (α) : F ] = degmF,α(t).

Proof. Use Lemma 2.6 and Lemma 2.7. �

It is important to be able to compute minimal polynomials of algebraic numbers.

Example 2.12. (a) Let α =
√

2. Then f = x2 − 2 ∈ Q[x] vanishes at α, so

mQ,α | f . If f was reducible over Q then it would have a linear factor, and then√
2 ∈ Q which is not the case. So, f is irreducible over Q and hence mQ,α = f .

(b) Let ω = e
2πi
3 ∈ C. Then ω3 = 1 but ω 6= 1, so ω2 + ω + 1 = ω3−1

ω−1 = 0. Hence

mQ,ω | x2 +x+ 1. If degmQ,ω = 1, then ω ∈ Q, but of course ω = −1+i
√

3
2 /∈ R.

So degmQ,ω = 2 and mQ,ω = x2 + x+ 1.

(c) Let α = 3
√

2. The polynomial f = x3 − 2 is irreducible over Z by Eisenstein’s

Criterion at p = 2. Hence it is also irreducible over Q by Gauss’s Lemma 5.

Since mQ,α | f we must have equality.

We now come to a very important result.

Theorem 2.13 (Tower Law). Let K/L/F be finite field extensions. Then

[K : F ] = [K : L] [L : F ].

Proof. Let {x1, . . . , xm} be a basis for L as an F -vector space, and let {y1, · · · , yn}
be a basis for K as an L-vector space. It will be enough to show that

{xiyj : 1 6 i 6 m, 1 6 j 6 n}

is a basis for K as an F -vector space. This set spans K, because

K =

m∑
j=1

Lyj =

m∑
j=1

(
n∑
i=1

Fxi

)
yj =

n∑
i=1

n∑
j=1

Fxiyj .

Suppose now that
m∑
i=1

n∑
j=1

λijxiyj = 0 for some λij ∈ F . Then since {y1, · · · , ym}

is linearly independent over L, for each j = 1, · · · ,m we have
n∑
i=1

λijxi = 0. Since

{x1, · · · , xn} is linearly independent over F , we deduce λij = 0 for all i, j. �

5see Problem Sheet 1 for a refresher on these two results from Part A Rings and Modules
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3. Upper bounds on the size of the Galois group

We briefly recall some facts about group actions on sets from Prelims.

Definition 3.1. Let G be a group. A G-action on a set X is a function

a : G×X → X, (g, x) 7→ a(g, x)

such that

(1) a(1, x) = x for all x ∈ X,

(2) a(g, a(h, x)) = a(gh, x) for all g, h ∈ G and all x ∈ X.

Given a group G and a set X, there will in general be several different actions

of G on X. Nevertheless, it is very standard to omit the letter a specifying the

particular action from the notation, so we will write

g · x = a(g, x)

whenever the group action a : G×X → X is understood. In this language, the two

axioms for a group action become

1 · x = x and g · (h · x) = (gh) · x for all g, h ∈ G, x ∈ X.

Let G act on X. We say that a subset Y of X is G-stable if g · y ∈ Y for all y ∈ Y .

In this case, G also acts on Y . We recall the following two constructions.

Definition 3.2. Let G act on a set X.

(1) If H is a subgroup of G, then H also acts on X by restriction:

h · x := g · x for all h ∈ H,x ∈ X.

(2) Suppose that G acts also acts on Y . Then G also acts on X × Y via

g · (x, y) := (g · x, g · y) for all g ∈ G, (x, y) ∈ X × Y.

This is called the diagonal action.

The key example of a group action in Galois Theory is the following

Lemma 3.3. Let K/F be a field extension and let G = Gal(K/F ), so that G acts

on K. Let f ∈ F [t] and let

V (f) := {α ∈ K : f(α) = 0}.

Then V (f) is a G-stable subset of K and hence G also acts on V (f).

Proof. Let σ ∈ G and α ∈ V (f). Write f = anx
n + an−1x

n−1 + · · · + a1x + a0.

Then

f(σ(α)) =

n∑
i=0

aiσ(α)i =

n∑
i=0

aiσ(αi) = σ

(
n∑
i=0

aiα
i

)
= σ(f(α)) = σ(0) = 0

using the fact that σ is an F -linear ring homomorphism. Hence σ(α) ∈ V (f) for

all α ∈ V (f), so V (f) is G-stable. �
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There is really only one main theorem about group actions - Theorem 3.7.

Definition 3.4. Let G be a group acting on a set X, and let x ∈ X.

(1) The stabiliser of x is the set StabG(x) := {g ∈ G : g · x = x} ⊂ G.

(2) The orbit of x is the set G · x := {g · x : g ∈ G} ⊂ X.

Recall from Prelims that StabG(x) is always subgroup of G. Since X carries no

structure, the orbit G · x is just a set. However, we always have the orbit map

πx : G→ G · x

given by πx(g) = g · x for all g ∈ G. This map is always surjective, and π−1
x (x) is

just the stabiliser StabG(x) of x.

Proposition 3.5. Let G be a group acting on a set X and let x ∈ X. Then

π−1
x (g · x) = g StabG(x) for all g ∈ G.

Proof. We have πx(g) = g · x. Now for h ∈ G, we have

h ∈ π−1
x (g · x)⇔ h · x = g · x⇔ g−1h ∈ StabG(x)⇔ h ∈ g StabG(x).

So, π−1
x (g · x) = g StabG(x). �

Corollary 3.6. Suppose that G is a possibly infinite group acting on a finite set

X. Suppose that there exists x ∈ X such that StabG(x) is finite. Then G is finite.

Proof. The orbit G ·x is finite because X is finite. Write G ·x = {g1 ·x, · · · , gn ·x}.
By Proposition 3.5, for all i = 1, · · · , n, we have π−1

x (gi ·x) = gi StabG(x), which is

a finite set. Considering fibres of the surjective orbit map πx : G� G · x, we have

G = π−1
x (g1 · x) ∪ · · · ∪ π−1

x (gn · x).

This is a finite union of finite sets and is therefore finite. �

Theorem 3.7 (Orbit-Stabiliser). Let G be a finite group acting on a finite set X.

Then for all x ∈ X, we have

|G · x| | StabG(x)| = |G|.

Proof. Let n = |G · x| and G · x = {g1 · x, · · · , gn · x}. By Proposition 3.5,

|G| =
n∑
i=1

|π−1
x (gi · x)| = n|StabG(x)| = |G · x| | StabG(x)|. �

Proposition 3.8. Let K/F be a finite extension. Then G := Gal(K/F ) is finite.

Proof. Let {α1, · · · , αn} be a basis for K as an F -vector space. Each αi is algebraic

over F by Lemma 2.4. Let mi := mF,αi be the minimal polynomial of αi over F .

Let V (mi) := {β ∈ K : mi(β) = 0} be the set of zeroes of mi in K: note that this

is always a finite set.
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By Lemma 3.3, G acts on V (mi) for each i. Using Example 3.2(2) repeatedly,

we can now define an action of G on the product set X = V (m1)× · · · ×V (mn) by

σ · (β1, . . . , βn) := (σ(β1), · · · , σ(βn))

for all σ ∈ G and (β1, · · · , βn) ∈ X. We claim that

StabG((α1, · · · , αn)) = {1}.

Indeed, suppose that σ ∈ G fixes each αi. Then since σ is an F -linear automorphism

of K and since {α1, · · · , αn} is an F -vector space basis for K, we see that σ fixes

every other element of K. But then σ must be the identity map 1 : K → K. Since

V (m1)× · · · × V (mn) is finite, Corollary 3.6 implies that G is finite. �

It would be nicer if K was a simple extension of the form K = F (z):

Lemma 3.9. If z ∈ K has StabG(z) = {1}, then |G| 6 [F (z) : F ].

Proof. The group G acts on V (mF,z) := {β ∈ K : mF,z(β) = 0} by Lemma 3.3.

Now |V (mF,z)| 6 degmF,z(t) = [F (z) : F ] by Corollary 2.11. On the other hand,

Theorem 3.7 shows that |G| = |G · z| |StabG(z)| = |G · z| since StabG(z) = {1}.
Therefore |G| = |G · z| 6 |V (mF,z)| 6 [F (z) : F ]. �

This motivates trying to find some z ∈ K with trivial stabiliser.

Proposition 3.10. Suppose that F is infinite. Let K1, · · · ,Km be finitely many

proper subfields of K containing F . Then

K1 ∪ · · · ∪Km < K.

Proof. Suppose for a contradiction that K = K1 ∪ · · · ∪Km. We can assume that

m ≥ 2, and that m is minimal with this property. Choose and fix some y ∈ K\K1.

We will now show that K1 ⊆ K2 ∪ · · · ∪Km. This implies that K = K2 ∪ · · · ∪Km,

which contradicts the minimality of m.

Let x ∈ K1. Since F is infinite, we can choose a subset S ⊂ F of size m + 1.

For each α ∈ S, we can find some i(α) ∈ {1, · · · ,m} such that x + αy ∈ Ki(α),

because K = K1 ∪ · · · ∪Km. The function i : S → {1, · · · ,m} cannot be injective.

So we can find α 6= β in S such that x + αy and x + βy both lie in Ki(α). But

then y = (x+αy)−(x+βy)
α−β ∈ Ki(α). Since y /∈ K1 by assumption, we conclude that

i(α) > 1. Then x = (x+ αy)− αy ∈ Ki(α) ⊆ K2 ∪ · · · ∪Km for every x ∈ K1. �

Of course the proof Proposition 3.10 fails when F is finite.

Corollary 3.11. Let K/F be a finite extension. Then StabG(z) = {1} for at least

one z ∈ K.

Proof. By Proposition 3.8, G is finite. Suppose first that F is infinite. Write

G\{1} := {g1, · · · , gm}. Since each gi is non-trivial, each fixed field K〈gi〉 is a

proper subfield of K containing F . Since F is infinite, we can find some z ∈
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K\
(
K〈g1〉 ∪ · · · ∪K〈gm〉

)
by Proposition 3.10. Clearly z is not fixed by any gi. So,

the only element of G fixing z is 1.

We leave the case where F is finite as an exercise. �

Theorem 3.12. Let K/F be a finite extension. Then |G| 6 [K : F ].

Proof. Choose z ∈ K with StabG(z) = {1} using Corollary 3.11. Then Lemma 3.9

implies that |G| 6 [F (z) : F ] 6 [K : F ]. �

4. Galois extensions

We fix a ground field F throughout §4. The definition of Galois extensions

involves a discussion of splitting fields and separability.

Definition 4.1. Let F be a field and let f ∈ F [t]. A field extension K of F is said

to be a splitting field of f if

(a) f splits completely in K[t], and

(b) K is generated as a field by F together with the roots of f .

Lemma 4.2. Let K/F be a field extension and let α1, · · · , αn ∈ K be algebraic

over F . Then [F (α1, · · · , αn) : F ] <∞.

Proof. Proceed by induction on n. When n = 1, this follows from Corollary 2.11.

Assume n ≥ 2 and let L := F (α1, · · · , αn−1); then [L : F ] <∞ by induction. Since

αn is algebraic over F , it is also algebraic over L. Hence Theorem 2.13 implies that

[F (α1, · · · , αn) : F ] = [L(αn) : F ] = [L(αn) : L] [L : F ] <∞. �

Corollary 4.3. Let f ∈ F [t] and let K be a splitting field of f . Then [K : F ] <∞.

Proof. K = F (α1, · · · , αn) where α1, · · · , αn are the roots of f in K. Now apply

Lemma 4.2. �

Lemma 4.4. Let g ∈ F [t] be irreducible. Then there exists a simple extension

L = F (α) generated by a root α of g.

Proof. Since g is an irreducible polynomial in the principal ideal domain F [t], it

generates a maximal ideal 〈g〉 in F [t]. Hence L := F [t]/〈g〉 is a field, containing

a copy of F , α := t + 〈g〉 ∈ L is a root of g in L. Since α generates L as a ring

together with F , we see that L = F [α]. Since α is algebraic over F , we deduce that

F (α) = F [α] = L by Lemma 2.7. �

This basic construction is called adjoining a root of an irreducible polynomial.

Corollary 4.5. Let f ∈ F [t]. Then there exists a splitting field K of f .
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Proof. Proceed by induction on the degree d of f , the case d = 1 being clear. Let g

be an irreducible factor of f . Using Lemma 4.4, we can adjoin a root α of g to form

the field extension L := F (α). Since g | f , we see that f(α) = 0, so (t−α) | f . Let

h = f/(t− α) ∈ L[t]. Since deg h < d, by induction we can find a splitting field K

of h. Since α ∈ L ⊂ K, f = (t− α) · h splits completely in K[t]. Since the roots of

f in K generate K together with F , we see that K is also a splitting field of f . �

Example 4.6. Let f = x3 − 2 and F = Q. Adjoin a root α of f to Q to form

Q(α); then f = (x− α)(x2 + αx+ α2x) but the quadratic does not split over Q(α)

(exercise). Hence x2 + αx+ α2 is irreducible over Q(α), and we can adjoin a root

β of this quadratic to form K = Q(α)(β). If γ is the other root, then γ = −α− β
already lies in K, so K is the splitting field of f . Then by Corollary 2.11 we have

[Q(α) : Q] = deg(x3 − 2) = 3 and [K : Q(α)] = deg(x2 + αx+ α2) = 2, so

[K : Q] = [K : Q(α)][Q(α) : Q] = 2× 3 = 6

by the Tower Law, Theorem 2.13.

You will see other interesting examples of splitting fields on Problem Sheet 1.

We now turn to the more subtle notion of separability.

Definition 4.7. Let f = ant
n + an−1t

n−1 + · · ·+ a1t+ a0 ∈ F [t].

(a) The formal derivative of f is

D(f) := nant
n−1 + (n− 1)an−1t

n−2 + · · ·+ a1 ∈ F [t].

(b) Suppose that f is irreducible. Then f is separable if D(f) 6= 0.

(c) We say that f is separable if each of its irreducible factors in F [t] is separable.

Definition 4.8. We say that the finite extension K/F is Galois if it is the splitting

field of some separable polynomial in F [t].

Remark 4.9. Suppose that F is a field of characteristic zero. Then every

polynomial f ∈ F [t] is separable.

Lemma 4.10. Let f ∈ F [t] be a separable irreducible polynomial. Then there

exist p, q ∈ F [t] such that pf + qD(f) = 1.

Proof. Since f is separable, D(f) is a non-zero polynomial of strictly smaller degree

than f . Since f is irreducible, the ideal 〈f〉 of the principal ideal domain F [t] is

maximal. Hence either 〈f,D(f)〉 = 〈f〉, or 〈f,D(f)〉 = 〈1〉. In the first case,

D(f) ∈ 〈f〉, so there exists g ∈ F [t] such that fg = D(f). Since D(f) is non-zero

by assumption and since F [t] is a domain, g must also be nonzero. Hence D(f) has

a non-zero term of degree ≥ deg f , which is impossible. So in fact 〈f,D(f)〉 = 〈1〉
and we can find p and q in F [t] such that pf + qD(f) = 1 as claimed. �
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Proposition 4.11. Let f ∈ F [t] be a separable irreducible polynomial, and let

K be any field extension of F over which f splits completely. Then f has exactly

deg f distinct roots in K.

Proof. By Lemma 4.10, there exist p, q ∈ F [t] such that pf + qD(f) = 1. Suppose

that α is a repeated root of f in K. Then f = (t − α)2g for some g ∈ K[t] and

hence D(f) = 2(t−α)g+ (t−α)2D(g), so f(α) = D(f)(α) = 0. Substituting t = α

into pf + qD(f) = 1 then gives 0 = 1, a contradiction. �

You will see an example of an inseparable polynomial over a field of positive

characteristic in the first Problem Sheet.

We now start working towards showing that Galois extensions have a sufficiently

large Galois group.

Lemma 4.12. Let ϕ : F → F̃ be an isomorphism and let K/F and K̃/F̃ be finite

extensions. Let α ∈ K and α̃ ∈ K̃, and suppose that ϕ(mF,α)(α̃) = 0. Then there

is a unique extension ϕ̃ : F (α)→ F̃ (α̃) of ϕ : F → F̃ such that ϕ̃(α) = α̃:

F
ϕ // F̃

F (α)
ϕ̃

// F̃ (α̃).

Proof. Let g = mF,α, an irreducible polynomial over F by Corollary 2.8. Since

ϕ(g)(α̃) = 0, Corollary 2.3 implies that mF̃ ,α̃ divides g̃ := ϕ(g). But g̃ is irreducible

over F̃ , so in fact g̃ = mF̃ ,α̃. Applying Lemma 2.5 and Lemma 2.7 twice gives us

isomorphisms

θ : F [t]/〈g〉
∼=−→ F (α) and θ̃ : F̃ [t]/〈g̃〉

∼=−→ F̃ (α̃).

The isomorphism ϕ : F → F̃ extends to an isomorphism ϕ : F [t]→ F̃ [t] which sends

t to t. It sends the ideal 〈g〉 onto 〈g̃〉, and hence descends to give an isomorphism

ϕ : F [t]/〈g〉
∼=−→ F̃ [t]/〈g̃〉.

These fit into the following diagram of fields and ring homomorphisms:

F
ϕ // F̃

K F (α)
ϕ̃

// F̃ (α̃) K̃

F [t]
〈g〉

∼=
ϕ

//

θ ∼=

OO

F̃ [t]
〈g̃〉

θ̃∼=

OO

Then ϕ̃ := θ̃ ◦ ϕ ◦ θ−1 : F (α)→ F̃ (α̃) is the required isomorphism.
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If ψ : F (α)→ F̃ (α̃) is another extension of ϕ such that ψ(α) = α̃, then ψ agrees

with ϕ̃ on F and α. Since these generate F (α) as a ring by Lemma 2.7, ψ = ϕ̃. �

We now use the separability assumption to prove that the Galois group of a

Galois extension is sufficiently large.

Theorem 4.13. Let ϕ : F → F̃ be an isomorphism. Suppose that K is a splitting

field of the separable polynomial f ∈ F [t], and let K̃ be a splitting field of f̃ :=

ϕ(f) ∈ F̃ [t]. Then there are at least [K : F ] distinct isomorphisms K → K̃

extending ϕ.

Proof. We proceed by induction on [K : F ], the case [K : F ] = 1 being clear.

Let g be a monic irreducible factor of f in F [t] with deg g ≥ 2; then g is separable

by Definition 4.7(c). Since ϕ is an isomorphism, g̃ := ϕ(g) ∈ F̃ [t] is also separable.

Since K̃ is a splitting field of f̃ and g̃ | f̃ , g̃ has exactly n := deg g̃ distinct roots

β1, · · · , βn ∈ K̃, say, by Proposition 4.11.

Choose a root α ∈ K of g. Since g(α) = 0 and since g is monic and irreducible

over F , Corollary 2.3 implies that mF,α = g. Fix i = 1, · · · , n. Then ϕ(mF,α)(βi) =

ϕ(g)(βi) = g̃(βi) = 0, so Lemma 4.12 gives us an isomorphism ϕi : F (α) → F̃ (βi)

which extends ϕ : F → F̃ and which sends α to βi.

Since m := [K : F (α)] < [K : F ], we can apply induction to the field extensions

K/F (α) and K̃/F̃ (βi) and the isomorphism ϕi : F (α) → F̃ (βi) to find at least

m different extensions ϕ
(j)
i : K → K̃, j = 1, · · · ,m, of ϕi : F (α) → F̃ (βi).

Suppose that ϕ
(j)
i = ϕ

(j′)
i′ for some 1 6 i, i′ 6 n and 1 6 j, j′ 6 m. Then

βi = ϕ
(j)
i (α) = ϕ

(j′)
i′ (α) = βi′ so i = i′, and then by induction we have j = j′. Thus

we have constructed at least nm different extensions of ϕ : F
∼=−→ F̃ to K → K̃.

F

ϕ

��

F (α)

ϕi

��

K

ϕ
(j)
i
��

F̃ F̃ (βi) K̃

Finally, using Corollary 2.11 we have [F (α) : F ] = degmF,α = deg g = deg g̃ = n.

Applying Theorem 2.13, we find [K : F ] = [K : F (α)][F (α) : F ] = mn. �

Corollary 4.14. Let K/F be a Galois extension. Then

|Gal(K/F )| ≥ [K : F ].

Proof. Since K/F is Galois, we may assume that K is a splitting field of some

separable polynomial f ∈ F [t]. Take F̃ := F , let ϕ : F → F be the identity map

and let K̃ = K. Then Theorem 4.13 implies that there are at least [K : F ] distinct

automorphisms of K extending 1 : F → F . �
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Corollary 4.15. Let f ∈ F [t] be a separable polynonomial, and let K be a splitting

field for f . Suppose that L is another extension of F such that f splits completely

in L[t]. Then

(a) there exists at least one monomorphism K ↪→ L,

(b) if L is also a splitting field of f , then this monomorphism is an isomorphism,

(c) any two splitting fields of f are (non-canonically!) isomorphic.

Proof. (a) Let K̃ be the subfield of L generated by F together with the roots of f .

Then by Theorem 4.13 we can find at least one isomorphism ϕ : K → K̃ extending

the identity map on F . If i : K̃ ↪→ L is the inclusion, then i ◦ ϕ : K → L is the

required monomorphism.

(b) In this case, K̃ = L. The image of i ◦ ϕ equals K̃, so it is an isomorphism.

(c) Follows from (b). �

Example 4.16. Let F = Q and let K be the splitting field of f = x3 − 2. As we

saw in Example 4.6, K = Q(α)(β) where α is a root of x3 − 2 and β is a root of

x2 + αx+ α2. The three distinct roots of f in K are α, β and γ := −α− β.

For each δ ∈ {α, β, γ}, by Lemma 4.12 we have an extension ϕδ : Q(α) → Q(δ)

of the identity map 1Q : Q → Q that sends α to δ. Then ϕα has two extensions

ϕ
(1)
α , ϕ

(2)
α to an automorphism of K, characterised by ϕ

(1)
α (β) = β and ϕ

(2)
α (β) = γ.

Now ϕβ sends mQ(α),β = t2 +αt+α2 to t2 + βt+ β2 ∈ Q(β)[t], which factorises as

(t−α)(t−γ) over K. Hence there are two extensions ϕ
(1)
β , ϕ

(2)
β of ϕβ , characterised

by ϕ
(1)
β (β) = α and ϕ

(2)
β (β) = γ. Similarly, there are two extensions ϕ

(1)
γ , ϕ

(2)
γ of

ϕγ : Q(α)→ Q(γ), characterised by ϕ
(1)
γ (β) = α and ϕ

(2)
γ (β) = β.

Using Corollary 4.14 and Theorem 3.12, we conclude that

Gal(K/Q) = {ϕ(1)
α , ϕ(2)

α , ϕ
(1)
β , ϕ

(2)
β , ϕ(1)

γ , ϕ(2)
γ }

where the effect of these automorphisms on V (f) = {α, β, γ} is given as follows:

ϕ
(1)
α ϕ

(2)
α ϕ

(1)
β ϕ

(2)
β ϕ

(1)
γ ϕ

(2)
γ

α α α β β γ γ

β β γ α γ α β

γ γ β γ α β α

Because all possible permutations of {α, β, γ} occur, this Galois group has to be

isomorphic to S3.

We can now give a characterisation of Galois extensions. For the next four state-

ments we assume that K/F is a finite extension and that G = Gal(K/F ).

Theorem 4.17. If K is Galois over F then |G| = [K : F ].

Proof. Combine Corollary 4.14 with Theorem 3.12. �

Lemma 4.18. Gal(K/KG) = G.
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Proof. This is a tautology, but an important one. We know that KG is a subfield

of K containing F . Hence every KG-linear automorphism of K is also F -linear.

On the other hand, if σ : K → K is F -linear, then σ ∈ G, so σ fixes KG pointwise,

so σ is also KG-linear. �

Theorem 4.19. If |G| = [K : F ], then F = KG.

Proof. By Lemma 4.18, we know that G = Gal(K/KG). Applying Theorem 3.12

to the field extension K/KG then shows that

|G| 6 [K : KG].

Theorem 2.13 implies that [K : KG] 6 [K : F ]. Since [K : F ] = |G| by assumption,

we get [K : KG] = [K : F ]. So [KG : F ] = 1 and KG = F as claimed. �

The following general Lemma will be useful.

Lemma 4.20. Let H be a finite group of automorphisms of a field L, let X ⊆ L

be a finite subset and define

fX :=
∏
y∈X

(t− y) ∈ L[t]

(a) If X is H-stable, then fX in fact has coefficients in LH .

(b) fX is always separable.

Proof. (a) The H-action on L extends to a coefficient-wise H-action on L[t] by

ring automorphisms, fixing t. Because X is H-stable, the set of linear polynomials

{t− x : x ∈ X} is H-stable. Since the H-action respects the multiplication in L[t],

we see that the product fX of these linear polynomials is fixed by H:

fX ∈ L[t]H = LH [t].

(b) Any factor g of fX in L[t] has the form fY for some subset Y of X, so we

may assume without loss of generality that Y = X. We use the product rule:

D(fX) =
∑
y∈X

∏
z∈X\{y}

(t− z).

Choose some u ∈ X; if y 6= u then
∏
z∈X\{y}(u− z) = 0 since the product includes

the factor u− z with z = u. Hence

D(fX)(u) =
∏

z∈X\{u}

(u− z) 6= 0.

Hence fX is separable. �

Theorem 4.21. If F = KG, then K/F is Galois.
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Proof. Let {z1, · · · , zn} be an F -basis for K. Since G is finite by Proposition 3.8,

the set X :=
n⋃
i=1

G · zi is also finite as well as G-stable. Then fX is a separable

polynomial with coefficients in KG, by Lemma 4.20. Since KG = F , we see that

fX ∈ F [t]. Since fX splits completely over K and since K is generated by the roots

of fX in K, it is the splitting field of fX over F . �

Combining Theorems 4.17, 4.19 and 4.21, we have proved the following

Corollary 4.22. Let K/F be a finite extension and let G = Gal(K/F ). Then the

following are equivalent:

(a) K/F is Galois (i.e. the splitting field of a separable polynomial in F [t]),

(b) |G| = [K : F ],

(c) F = KG.

5. The Main Theorem of Galois Theory

We are now one technical Lemma away from the proof of Theorem 1.11.

Lemma 5.1. LetK/F be a Galois extension and let F ⊆ L ⊆ K be an intermediate

field. Then K/L is also Galois.

Proof. Since K/F is a Galois extension, it is a splitting field of some separable

polynomial f ∈ F [t]. Since the roots of f in K still generate K as a field, we just

need to show that f is separable when viewed as an element of L[t]. By Remark

4.9 this is clear when charF = 0; we leave the general case as an exercise. �

Note that the extension L/F is not Galois in general, even when F has charac-

teristic zero! We restate Theorem 1.11 here for the reader’s convenience.

Theorem 5.2 (Main Theorem of Galois Theory 1). Let K/F be a Galois extension

and let F ⊆ L ⊆ K be an intermediate field. Then

L = KGal(K/L).

Proof. The extension K/L is Galois by Lemma 5.1. Then L = KGal(K/L) by

Corollary 4.22(a) ⇒ (c). �

Next, we will prove Theorem 1.13, but first we need an important

Proposition 5.3. Let K be a field, let H be a finite group of automorphisms of

K and let z ∈ K. Then:

(a) z is algebraic over KH ,

(b) mKH ,z = fH·z =
∏

y∈H·z
(t− y),

(c) degmKH ,z = |H · z|.
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Proof. (a) By Lemma 4.20, the polynomial fH·z has coefficients in KH . Since

fH·z(z) = 0, z is algebraic over KH .

(b) Since fH·z(z) = 0, Corollary 2.3 implies that mKH ,z divides fH·z.

On the other hand, H 6 Gal(K/KH), so H acts on the roots of mKH ,z in K

by Lemma 3.3. Since z is a root of mKH ,z in K, it follows that the entire H-orbit

H · z is contained in the set of roots of mKH ,z. Hence fH·z divides mKH ,z.

Since both fH·z and mKH ,z are monic, we must have equality.

(c) This is now immediate from (b). �

Theorem 5.4 (Main Theorem of Galois Theory 2). Let K/F be a Galois extension

and let H 6 Gal(K/F ). Then Gal(K/KH) = H.

Proof. Let J := Gal(K/KH) — this is a finite group by Proposition 3.8 and H 6 J .

Choose z ∈ K such that StabJ(z) = {1} using Corollary 3.11. Then applying

Theorem 3.7 and Proposition 5.3 to H and J in turn, we deduce that

|H| = |H · z| = degmKH ,z and |J | = |J · z| = degmKJ ,z.

Hence it is enough to show that KJ = KH . However, since K/F is a Galois

extension, the extension K/KH is also Galois with Galois group Gal(K/KH) = J

by Lemma 5.1. Hence Corollary 4.22(a) ⇒ (c) implies that KJ = KH . �

We will now describe the Galois correspondence in one particular example. The

difficult bit is actually computing the Galois group!

Lemma 5.5. Let F = Q and let f := t4 − a for some positive square-free integer

a. Let K be a splitting field of f and let G = Gal(K/F ). Then

G ∼= D8,

the dihedral group of order 8.

Proof. Let ξ := 4
√
a ∈ R ⊂ C. Then f factors over C as

f = (t− ξ)(t+ ξ)(t− iξ)(t+ iξ).

Using Corollary 4.15(c), we may assume that K = Q(ξ, i). We first calculate its

degree. Pick a prime p dividing a; then by Eisenstein’s criterion at p together with

Gauss’s Lemma, f is irreducible over Q. Hence

[Q(ξ) : Q] = 4

by Corollary 2.11. Since Q(ξ) is wholly contained in R, we know that i /∈ Q(ξ) .

Hence t2 + 1 is irreducible over Q(ξ), so applying Corollary 2.11 again gives

[K : Q(ξ)] = 2.

Using Theorem 2.13 we now see that [K : Q] = 8. Writing G = Gal(K/F ), we then

know by Theorem 4.17 that G is a group of order 8.
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Using Lemma 4.12 applied to Q(ξ) ⊂ K = Q(ξ)(i), there is a Q(ξ)-linear auto-

morphism τ : K → K such that

τ(i) = −i and τ(ξ) = ξ.

Of course, τ is the restriction to K of complex conjugation C→ C. Note that K =

Q(i)(ξ) with [K : Q(i)] =
[K : Q]

[Q(i) : Q]
= 4 by Theorem 2.13. Hence by Corollary

2.11, degmQ(i),ξ = 4 so t4 − a remains irreducible over Q(i). Lemma 4.12, applied

to Q(i) ⊂ K, gives a Q(i)-linear automorphism σ : K → K such that

σ(ξ) = iξ and σ(i) = i.

Next, we compute the relations that σ and τ satisfy in G. Clearly

σ4 = τ2 = 1

and σ2 6= 1 because σ2(ξ) = σ(iξ) = i(iξ) = −ξ 6= ξ. So, σ has order 4 and τ has

order 2. Next, τστ−1(i) = −τσ(i) = −τ(i) = i shows that τστ−1 fixes i, whereas

τστ−1(ξ) = τσ(ξ) = τ(iξ) = τ(i)τ(ξ) = −iξ = i3ξ = σ−1(ξ). Hence

τστ−1 = σ−1.

Since |G| = 8, we conclude that D8 → G, r 7→ σ and s 7→ τ is an isomorphism. �

The next purely group-theoretical result is standard.

Lemma 5.6. The subgroups of D8 = 〈σ, τ : σ4 = τ2 = 1, τστ−1 = σ−1〉 are:

〈1〉

〈τ〉 〈τσ2〉 〈σ2〉 〈τσ〉 〈τσ3〉

〈τ, σ2〉 〈σ〉 〈τσ, σ2〉

〈σ, τ〉

Keep the notation of Lemma 5.5.
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Corollary 5.7. The subfields of K = Q(ξ, i) are as follows:

K

Q(ξ) Q(iξ) Q(i, ξ2) Q(ξ − iξ) Q(ξ + iξ)

Q(ξ2) Q(i) Q(iξ2)

Q

Proof. It is routine to verify that the given generators are invariant under the ap-

propriate subgroups of G. To see that they do generate the required fixed subfield,

it’s enough to compute the degree of K over the candidate subfield.

For example, in the case where H = 〈τσ〉, the element α := ξ − iξ satisfies

α2 = ξ2(1− i)2 = −2iξ2, so α4 = −4a whence [Q(α) : Q] 6 4. On the other hand,

i /∈ Q(α) as otherwise ξ = α+αi
2 would lie in Q(α) = Q(α, i), leading to K = Q(α)

having degree 6 4 over Q. Hence [K : Q(α)] = 2. Therefore [Q(α) : Q] = [K:Q]
[K:Q(α)] =

4 by Theorem 2.13. �

We now work towards understanding the intermediate fields corresponding to

the normal subgroups of G.

Lemma 5.8. Let K/F be a Galois extension and let L be an intermediate field.

Suppose that L is Gal(K/F )-stable. Then the restriction map

r : Gal(K/F )→ Gal(L/F )

is a well-defined surjective group homomorphism.

Proof. Let σ ∈ Gal(K/F ); then r(σ) = σ|L : L→ K is only a well-defined element

of Gal(L/F ) because L is assumed to be Gal(K/F )-stable. Hence r is well-defined,

and it is clearly a group homomorphism. It is surjective by Theorem 4.13. �

Lemma 5.9. Let K/F be a Galois extension with G = Gal(K/F ). Let L be an

intermediate field. Then L/F is Galois if and only if L is G-stable.

Proof. Suppose that L/F is Galois. Then it is a splitting field of some separable

polynomial g ∈ F [t], so the roots V (g) of g in L generate L. But V (g) is G-stable

by Lemma 3.3. Hence L is also G-stable.

Conversely, suppose that L is G-stable. By Theorem 4.21, it is enough to show

that LGal(L/F ) = F . But r(G) 6 Gal(L/F ) by Lemma 5.8, so LGal(L/F ) ⊆ Lr(G) =

L ∩KG. However KG = F by Corollary 4.22(a)⇒(c), so LGal(L/F ) = F . �
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Lemma 5.10. Let K/F be a Galois extension with G = Gal(K/F ) and let H be

a subgroup of G. Then for all ϕ ∈ G, we have

KϕHϕ−1

= ϕ(KH).

Proof. Let x ∈ K and ψ ∈ H. Then (ϕψϕ−1)·x = x if and only if ψ(ϕ−1x) = ϕ−1x.

So, x ∈ KϕHϕ−1 ⇔ ϕ−1(x) ∈ KH ⇔ x ∈ ϕ(KH). �

Theorem 5.11 (Main Theorem of Galois Theory 3). Let K/F be a Galois ex-

tension with G = Gal(K/F ) and let L be an intermediate subfield with H :=

Gal(K/L).

(1) H is normal in G if and only if L is Galois over F .

(2) If H is normal in G, the restriction map Gal(K/F )→ Gal(L/F ) induces a

group isomorphism

G/H ∼= Gal(L/F ).

Proof. (1) By Theorem 5.2 we have L = KH . Now, H is normal in G if and only

if ϕHϕ−1 = H for all ϕ ∈ G. By Theorem 5.2 together with Theorem 5.4, this is

equivalent to KH = KϕHϕ−1

for all ϕ ∈ G. Since KϕHϕ−1

= ϕ(KH) by Lemma

5.10, this is equivalent to KH being G-stable. But Lemma 5.9 tells us that KH is

G-stable if and only if KH/F is Galois.

(2) Suppose H is normal in G. Then L is Galois over F by (1), so L is G-

stable by Lemma 5.9. Hence r : G → Gal(L/F ) is a well-defined surjective group

homomorphism by Lemma 5.8. Its kernel is ker(r) = {ϕ ∈ G : ϕ|L = 1L} =

Gal(K/L) = H. Now apply the First Isomorphism Theorem. �

In summary, the Main Theorem of Galois Theory can be stated as follows:

Corollary 5.12. Let K/F be a Galois extension with G = Gal(K/F ).

(1) The function L 7→ Gal(K/L) is a bijection{
intermediate fields

F ⊆ L ⊆ K

}
∼=−→

{
subgroups

H 6 Gal(K/F )

}
with inverse H 7→ KH .

(2) Intermediate subfields F ⊆ L ⊆ K that are Galois over F correspond

precisely with the normal subgroups H of G; for any such L we have

Gal(L/F ) ∼= Gal(K/F )/Gal(K/L).

(3) The correspondences are inclusion reversing :

• F ⊆ L1 ⊆ L2 ⊆ K implies that Gal(K/L2) 6 Gal(K/L1), and

• H1 6 H2 6 G implies that KH2 6 KH1 .

(4) For each intermediate field L with H = Gal(K/L), we have

[L : F ] = [G : H] and [K : L] = |H|.
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Proof. (1) follows from Theorem 5.2 and Theorem 5.4. (2) is Theorem 5.11. (3)

is clear. (4) Theorem 4.17 tells us that [K : F ] = |G| and [K : L] = |H|, whereas

[L : F ] = [K:F ]
[K:L] = |G|

|H| = [G : H] by Theorem 2.13. �

6. Solvability by radicals

Definition 6.1. Let K/F be a finite extension. We say that K/F is radical if

there exists a chain of intermediate subfields

(6.1) F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = K,

such that for each i = 1, · · · , n, there exist αi ∈ Fi and positive integers di with

Fi = Fi−1(αi) and αdii ∈ Fi−1 for all i = 1, · · · , n.

In this language, when F is a subfield of C and α ∈ C is algebraic over F , α

is solvable by radicals over F in the sense of Definition 1.3 if and only if α lies in

some radical extension K over F .

Theorem 6.2. Let F be a field of characteristic zero and let α be algebraic over

F . Then the following are equivalent:

(1) α lies in a radical extension of F ,

(2) the Galois group GalF (mF,α) is a solvable group.

Note that this immediately implies Theorem 1.15.

6.1. Solvable polynomials have solvable Galois groups. We begin by looking

at two special classes of field extensions. First, a cyclotomic extension:

Lemma 6.3. Let p be a prime number. Suppose that L is a field extension of F

such that L = F (ε) for some ε ∈ L with εp = 1. Then L is a Galois extension of F

and Gal(L/F ) is abelian.

Proof. If ε = 1 then L = F and the result is trivially true, so assume that ε 6= 1.

Since p is prime, ε generates a cyclic group of order p in L×. Hence tp − 1 splits

completely in L as
∏p−1
i=0 (t− εi). So L is the splitting field of tp − 1 over F . Since

tp − 1 has no repeated roots, it is separable by Lemma 4.20(b). Hence L/F is

Galois.

Let σ ∈ G = Gal(L/F ). Then σ(ε)p = σ(1) = 1, so σ(ε) ∈ {1, ε, · · · , εp−1}. Say

σ(ε) = εχ(σ) for some χ(σ) ∈ {0, 1, · · · , p− 1}. Now for σ, τ ∈ G we have

στ(ε) = σ(εχ(τ)) = (εχ(σ))χ(τ) = εχ(σ)χ(τ)

which proves that χ(στ) ≡ χ(σ)χ(τ) mod p. Hence χ(στ) = χ(τσ) so that

σ(τ(ε)) = τ(σ(ε)). Since ε generates L together with F , στ = τσ. �

Now we look at Kummer extensions:
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Lemma 6.4. Let p be a prime number. Suppose that the field L contains an

element ε such that εp = 1 but ε 6= 1. Let a ∈ L and suppose that M = L(α)

where αp = a. Then M/L is a Galois extension, and Gal(M/L) is abelian.

Proof. Because ε 6= 1 and p is prime, ε generates a cyclic group of order p in L×.

Hence tp−a =
p−1∏
i=0

(t−εiα) splits completely in M . We may assume that a 6= 0; then

tp−a has distinct roots, so it is separable by Lemma 4.20(b). Its roots generate M ,

because α is a root andM = L(α). HenceM is Galois over L. Now if σ ∈ Gal(M/L)

then σ(α)p = a forces σ(α) = εψ(σ)α for some ψ(σ) ∈ {0, 1, · · · , p − 1}. For

any other τ ∈ Gal(M/L) we have σ(τ(α)) = σ(εψ(τ)α) = εψ(σ)+ψ(τ)α = τ(σ(α))

because both σ and τ are L-linear. Hence στ = τσ and Gal(M/L) is abelian. �

Definition 6.5. A finite field extension K/F is said to be normal if whenever

g ∈ F [t] is an irreducible polynomial such that g has a root in K, g splits completely

in K[t].

According to Ian Stewart, this is a trade-union definition: one out — all out!

Theorem 6.6. Let K/F be a Galois extension. Then K/F is normal.

Proof. Choose a separable f ∈ F [t] such that K is a splitting field of f . View fg as

an element of K[t] and use Corollary 4.5 to find a splitting field L of fg containing

K. Suppose that θ1 and θ2 are zeroes of g in L, and consider the following diagram:

L

K(θ1) K(θ2)

K

F (θ1) F (θ2)

F

Applying Theorem 2.13 several times, we have for i = 1 or i = 2

[K(θi) : K][K : F ] = [K(θi) : F ] = [K(θi) : F (θi)][F (θi) : F ].

Since g is irreducible, g = mF,θ1 = mF,θ2 , so by Lemma 2.6 and Lemma 2.7,

[F (θ1) : F ] = deg g = [F (θ2) : F ].

By Lemma 4.12, we can find an F -linear isomorphism ϕ : F (θ1)
∼=−→ F (θ2) sending

θ1 to θ2. On the other hand, K(θi) is a splitting field for f over F (θi) for i = 1, 2,



25

and f is separable over F (θi) by Problem Sheet 2, Question 5. So, we can use

Theorem 4.13 to extend ϕ to an isomorphism of fields K(θ1)
∼=−→ K(θ2). Therefore

[K(θ1) : F (θ1)] = [K(θ2) : F (θ2)].

We can now conclude that

[K(θ1) : K] =
[K(θ1) : F (θ1)][F (θ1) : F ]

[K : F ]
=

[K(θ2) : F (θ2)][F (θ2) : F ]

[K : F ]
= [K(θ2) : K].

So if θ1 is a root of g which lies in K, then [K(θ2) : K] = [K(θ1) : K] = 1 for any

other root θ2 of g in L. Hence all roots of g in L in fact lie in K. Hence L = K

and g splits completely over K. �

Corollary 6.7. Let K/F be a finite Galois extension and let α ∈ K. Then

(a) mF,α is separable, and

(b) there is a surjective group homomorphism Gal(K/F )� GalF (mF,α).

Proof. (a) By Corollary 2.8, mF,α is irreducible over F and has a zero in K. There-

fore it splits completely over K by Theorem 6.6. Hence K contains a splitting field

L of mF,α. Using Corollary 4.22 and Proposition 5.3(b), we have mF,α = mKG,α =

fG·α, which is separable by Proposition 4.20(b).

(b) We know now that L/F is a Galois extension with GalF (mF,α) = Gal(L/F ).

The result now follows from Theorem 5.11. �

Theorem 6.8. Let K/F be a radical Galois extension. Then Gal(K/F ) is solvable.

Proof. We proceed by induction on [K : F ]. Since K/F is radical, there is some

α ∈ K\F and d ≥ 2 such that αd ∈ F . Choose the pair (α, d) so that d is smallest

possible. If d is not prime then d = mn with 1 < m,n < d. Now αm /∈ F since

m < d. But then (αm)n ∈ F contradicts the minimality of d. So, d = p is prime.

Since α /∈ F we have degmF,α ≥ 2. The irreducible polynomial mF,α splits

completely in K by Theorem 6.6, since K/F is Galois. By Corollary 6.7(a), mF,α

is separable. Using Proposition 4.11, we see that K contains some β 6= α with

mF,α(β) = 0. Let a := αp ∈ F ; then mF,α | tp − a by Corollary 2.3, so β is a root

of tp − a as well. Thus, αp = βp = a.

Let ε := α/β ∈ K and let L := F (ε). Then εp = 1, so L/F is Galois with

Gal(L/F ) abelian by Lemma 6.3. Note that we cannot apply the induction hy-

pothesis immediately to K/L at this point of the proof, because it could be the

case that ε ∈ F and L = F . So, we work with a larger extension of L.

Let M := L(α) = F (ε, α). The polynomial tp − a ∈ F [t] splits completely in

M [t], and has no repeated roots, hence it is separable by Lemma 4.20(b). So, M is a

Galois extension of F . Also, Gal(M/L) is abelian by Lemma 6.4. Since α ∈M\F ,

we have [M : F ] > 1, so by Theorem 2.13, [K : M ] < [K : F ]. Since K/F is a

radical Galois extension, so is K/M . Hence by induction, Gal(K/M) is solvable.
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Using Theorem 5.11, we conclude that G = Gal(K/F ) contains normal sub-

groups H1 = Gal(K/L) ⊇ H2 = Gal(K/M) such that H2 and H1/H2
∼= Gal(M/L)

and G/H1
∼= Gal(L/F ) are all solvable. Hence G is also solvable. �

Proposition 6.9. Let K/F be a finite radical extension, where F is a field of

characteristic zero. Then there exists a finite Galois radical extension M/F such

that K ⊆M .

Proof. Proceed by induction on the length r of a radical chain

F = F0 ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ Fr = K,

the base case r = 0 being trivial. Since Fr−1/F is radical, by induction we can

find a radical Galois extension L of F containing Fr−1. Write Fr = Fr−1(α) where

αd = θ for some θ ∈ Fr−1.

Let G = Gal(L/F ). By Lemma 4.20(a), the polynomial

fG·θ =
∏

ψ∈G·θ

(t− ψ) ∈ L[t]

actually has coefficients in LG, which equals F by Corollary 4.22. Therefore

g(t) := fG·θ(t
d)

also lies in F [t]. Using Corollary 4.5, choose a splitting field M of g containing L:

F // Fr−1
//

��

L

��
Fr = Fr−1(α) // M

Now, M is generated as an extension of L by the roots of td−ψ, for each ψ ∈ G · θ.
Hence M/L is radical. Since L/F is radical by induction, so is M/F . Since L/F

is Galois, it is a splitting field of some h ∈ F [t]; then since hg ∈ F [t] and M is

generated by the roots of hg together with F , it is also a splitting field of hg over F .

Since we’re assuming that F has characteristic zero, hg is a separable polynomial

by Remark 4.9. Hence M/F is a radical and Galois extension. It remains to show

that we can find an embedding Fr ↪→M making the above diagram commutative.

Since αd = θ, we see that mFr−1,α | td − θ in Fr−1[t]. On the other hand, td − θ
divides g in L[t], so we can find some q ∈ L[t] such that g = mFr−1,α

q. Since g splits

completely in M [t], we can then find some β ∈M such that mFr−1,α(β) = 0. Using

Lemma 4.12, we can then find a monomorphism Fr = Fr−1(α) ↪→ Fr−1(β) ⊆ M

sending α to β. �

Note that Proposition 6.9 fails in positive characteristic: this follows from the

existence of inseparable polynomials over certain fields of positive characteristic,

together with the fact that Galois extensions are separable — see Problem Sheet 3

Question 5. We can now prove the (1) ⇒ (2) direction of Theorem 6.2.
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Theorem 6.10. Let F be a field of characteristic zero and let α be algebraic over

F . Suppose that α lies in a radical extension K of F . Then the Galois group

GalF (mF,α) is solvable.

Proof. Using Proposition 6.9, we may enlarge K if necessary and thereby assume

that K/F is Galois over F . Then G := Gal(K/F ) is a solvable group by Theorem

6.8. Now GalF (mF,α) is a homomorphic image of G by Corollary 6.7 and is therefore

also solvable. �

Lemma 6.11. Let f ∈ F [t] have n distinct roots in a splitting field K. Then

G = Gal(K/F ) is naturally isomorphic to a subgroup of Sn.

Proof. Consider the action of G on V (f) = {α1, · · · , αn} from Lemma 3.3. It gives

rise to an associated permutation representation

ρ : G→ Sym(V (f)) ∼= Sn.

This map must be injective, because if ρ(σ) = 1 for some σ ∈ G, then σ fixes V (f)

pointwise, but V (f) generates K as a field together with F , so σ fixes all elements

of K and hence σ = 1. Hence G ∼= ρ(G) 6 Sn. �

We will frequently identify G with its image in Sn ∼= Sym(V (f)). We can now

give an actual example of a polynomial which is not solvable by radicals.

Theorem 6.12. The polynomial f := t5− 6t+ 3 ∈ Q[t] is not solvable by radicals.

Proof. By Eisenstein’s Criterion at p = 3 together with Gauss’s Lemma, f is irre-

ducible over Q. It is separable by Remark 4.9, so it has 5 distinct roots in a splitting

field K by Proposition 4.11. Since C is algebraically closed, we will identify K with

a subfield of C, and using Lemma 6.11, we will identify G = GalQ(f) = Gal(K/Q)

with a subgroup of S5.

We have f(−2) = −17 < 0, f(0) = 3 > 0, f(1) = −2 < 0 and f(2) = 23 > 0.

Hence f has a real root in (−2, 0), (0, 1) and (1, 2). Suppose f has five real roots.

Then by the Mean Value Theorem, f ′ = 5t4−6 would have at least four real roots,

which is visibly not the case. Hence f has precisely three real roots. Hence complex

conjugation c : C → C preserves K, so c|K ∈ G and c|K is a transposition: c fixes

the three real roots and swaps the two non-real roots of f .

Now [Q(z) : Q] = 5 for any z ∈ V (f), as f is irreducible over Q. Hence 5 divides

[K : Q] by Theorem 2.13, which is equal to |G| by Theorem 4.17. By Cauchy’s

Theorem, G contains an element σ of order 5. Then σ is necessarily a 5-cycle.

Since S5 is generated by a transposition and a 5-cycle (see Problem Sheet 3), we

conclude that G = S5. �

6.2. Polynomials with solvable Galois groups are solvable by radicals.
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Proposition 6.13. Let K/F be a Galois extension with [K : F ] = p where p is

a prime number. Suppose for some 1 6= ε ∈ F we have εp = 1. Then there exists

u ∈ K such that up ∈ F and K = F (u).

Proof. Let G = Gal(K/F ). Since K/F is Galois, we have |G| = [K : F ] = p by

Theorem 4.17. Hence G = 〈σ〉 is a cyclic group of order p. Now σ : K → K is an

F -linear map satisfying σp = 1. The minimal polynomial of this linear map divides

tp−1 =
p−1∏
i=0

(t−εi) and therefore it splits completely over F . Hence by the Primary

Decomposition Theorem from Linear Algebra, σ is diagonalisable. Since σ 6= 1,

some eigenvalue of σ is a non-trivial p-th root of unity. Without loss of generality,

we can assume that ε is an eigenvalue of σ.

Let u ∈ K be a corresponding eigenvector so that σ(u) = εu. Since σ is also a

ring homomorphism, we have

σ(up) = σ(u)p = (εu)p = εpup = up.

Hence up ∈ KG which is equal to F by Corollary 4.22. Since σ(u) 6= u, we know

that u /∈ F and hence [F (u) : F ] > 1. But this divides [K : F ] = p by Theorem

2.13, so since p is prime, we conclude that [F (u) : F ] = p and hence K = F (u). �

We can now prove the (2) ⇒ (1) direction of Theorem 6.2.

Theorem 6.14. Let F be a field of characteristic zero and let α be algebraic over

F . Suppose that the Galois group GalF (mF,α) is solvable. Then α lies in a radical

extension of F .

Proof. Let K/F be a splitting field of mF,α; proceed by induction on [K : F ].

Suppose that G := GalF (mF,α) = Gal(K/F ) is solvable. Then we can find a

normal subgroup H of G such that p := [G : H] is prime. Let L = KH be the

corresponding intermediate subfield. Let M be a splitting field of (tp − 1)mF,α

containing K; since charF = 0, M is Galois over F by Remark 4.9. Let ε ∈M be

a root of tp − 1 such that ε 6= 1, which exists by Proposition 4.11; then M = K(ε).

Since K(ε) is then also Galois over L(ε) by Lemma 5.1, Corollary 6.7 tells us

that there is a surjective group homomorphism

Gal(K(ε)/L(ε))� GalL(ε)(mL(ε),α).

Next, since K is also Galois over L by Lemma 5.1, the subfield K of K(ε) is

Gal(K(ε)/L)-stable by Lemma 5.9. This gives us a well-defined restriction map

Gal(K(ε)/L(ε)) ↪→ Gal(K(ε)/L)→ Gal(K/L).

This restriction map is injective, because an L(ε)-linear automorphism of K(ε)

fixing K must fix all of K(ε). Hence Gal(K(ε)/L(ε)) is isomorphic to a subgroup
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of Gal(K/L). Hence GalL(ε)(mL(ε),α) is isomorphic to a subquotient of the finite

solvable group Gal(K/F ), and it is therefore solvable. Using Theorem 2.13 we have

|GalL(ε)(mL(ε),α)| 6 [K(ε) : L(ε)] 6 [K : L] =
1

p
[K : F ].

Hence by induction we can find a radical extension R of L(ε) containing α.

K M = K(ε)

L(ε)(α) R

L L(ε)

F F (ε)

Consider the extension L(ε)/F . Since L = KH and H is normal in G, L is

Galois over F by Theorem 5.11. Also, F (ε)/F is Galois by Lemma 6.3. Let

σ ∈ Gal(K(ε)/F ); then σ preserves both L and F (ε); hence it preserves L(ε).

Hence L(ε) is Galois over F by Lemma 5.9. The restriction map

Gal(L(ε)/F (ε))→ Gal(L/F )

is injective by similar reasoning to the above. By Theorem 4.17, [L(ε) : F (ε)]

divides [L : F ] = p, so it is 1 or p. Hence L(ε)/F (ε) is radical by Proposition 6.13,

and F (ε)/F is radical by definition. Thus R/F is also radical. �

6.3. Determinant and discriminant. Let f ∈ F [t] be a polynomial of degree n

and choose a splitting field K. Let {α1, · · · , αn} be the roots of f in K.

Definition 6.15. (a) The determinant of f is

δ :=
∏

16i<j6n

(αj − αi).

(b) The discriminant of f is

∆ := δ2 =
∏

16i<j6n

(αj − αi)2.

We see that δ 6= 0 if and only if ∆ 6= 0 if and only if the roots of f are pairwise

distinct. Of course this is automatic whenever f is irreducible and separable.

Example 6.16. If f = x2 + bx+ c = (x− α1)(x− α2), then

δ2 = b2 − 4c.
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Proof. We have α1 + α2 = −b and α1α2 = c, so

(α2 − α1)2 = (α1 + α2)2 − 4α1α2 = b2 − 4c. �

We assume from now on that the roots of f are pairwise distinct. Recall that

the sign of a permutation σ ∈ Sn is 1 if σ is even, and −1 if σ is odd:

sgn : Sn → {±1}, σ 7→

{
1 if σ ∈ An
−1 if σ /∈ An.

Identify G := Gal(K/F ) with a subgroup of Sn using Lemma 6.11.

Proposition 6.17. We have g · δ = sgn(g)δ for all g ∈ G.

Proof. It is possible to do this directly. But a much better way is to consider the

Van der Monde matrix

V :=



1 1 1 · · · 1

x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n

...
...

... · · ·
...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

 .

in n indeterminates x1, · · · , xn. The symmetric group Sn acts on Z[x1, · · · , xn] by

permuting these variables. If we swap any two columns of this matrix, then the

determinant changes sign:

τ · detV = det(τ · V ) = −detV for any transposition τ ∈ Sn.

Since the transpositions generate Sn, we see that

σ · detV = sgn(σ) detV for all σ ∈ Sn.

For a fixed pair 1 6 i < j 6 n, consider the substitution map

Ψi,j : Z[x1, · · · , xn]→ Z[x1, · · · , xn]

which sends xj to xi and sends xk to xk for all k 6= j. Then ker Ψi,j = 〈xi − xj〉
and Ψi,j(detV ) = 0. Since the

(
n
2

)
linear polynomials {xj − xi : 1 6 i < j 6 n} in

Z[x1, · · · , xn] are coprime and since this ring is a UFD, we deduce∏
16i<j6n

(xj − xi) | detV.

Both of these expressions are homogeneous polynomials of degree 1+2+· · ·+n−1 =(
n
2

)
, and the coefficient of 1 · x2 · x2

3 · · · · · xn−1
n in both is equal to 1. Hence

detV =
∏

16i<j6n

(xj − xi).

Evaluating xi at αi ∈ K then gives the result. �

Corollary 6.18. Assume that charF 6= 2 and that f has no repeated roots.
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(a) KG∩An = F (δ).

(b) G 6 An if and only if ∆ is a square in F .

Proof. Proposition 6.17 tells us that δ ∈ KAn∩G, and also that ∆ = δ2 ∈ KG = F ,

using Corollary 4.22. Hence we have inclusions of fields

F ⊆ F (δ) ⊆ KAn∩G.

If G 6 An then KAn∩G = KG = F , so these are equalities. Then δ ∈ F and

∆ = δ2 is a square in F . If, on the other hand, G * An then we can find some odd

permutation τ ∈ G. Then τ · δ = −δ. But since f has no repeated roots, δ 6= 0,

and since charF 6= 2, −δ 6= δ. Hence δ /∈ F . Now, Corollary 5.12(4) implies that

[KAn∩G : F ] = [G : An ∩G] = [GAn : An]

which is equal to 2 since An < GAn 6 Sn forces GAn = Sn. Hence in this case we

have KAn∩G = F (δ) and this field has degree 2 over F . �

6.4. Cubic equations. Let F be a field with charF 6= 3, and let

f := t3 + pt+ q ∈ F [t]

be an irreducible cubic. The assumption that charF 6= 3 guarantees that f is

separable, because D(f) = 3t2 + p cannot then be the zero polynomial. We will

now follow the proof of Theorem 6.14 to see how to solve the cubic equation f = 0

by radicals, and in particular, we see where the substitution t = z − p
3z from §1.2

came from. The key is to study carefully the proof of Proposition 6.13.

Let K/F be a splitting field of f and let V (f) = {α1, α2, α3} be the three

roots of f in K. We identify G = Gal(K/F ) = GalF (f) with a subgroup of

Sym(V (f)) ∼= S3 using Lemma 6.11.

Lemma 6.19. Assume that char(F ) 6= 2, 3 and that f is irreducible.

(a) G = A3 or G = S3.

(b) If ∆ is a square in F , then G = A3. Otherwise, G = S3.

Proof. (a) Since f is irreducible over F , Corollary 2.3 implies that mF,α1
= f , and

hence [F (α1) : F ] = degmF,α1 = deg f = 3 by Corollary 2.11. Hence [F (α1) : F ]

divides [K : F ] by Theorem 2.13, whereas |G| = [K : F ] by Theorem 4.17. Hence

3 | |G|. The only subgroups of S3 with this property are A3 and S3.

(b) Since char(F ) 6= 2, this follows from (a) together with Corollary 6.18(b). �

We deduce from Lemma 6.19 that σ := (123) ∈ G; thus A3 = 〈σ〉 6 G. Then

Theorem 5.4 tells us that K/KA3 is a Galois extension with

Gal(K/KA3) = A3

which is a cyclic group of order 3. We would like to apply Proposition 6.13 to

this extension, but unfortunately, it will not be true in general that K contains a
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non-trivial third root ω of unity. Thus, we adjoin this root to K: we let ω be any

zero of t2 + t+ 1 and form K(ω):

K K(ω)

KA3 KA3(ω)

F

Lemma 6.20. (a) K(ω) is a Galois extension of F .

(b) Gal(K(ω)/KA3(ω)) is isomorphic to A3.

Proof. (a) By construction, K(ω) is a splitting field of (t2+t+1)·f . The polynomial

t2+t+1 is separable: for this we may assume it is irreducible and then D(t2+t+1) =

2t+ 1 is not zero since its constant term 1 is non-zero. Hence (t2 + t+ 1) · f is also

separable, and K(ω) is Galois over F .

(b) Since K is Galois over F , it is Gal(K(ω)/F )-stable by Proposition 5.9. Hence

we have a restriction map r : Gal(K(ω)/KA3(ω))→ Gal(K/KA3) which is injective.

By Theorem 2.13 we see that 3 = [K : KA3 ] divides

[K(ω) : KA3 ] = [KA3(ω) : KA3 ] · [K(ω) : KA3(ω)].

Since ω is a root of a quadratic polynomial, the first factor is either 1 or 2, so we

must have 3 | [K(ω) : KA3(ω)]. So, Gal(K(ω)/KA3(ω)) is a subgroup of the cyclic

group Gal(K/KA3) = A3 of order 3, of order dividing 3. This forces the restriction

map r to be an isomorphism. �

So, there exists an extension σ : K(ω) → K(ω) of σ : K → K which fixes

KA3(ω). We can now apply Proposition 6.13 to the cyclic cubic Galois extension

K(ω)/KA3(ω)

to find at least one element u ∈ K(ω) such that

K(ω) = KA3(ω)(u) and u3 ∈ KA3(ω).

The proof of Proposition 6.13 tells us to look for σ-eigenvectors in K(ω). Since σ

permutes the roots α1, α2, α3 of f cyclically, we can use Linear Algebra to write

down the following eigenvectors:

u :=
α1 + ωα2 + ω2α3

3
and v :=

α1 + ω2α2 + ωα3

3

At this point, we know that u3 and v3 both lie in KA3(ω), by Proposition 6.13.

But how do we ‘compute’ these quantities?
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Lemma 6.21. Assume char(F ) 6= 3 and that f = t3 +pt+q ∈ F [t] is an irreducible

cubic. Then

(a) uv = −p3 ,

(b) u3v3 = −p
3

27 ,

(c) u3 + v3 = −q, and

(d) u3, v3 are roots of a quadratic polynomial with coefficients in F .

Proof. (a) Equating the coefficients in t3 +pt+ q = (t−α1)(t−α2)(t−α3) we have

α1 + α2 + α3 = 0, α1α2 + α2α3 + α3α1 = p, α1α2α3 = −q.

Using the fact that ω + ω2 = −1, we can expand uv as follows:

9uv = (α1 + ωα2 + ω2α3)(α1 + ω2α2 + ωα3)

= α2
1 + ωα1α2 + ω2α1α3 + ω2α1α2 + α2

2 + ωα2α3 + ωα1α3 + ω2α2α3 + α2
3

= α2
1 + α2

2 + α2
3 − α1α2 − α2α3 − α3α1

= (α1 + α2 + α3)2 − 3(α1α2 + α2α3 + α3α1)

= −3p.

Since charF 6= 3, we get uv = −p3 as claimed.

(b) This follows immediately from (a).

(c) We spot that u3 + v3 = (u+ v)(ωu+ ω2v)(ω2u+ ωv). Then

3(u+ v) = 2α1 + (ω + ω2)α2 + (ω2 + ω)α3 = 3α1,

3(ωu+ ω2v) = (ω + ω2)α1 + (ω2 + ω)α2 + 2α3 = 3α3,

3(ω2u+ ωv) = (ω2 + ω)α1 + 2α2 + (ω + ω2)α3 = 3α2.

Multiplying these together and cancelling 27, we obtain u3 + v3 = α1α2α3 = −q.
(d) This follows immediately from (b,c). �

It follows from Lemma 6.21 that u3 and v3 are roots of the quadratic equation

z2 + qz − p3

27
= 0

that appeared in §1.2. Since uv = −p3 by Lemma 6.21(a) and since α1 = u+ v,

α1 = u− p

3u
.

This explains the substitution y = z − p
3z that we used there.

‘

6.5. Quartic equations. In §6.4, we performed a ‘Galois descent’ from a splitting

field K of f to the ground field F using the normal series

{1} / A3 / S3.

Now suppose that f is an irreducible polynomial of degree 4 over F , K is a splitting

field of f with Galois group G = Gal(K/F ) = GalF (f), which we identify with a

subgroup of S4 via the permutation representation G→ Sym(V (f)) ∼= S4.
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This time, we use the normal series

{1} / V4 / A4 / S4.

Let H := G ∩ V4, a normal subgroup of G. The extension K/KH is then Galois

with abelian Galois group isomorphic to H. According to general principles, certain

F -linear combinations of the roots α1, α2, α3, α4 will have squares lying in the fixed

field KH : they are

u1 =
1

2
(α1+α2−α3−α4), u2 =

1

2
(α1−α2+α3−α4), u3 =

1

2
(α1−α2−α3+α4),

Note that {u1, u2, u3} is permuted by Sym({2, 3, 4}) ∼= S3. Since this group, to-

gether with V4, generates all of S4, it follows that {u2
1, u

2
2, u

2
3} is G-stable, and

therefore the cubic resolvent

(t− u2
1)(t− u2

2)(t− u2
3)

has coefficients in F by Lemma 4.20(a) and Corollary 4.22. Note that α1, α2, α3, α4

lies in the F -linear span of u1, u2, u3, because α1 + α2 + α3 + α4 ∈ F is up to sign

the coefficient of x3 in f and hence lies in F , and because the matrix
1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2

1
2


is invertible. Therefore K = KH(u1, u2, u3), which means that we can express the

roots of f using linear combinations of the square roots of u2
1, u

2
2, u

2
3 ∈ KH , and

of course these three elements can be written as radical expressions of elements in

F = KG by solving the resolvent cubic as we did in §6.4.

Note, however, that there are other possibilities for the cubic resolvent: for

example, one could instead choose

v1 := α1α2 + α3α4, v2 := α1α3 + α2α4, v3 := α1α4 + α2α3.

Then {v1, v2, v3} is a G-stable subset of KH . Alternatively, one could take

w1 := (α1 + α2)(α3 + α4), w2 := (α1 + α3)(α2 + α4), w3 := (α1 + α4)(α2 + α3)

and {w1, w2, w3} is again a G-stable subset of KH .

7. Other topics

7.1. Finite fields.

Lemma 7.1. Let F be a finite field. Then |F | = pn for some prime p and some

positive integer n.
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Proof. Since F is finite, it must have positive characteristic. Since F is a field, this

characteristic is a prime p. Hence F contains a copy of Fp. Regard F as a vector

space over Fp. Since F is finite, it has finite dimension n, say. Then |F | = pn. �

For a prime number p, we write Fp := Z/pZ. It is a field of order p.

Definition 7.2. Let F be a field of characteristic p. The Frobenius endomorphism

φ : F → F

is defined by φ(x) = xp for all x ∈ F .

Lemma 7.3. Let F be a finite field of characteristic p. Then φ ∈ Gal(F/Fp).

Proof. The fact that φ is multiplicative is clear. Its additivity follows from the

binomial theorem:

(x+y)p = xp+pxp−1y+

(
p

2

)
xp−2y2 + · · ·+

(
p

p− 2

)
x2yp−2 +pxyp−1 +yp = xp+yp

because p |
(
p
i

)
whenever 0 < i < p. Therefore φ : F → F is a ring homomorphism.

Since F is a field, it must be injective. Since F is finite, it must also be surjective.

Finally, F is Fp-linear because φ(x) = xp = x for all x ∈ Fp by Fermat’s Little

Theorem. Hence φ ∈ Gal(F/Fp). �

Theorem 7.4. Let p be a prime and let n be a positive integer.

(a) Any field of order pn is a splitting field of tp
n − t over Fp.

(b) Any splitting field of tp
n − t over Fp is a field of order pn.

Proof. (a) Let F be a field of order pn. It must contain Fp. Then xp
n−1 = 1 for all

x ∈ F× by Lagrange’s Theorem. Hence xp
n

= x for all x ∈ F , so all elements of F

are roots of tp
n − t. Hence tp

n − t splits completely in F [t], and its roots generate

F . Hence F is a splitting field of tp
n − t over Fp.

(b) Let F be a splitting field of f = tp
n − t containing Fp. Suppose that α is

a repeated root of f in F . Then D(f)(α) = 0. But D(f) = pntp
n−1 − 1 = −1, a

contradiction. Hence f has deg(f) = pn distinct roots in F , so |F | ≥ pn.

Let V be the set of roots of f in F . Then V = {α ∈ F : αp
n

= α} = F 〈φ
n〉.

Hence V is a subfield of F . Since F is a splitting field of f by assumption, V

generates F as a field, we must have V = F . Hence |F | = |V | = pn. �

Corollary 7.5. (a) Up to isomorphism, there is a unique field Fpn of order pn.

(b) Fpn is Galois over Fp.

Proof. (a) Use Theorem 7.4 and Corollary 4.15(c).

(b) If g is an irreducible factor of tp
n − t, then g has no repeated roots in any

splitting field. So, g is separable by Lemma 4.20(b). By Theorem 7.4, Fpn is a

splitting field of the separable polynomial tp
n − t, and is hence Galois over Fp. �

We will now compute the Galois group Gal(Fpn/Fp).
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Proposition 7.6. Let p be a prime and let n be a positive integer.

(a) φ : Fpn → Fpn has order n in Gal(Fpn/Fp).
(b) Gal(Fpn/Fp) = 〈φ〉 is a cyclic group of order n.

Proof. (a) Since αp
n

= α for all α ∈ Fpn by Lagrange, this means that φn = 1. On

the other hand, if φm = 1 for some 1 6 m 6 n, then αp
m

= α for all α ∈ Fpn . Then

tp
m − t has |Fpn | = pn distinct roots in Fpn , forcing pm ≥ pn. Hence m ≥ n and

the order of φ is precisely n.

(b) Using Theorem 3.12, we have |Gal(Fpn/Fp)| 6 [Fpn : Fp] = n. But φ has

order n, so we must have equality, and then φ must generate all of Gal(Fpn/Fp). �

Corollary 7.7. Let a, b be positive integers. Then Fpa embeds into Fpb if and only

if a | b.

Proof. (⇒). Suppose that Fpa embeds into Fpb . Let G = Gal(Fpb/Fp), a cyclic

group of order b by Proposition 7.6(b). Let H = Gal(Fpb/Fpa) be the subgroup of

G corresponding to Fpa . Since G is abelian, H is normal and G/H ∼= Gal(Fpa/Fp)
by Corollary 5.12(2). Applying Proposition 7.6(b) again, we see that G/H is a

cyclic group of order a. Hence a | b by Lagrange.

(⇐). Suppose that a | b. Then pa − 1 | pb − 1, so tp
a−1 − 1 | tpb−1 − 1, so

tp
a − t | tpb − t. Hence tp

a − t splits completely in Fpb [t]. Hence Fpa embeds into

Fpb by Corollary 4.15(a). �

7.2. Cyclotomic extensions. We fix a positive integer n throughout.

Definition 7.8. Let K be a field. An element ζ ∈ K is said to be a primitive nth

root of unity if ζ has order precisely n in the multiplicative group K×.

For example, ζ = e
2πi
n is a primitive nth root of unity in C.

Lemma 7.9. Suppose K is a field admitting a primitive nth root of unity.

(a) µn(K) := {ζ ∈ K : ζn = 1} is a cyclic group of order n.

(b) The primitive nth roots of unity are precisely the generators of µn(K).

Note that the condition on K is far from vacuous. For example, if K is a field

of characteristic p, then K can never contain any non-trivial pth roots of unity,

because ζp = 1 implies ζp − 1 = (ζ − 1)p = 0 and hence ζ = 1. We now restrict to

the case where K = Q.

Definition 7.10. (a) The nth cyclotomic polynomial is

Φn :=
∏

ζ∈µn(C):o(ζ)=n

(t− ζ) ∈ C[t],

the monic polynomial whose roots are all the primitive nth roots of 1 in C.

(b) Let ζn = e
2πi
n ∈ C; Q(ζn) ⊂ C is called the nth cyclotomic extension of Q.
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Note that deg Φn = |(Z/nZ)×| =: φ(n), where φ is the Euler φ-function.

Lemma 7.11. Q(ζn) is a Galois extension of Q.

Proof. We have µn(C) = 〈ζn〉. Then Q(ζn) is the splitting field of tn−1 containing

Q. Hence it is a Galois extension of Q. �

Example 7.12. We have Φ1 = t− 1, Φ2 = t+ 1, Φ3 = (t−ω)(t−ω2) = t2 + t+ 1,

Φ4 = (t− i)(t+ i) = t2 + 1, Φ5 = t4 + t3 + t2 + t+ 1 and Φ6 = (t− ζ6)(t− ζ−1
6 ) =

t2 − 2 cos 2π
6 t+ 1 = t2 − t+ 1.

Let Γn := Gal(Q(ζn)/Q); our aim will be to compute this finite group.

Lemma 7.13. Γn acts faithfully on µn(C) by group automorphisms.

The element ζn = e
2πi
n gives rise to a group isomorphism Z/nZ

∼=−→ µn(C) given

by k 7→ ζkn. Recall that

Aut(Z/nZ) ∼= (Z/nZ)× :

every automorphism of Z/nZ is given by multiplication by unit in the ring Z/nZ.

Hence we obtain a group homomorphism

χn : Γn → (Z/nZ)×

which is determined by σ(ζn) = ζ
χn(σ)
n for all σ ∈ Γn.

Definition 7.14. χn is called the nth cyclotomic character.

Corollary 7.15. Φn lies in Q[t].

Proof. Suppose that o(ε) = n and σ ∈ Γn. Then o(σ(ε)) = n as well. Therefore the

set of primitive nth roots of unity is Γn-stable, and σ permutes the linear factors of

Φn(t) for all σ ∈ Γn. Hence Φn(t) ∈ Q(ζn)Γn [t] by Lemma 4.20(a). This completes

the proof because Q(ζn)Γn = Q by Corollary 4.22. �

Lemma 7.16. We have
∏
d|n

Φd = tn − 1.

Lemma 7.17. Suppose that k = hf where k, f ∈ Z[t] are monic, and h ∈ Q[t].

Then h ∈ Z[t] as well.

Proof. Write h = a0 +a1t+ · · ·+am−1t
m−1 +amt

m, f = b0 + b1t+ · · ·+ bn−1t
n−1 +

bnt
n and k = c0 + c1t + · · · + cm+n−1t

m+n−1 + cm+nt
m+n, where a0, · · · , am−1 ∈

Q, b0, · · · bn−1 ∈ Z and c0, c1, · · · , cn+m−1 ∈ Z. Then for 0 6 j 6 m we have

cn+j = ajbn + aj+1bn−1 + · · ·+ am−1bn+j+1−m + ambn+j−m.

Since h is monic, we have am = 1. Let 0 6 j < m, and assume inductively that

ai ∈ Z for i > j. Since f is monic, bn = 1 so

aj = cn+j − aj+1bn−1 − · · · − am−1bn+j+1−m − ambn+j−m ∈ Z.

This completes the induction and shows that h ∈ Z[t]. �
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Corollary 7.18. We have Φn ∈ Z[t].

Proof. We proceed by induction on n. Let k = tn − 1 ∈ Z[t], h = Φn ∈ Q[t] and

f =
∏
d | n
d 6= n

Φd. By induction, f ∈ Z[t] and f is monic. Then k = hf by Lemma

7.16, so Lemma 7.17 implies that h = Φn ∈ Z[t]. �

Theorem 7.19. The cyclotomic polynomial Φn is irreducible over Q.

Proof. Suppose Φn is not irreducible over Q. Then it is also not irreducible over Z
by Gauss’s Lemma. Write Φn = fg for some monic f, g ∈ Z[t] of degree ≥ 1; we

may assume that f is irreducible over Q and that f(ζn) = 0.

Let ε be a primitive nth-root of 1 and let p - n be a prime; we will show that

f(εp) = 0. Suppose for a contradiction that f(εp) 6= 0; then since εp is still a

primitive nth root of unity, we have Φn(εp) = 0, so g(εp) = 0. Define

k(t) := g(tp) ∈ Z[t].

Then k(ε) = g(εp) = 0. Since f is irreducible over Q, it is equal to mQ,ζn and must

hence divide k in Q[t], so k = hf for some h ∈ Q[t]. Since k and f are both monic,

Lemma 7.17 implies that h ∈ Z[t]. We can now reduce k = hf modulo p to obtain

k(t) = g(tp) = g(t)
p
, hence hf = gp in Fp[t].

Let q be any irreducible factor of f in Fp[t]; then q divides gp and therefore also

g. But then q2 | fg = fg = Φn | tn − 1. Hence q divides the formal derivative

D(tn − 1) = ntn−1 as well as tn − 1. Since p - n, this implies that q divides 1. This

contradiction shows that f(εp) = 0 after all.

Now, let r be a positive integer coprime to n. Write r = p1 · · · · ps for some

prime numbers p1, · · · , ps, all coprime to n. As we saw above, f(ζn) = 0 implies

that f(ζp1n ) = 0. Since ζp1n is still a primitive nth root of unity, we can apply the

argument again to see that f(ζp1p2n ) = 0 as well. Continuing like this, we conclude

that f(ζrn) = f(ζp1·····psn ) = 0. Hence f vanishes at all primitive nth roots of unity,

so Φn | f . This forces deg g = 0, which is a contradiction. �

Corollary 7.20. The cyclotomic character

χn : Γn = Gal(Q(ζn)/Q)→ (Z/nZ)×

is an isomorphism.

Proof. If χn(σ) = 1 then σ(ζ) = ζ, so σ = 1. Hence χn is injective. Now |Γn| =

[Q(ζn) : Q] by Theorem 4.17, and [Q(ζn) : Q] = degmQ,ζn by Corollary 2.11.

Finally, since Φn is monic and irreducible over Q by Theorem 7.19, and since

Φn(ζ) = 0, we conclude that mQ,ζn = Φn. Therefore

| Imχn| = |Γn| = [Q(ζn) : Q] = degmQ,ζn = deg Φn = φ(n) = |(Z/nZ)×|

and we see that χn is surjective. Hence it is an isomorphism. �
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A Galois extension K/Q is said to be abelian if Gal(K/Q) is an abelian group.

We have now exhibited abelian Galois extensions with Galois group (Z/nZ)× for

all positive integers n.

Theorem 7.21 (Kronecker-Weber). Let K/Q be an abelian Galois extension.

Then K embeds into Q(ζn) for some positive integer n.
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