
B8.2: Continuous Martingales and Stochastic Calculus

Problem Sheet 2

The questions on this sheet are divided into three sections. Only those questions in Section B are
compulsory and should be handed in for marking.

The questions are not in order of difficulty; if you are stuck on one question, move on to the next.

Section A

1. Let B be a Brownian motion and set St := sup0≤u≤tBu. Deduce from the reflection principle
that the pair (St, Bt) has density given by

fSt,Bt(a, b) =
2(2a− b)√

2πt3
exp

(
−(2a− b)2

2t

)
1a>0,b<a.

By the Corollary to the Reflection Principle, for a ≥ 0 and b ≤ a, we have

P(St ≥ a, Bt ≤ b) = P(Bt ≥ 2a− b).

Let f(St,Bt) be the the density function of (St, Bt). For a ≥ 0 and b ≤ a, we have

f(St,Bt)(a, b) =− ∂2

∂a∂b
P(St ≥ a, Bt ≤ b)

=− ∂2

∂a∂b

(
1− Φ

(2a− b√
t

))
=

∂

∂b

( 2√
t
Φ′
(2a− b√

t

))
=
2(2a− b)√

2πt3
exp

(
− (2a− b)2

2t

)
.

As St ≥ Bt and St ≥ 0, it is straightforward to deduce that for a < 0 or b > a

f(St,Bt)(a, b) = 0.

Thus,

f(St,Bt)(a, b) =
2(2a− b)√

2πt3
exp

(
− (2a− b)2

2t

)
1a≥0, b≤a.

2. Let τ be a stopping time relative to a given filtration (Ft). Show that Fτ is a σ-algebra and τ is
Fτ measurable.

To see that Fτ is a σ-algebra, note that ∅ ∈ Fτ since ∅ ∩ {τ ≤ t} = ∅ ∈ Ft; then

∀ A ∈ Fτ , A∁ ∩ {τ ≤ t} = {τ ≤ t}\
(
A ∩ {τ ≤ t}

)
∈ Ft =⇒ A∁ ∈ Fτ ;

and finally ∀(An) ∈ Fτ ,
(⋃

An

)
∩ {τ ≤ t} =

⋃
(An ∩ {τ ≤ t}) ∈ Ft.

To see that τ is Fτ -measurable, note that {τ ≤ t} is Fτ -measurable for any t ≥ 0 and these sets
form a π-system which generates σ(τ) and hence σ(τ) ⊂ Fτ by Dynkin’s π–λ systems Lemma.
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Section B (Compulsory)

1. Let (Bt)t≥0 be a Brownian motion. Show that for every M > 0,

P[sup
s≥0

Bs > M ] = 1,

and hence that
lim sup
t→∞

Bt = − lim inf
t→∞

Bt = ∞, a.s.

Use time inversion of Brownian motion to show that the Brownian path is almost surely non-
differentiable at t = 0.

This is a scaling argument much like the one used in the proof of Proposition 4.17. Recall that if
B is a Brownian motion, then Bλ defined by Bλ

t = Bλ2t/λ is also a Brownian motion. Then for
any M, δ > 0,

P[ sup
0≤s≤1

Bs > Mδ] = P[ sup
0≤s≤1/δ2

Bδ2s/δ > M ]

= P[ sup
0≤s≤1/δ2

B̃s > M ].

Let δ → 0 and the left hand side tends to 1 (since Mδ → 0) and the right hand side tends to
P[sup0≤s<∞Bs > M ] and the result follows.

By using −B we also have
P[inf

s≥0
Bs < −M ] = 1.

As these hold for every M we have

lim sup
t→∞

Bt = − lim inf
t→∞

Bt = ∞, a.s.

Now for the Brownian path to be differentiable at 0 we must have the existence of limt↓0
Bt
t . By

time inversion

lim
t↓0

Bt

t
= lim

1/s↓0
sB1/s = lim

s→∞
B̃s,

for a Brownian motion B̃, in distribution. Thus our previous result shows that

lim sup
t→0

Bt

t
= − lim inf

t→0

Bt

t
= ∞, a.s.,

and the Brownian motion is not differentiable at 0 a.s.

2. Consider the following stochastic process

Xt := x(1− t) + yt+ (Bt − tB1); 0 ≤ t ≤ 1.

(a) Show that X is a continuous Gaussian process with X0 = x and X1 = y.

It is clear that (Xt) has continuous paths because Bt does. Further, for any 0 ≤ t1 <
t2 < . . . < tn, the vector (Xt1 , · · · , Xtn) is a linear map of (Bt1 , · · · , Btn , B1). The latter
is Gaussian and hence so is the former. It is also clear from definition that X0 = x and
X1 = y +B1 −B1 = y.
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(b) Show that X cannot be adapted to (Ft). Is B also an (FX
t )-Brownian motion on [0, 1]?

If Xt were adapted, then, since Bt is, we would have that B1 is Ft-measurable ∀t ≥ 0. This
would imply that ∀0 < t ≤ 1, Bt = E[B1|Ft] = B1 a.s. Combined with continuity of paths,
this would give Bt ≡ 0, a clear contradiction to B being an (Ft)-BM. We conclude that X
is not adapted.

Likewise, B is not an (FX
t )-BM. In fact, it is not even adapted. If it were, then B1 would be

FX
t -measurable since Bt would be adapted. An analogous argument to the one above then

shows it could not be an (FX
t )-BM.

(c) Calculate the mean and covariance function of (Xt)0≤t≤1.

We clearly have E[Xt] = x(1− t) + yt.

Let 0 ≤ s ≤ t ≤ 1;

cov(Xt, Xs) =E[(Bt − tB1)(Bs − sB1)] = E[BtBs − sBtB1 − tBsB1 + tsB2
1 ]

=s− st− ts+ ts = s− st = s(1− t)

=min{s, t}(1−max{s, t})

(d) Verify that Xt has the same law as the conditional process (Wt|W0 = x,W1 = y), where W
is a Brownian motion.

In the notation of Question C.2 on Sheet 1, take Y = [Ws Wt]
⊤ and X = [W1], where

s < t. Then we have

ΓX = [1], ΓY =

[
s s
s t

]
, ΓXY =

[
s t

]
, µX = 0, µY =

[
0
0

]
So Y|X has a normal distribution with mean

µY + Γ⊤
XY Γ

−1
X (X− µX) =

[
0
0

]
+
[
s t

]⊤
[1]W1 =

[
sW1

tW1

]
which in the notation of this question is E[Xt] = yt, and covariance

ΓY − Γ⊤
XY Γ

−1
X ΓXY =

[
s s
s t

]
−
[
s t

]⊤ [
s t

]
=

[
s− s2 s− st
s− st t− t2

]
which in the notation of this question is cov(Xs, Xt) = s(1− t). This agrees with our earlier
calculations, and a Gaussian process is defined by its mean and covariance, so the laws must
agree.

X is called the Brownian bridge from x to y over [0, 1].

3. Show that if a stochastic process (Xt) adapted to a filtration (Ft) has

(a) right-continuous paths then for an open set Γ, HΓ := inf{t ≥ 0 : Xt ∈ Γ} is a stopping time
relative to (Ft+),

Let t > 0.

We need to show that {HΓ ≤ t} ∈ Ft+. Observe that for this, it is enough to show that
{HΓ < t} ∈ Ft since then, for any k ≥ 1,

{HΓ ≤ t} =
∞⋂
n=k

{HΓ < t+
1

n
} ∈ Ft+ 1

k
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and hence {HΓ ≤ t} ∈ Ft+.

(Worth emphasizing that this is a general fact about checking that something is a stopping
time with respect to Ft+.)

Now, since (Xu) is right-continuous and Γ is open, if Xu ∈ Γ then necessarily Xs ∈ Γ for
some s > u, s ∈ Q. It follows that

{HΓ < t} = {∃s<tXs ∈ Γ} = {∃s<t
s∈Q

Xs ∈ Γ},

which is in Ft, as required, since X is adapted.

(b) continuous paths then for a closed set Γ, HΓ is a stopping time relative to (Ft).

By definition, since Γ is closed, the event {HΓ ≤ t} = {infs∈[0,t] d(Xs,Γ) = 0}, and by
continuity of paths that is {infs∈[0,t]∩Q d(Xs,Γ) = 0}. Then

{HΓ ≤ t} =
⋂
n>1

⋃
s≤t
s∈Q

{Xs ∈ Γn},

where Γn is the 1/n-expansion of Γ; that is Γn := {x ∈ R : infy∈Γ |x− y| < 1
n}.

The event on the right is in Ft and so we are done.

4. Let τ and ρ be two stopping times relative to a given filtration (Ft). Show that

(a) τ ∧ ρ := min{τ, ρ}, τ ∨ ρ := max{τ, ρ} and τ + ρ are all also stopping times For any t ≥ 0,

{τ ∧ ρ > t} = {τ > t}︸ ︷︷ ︸
∈Ft

∩{ρ > t}︸ ︷︷ ︸
∈Ft

∈ Ft,

{τ ∨ ρ ≤ t} = {τ ≤ t}︸ ︷︷ ︸
∈Ft

∩{ρ ≤ t}︸ ︷︷ ︸
Ft

∈ Ft

and

{τ + ρ > t} = {τ = 0, ρ > t} ∪ {ρ = 0, τ > t} ∪
⋃

0<q<t,q∈Q
{τ > q, ρ > t− q} ∈ Ft

So τ ∧ ρ, τ ∨ ρ and τ + ρ are all stopping times.

(b) Fτ∧ρ = Fτ ∩ Fρ and {τ ≤ ρ} is Fτ∧ρ measurable

First note that if we have two stopping times τ ≤ ρ then for any A ∈ Fτ

A ∩ {ρ ≤ t} = A ∩ {τ ≤ t}︸ ︷︷ ︸
∈Ft

∩{ρ ≤ t} ∈ Ft,

so that Fτ ⊂ Fρ. In particular, τ ∧ t is Ft measurable.
It follows that if τ, ρ are arbitrary stopping times then

Fτ∧ρ ⊂ Fτ and Fτ∧ρ ⊂ Fρ.

On the other hand, if A ∈ Fτ ∩ Fρ then

A ∩ {τ ∧ ρ ≤ t} =
(
A ∩ {τ ≤ t}

)
∪
(
A ∩ {ρ ≤ t}

)
∈ Ft,
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so that in the end Fτ∧ρ = Fτ ∩ Fρ.

We have,
{τ ≤ ρ} ∩ {τ ≤ t} = {τ ∧ t ≤ ρ ∧ t} ∩ {τ ≤ t} ∈ Ft

and similarly

{τ ≤ ρ} ∩ {ρ ≤ t} = {τ ≤ t} ∩ {ρ ≤ t} ∩ {τ ∧ t ≤ ρ ∧ t} ∈ Ft.

We conclude that {τ ≤ ρ} ∈ Fτ ∩ Fρ = Fτ∧ρ.

5. Let Ha = inf{t ≥ 0 : Bt = a} be the first hitting time of a.

(a) Use the Optional Stopping Theorem to compute the distribution of BHa∧Hb
for a < 0 < b.

Recall that

lim sup
t→∞

Bt = +∞ and lim inf
t→∞

Bt = −∞ a.s.

and in particular Ha ∧ Hb < ∞ a.s.. Then, by continuity of paths, BHa∧Hb
∈ {a, b} and

BHa∧Hb
t := BHa∧Hb∧t is a bounded martingale (since |BHa∧Hb | ≤ max{−a, b}) and hence

is uniformly integrable. By the Optional Stopping Theorem, E[BHa∧Hb∧t] = 0 for any
t ≥ 0. Letting t → ∞ and applying the Dominated Convergence Theorem, we obtain
E[BHa∧Hb

] = 0.

0 = E[BHa∧Hb
] = aP[BHa∧Hb

= a] + b(1− P[BHa∧Hb
= a]).

Rearranging,

P[BHa∧Hb
= a] =

b

b− a
, P(BHa∧Hb

= b) =
−a

b− a
.

(b) Use the Optional Stopping Theorem to show that the Laplace transform of Ha ∧ H−a is
given by

E
[
e−λHa∧H−a

]
=

1

cosh(a
√
2λ)

, a > 0, λ > 0.

Recall first the argument from lectures that allows us to calculate the Laplace transform of

Ha: If M
(θ)
t = exp(θBt − θ2t/2), then by the OST we have E[M (θ)

Ha∧t] = 1. Let θ > 0 (so

that M
(θ)
Ha∧t is bounded). By the Dominated Convergence Theorem we obtain

1 = E[M (θ)
Ha

] = E[eθa−
θ2

2
Ha ],

from which

E[e−
θ2

2
Ha ] = e−θa.

Now set θ =
√
2λ to obtain

E[e−λHa ] = e−a
√
2λ.

We use an analogous argument for Ha ∧H−a only now we can take θ ∈ R and still have a
bounded martingale. By optional stopping and the DCT we have

1 = E[M (θ)
Ha

] = E[eθBHa∧H−a
− θ2

2
Ha∧H−a ],
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Conditioning on Ha ∧H−a we have

1 = E[E
(
eθBHa∧H−a |FHa∧H−a

)
e−

θ2

2
Ha∧H−a ].

Using part (a) we have that BHa∧H−a is a or −a with probability 1/2, giving

1 = cosh(θa)E[e−
θ2

2
Ha∧H−a ].

Rearranging and setting θ =
√
2λ gives the result.

6. Let Ha = inf{t ≥ 0 : Bt = a} be the first hitting time of a and St = sup0≤s≤tBs.

(a) For a > 0 show that {Ha ≤ t} = {St ≥ a}. Hence find the probability density function
fHa(t) of Ha for any a ̸= 0.

The first part is obvious - we hit a before t if and only if the supremum up to t is greater
than a. Thus

P(Ha ≤ t) = P(St ≥ a) = 2P(Bt ≥ a) = 2(1− Φ(a/
√
t)),

and differentiating with respect to t gives the density. In the case a < 0 we have the same
argument for −B and hence

fHa(t) =
|a|√
2πt3

exp(−a2

2t
).

(b) Let Ua = sup{t ≥ 0 : Bt = at} be the last time that Brownian motion hits the line at. Show
that Ua = 1/Ha in distribution. Is Ua a stopping time?

As Ua is a supremum over times we cannot determine this from information before that
time, so it is not a stopping time. Now

Ua = sup{t ≥ 0 : Bt = at}

= sup{t ≥ 0 :
Bt

t
= a}

= sup{t ≥ 0 : W1/t = at} (in distribution by time inversion)

= sup{1/s ≥ 0 : Ws = a}
= 1/ inf{s ≥ 0 : Ws = a} = 1/Ha.

(c) Calculate EUa and EBUa .

We can use previous results to compute the mean of Ua as

EUa = E1/Ha =

∫ ∞

0

1

t
fHa(t)dt.

Thus

EUa =

∫ ∞

0

a

t
√
2πt3

exp(−a2

2t
)

=
1

a2

∫ ∞

0

2√
2π

v2e−v2/2dv = 1/a2.

Finally, by continuity of the Brownian paths, we have EBUa = EaUa = 1/a. So we can see
the OST certainly does not hold at this random time.
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Section C (Extra practice questions, not for hand-in)

A. Fix t > 0. Without reference to Lévy’s modulus of continuity, show that a.s. Brownian motion is
not differentiable with respect to t at time t.
Hint:

• Argue that |Bt+ϵ −Bt|/ϵ diverges to +∞ with probability 1 as ϵ → 0.

• Recall that by Blumenthal’s 0-1 law for any ϵ > 0

sup
0≤u≤ϵ

Bt+u −Bt > 0 and inf
0≤u≤ϵ

Bt+u −Bt < 0 a.s.

• Draw conclusions on a.s. behaviour of lim sup and lim inf of (Bt+ϵ −Bt)/ϵ with ϵ → 0.

In fact a stronger property holds: a.s. the sample paths are nowhere differentiable

We know

P(|Bt+ϵ −Bt| ≤ Kϵ) =P
( |Bt+ϵ −Bt|√

ϵ
≤ K

√
ϵ
)
= P(|B1| ≤ K

√
ϵ)

=

∫ K
√
ϵ

−K
√
ϵ

1√
2π

e−
x2

2 dx ≤ 2√
2π

K
√
ϵ,

which converges to 0 as ϵ → 0. In particular, taking K = ϵ−1/4,

P
(
|Bt+ϵ −Bt|

ϵ
> ϵ−1/4

)
≥ 1− 2√

2π
ϵ1/4 → 1, as ϵ → 0,

which shows that |Bt+ϵ−Bt|
ϵ cannot converge to a finite r.v. with a positive probability.

In fact the above combined with Borel-Cantelli lemma and Blumenthal’s 0-1 law allows us to
draw more detailed conclusions. Let An = {|Bt+ 1

n4
− Bt| ≤ K/n4}, then P(An) ≤ 2K√

2π
1
n2 by the

above estimate.

It follows that
∑∞

i=1 P(An) < ∞ and we can apply Borel-Cantelli to show that An happens only
finitely often a.s, which implies that for any K > 0

lim sup
ϵ→0

|Bt+ϵ −Bt|
ϵ

≥ K a.s. (1)

It follows that {
lim sup

ϵ→0

|Bt+ϵ −Bt|
ϵ

= +∞
}

=
∞⋂

K=1

{
lim sup

ϵ→0

|Bt+ϵ −Bt|
ϵ

≥ K

}
has also probability one.

Recall that by Blumenthal’s 0-1 law a.s. for any ϵ > 0,

sup
0≤u≤ϵ

(Bu+ϵ −Bt) > 0 and inf
0≤u≤ϵ

(Bu+ϵ −Bt) < 0.

Then, by (1)

lim sup
ϵ→0

Bt+ϵ −Bt

ϵ
= +∞ and lim inf

ϵ→0

Bt+ϵ −Bt

ϵ
= −∞.
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B. Let τ be a stopping time relative to a given filtration (Ft). We write

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ≥ 0},
Fτ+ := {A ∈ F : A ∩ {τ < t} ∈ Ft},
Fτ− := σ({A ∩ {τ > t} : t ≥ 0, A ∈ Ft})

Show that

(a) Fτ ⊂ Fτ+ and Fτ = Fτ+ if (Ft) is right-continuous;

To see that Fτ ⊂ Fτ+, take any A ∈ Fτ and note that for any t ≥ 0

A ∩ {τ < t} =
( ⋃

n≥1

(
A ∩ {τ ≤ t− 1

n
}
)

︸ ︷︷ ︸
∈F

t− 1
n

)
∈ Ft.

If (Ft) is right-continuous, i.e. Ft+ = Ft ∀t ≥ 0, then for any A ∈ Fτ+ and t ≥ 0

A ∩ {τ ≤ t} =
( ⋂

n≥1

(
A ∩ {τ < t+

1

n
}
)

︸ ︷︷ ︸
∈F

t+ 1
n

)
∈ Ft+ = Ft.

So Fτ+ ⊆ Fτ and hence Fτ+ = Fτ .

(b) τ is Fτ−-measurable;

Simply observe that {τ ≤ t} = {τ ≥ t}c ∈ Fτ− for every t.

(c) if τ = t is deterministic then Fτ = Ft and Fτ+ = Ft+;

Let τ = t. To show that Fτ = Ft, first note that for any A ∈ Ft and s ≥ 0

A ∩ {τ ≤ s} =

{
A ∈ Ft ⊆ Fs if t ≤ s

∅ otherwise,

which implies that Ft ⊆ Fτ .

On the other hand, for any A ∈ Fτ , by definition A ∩ {τ ≤ t} ∈ Ft, and A ∩ {τ ≤ t} = A.
Thus Fτ ⊆ Ft and hence Fτ = Ft.

To see that Fτ+ = Ft+, first note that for any A ∈ Ft+ and s ≥ 0

A ∩ {τ < s} =

{
A ∈ Ft+ ⊆ Fs if t < s

∅ otherwise,

which implies Ft+ ⊆ Fτ+.

On the other hand, for any A ∈ Fτ+ and n ≥ 1, A =
(
A∩{τ < t+ 1

n}
)
∈ Ft+ 1

n
by definition.

Thus A ∈ Ft+ and hence Fτ+ ⊆ Ft+. Therefore Fτ+ = Ft+.

(d) if τn is a non-decreasing sequence of stopping times (i.e. for any ω ∈ Ω and n < m τn(ω) ≤
τm(ω)) then τ := limn→∞ τn is also a stopping time;

{τ ≤ t} = { lim
n→∞

τn ≤ t} =
( ⋂

n≥1

{τn ≤ t}︸ ︷︷ ︸
∈Ft

)
∈ Ft,

where we have used that {τn ≤ t} ⊂ {τn−1 ≤ t} so that the intersection is a decreasing limit
of events.
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(e) if τn is a non-increasing sequence of stopping times then τ := limn→∞ τn is a stopping time
relative to (Ft+).

Let τn → τ (not necessarily monotone), then

{τ ≤ t} =
∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

{
τn ≤ t+

1

k

}
︸ ︷︷ ︸

∈Ft+1/k

∈ Ft+.

C. Recall that in lectures we used Optional Stopping to show that the Laplace transform of Ha is
given by

E
[
e−λHa

]
= e−|a|

√
2λ a ∈ R, λ > 0.

Consider a, b > 0. Deduce that if ξa, ξb are independent and distributed asHa andHb respectively,
then ξa + ξb has the same distribution as Ha+b. Use the strong Markov property to find an
alternative proof of this result.

Let ξa ∼ Ha and ξb ∼ Hb be independent random variables. Then

E[e−λ(ξa+ξb)] = E[e−λξa ]E[e−λξb ] = e−a
√
2λe−b

√
2λ = e−(a+b)

√
2λ = E[e−λHa+b ], λ ≥ 0,

from which we deduce that, as required, (ξa + ξb) ∼ Ha+b.

To see this from the Strong Markov property, it suffices to note that Ha+b(B) = Ha(B) +Hb(B̃)
where, by the strong Markov property of B, B̃t := BHa+t − BHa = BHa+t − a is a standard
Brownian motion independent of (Bu : u ≤ Ha). In particular, Hb(B̃) ∼ Hb(B) and further
Hb(B̃) and Ha(B) are independent.

D. Let Ha = inf{t ≥ 0 : Bt = a} be the first hitting time of a.

(a) Show that Ha has the same distribution as a2

B2
1
and deduce its density.

For any a > 0 and u > 0,

P(Ha ≤ u) =P( sup
0≤t≤u

Bt ≥ a)

=P(|Bu| ≥ a) by reflection principle

=P(
√
u|B1| ≥ a) by scaling

=P(
a2

B2
1

≤ u).

Hence Ha has the same distribution as a2

B2
1
. Let fHa be the density function of Ha. Then,

fHa(u) =
dP(

√
u|B1| ≥ a)

du

=
d

du

(
2

∫ ∞

a√
u

1√
2π

exp(−x2

2
)dx

)
=

a√
2πu3

exp(− a2

2u
).
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(b) Using the strong Markov property show that for any continuous bounded function f we have

E[f(Hb −Ha)|FHa ] = E[f(Hb−a)], 0 ≤ a ≤ b.

Deduce that (Ha)a≥0 has stationary and independent increments. Discuss the properties of
its paths a → Ha(ω).

The first bit is immediate. Ha is a 1/2-stable subordinator, so has increasing right continuous

paths. They could calculate the moments of increments to see EHβ
a exists for all β < 1/2.

E. Suppose that (Zt : t ≥ 0), defined on some filtered probability space (Ω,F , (Ft)t≥0,P), is adapted
and has independent increments i.e. for any 0 ≤ s < t, Zt − Zs is independent of Fs. Show that

• if E[|Zt|] < ∞ for all t ≥ 0, then Z̃t := Zt − E[Zt] is an (Ft)–martingale;

Note that clearly all the processes in question are adapted.

For any t ≥ 0

E[|Z̃t|] = E[|Zt − E[Zt]|] ≤ E[|Zt|] + |E[Zt]| ≤ 2E[|Zt|] < ∞.

As Zt − Zs is independent of Fs for any 0 ≤ s < t, E[Zt − Zs|Fs] = E[Zt − Zs]. Hence

E[Z̃t|Fs] =E[Zs + (Zt − Zs)|Fs]− E[Zt]

=Zs = E[Zt − Zs]− E[Zt] = Z̃s

• if E[Z2
t ] < ∞ for all t ≥ 0, then Z̃2

t − E[Z̃2
t ] is an (Ft)–martingale;

For any t ≥ 0,

E[|Z̃2
t − E[Z̃2

t ]|] ≤2E[Z̃2
t ]

=2E[(Zt − E[Zt])
2]

≤4E[Z2
t + (E[Zt])

2]

≤8E[Z2
t ] < ∞ by Jensen’s Inequality.

From part (a), we know (Z̃t)t≥0 is a martingale. Therefore E[Z̃s(Z̃t − Z̃s)|Fs] = 0 and thus

E[Z̃s(Z̃t − Z̃s)] = E
[
E[Z̃s(Z̃t − Z̃s)|Fs]

]
= 0.

Further, by independence of increments, E[(Z̃t − Z̃s)
2|Fs] = E[(Z̃t − Z̃s)

2]. We then have

E[Z̃2
t − E[Z̃2

t ]|Fs] =E[(Z̃s + Z̃t − Z̃s)
2|Fs]− E[(Z̃s + Z̃t − Z̃s)

2]

=E[Z̃2
s + 2Z̃s(Z̃t − Z̃s) + (Z̃t − Z̃s)

2|Fs]

− E[Z̃2
s ]− 2E[Z̃s(Z̃t − Z̃s)]− E[(Z̃t − Z̃s)

2]

=Z̃2
s − E[Z̃2

s ] + E[(Z̃t − Z̃s)
2|Fs]− E[(Z̃t − Z̃s)

2]

=Z̃2
s − E[Z̃2

s ].

• if for some θ ∈ R, E
[
eθZt

]
< ∞ for all t ≥ 0, then exp(θZt)

E[exp(θZt)]
is an (Ft)–martingale.

For any t ≥ 0,

E
[ exp(θZt)

E[exp(θZt)]

]
= E[exp(θZt)]/E[exp(θZt)] = 1.
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For any 0 ≤ s < t, using that Zt − Zs is independent of Fs, we have

E
[ exp(θZt)

E[exp(θZt)]

∣∣∣Fs

]
=
E[exp(θZs + θ(Zt − Zs))|Fs]

E[exp(θ(Zt − Zs)) exp(θZs)]

=
exp(θZs)E[exp(θ(Zt − Zs)))]

E[exp(θ(Zt − Zs))]E[exp(θZs)]
=

exp(θZs)

E[exp(θZs)]
.

F. Let Z(ω) := {t : Bt(ω) = 0} be the set of Brownian zeros. Show that Z is a closed set. Using
Fubini’s theorem show that the Lebesgue measure of Z is zero a.s.

Let Rt = inf{u ≥ t : Bu = 0}. Using the strong Markov property and known facts about
Brownian paths show that for any t ≥ 0

P[inf{u > 0 : BRt+u = 0} > 0] = 0

and deduce that
P [inf{u > 0 : BRt+u = 0} > 0 for some rational t] = 0.

Conclude that a.s. if a point t ∈ Z(ω) is isolated from the left, i.e. (q, t) ∩ Z(ω) = ∅ for some
rational q < t then necessarily t is a decreasing limit of points in Z(ω) and thus Z does not have
isolated points.
Fact: It follows that a.s. Z is uncountable, as it is a ‘perfect set’, ie. it is a non-empty closed set
with no isolated points (an example of a random Cantor set).

Z is a closed set as it is the preimage of the closed set [0] under a continuous path. Using Fubini,
it is easy to see that

E[µ(Z)] = E
[ ∫ ∞

0
1Zdx

]
=

∫ ∞

0
E[1Z ]dx = 0

as P(Bt = 0) = 0 for all t ̸= 0.

We know that Rt is a stopping time, so by the strong Markov property, BRt+u is a Brownian
motion in its own filtration. From Lecture notes (Prop 3.18), we know that a Brownian motion
hits zero infinitely many times near t = 0, so Rt is not an isolated point (from the right) in Z.
Write ZR for the random set of these zeros of the Brownian motion.

Now any point in Z is either isolated from the left (in which case there is some rational t such
that it agrees with Rt, in which case it is in ZR), or it is not isolated from the left. As points in
ZR are not isolated, we see that Z a.s. has no isolated points.
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