B8.2: Continuous Martingales and Stochastic Calculus Problem Sheet 2

The questions on this sheet are divided into three sections. Only those questions in Section B are compulsory and should be handed in for marking.

The questions are not in order of difficulty; if you are stuck on one question, move on to the next.

Section A

1. Let B be a Brownian motion and set $S_{t}:=\sup _{0 \leq u \leq t} B_{u}$. Deduce from the reflection principle that the pair $\left(S_{t}, B_{t}\right)$ has density given by

$$
f_{S_{t}, B_{t}}(a, b)=\frac{2(2 a-b)}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{(2 a-b)^{2}}{2 t}\right) \mathbf{1}_{a>0, b<a}
$$

By the Corollary to the Reflection Principle, for $a \geq 0$ and $b \leq a$, we have

$$
\mathbb{P}\left(S_{t} \geq a, B_{t} \leq b\right)=\mathbb{P}\left(B_{t} \geq 2 a-b\right)
$$

Let $f_{\left(S_{t}, B_{t}\right)}$ be the the density function of $\left(S_{t}, B_{t}\right)$. For $a \geq 0$ and $b \leq a$, we have

$$
\begin{aligned}
f_{\left(S_{t}, B_{t}\right)}(a, b) & =-\frac{\partial^{2}}{\partial a \partial b} \mathbb{P}\left(S_{t} \geq a, B_{t} \leq b\right) \\
& =-\frac{\partial^{2}}{\partial a \partial b}\left(1-\Phi\left(\frac{2 a-b}{\sqrt{t}}\right)\right) \\
& =\frac{\partial}{\partial b}\left(\frac{2}{\sqrt{t}} \Phi^{\prime}\left(\frac{2 a-b}{\sqrt{t}}\right)\right) \\
& =\frac{2(2 a-b)}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{(2 a-b)^{2}}{2 t}\right)
\end{aligned}
$$

As $S_{t} \geq B_{t}$ and $S_{t} \geq 0$, it is straightforward to deduce that for $a<0$ or $b>a$

$$
f_{\left(S_{t}, B_{t}\right)}(a, b)=0 .
$$

Thus,

$$
f_{\left(S_{t}, B_{t}\right)}(a, b)=\frac{2(2 a-b)}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{(2 a-b)^{2}}{2 t}\right) \mathbf{1}_{a \geq 0, b \leq a}
$$

2. Let τ be a stopping time relative to a given filtration $\left(\mathcal{F}_{t}\right)$. Show that \mathcal{F}_{τ} is a σ-algebra and τ is \mathcal{F}_{τ} measurable.
To see that \mathcal{F}_{τ} is a σ-algebra, note that $\emptyset \in \mathcal{F}_{\tau}$ since $\emptyset \cap\{\tau \leq t\}=\emptyset \in \mathcal{F}_{t}$; then

$$
\forall A \in \mathcal{F}_{\tau}, \quad A^{\complement} \cap\{\tau \leq t\}=\{\tau \leq t\} \backslash(A \cap\{\tau \leq t\}) \in \mathcal{F}_{t} \Longrightarrow A^{\complement} \in \mathcal{F}_{\tau} ;
$$

and finally $\forall\left(A_{n}\right) \in \mathcal{F}_{\tau},\left(\bigcup A_{n}\right) \cap\{\tau \leq t\}=\bigcup\left(A_{n} \cap\{\tau \leq t\}\right) \in \mathcal{F}_{t}$.
To see that τ is \mathcal{F}_{τ}-measurable, note that $\{\tau \leq t\}$ is \mathcal{F}_{τ}-measurable for any $t \geq 0$ and these sets form a π-system which generates $\sigma(\tau)$ and hence $\sigma(\tau) \subset \mathcal{F}_{\tau}$ by Dynkin's $\pi-\lambda$ systems Lemma.

Section B (Compulsory)

1. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion. Show that for every $M>0$,

$$
\mathbb{P}\left[\sup _{s \geq 0} B_{s}>M\right]=1
$$

and hence that

$$
\limsup _{t \rightarrow \infty} B_{t}=-\liminf _{t \rightarrow \infty} B_{t}=\infty, \text { a.s. }
$$

Use time inversion of Brownian motion to show that the Brownian path is almost surely nondifferentiable at $t=0$.

This is a scaling argument much like the one used in the proof of Proposition 4.17. Recall that if B is a Brownian motion, then B^{λ} defined by $B_{t}^{\lambda}=B_{\lambda^{2} t} / \lambda$ is also a Brownian motion. Then for any $M, \delta>0$,

$$
\begin{aligned}
\mathbb{P}\left[\sup _{0 \leq s \leq 1} B_{s}>M \delta\right] & =\mathbb{P}\left[\sup _{0 \leq s \leq 1 / \delta^{2}} B_{\delta^{2} s} / \delta>M\right] \\
& =\mathbb{P}\left[\sup _{0 \leq s \leq 1 / \delta^{2}} \tilde{B}_{s}>M\right]
\end{aligned}
$$

Let $\delta \rightarrow 0$ and the left hand side tends to 1 (since $M \delta \rightarrow 0$) and the right hand side tends to $\mathbb{P}\left[\sup _{0 \leq s<\infty} B_{s}>M\right]$ and the result follows.
By using $-B$ we also have

$$
\mathbb{P}\left[\inf _{s \geq 0} B_{s}<-M\right]=1
$$

As these hold for every M we have

$$
\limsup _{t \rightarrow \infty} B_{t}=-\liminf _{t \rightarrow \infty} B_{t}=\infty, \quad \text { a.s. }
$$

Now for the Brownian path to be differentiable at 0 we must have the existence of $\lim _{t \downarrow 0} \frac{B_{t}}{t}$. By time inversion

$$
\lim _{t \downarrow 0} \frac{B_{t}}{t}=\lim _{1 / s \downarrow 0} s B_{1 / s}=\lim _{s \rightarrow \infty} \tilde{B}_{s}
$$

for a Brownian motion \tilde{B}, in distribution. Thus our previous result shows that

$$
\limsup _{t \rightarrow 0} \frac{B_{t}}{t}=-\liminf _{t \rightarrow 0} \frac{B_{t}}{t}=\infty, \text { a.s., }
$$

and the Brownian motion is not differentiable at 0 a.s.
2. Consider the following stochastic process

$$
X_{t}:=x(1-t)+y t+\left(B_{t}-t B_{1}\right) ; 0 \leq t \leq 1
$$

(a) Show that X is a continuous Gaussian process with $X_{0}=x$ and $X_{1}=y$.

It is clear that $\left(X_{t}\right)$ has continuous paths because B_{t} does. Further, for any $0 \leq t_{1}<$ $t_{2}<\ldots<t_{n}$, the vector $\left(X_{t_{1}}, \cdots, X_{t_{n}}\right)$ is a linear map of $\left(B_{t_{1}}, \cdots, B_{t_{n}}, B_{1}\right)$. The latter is Gaussian and hence so is the former. It is also clear from definition that $X_{0}=x$ and $X_{1}=y+B_{1}-B_{1}=y$.
(b) Show that X cannot be adapted to $\left(\mathcal{F}_{t}\right)$. Is B also an $\left(\mathcal{F}_{t}^{X}\right)$-Brownian motion on $[0,1]$?

If X_{t} were adapted, then, since B_{t} is, we would have that B_{1} is \mathcal{F}_{t}-measurable $\forall t \geq 0$. This would imply that $\forall 0<t \leq 1, B_{t}=\mathbb{E}\left[B_{1} \mid \mathcal{F}_{t}\right]=B_{1}$ a.s. Combined with continuity of paths, this would give $B_{t} \equiv 0$, a clear contradiction to B being an $\left(\mathcal{F}_{t}\right)$-BM. We conclude that X is not adapted.
Likewise, B is not an $\left(\mathcal{F}_{t}^{X}\right)$-BM. In fact, it is not even adapted. If it were, then B_{1} would be \mathcal{F}_{t}^{X}-measurable since B_{t} would be adapted. An analogous argument to the one above then shows it could not be an $\left(\mathcal{F}_{t}^{X}\right)$-BM.
(c) Calculate the mean and covariance function of $\left(X_{t}\right)_{0 \leq t \leq 1}$.

We clearly have $\mathbb{E}\left[X_{t}\right]=x(1-t)+y t$.
Let $0 \leq s \leq t \leq 1$;

$$
\begin{aligned}
\operatorname{cov}\left(X_{t}, X_{s}\right) & =\mathbb{E}\left[\left(B_{t}-t B_{1}\right)\left(B_{s}-s B_{1}\right)\right]=\mathbb{E}\left[B_{t} B_{s}-s B_{t} B_{1}-t B_{s} B_{1}+t s B_{1}^{2}\right] \\
& =s-s t-t s+t s=s-s t=s(1-t) \\
& =\min \{s, t\}(1-\max \{s, t\})
\end{aligned}
$$

(d) Verify that X_{t} has the same law as the conditional process $\left(W_{t} \mid W_{0}=x, W_{1}=y\right)$, where W is a Brownian motion.
In the notation of Question C. 2 on Sheet 1, take $\mathbf{Y}=\left[\begin{array}{ll}W_{s} & W_{t}\end{array}\right]^{\top}$ and $\mathbf{X}=\left[W_{1}\right]$, where $s<t$. Then we have

$$
\Gamma_{X}=[1], \quad \Gamma_{Y}=\left[\begin{array}{cc}
s & s \\
s & t
\end{array}\right], \quad \Gamma_{X Y}=\left[\begin{array}{cc}
s & t
\end{array}\right], \quad \mu_{X}=0, \quad \mu_{Y}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So $\mathbf{Y} \mid \mathbf{X}$ has a normal distribution with mean

$$
\mu_{Y}+\Gamma_{X Y}^{\top} \Gamma_{X}^{-1}\left(\mathbf{X}-\mu_{X}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{ll}
s & t
\end{array}\right]^{\top}[1] W_{1}=\left[\begin{array}{l}
s W_{1} \\
t W_{1}
\end{array}\right]
$$

which in the notation of this question is $E\left[X_{t}\right]=y t$, and covariance

$$
\Gamma_{Y}-\Gamma_{X Y}^{\top} \Gamma_{X}^{-1} \Gamma_{X Y}=\left[\begin{array}{cc}
s & s \\
s & t
\end{array}\right]-\left[\begin{array}{ll}
s & t
\end{array}\right]^{\top}\left[\begin{array}{ll}
s & t
\end{array}\right]=\left[\begin{array}{ll}
s-s^{2} & s-s t \\
s-s t & t-t^{2}
\end{array}\right]
$$

which in the notation of this question is $\operatorname{cov}\left(X_{s}, X_{t}\right)=s(1-t)$. This agrees with our earlier calculations, and a Gaussian process is defined by its mean and covariance, so the laws must agree.
X is called the Brownian bridge from x to y over $[0,1]$.
3. Show that if a stochastic process $\left(X_{t}\right)$ adapted to a filtration $\left(\mathcal{F}_{t}\right)$ has
(a) right-continuous paths then for an open set $\Gamma, H_{\Gamma}:=\inf \left\{t \geq 0: X_{t} \in \Gamma\right\}$ is a stopping time relative to $\left(\mathcal{F}_{t+}\right)$,
Let $t>0$.
We need to show that $\left\{H_{\Gamma} \leq t\right\} \in \mathcal{F}_{t+}$. Observe that for this, it is enough to show that $\left\{H_{\Gamma}<t\right\} \in \mathcal{F}_{t}$ since then, for any $k \geq 1$,

$$
\left\{H_{\Gamma} \leq t\right\}=\bigcap_{n=k}^{\infty}\left\{H_{\Gamma}<t+\frac{1}{n}\right\} \in \mathcal{F}_{t+\frac{1}{k}}
$$

and hence $\left\{H_{\Gamma} \leq t\right\} \in \mathcal{F}_{t+}$.
(Worth emphasizing that this is a general fact about checking that something is a stopping time with respect to $\mathcal{F}_{t+\text {. }}$)
Now, since $\left(X_{u}\right)$ is right-continuous and Γ is open, if $X_{u} \in \Gamma$ then necessarily $X_{s} \in \Gamma$ for some $s>u, s \in \mathbb{Q}$. It follows that

$$
\left\{H_{\Gamma}<t\right\}=\left\{\exists_{s<t} X_{s} \in \Gamma\right\}=\left\{\exists_{\substack{s<\in \\ s \in \mathbb{Q}}} X_{s} \in \Gamma\right\},
$$

which is in \mathcal{F}_{t}, as required, since X is adapted.
(b) continuous paths then for a closed set Γ, H_{Γ} is a stopping time relative to $\left(\mathcal{F}_{t}\right)$.

By definition, since Γ is closed, the event $\left\{H_{\Gamma} \leq t\right\}=\left\{\inf _{s \in[0, t]} d\left(X_{s}, \Gamma\right)=0\right\}$, and by continuity of paths that is $\left\{\inf _{s \in[0, t] \cap \mathbb{Q}} d\left(X_{s}, \Gamma\right)=0\right\}$. Then

$$
\left\{H_{\Gamma} \leq t\right\}=\bigcap_{n>1} \bigcup_{\substack{s \leq t \\ s \in \mathbb{Q}}}\left\{X_{s} \in \Gamma^{n}\right\}
$$

where Γ^{n} is the $1 / n$-expansion of Γ; that is $\Gamma^{n}:=\left\{x \in \mathbb{R}: \inf _{y \in \Gamma}|x-y|<\frac{1}{n}\right\}$.
The event on the right is in \mathcal{F}_{t} and so we are done.
4. Let τ and ρ be two stopping times relative to a given filtration $\left(\mathcal{F}_{t}\right)$. Show that
(a) $\tau \wedge \rho:=\min \{\tau, \rho\}, \tau \vee \rho:=\max \{\tau, \rho\}$ and $\tau+\rho$ are all also stopping times For any $t \geq 0$,

$$
\begin{aligned}
& \{\tau \wedge \rho>t\}=\underbrace{\{\tau>t\}}_{\in \mathcal{F}_{t}} \cap \underbrace{\{\rho>t\}}_{\in \mathcal{F}_{t}} \in \mathcal{F}_{t}, \\
& \{\tau \vee \rho \leq t\}=\underbrace{\{\tau \leq t\}}_{\in \mathcal{F}_{t}} \cap \underbrace{\{\rho \leq t\}}_{\mathcal{F}_{t}} \in \mathcal{F}_{t}
\end{aligned}
$$

and

$$
\{\tau+\rho>t\}=\{\tau=0, \rho>t\} \cup\{\rho=0, \tau>t\} \cup \underset{0<q<t, q \in \mathbb{Q}}{\bigcup}\{\tau>q, \rho>t-q\} \in \mathcal{F}_{t}
$$

So $\tau \wedge \rho, \tau \vee \rho$ and $\tau+\rho$ are all stopping times.
(b) $\mathcal{F}_{\tau \wedge \rho}=\mathcal{F}_{\tau} \cap \mathcal{F}_{\rho}$ and $\{\tau \leq \rho\}$ is $\mathcal{F}_{\tau \wedge \rho}$ measurable

First note that if we have two stopping times $\tau \leq \rho$ then for any $A \in \mathcal{F}_{\tau}$

$$
A \cap\{\rho \leq t\}=\underbrace{A \cap\{\tau \leq t\}}_{\in \mathcal{F}_{t}} \cap\{\rho \leq t\} \in \mathcal{F}_{t},
$$

so that $\mathcal{F}_{\tau} \subset \mathcal{F}_{\rho}$. In particular, $\tau \wedge t$ is \mathcal{F}_{t} measurable.
It follows that if τ, ρ are arbitrary stopping times then

$$
\mathcal{F}_{\tau \wedge \rho} \subset \mathcal{F}_{\tau} \quad \text { and } \quad \mathcal{F}_{\tau \wedge \rho} \subset \mathcal{F}_{\rho} .
$$

On the other hand, if $A \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\rho}$ then

$$
A \cap\{\tau \wedge \rho \leq t\}=(A \cap\{\tau \leq t\}) \cup(A \cap\{\rho \leq t\}) \in \mathcal{F}_{t}
$$

so that in the end $\mathcal{F}_{\tau \wedge \rho}=\mathcal{F}_{\tau} \cap \mathcal{F}_{\rho}$.
We have,

$$
\{\tau \leq \rho\} \cap\{\tau \leq t\}=\{\tau \wedge t \leq \rho \wedge t\} \cap\{\tau \leq t\} \in \mathcal{F}_{t}
$$

and similarly

$$
\{\tau \leq \rho\} \cap\{\rho \leq t\}=\{\tau \leq t\} \cap\{\rho \leq t\} \cap\{\tau \wedge t \leq \rho \wedge t\} \in \mathcal{F}_{t} .
$$

We conclude that $\{\tau \leq \rho\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\rho}=\mathcal{F}_{\tau \wedge \rho}$.
5. Let $H_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$ be the first hitting time of a.
(a) Use the Optional Stopping Theorem to compute the distribution of $B_{H_{a} \wedge H_{b}}$ for $a<0<b$. Recall that

$$
\limsup _{t \rightarrow \infty} B_{t}=+\infty \text { and } \liminf _{t \rightarrow \infty} B_{t}=-\infty \text { a.s. }
$$

and in particular $H_{a} \wedge H_{b}<\infty$ a.s.. Then, by continuity of paths, $B_{H_{a} \wedge H_{b}} \in\{a, b\}$ and $B_{t}^{H_{a} \wedge H_{b}}:=B_{H_{a} \wedge H_{b} \wedge t}$ is a bounded martingale (since $\left|B^{H_{a} \wedge H_{b}}\right| \leq \max \{-a, b\}$) and hence is uniformly integrable. By the Optional Stopping Theorem, $\mathbb{E}\left[B_{H_{a} \wedge H_{b} \wedge t}\right]=0$ for any $t \geq 0$. Letting $t \rightarrow \infty$ and applying the Dominated Convergence Theorem, we obtain $\mathbb{E}\left[B_{H_{a} \wedge H_{b}}\right]=0$.

$$
0=\mathbb{E}\left[B_{H_{a} \wedge H_{b}}\right]=a \mathbb{P}\left[B_{H_{a} \wedge H_{b}}=a\right]+b\left(1-\mathbb{P}\left[B_{H_{a} \wedge H_{b}}=a\right]\right) .
$$

Rearranging,

$$
\mathbb{P}\left[B_{H_{a} \wedge H_{b}}=a\right]=\frac{b}{b-a}, \mathbb{P}\left(B_{H_{a} \wedge H_{b}}=b\right)=\frac{-a}{b-a} .
$$

(b) Use the Optional Stopping Theorem to show that the Laplace transform of $H_{a} \wedge H_{-a}$ is given by

$$
\mathbb{E}\left[e^{-\lambda H_{a} \wedge H_{-a}}\right]=\frac{1}{\cosh (a \sqrt{2 \lambda})}, \quad a>0, \lambda>0 .
$$

Recall first the argument from lectures that allows us to calculate the Laplace transform of H_{a} : If $M_{t}^{(\theta)}=\exp \left(\theta B_{t}-\theta^{2} t / 2\right.$), then by the OST we have $\mathbb{E}\left[M_{H_{a} \wedge t}^{(\theta)}\right]=1$. Let $\theta>0$ (so that $M_{H_{a} \wedge t}^{(\theta)}$ is bounded). By the Dominated Convergence Theorem we obtain

$$
1=\mathbb{E}\left[M_{H_{a}}^{(\theta)}\right]=\mathbb{E}\left[e^{\theta a-\frac{\theta^{2}}{2} H_{a}}\right]
$$

from which

$$
\mathbb{E}\left[e^{-\frac{\theta^{2}}{2} H_{a}}\right]=e^{-\theta a}
$$

Now set $\theta=\sqrt{2 \lambda}$ to obtain

$$
\mathbb{E}\left[e^{-\lambda H_{a}}\right]=e^{-a \sqrt{2 \lambda}} .
$$

We use an analogous argument for $H_{a} \wedge H_{-a}$ only now we can take $\theta \in \mathbb{R}$ and still have a bounded martingale. By optional stopping and the DCT we have

$$
1=\mathbb{E}\left[M_{H_{a}}^{(\theta)}\right]=\mathbb{E}\left[e^{\theta B_{H_{a}} \wedge H_{-a}-\frac{\theta^{2}}{2} H_{a} \wedge H_{-a}}\right],
$$

Conditioning on $H_{a} \wedge H_{-a}$ we have

$$
1=\mathbb{E}\left[\mathbb{E}\left(e^{\theta B_{H_{a} \wedge H_{-a}}} \mid \mathcal{F}_{H_{a} \wedge H_{-a}}\right) e^{-\frac{\theta^{2}}{2} H_{a} \wedge H_{-a}}\right] .
$$

Using part (a) we have that $B_{H_{a} \wedge H_{-a}}$ is a or $-a$ with probability $1 / 2$, giving

$$
1=\cosh (\theta a) \mathbb{E}\left[e^{-\frac{\theta^{2}}{2} H_{a} \wedge H_{-a}}\right] .
$$

Rearranging and setting $\theta=\sqrt{2 \lambda}$ gives the result.
6. Let $H_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$ be the first hitting time of a and $S_{t}=\sup _{0 \leq s \leq t} B_{s}$.
(a) For $a>0$ show that $\left\{H_{a} \leq t\right\}=\left\{S_{t} \geq a\right\}$. Hence find the probability density function $f_{H_{a}}(t)$ of H_{a} for any $a \neq 0$.
The first part is obvious - we hit a before t if and only if the supremum up to t is greater than a. Thus

$$
\mathbb{P}\left(H_{a} \leq t\right)=\mathbb{P}\left(S_{t} \geq a\right)=2 \mathbb{P}\left(B_{t} \geq a\right)=2(1-\Phi(a / \sqrt{t}))
$$

and differentiating with respect to t gives the density. In the case $a<0$ we have the same argument for $-B$ and hence

$$
f_{H_{a}}(t)=\frac{|a|}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{a^{2}}{2 t}\right) .
$$

(b) Let $U_{a}=\sup \left\{t \geq 0: B_{t}=a t\right\}$ be the last time that Brownian motion hits the line at. Show that $U_{a}=1 / H_{a}$ in distribution. Is U_{a} a stopping time?
As U_{a} is a supremum over times we cannot determine this from information before that time, so it is not a stopping time. Now

$$
\begin{aligned}
U_{a} & =\sup \left\{t \geq 0: B_{t}=a t\right\} \\
& =\sup \left\{t \geq 0: \frac{B_{t}}{t}=a\right\} \\
& =\sup \left\{t \geq 0: W_{1 / t}=a t\right\} \text { (in distribution by time inversion) } \\
& =\sup \left\{1 / s \geq 0: W_{s}=a\right\} \\
& =1 / \inf \left\{s \geq 0: W_{s}=a\right\}=1 / H_{a} .
\end{aligned}
$$

(c) Calculate $\mathbb{E} U_{a}$ and $\mathbb{E} B_{U_{a}}$.

We can use previous results to compute the mean of U_{a} as

$$
\mathbb{E} U_{a}=\mathbb{E} 1 / H_{a}=\int_{0}^{\infty} \frac{1}{t} f_{H_{a}}(t) d t
$$

Thus

$$
\begin{aligned}
\mathbb{E} U_{a} & =\int_{0}^{\infty} \frac{a}{t \sqrt{2 \pi t^{3}}} \exp \left(-\frac{a^{2}}{2 t}\right) \\
& =\frac{1}{a^{2}} \int_{0}^{\infty} \frac{2}{\sqrt{2 \pi}} v^{2} e^{-v^{2} / 2} d v=1 / a^{2}
\end{aligned}
$$

Finally, by continuity of the Brownian paths, we have $\mathbb{E} B_{U_{a}}=\mathbb{E} a U_{a}=1 / a$. So we can see the OST certainly does not hold at this random time.

Section C (Extra practice questions, not for hand-in)
A. Fix $t>0$. Without reference to Lévy's modulus of continuity, show that a.s. Brownian motion is not differentiable with respect to t at time t.
Hint:

- Argue that $\left|B_{t+\epsilon}-B_{t}\right| / \epsilon$ diverges to $+\infty$ with probability 1 as $\epsilon \rightarrow 0$.
- Recall that by Blumenthal's 0-1 law for any $\epsilon>0$

$$
\sup _{0 \leq u \leq \epsilon} B_{t+u}-B_{t}>0 \quad \text { and } \quad \inf _{0 \leq u \leq \epsilon} B_{t+u}-B_{t}<0 \text { a.s. }
$$

- Draw conclusions on a.s. behaviour of $\lim \sup$ and $\lim \inf$ of $\left(B_{t+\epsilon}-B_{t}\right) / \epsilon$ with $\epsilon \rightarrow 0$.

In fact a stronger property holds: a.s. the sample paths are nowhere differentiable We know

$$
\begin{aligned}
\mathbb{P}\left(\left|B_{t+\epsilon}-B_{t}\right| \leq K \epsilon\right) & =\mathbb{P}\left(\frac{\left|B_{t+\epsilon}-B_{t}\right|}{\sqrt{\epsilon}} \leq K \sqrt{\epsilon}\right)=\mathbb{P}\left(\left|B_{1}\right| \leq K \sqrt{\epsilon}\right) \\
& =\int_{-K \sqrt{\epsilon}}^{K \sqrt{\epsilon}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \leq \frac{2}{\sqrt{2 \pi}} K \sqrt{\epsilon}
\end{aligned}
$$

which converges to 0 as $\epsilon \rightarrow 0$. In particular, taking $K=\epsilon^{-1 / 4}$,

$$
\mathbb{P}\left(\frac{\left|B_{t+\epsilon}-B_{t}\right|}{\epsilon}>\epsilon^{-1 / 4}\right) \geq 1-\frac{2}{\sqrt{2 \pi}} \epsilon^{1 / 4} \rightarrow 1, \text { as } \epsilon \rightarrow 0
$$

which shows that $\frac{\left|B_{t+\epsilon}-B_{t}\right|}{\epsilon}$ cannot converge to a finite r.v. with a positive probability.
In fact the above combined with Borel-Cantelli lemma and Blumenthal's 0-1 law allows us to draw more detailed conclusions. Let $A_{n}=\left\{\left|B_{t+\frac{1}{n^{4}}}-B_{t}\right| \leq K / n^{4}\right\}$, then $\mathbb{P}\left(A_{n}\right) \leq \frac{2 K}{\sqrt{2 \pi}} \frac{1}{n^{2}}$ by the above estimate.
It follows that $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$ and we can apply Borel-Cantelli to show that A_{n} happens only finitely often a.s, which implies that for any $K>0$

$$
\begin{equation*}
\limsup _{\epsilon \rightarrow 0} \frac{\left|B_{t+\epsilon}-B_{t}\right|}{\epsilon} \geq K \quad \text { a.s. } \tag{1}
\end{equation*}
$$

It follows that

$$
\left\{\limsup _{\epsilon \rightarrow 0} \frac{\left|B_{t+\epsilon}-B_{t}\right|}{\epsilon}=+\infty\right\}=\bigcap_{K=1}^{\infty}\left\{\limsup _{\epsilon \rightarrow 0} \frac{\left|B_{t+\epsilon}-B_{t}\right|}{\epsilon} \geq K\right\}
$$

has also probability one.
Recall that by Blumenthal's 0-1 law a.s. for any $\epsilon>0$,

$$
\sup _{0 \leq u \leq \epsilon}\left(B_{u+\epsilon}-B_{t}\right)>0 \text { and } \inf _{0 \leq u \leq \epsilon}\left(B_{u+\epsilon}-B_{t}\right)<0
$$

Then, by (1)

$$
\limsup _{\epsilon \rightarrow 0} \frac{B_{t+\epsilon}-B_{t}}{\epsilon}=+\infty \text { and } \liminf _{\epsilon \rightarrow 0} \frac{B_{t+\epsilon}-B_{t}}{\epsilon}=-\infty
$$

B. Let τ be a stopping time relative to a given filtration $\left(\mathcal{F}_{t}\right)$. We write

$$
\begin{aligned}
\mathcal{F}_{\tau} & :=\left\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \forall t \geq 0\right\}, \\
\mathcal{F}_{\tau+} & :=\left\{A \in \mathcal{F}: A \cap\{\tau<t\} \in \mathcal{F}_{t}\right\}, \\
\mathcal{F}_{\tau-} & :=\sigma\left(\left\{A \cap\{\tau>t\}: t \geq 0, A \in \mathcal{F}_{t}\right\}\right)
\end{aligned}
$$

Show that
(a) $\mathcal{F}_{\tau} \subset \mathcal{F}_{\tau+}$ and $\mathcal{F}_{\tau}=\mathcal{F}_{\tau+}$ if $\left(\mathcal{F}_{t}\right)$ is right-continuous;

To see that $\mathcal{F}_{\tau} \subset \mathcal{F}_{\tau+}$, take any $A \in \mathcal{F}_{\tau}$ and note that for any $t \geq 0$

$$
A \cap\{\tau<t\}=(\bigcup_{n \geq 1}(\underbrace{\left(A \cap\left\{\tau \leq t-\frac{1}{n}\right\}\right.}_{\in \mathcal{F}_{t-\frac{1}{n}}})) \in \mathcal{F}_{t} .
$$

If $\left(\mathcal{F}_{t}\right)$ is right-continuous, i.e. $\mathcal{F}_{t+}=\mathcal{F}_{t} \forall t \geq 0$, then for any $A \in \mathcal{F}_{\tau_{+}}$and $t \geq 0$

$$
A \cap\{\tau \leq t\}=(\bigcap_{n \geq 1} \underbrace{\left(A \cap\left\{\tau<t+\frac{1}{n}\right\}\right.}_{\in \mathcal{F}_{t+\frac{1}{n}}})) \in \mathcal{F}_{t+}=\mathcal{F}_{t}
$$

So $\mathcal{F}_{\tau+} \subseteq \mathcal{F}_{\tau}$ and hence $\mathcal{F}_{\tau+}=\mathcal{F}_{\tau}$.
(b) τ is $\mathcal{F}_{\tau-}$-measurable;

Simply observe that $\{\tau \leq t\}=\{\tau \geq t\}^{c} \in \mathcal{F}_{\tau-}$ for every t.
(c) if $\tau=t$ is deterministic then $\mathcal{F}_{\tau}=\mathcal{F}_{t}$ and $\mathcal{F}_{\tau+}=\mathcal{F}_{t+}$;

Let $\tau=t$. To show that $\mathcal{F}_{\tau}=\mathcal{F}_{t}$, first note that for any $A \in \mathcal{F}_{t}$ and $s \geq 0$

$$
A \cap\{\tau \leq s\}= \begin{cases}A \in \mathcal{F}_{t} \subseteq \mathcal{F}_{s} & \text { if } t \leq s \\ \emptyset & \text { otherwise }\end{cases}
$$

which implies that $\mathcal{F}_{t} \subseteq \mathcal{F}_{\tau}$.
On the other hand, for any $A \in \mathcal{F}_{\tau}$, by definition $A \cap\{\tau \leq t\} \in \mathcal{F}_{t}$, and $A \cap\{\tau \leq t\}=A$. Thus $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{t}$ and hence $\mathcal{F}_{\tau}=\mathcal{F}_{t}$.
To see that $\mathcal{F}_{\tau+}=\mathcal{F}_{t+}$, first note that for any $A \in \mathcal{F}_{t+}$ and $s \geq 0$

$$
A \cap\{\tau<s\}= \begin{cases}A \in \mathcal{F}_{t+} \subseteq \mathcal{F}_{s} & \text { if } t<s \\ \emptyset & \text { otherwise }\end{cases}
$$

which implies $\mathcal{F}_{t+} \subseteq \mathcal{F}_{\tau+}$.
On the other hand, for any $A \in \mathcal{F}_{\tau+}$ and $n \geq 1, A=\left(A \cap\left\{\tau<t+\frac{1}{n}\right\}\right) \in \mathcal{F}_{t+\frac{1}{n}}$ by definition. Thus $A \in \mathcal{F}_{t+}$ and hence $\mathcal{F}_{\tau+} \subseteq \mathcal{F}_{t+}$. Therefore $\mathcal{F}_{\tau+}=\mathcal{F}_{t+}$.
(d) if τ_{n} is a non-decreasing sequence of stopping times (i.e. for any $\omega \in \Omega$ and $n<m \tau_{n}(\omega) \leq$ $\left.\tau_{m}(\omega)\right)$ then $\tau:=\lim _{n \rightarrow \infty} \tau_{n}$ is also a stopping time;

$$
\{\tau \leq t\}=\left\{\lim _{n \rightarrow \infty} \tau_{n} \leq t\right\}=(\bigcap_{n \geq 1} \underbrace{\left\{\tau_{n} \leq t\right\}}_{\in \mathcal{F}_{t}}) \in \mathcal{F}_{t}
$$

where we have used that $\left\{\tau_{n} \leq t\right\} \subset\left\{\tau_{n-1} \leq t\right\}$ so that the intersection is a decreasing limit of events.
(e) if τ_{n} is a non-increasing sequence of stopping times then $\tau:=\lim _{n \rightarrow \infty} \tau_{n}$ is a stopping time relative to $\left(\mathcal{F}_{t+}\right)$.
Let $\tau_{n} \rightarrow \tau$ (not necessarily monotone), then

$$
\{\tau \leq t\}=\bigcap_{k=1}^{\infty} \underbrace{\bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty}\left\{\tau_{n} \leq t+\frac{1}{k}\right\}}_{\in \mathcal{F}_{t+1 / k}} \in \mathcal{F}_{t+} .
$$

C. Recall that in lectures we used Optional Stopping to show that the Laplace transform of H_{a} is given by

$$
\mathbb{E}\left[e^{-\lambda H_{a}}\right]=e^{-|a| \sqrt{2 \lambda}} \quad a \in \mathbb{R}, \lambda>0
$$

Consider $a, b>0$. Deduce that if ξ_{a}, ξ_{b} are independent and distributed as H_{a} and H_{b} respectively, then $\xi_{a}+\xi_{b}$ has the same distribution as H_{a+b}. Use the strong Markov property to find an alternative proof of this result.
Let $\xi_{a} \sim H_{a}$ and $\xi_{b} \sim H_{b}$ be independent random variables. Then

$$
\mathbb{E}\left[e^{-\lambda\left(\xi_{a}+\xi_{b}\right)}\right]=\mathbb{E}\left[e^{-\lambda \xi_{a}}\right] \mathbb{E}\left[e^{-\lambda \xi_{b}}\right]=e^{-a \sqrt{2 \lambda}} e^{-b \sqrt{2 \lambda}}=e^{-(a+b) \sqrt{2 \lambda}}=\mathbb{E}\left[e^{-\lambda H_{a+b}}\right], \quad \lambda \geq 0,
$$

from which we deduce that, as required, $\left(\xi_{a}+\xi_{b}\right) \sim H_{a+b}$.
To see this from the Strong Markov property, it suffices to note that $H_{a+b}(B)=H_{a}(B)+H_{b}(\tilde{B})$ where, by the strong Markov property of $B, \tilde{B}_{t}:=B_{H_{a}+t}-B_{H_{a}}=B_{H_{a}+t}-a$ is a standard Brownian motion independent of ($B_{u}: u \leq H_{a}$). In particular, $H_{b}(\tilde{B}) \sim H_{b}(B)$ and further $H_{b}(\tilde{B})$ and $H_{a}(B)$ are independent.
D. Let $H_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$ be the first hitting time of a.
(a) Show that H_{a} has the same distribution as $\frac{a^{2}}{B_{1}^{2}}$ and deduce its density.

For any $a>0$ and $u>0$,

$$
\begin{aligned}
\mathbb{P}\left(H_{a} \leq u\right) & =\mathbb{P}\left(\sup _{0 \leq t \leq u} B_{t} \geq a\right) \\
& =\mathbb{P}\left(\left|B_{u}\right| \geq a\right) \quad \text { by reflection principle } \\
& =\mathbb{P}\left(\sqrt{u}\left|B_{1}\right| \geq a\right) \quad \text { by scaling } \\
& =\mathbb{P}\left(\frac{a^{2}}{B_{1}^{2}} \leq u\right) .
\end{aligned}
$$

Hence H_{a} has the same distribution as $\frac{a^{2}}{B_{1}^{2}}$. Let $f_{H_{a}}$ be the density function of H_{a}. Then,

$$
\begin{aligned}
f_{H_{a}}(u) & =\frac{d \mathbb{P}\left(\sqrt{u}\left|B_{1}\right| \geq a\right)}{d u} \\
& =\frac{d}{d u}\left(2 \int_{\frac{a}{\sqrt{u}}}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x\right) \\
& =\frac{a}{\sqrt{2 \pi u^{3}}} \exp \left(-\frac{a^{2}}{2 u}\right) .
\end{aligned}
$$

(b) Using the strong Markov property show that for any continuous bounded function f we have

$$
\mathbb{E}\left[f\left(H_{b}-H_{a}\right) \mid \mathcal{F}_{H_{a}}\right]=\mathbb{E}\left[f\left(H_{b-a}\right)\right], \quad 0 \leq a \leq b .
$$

Deduce that $\left(H_{a}\right)_{a \geq 0}$ has stationary and independent increments. Discuss the properties of its paths $a \rightarrow H_{a}(\bar{\omega})$.
The first bit is immediate. H_{a} is a $1 / 2$-stable subordinator, so has increasing right continuous paths. They could calculate the moments of increments to see $\mathbb{E} H_{a}^{\beta}$ exists for all $\beta<1 / 2$.
E. Suppose that $\left(Z_{t}: t \geq 0\right)$, defined on some filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$, is adapted and has independent increments i.e. for any $0 \leq s<t, Z_{t}-Z_{s}$ is independent of \mathcal{F}_{s}. Show that

- if $\mathbb{E}\left[\left|Z_{t}\right|\right]<\infty$ for all $t \geq 0$, then $\tilde{Z}_{t}:=Z_{t}-\mathbb{E}\left[Z_{t}\right]$ is an $\left(\mathcal{F}_{t}\right)$-martingale;

Note that clearly all the processes in question are adapted.
For any $t \geq 0$

$$
\mathbb{E}\left[\left|\tilde{Z}_{t}\right|\right]=\mathbb{E}\left[\mid Z_{t}-\mathbb{E}\left[Z_{t} \mid\right]\right] \leq \mathbb{E}\left[\left|Z_{t}\right|\right]+\left|\mathbb{E}\left[Z_{t}\right]\right| \leq 2 \mathbb{E}\left[\left|Z_{t}\right|\right]<\infty
$$

As $Z_{t}-Z_{s}$ is independent of \mathcal{F}_{s} for any $0 \leq s<t, \mathbb{E}\left[Z_{t}-Z_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[Z_{t}-Z_{s}\right]$. Hence

$$
\begin{aligned}
\mathbb{E}\left[\tilde{Z}_{t} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[Z_{s}+\left(Z_{t}-Z_{s}\right) \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[Z_{t}\right] \\
& =Z_{s}=\mathbb{E}\left[Z_{t}-Z_{s}\right]-\mathbb{E}\left[Z_{t}\right]=\tilde{Z}_{s}
\end{aligned}
$$

- if $\mathbb{E}\left[Z_{t}^{2}\right]<\infty$ for all $t \geq 0$, then $\tilde{Z}_{t}^{2}-\mathbb{E}\left[\tilde{Z}_{t}^{2}\right]$ is an $\left(\mathcal{F}_{t}\right)$-martingale;

For any $t \geq 0$,

$$
\begin{aligned}
\left.\mathbb{E}\left[\mid \tilde{Z}_{t}^{2}-\mathbb{E}\left[\tilde{Z}_{t}^{2}\right]\right]\right] & \leq 2 \mathbb{E}\left[\tilde{Z}_{t}^{2}\right] \\
& =2 \mathbb{E}\left[\left(Z_{t}-\mathbb{E}\left[Z_{t}\right]\right)^{2}\right] \\
& \leq 4 \mathbb{E}\left[Z_{t}^{2}+\left(\mathbb{E}\left[Z_{t}\right]\right)^{2}\right] \\
& \leq 8 \mathbb{E}\left[Z_{t}^{2}\right]<\infty \quad \text { by Jensen's Inequality. }
\end{aligned}
$$

From part (a), we know $\left(\tilde{Z}_{t}\right)_{t \geq 0}$ is a martingale. Therefore $\mathbb{E}\left[\tilde{Z}_{s}\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right) \mid \mathcal{F}_{s}\right]=0$ and thus

$$
\mathbb{E}\left[\tilde{Z}_{s}\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)\right]=\mathbb{E}\left[\mathbb{E}\left[\tilde{Z}_{s}\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right) \mid \mathcal{F}_{s}\right]\right]=0
$$

Further, by independence of increments, $\mathbb{E}\left[\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2}\right]$. We then have

$$
\begin{aligned}
\mathbb{E}\left[\tilde{Z}_{t}^{2}-\mathbb{E}\left[\tilde{Z}_{t}^{2}\right] \mid \mathcal{F}_{s}\right]= & \mathbb{E}\left[\left(\tilde{Z}_{s}+\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2} \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[\left(\tilde{Z}_{s}+\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2}\right] \\
= & \mathbb{E}\left[\tilde{Z}_{s}^{2}+2 \tilde{Z}_{s}\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)+\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2} \mid \mathcal{F}_{s}\right] \\
& -\mathbb{E}\left[\tilde{Z}_{s}^{2}\right]-2 \mathbb{E}\left[\tilde{Z}_{s}\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)\right]-\mathbb{E}\left[\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2}\right] \\
= & \tilde{Z}_{s}^{2}-\mathbb{E}\left[\tilde{Z}_{s}^{2}\right]+\mathbb{E}\left[\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2} \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[\left(\tilde{Z}_{t}-\tilde{Z}_{s}\right)^{2}\right] \\
= & \tilde{Z}_{s}^{2}-\mathbb{E}\left[\tilde{Z}_{s}^{2}\right] .
\end{aligned}
$$

- if for some $\theta \in \mathbb{R}, \mathbb{E}\left[e^{\theta Z_{t}}\right]<\infty$ for all $t \geq 0$, then $\frac{\exp \left(\theta Z_{t}\right)}{\mathbb{E}\left[\exp \left(\theta Z_{t}\right)\right]}$ is an $\left(\mathcal{F}_{t}\right)$-martingale. For any $t \geq 0$,

$$
\mathbb{E}\left[\frac{\exp \left(\theta Z_{t}\right)}{\mathbb{E}\left[\exp \left(\theta Z_{t}\right)\right]}\right]=\mathbb{E}\left[\exp \left(\theta Z_{t}\right)\right] / \mathbb{E}\left[\exp \left(\theta Z_{t}\right)\right]=1
$$

For any $0 \leq s<t$, using that $Z_{t}-Z_{s}$ is independent of \mathcal{F}_{s}, we have

$$
\begin{aligned}
\mathbb{E}\left[\left.\frac{\exp \left(\theta Z_{t}\right)}{\mathbb{E}\left[\exp \left(\theta Z_{t}\right)\right]} \right\rvert\, \mathcal{F}_{s}\right] & =\frac{\mathbb{E}\left[\exp \left(\theta Z_{s}+\theta\left(Z_{t}-Z_{s}\right)\right) \mid \mathcal{F}_{s}\right]}{\mathbb{E}\left[\exp \left(\theta\left(Z_{t}-Z_{s}\right)\right) \exp \left(\theta Z_{s}\right)\right]} \\
& =\frac{\left.\exp \left(\theta Z_{s}\right) \mathbb{E}\left[\exp \left(\theta\left(Z_{t}-Z_{s}\right)\right)\right)\right]}{\mathbb{E}\left[\exp \left(\theta\left(Z_{t}-Z_{s}\right)\right)\right] \mathbb{E}\left[\exp \left(\theta Z_{s}\right)\right]}=\frac{\exp \left(\theta Z_{s}\right)}{\mathbb{E}\left[\exp \left(\theta Z_{s}\right)\right]}
\end{aligned}
$$

F. Let $\mathcal{Z}(\omega):=\left\{t: B_{t}(\omega)=0\right\}$ be the set of Brownian zeros. Show that \mathcal{Z} is a closed set. Using Fubini's theorem show that the Lebesgue measure of \mathcal{Z} is zero a.s.
Let $R_{t}=\inf \left\{u \geq t: B_{u}=0\right\}$. Using the strong Markov property and known facts about Brownian paths show that for any $t \geq 0$

$$
\mathbb{P}\left[\inf \left\{u>0: B_{R_{t}+u}=0\right\}>0\right]=0
$$

and deduce that

$$
\mathbb{P}\left[\inf \left\{u>0: B_{R_{t}+u}=0\right\}>0 \text { for some rational } t\right]=0
$$

Conclude that a.s. if a point $t \in \mathcal{Z}(\omega)$ is isolated from the left, i.e. $(q, t) \cap \mathcal{Z}(\omega)=\emptyset$ for some rational $q<t$ then necessarily t is a decreasing limit of points in $\mathcal{Z}(\omega)$ and thus \mathcal{Z} does not have isolated points.
Fact: It follows that a.s. \mathcal{Z} is uncountable, as it is a 'perfect set', ie. it is a non-empty closed set with no isolated points (an example of a random Cantor set).
\mathcal{Z} is a closed set as it is the preimage of the closed set [0] under a continuous path. Using Fubini, it is easy to see that

$$
\mathbb{E}[\mu(\mathcal{Z})]=\mathbb{E}\left[\int_{0}^{\infty} \mathbf{1}_{\mathcal{Z}} d x\right]=\int_{0}^{\infty} \mathbb{E}\left[\mathbf{1}_{\mathcal{Z}}\right] d x=0
$$

as $\mathbb{P}\left(B_{t}=0\right)=0$ for all $t \neq 0$.
We know that R_{t} is a stopping time, so by the strong Markov property, $B_{R_{t}+u}$ is a Brownian motion in its own filtration. From Lecture notes (Prop 3.18), we know that a Brownian motion hits zero infinitely many times near $t=0$, so R_{t} is not an isolated point (from the right) in \mathcal{Z}. Write \mathcal{Z}^{R} for the random set of these zeros of the Brownian motion.
Now any point in \mathcal{Z} is either isolated from the left (in which case there is some rational t such that it agrees with R_{t}, in which case it is in \mathcal{Z}^{R}), or it is not isolated from the left. As points in \mathcal{Z}^{R} are not isolated, we see that \mathcal{Z} a.s. has no isolated points.

