B8&.2: Continuous Martingales and Stochastic Calculus
Problem Sheet 2

The questions on this sheet are divided into three sections. Only those questions in Section B are
compulsory and should be handed in for marking.
The questions are not in order of difficulty; if you are stuck on one question, move on to the next.

Section A

1. Let B be a Brownian motion and set S; := supg<,<; By- Deduce from the reflection principle
that the pair (S, B;) has density given by
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By the Corollary to the Reflection Principle, for ¢ > 0 and b < a, we have
P(St 2 a, Bt S b) = P(Bt Z 2a — b)
Let f(s, B,) be the the density function of (St, Bt). For a > 0 and b < a, we have
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As Sy > B; and S; > 0, it is straightforward to deduce that for a <0 or b > a
f(s.,B:)(a,b) = 0.
Thus,

2(2a —b)
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f(s,,B)(a,b) = exp < -

2. Let 7 be a stopping time relative to a given filtration (F;). Show that F, is a o-algebra and 7 is
JF, measurable.

To see that F, is a o-algebra, note that () € F; since 0 N {7 <t} =0 € F; then
VAeF,, Aﬂﬂ{rgt}:{TSt}\(Aﬂ{TSt}) cF = Abe 7
and finally V(A4,) € Fr, (UAn) N{r <t} =UA.N{7 < t}) € F.

To see that 7 is Fr-measurable, note that {7 <t} is F,-measurable for any ¢ > 0 and these sets
form a m-system which generates o(7) and hence o(7) C F; by Dynkin’s 7—\ systems Lemma.



Section B (Compulsory)

1. Let (Bt)t>0 be a Brownian motion. Show that for every M > 0,

Plsup B; > M| =1,
s>0
and hence that

limsup B; = — liminf B; = oo, a.s.
t—00 t—o0

Use time inversion of Brownian motion to show that the Brownian path is almost surely non-
differentiable at ¢t = 0.

This is a scaling argument much like the one used in the proof of Proposition 4.17. Recall that if
B is a Brownian motion, then B* defined by B} = B,2;/\ is also a Brownian motion. Then for

any M, > 0,
P[ sup Bs > M¢é] = P[ sup Bs,/d > M]
0<s<1 0<s<1/62
= P[ sup B> M].
0<s<1/82

Let 0 — 0 and the left hand side tends to 1 (since M — 0) and the right hand side tends to
Plsupg<s<oo Bs > M| and the result follows.

By using —B we also have
Plinf By < —M] = 1.
s>0
As these hold for every M we have

limsup B; = — liminf B; = oo, a.s.
t—o0 t—00

Now for the Brownian path to be differentiable at 0 we must have the existence of limy g %. By
time inversion

. t . .=

lim — = lim sB;,, = lim B
0ot 1jsio ME T s Y

for a Brownian motion B, in distribution. Thus our previous result shows that

. By .. . By
limsup — = —liminf — = oo, a.s.,
t—0 U t—=0

and the Brownian motion is not differentiable at 0 a.s.

2. Consider the following stochastic process
Xi:=a(l —t)+yt+ (B —tBy);0 <t < 1.

(a) Show that X is a continuous Gaussian process with Xo =z and X; = y.
It is clear that (X;) has continuous paths because B; does. Further, for any 0 < t; <
to < ... < tyn, the vector (Xi,,---,Xy,) is a linear map of (B, -, By, B1). The latter
is Gaussian and hence so is the former. It is also clear from definition that Xy = x and
X1:y+Bl—Blzy.



(b) Show that X cannot be adapted to (F;). Is B also an (F;X)-Brownian motion on [0, 1]?

If X, were adapted, then, since B, is, we would have that B; is F;-measurable V¢ > 0. This
would imply that V0 < ¢ < 1, B, = E[B;|F;] = B; a.s. Combined with continuity of paths,
this would give B; = 0, a clear contradiction to B being an (F;)-BM. We conclude that X
is not adapted.

Likewise, B is not an (F;*)-BM. In fact, it is not even adapted. If it were, then B; would be
]-'gX -measurable since B; would be adapted. An analogous argument to the one above then
shows it could not be an (F;X)-BM.

(c) Calculate the mean and covariance function of (X)o<¢<i.
We clearly have E[X{] = z(1 — t) + yt.
Let 0 <s<t<1;

cov(Xy, Xg) =E[(B; — tB1)(Bs — sB1)] = E[ByBs — sB:B1 — tBsB; + tsB%]
=s—st—ts+ts=s—st=s(1—1)
=min{s, t}(1 — max{s,t})

(d) Verify that X; has the same law as the conditional process (Wy|Wy = =, W1 = y), where W
is a Brownian motion.

In the notation of Question C.2 on Sheet 1, take Y = [W, W;]" and X = [W;], where
s < t. Then we have

S

0
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So Y|X has a normal distribution with mean

,uy-FF)T(YF)_(l(X—,uX):[O]—F[S t

e [

tWy
which in the notation of this question is E[X;] = yt, and covariance
2

. - st
FY—F}{erery:[z ﬂ—[s t]" [ s t}:[z_zt i_;}

which in the notation of this question is cov(Xs, X;) = s(1 —t). This agrees with our earlier
calculations, and a Gaussian process is defined by its mean and covariance, so the laws must
agree.

X is called the Brownian bridge from x to y over [0,1].
3. Show that if a stochastic process (X;) adapted to a filtration (F;) has

(a) right-continuous paths then for an open set I', Hp := inf{t > 0: X; € I'} is a stopping time
relative to (Fpy),
Let t > 0.

We need to show that {Hp < ¢t} € F;;. Observe that for this, it is enough to show that
{Hr < t} € F; since then, for any k > 1,

o0
1
{Hr<t}=(V{Hr <t+_-}eF

n==k
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and hence {Hp <t} € Fyy.

(Worth emphasizing that this is a general fact about checking that something is a stopping
time with respect to Fi4.)

Now, since (X,) is right-continuous and T" is open, if X,, € I" then necessarily Xg € T" for
some s > u, s € Q. It follows that

{Hr <t} = {35« Xs €T} = {Hs%XS erl},
sE

which is in F%, as required, since X is adapted.

(b) continuous paths then for a closed set I', Hr is a stopping time relative to (F).
By definition, since I' is closed, the event {Hr < t} = {inf,cj4d(Xs, ) = 0}, and by
continuity of paths that is {inf,c[pnq d(Xs,I') = 0}. Then

{Hr <t} = () J{X. e},
n>1 s<t
s€Q

where I'™ is the 1/n-expansion of I'; that is ™ := {2 € R : infyer [z — y| < 1}
The event on the right is in F; and so we are done.

4. Let 7 and p be two stopping times relative to a given filtration (F;). Show that
(a) 7 A p:=min{r, p}, 7V p:=max{T, p} and 7 + p are all also stopping times For any ¢ > 0,

{TAp>ty={r>t}n{p>t} e F,
— =

cF: cFi
{rvp<ty={r<t}n{p<tteFH
—_——— ——
eFt Fi

and

{t+p>t}={r=0,p>t}U{p=0,7 >t} U U {r>q,p>t—q} e FH
0<q<t,qeQ

So T Ap, 7V pand T+ p are all stopping times.
(b) Frpp = FrNF, and {7 < p} is Frp, measurable
First note that if we have two stopping times 7 < p then for any A € F,

An{p<t}=An{r<t}n{p<t}e R,
N—_————

cF

so that F. C F,. In particular, 7 At is F; measurable.
It follows that if 7, p are arbitrary stopping times then

fTApCFT and FTApCfp-

On the other hand, if A € . N F, then

Aﬂ{T/\pSt}:<Aﬂ{T§t}>U<Aﬂ{p§t}) c 7,
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so that in the end Frn, = F; N F),.

We have,
{r<pin{r<t}={rAt<pnrtin{r<tleF

and similarly
{r<ptn{p<tl={r<t}n{p<t}n{rAt<pAt}eF.

We conclude that {7 < p} € Fr N F, = Frap.

5. Let H, = inf{t > 0: B; = a} be the first hitting time of a.

(a)

Use the Optional Stopping Theorem to compute the distribution of By, am, for a <0 <.
Recall that

limsup Bt = +00 and liminf By = —o0 a.s.
t—00 t—o0

and in particular H, A H, < oo a.s.. Then, by continuity of paths, By, g, € {a,b} and

By . Bp,amyat i a bounded martingale (since |BHe M| < max{—a,b}) and hence

is uniformly integrable. By the Optional Stopping Theorem, E[By, rm,n¢] = 0 for any

t > 0. Letting ¢ — oo and applying the Dominated Convergence Theorem, we obtain

E[Bw,am,) = 0.

0= E[BHG/\Hb] = a]P’[BHa/\Hb = a] —‘rb(l _P[BHE/\HI, = a])

Rearranging,
b —a
P(B =b) = .
— (Ba,am, =) —

]P)[BHa/\Hb = a] =

Use the Optional Stopping Theorem to show that the Laplace transform of H, A H_, is
given by
1
Bl oL agas
cosh(av/2)\)

Recall first the argument from lectures that allows us to calculate the Laplace transform of

H,: 1t M{") = exp(6B, — 6t/2), then by the OST we have E[Mf) ] = 1. Let § > 0 (so

that M I(fg ¢ is bounded). By the Dominated Convergence Theorem we obtain

2
1 = E[MY)] = B[efo 7 Ha],

from which ,

E[e_%H“] =00,
Now set 8 = v/2\ to obtain

E[e—)\Ha] — e—a\/ﬁ‘

We use an analogous argument for H, A H_, only now we can take ¢ € R and still have a
bounded martingale. By optional stopping and the DCT we have

2
1 = E[M{)] = B[’ Pronit—o 5 HoNH—a)



Conditioning on H, A H_, we have
2
1 — E[E (eeBHa/\H_a “FHG/\H,H‘> e*%Hu./\H—a}.
Using part (a) we have that By apg_, is a or —a with probability 1/2, giving

2
1 = cosh(fa)E[e~ T HarHa],

Rearranging and setting § = v/2\ gives the result.

6. Let H, = inf{t > 0: B; = a} be the first hitting time of a and S; = supy<s<; Bs.

(a)

For a > 0 show that {H, < t} = {S; > a}. Hence find the probability density function
fu,(t) of Hy for any a # 0.

The first part is obvious - we hit a before ¢ if and only if the supremum up to t is greater
than a. Thus

P(H, < t) =P(S; > a) = 2P(B; > a) = 2(1 — ®(a/ V1)),

and differentiating with respect to ¢ gives the density. In the case a < 0 we have the same
argument for —B and hence

la| a?

fu,(t) = e eXP(—?t)-

Let U, = sup{t > 0 : B; = at} be the last time that Brownian motion hits the line at. Show
that U, = 1/H, in distribution. Is U, a stopping time?

As U, is a supremum over times we cannot determine this from information before that
time, so it is not a stopping time. Now

U, = sup{t>0:B;=at}
B
= sup{tZO:Tt:a}
= sup{t > 0: Wy, = at} (in distribution by time inversion)

= sup{l/s >0: Ws;=a}
= 1/inf{s >0:Ws=a} =1/H,.

Calculate EU, and EBy,.
We can use previous results to compute the mean of U, as

1
EU, = E1/H, - / (1)
0

Thus

00 a CL2
EU, = / exp(——
‘ o wams )
- L /OO LUQe_”Qﬂdv =1/a%.
a? 0o V2w
Finally, by continuity of the Brownian paths, we have EBy, = EaU, = 1/a. So we can see
the OST certainly does not hold at this random time.



Section C (Extra practice questions, not for hand-in)

A. Fix t > 0. Without reference to Lévy’s modulus of continuity, show that a.s. Brownian motion is
not differentiable with respect to ¢ at time .
Hint:
o Argue that |Biy — By|/€ diverges to +o0o with probability 1 as e — 0.
e Recall that by Blumenthal’s 0-1 law for any € > 0

sup Biyy — By >0 and inf BHU — B; <0 a.s.
0<u<e 0<u<

e Draw conclusions on a.s. behaviour of limsup and iminf of (Bitc — Bt)/e with € — 0.

In fact a stronger property holds: a.s. the sample paths are nowhere differentiable
We know

Bir.— B
P(|Buye - Bil < Ke) =P('”ﬁt’ < KVe) =B(B)| < K Vo)

Kve 1 2 2 ke
= e 2dr < — €,
/—K\ﬁ V2T V27

—1/4
b}

which converges to 0 as € — 0. In particular, taking K = e
P<ﬁﬁf—BH>€4M>21_
€

which shows that ‘B”%Bt'

61/4—>1, as € — 0,

2
V2T
cannot converge to a finite r.v. with a positive probability.

In fact the above combined with Borel-Cantelli lemma and Blumenthal’s 0-1 law allows us to

draw more detailed conclusions. Let A, = {|B Bi| < K/n*}, then P(A,) < 2K L by the

1 —
t+’n74 V2T n

above estimate.
It follows that > 2, P(A,) < oo and we can apply Borel-Cantelli to show that A,, happens only
finitely often a.s, which implies that for any K > 0

By — B
Jimn sup 1 2tre ~ Bl

e—0 €

> K as. (1)

It follows that

Biie — By ~ - B
{limsupwt = —1—00} ﬂ {hmsup+t| > K}

e—0 € Ke1 e—0 €

has also probability one.

Recall that by Blumenthal’s 0-1 law a.s. for any € > 0,
sup (Byte — By) >0 and  inf (Byy — B;) < 0.

0<u<e 0<u<e
Then, by (1)
By — B By — B
lim sup e — 460 and liminf 2T — oo,
e—0 € e—0 €



B. Let 7 be a stopping time relative to a given filtration (F;). We write
Fr={AeF: An{r <t} € F, Vvt >0},
Fry i ={AeF: An{r <t} € F},
Fro=oc({ANn{r >t} : t >0, Ae F})
Show that

(a) Fr C Fry and Fr = Fry if (F) is right-continuous;
To see that F. C Fry, take any A € F, and note that for any ¢ > 0

antr<n=(U (Amhgt—%}))e]—}.

n>1

If (F3) is right-continuous, i.e. F;y = F; V¢t > 0, then for any A € 7 and ¢t >0

Aﬁ{TSt}:<ﬂ (Am{7'<t+%})>€]:t+:]:t

n>1

Efﬂ—%

So Fr4+ C F; and hence F = F-.
(b) 7 is Fr_-measurable;
Simply observe that {7 <t} = {7 > t}° € F,_ for every t.
(c) if 7 =t is deterministic then F, = F; and Fry = Fry;
Let 7 = t. To show that F, = F, first note that for any A € F; and s > 0

AeF,CF, ift<s

0 otherwise,

Aﬂ{TSS}:{

which implies that F; C F;.

On the other hand, for any A € F-, by definition AN {7 <t} € F, and An{r <t} = A.
Thus F, C F; and hence F, = F;.

To see that Fry = Fiy, first note that for any A € Fy and s >0

AG.F;:.:,.Q;S ift <s

0 otherwise,

Aﬁ{T<s}—{

which implies Fi4 C Fry.
On the other hand, for any A € Fr andn > 1, A= (An{r < t+%}) € F,, 1 by definition.
Thus A € F;1 and hence Fry C Fii. Therefore Fr = Fiyt. !

(d) if 7, is a non-decreasing sequence of stopping times (i.e. for any w € Q and n < m 7, (w) <
Tm(w)) then 7 := lim,, o 7, is also a stopping time;

{r <t} ={lim Tngt}:(ﬂ{rngt}) c F,
- SV

where we have used that {7, <t} C {7,—1 < t} so that the intersection is a decreasing limit
of events.



(e) if 7, is a non-increasing sequence of stopping times then 7 := lim,,_,, 7,, is a stopping time
relative to (Fit).
Let 7, — 7 (not necessarily monotone), then

<=0 U N {Tngwi}em.

k=1 N=1n=N

€EFt1/k

C. Recall that in lectures we used Optional Stopping to show that the Laplace transform of H, is
given by
E [e_AH“} = lalV2x e R, A > 0.

Consider a, b > 0. Deduce that if &,, &, are independent and distributed as H, and H}, respectively,
then &, + & has the same distribution as H,4p. Use the strong Markov property to find an
alternative proof of this result.

Let &, ~ H, and &, ~ Hjp be independent random variables. Then

E[e—)\(ﬁa—l-&b)] _ E[e—)\ﬁa]E[e—/\Eb] e 2)\6—b\/ﬁ _ e—(a—i—b)\/ﬁ _ E[G_AH'I+Z7]7 A >0,

from which we deduce that, as required, (&, + &) ~ Hatp-

To see this from the Strong Markov property, it suffices to note that Hy4(B) = Hq(B) + Hy(B)
where, by the strong Markov property of B, B, := By,++ — By, = ~BHa+t — a is a standard
Brownian motion independent of (B, : u < H,). In particular, Hy(B) ~ Hy(B) and further

Hy(B) and H,(B) are independent.
D. Let H, = inf{t > 0: B, = a} be the first hitting time of a.

(a) Show that H, has the same distribution as ;—2% and deduce its density.
For any a > 0 and v > 0,
P(H, < u) =P( sup By > a)
0<t<u
=P(|By| > a) by reflection principle
=P(/u|B1| > a) by scaling
2

a

Hence H, has the same distribution as g—? Let fp, be the density function of H,. Then,

_dP(vu|Bi| > a)

fr, (u)

du
d * 1 22
= <2 /} o exp(—?)dw)

a2

a
V2mu3 exp(= 2u

).



(b) Using the strong Markov property show that for any continuous bounded function f we have
Elf(Hy — Ha)|Fh,] = E[f(Hp-0)], 0<a<b.

Deduce that (H,)q>0 has stationary and independent increments. Discuss the properties of
its paths a — Ha(w_)

The first bit is immediate. H, is a 1/2-stable subordinator, so has increasing right continuous
paths. They could calculate the moments of increments to see IEHE exists for all 5 < 1/2.

E. Suppose that (Z; : t > 0), defined on some filtered probability space (2, F, (F;)i>0, P), is adapted
and has independent increments i.e. for any 0 < s < t, Z; — Z; is independent of Fs. Show that

o if E[|Z;|] < oo for all t > 0, then Z; := Z; — E[Z] is an (F;)-martingale;
Note that clearly all the processes in question are adapted.
For any ¢t > 0

E[|Z:|| = E[|Z: — E[Z]|] < E[|Z:|] + [E[Z]| < 2E[|Z]] < oc.
As Z; — Z is independent of Fy for any 0 < s < t, E[Z; — Zs|Fs| = E[Z; — Z,]. Hence
E[Zi|Fs) =E[Z, + (Z¢ — Zs)|Fs] — E[Z4]
=7, =E|Z, — 7| - E|Z)] = Z;
o if E[Z?] < oo for all t > 0, then Z? — E[Z?] is an (F;)-martingale;
For any ¢t > 0,
E(|Zf - E[Z]l) <2E[Z}]
=2E[(Z; — E[Z)])’]
<AE[Z{ + (E[Z])?]
<8E[Z?] < 0o by Jensen’s Inequality.
From part (a), we know (Z;);>0 is a martingale. Therefore E[Zs(Z; — Z,)|Fs] = 0 and thus
E(Zy(Z; — Zs)| = E[E[Z4(Z; — Zs)|Fs]] = 0.
Further, by independence of increments, E[(Z; — Z5)?|Fs| = E[(Z; — Z,)?]. We then have
E[ZtQ - E[ZEH}—S] :E[(Zs + Zt - ZS)Q‘}—S] - E[(Zs + Zt - ZS)Q]
=E[Z2 +22,(Zy — Zs) + (Z1 — Z,)*| F]
- E[ZSQ] - QE[ZS(Zt - Zs)] - E[(Zt - 25)2]
:Zg - E[Zs?] + E[(Zt - ZSVLFS} - E[( t 28)2}
22 -EIZ})
exp(0Z¢)

e if for some § € R, E [e‘gz’f] < oo for all t > 0, then E[exp(0Z)] is an (F;)-martingale.
For any ¢t > 0,

[M] — Elexp(02,)]/Elexp(62:)] =

Elexp(6Z;)]
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For any 0 < s < t, using that Z; — Z; is independent of F,, we have

[ exp(0Z;) ’]__] _ Elexp(0Z; + 0(Z — Zs))|F5|
Elexp(6Z)]1” °] ~ Elexp(0(Z; — Zs)) exp(07Z,)]
_exp(0Zs)Elexp(0(Z; — Zs)))]  exp(0Zs)

Elexp(0(Z; — Zs))|Elexp(6Z;)]  Elexp(6Zs)]

F. Let Z(w) := {t : Bi(w) = 0} be the set of Brownian zeros. Show that Z is a closed set. Using
Fubini’s theorem show that the Lebesgue measure of Z is zero a.s.

Let R, = inf{u > t : B, = 0}. Using the strong Markov property and known facts about
Brownian paths show that for any ¢ > 0

Plinf{u > 0: Bg,4u =0} > 0] =0

and deduce that
P[inf{u > 0 : Br,+, = 0} > 0 for some rational t| = 0.

Conclude that a.s. if a point ¢ € Z(w) is isolated from the left, i.e. (¢,t) N Z(w) = 0 for some
rational ¢ < t then necessarily ¢ is a decreasing limit of points in Z(w) and thus Z does not have
isolated points.

Fact: It follows that a.s. Z is uncountable, as it is a ‘perfect set’, ie. it is a non-empty closed set
with no isolated points (an example of a random Cantor set).

Z is a closed set as it is the preimage of the closed set [0] under a continuous path. Using Fubini,
it is easy to see that

E[u(2)] = E[/OOO 1de} - /OOO E[1z]dz = 0

as P(By = 0) =0 for all ¢ # 0.

We know that R; is a stopping time, so by the strong Markov property, Bg,+, is a Brownian
motion in its own filtration. From Lecture notes (Prop 3.18), we know that a Brownian motion
hits zero infinitely many times near ¢ = 0, so R; is not an isolated point (from the right) in Z.
Write Z% for the random set of these zeros of the Brownian motion.

Now any point in Z is either isolated from the left (in which case there is some rational ¢ such
that it agrees with Ry, in which case it is in Z%), or it is not isolated from the left. As points in
ZE are not isolated, we see that Z a.s. has no isolated points.
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