
B8.2: Continuous Martingales and Stochastic Calculus

Problem Sheet 4

The questions on this sheet are divided into three sections. Only those questions in Section B are
compulsory and should be handed in for marking.

The questions are not in order of difficulty; if you are stuck on one question, move on to the next.

Section A
Let B be a standard one-dimensional Brownian motion.

1. Show that et/2 cos(Bt) is a martingale.

There are many ways to do this. Letting Mt = et/2 cos(Bt) and using Itô we have (writing in
differential form)

det/2 cos(Bt) = −et/2 sin(Bt)dBt.

Hence M is a continuous local martingale. We could then compute the quadratic variation

E⟨M⟩t = E
∫ t

0
es cos2(Bs)ds ≤ et < ∞.

Thus by Theorem 7.24 of the notes it is a martingale.

2. Let βk(t) = EB2k
t (which you can assume is finite for all k ∈ N and t ≥ 0). Using Itô’s formula

show that

βk(t) = k(2k − 1)

∫ t

0
βk−1(s)ds.

Hence show βk(t) =
(2k)!
2kk!

tk.

Find βk(t) = E|B|2k when B is a standard two-dimensional Brownian motion.

By Itô with B0 = 0 we have

B2k
t =

∫ t

0
2kB2k−1

s dBs +
1

2

∫ t

0
2k(2k − 1)B2k−2

s ds.

Taking expectations and using that the stochastic integral
∫ t
0 B

m
s dBs is a martingale (follows

from the fact that βk(t) is finite) and hence has expectation 0, we have

βk(t) = E
∫ t

0
k(2k − 1)B2k−2

s ds = k(2k − 1)

∫ t

0
βk−1(s)ds.

Using that β0(t) = 1, β1(t) = t we can recursively solve the equation to get the even moments of
Brownian motion.

For the two-dimensional case using Itô’s formula again gives βk(t) = 2k2
∫ t
0 βk−1(s)ds and βk(t) =

2kk!tk.

Section B (Compulsory)
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1. Let M,N ∈ H2,c, K ∈ L2(M) and F ∈ L2(N). Show that for each t ∈ [0,∞] we have

E
[(∫ t

0
KsdMs

)(∫ t

0
FsdNs

)]
= E

[∫ t

0
KsFsd⟨M,N⟩s

]
.

Since (K •M) ∈ H2,c, (F •N) ∈ H2,c, (K •M)(F •N)−⟨K •M,F •N⟩ is a uniformly integrable
martingale and thus using Theorem 8.8 of lectures (⟨K •M,N⟩ = K · ⟨M,N⟩) twice

E[(K •M)t(F •N)t] = E[⟨K •M,F •N⟩t] = E
[ ∫ t

0
KsFsd⟨M,N⟩s

]
, t ∈ [0,∞].

2. Suppose that M is a continuous local martingale and K ∈ L2
loc(M). Fix t > 0. Show that if

E
[∫ t

0 K
2
sd⟨M⟩s

]
< ∞, then the stopped process (K •M)t is a martingale and

E
[∫ t

0
KsdMs

]
= 0, E

[(∫ t

0
KsdMs

)2
]
= E

[∫ t

0
K2

sd⟨M⟩s
]
< ∞.

(K •M) is a continuous local martingale, so is (K •M)t. Further

E[⟨(K •M)t⟩∞] = E[⟨K •M⟩t] = E
[ ∫ t

0
K2

sd⟨M⟩s
]
< ∞.

Hence by characterisation of martingales in H2 we have that (K •M)t is a martingale and is in
H2. Then

E[(K •M)t∞] = E[(K •M)t] = 0

and

E
[(
(K •M)t∞

)2]
=E[⟨(K •M)t⟩∞]

=E[⟨K •M⟩t] = E
[ ∫ t

0
K2

sd⟨M⟩s
]

3. Let f be a continuous function on [0,∞) and B a standard Brownian motion. Prove that the
random variable

Xt :=

∫ t

0
f(s)dBs, t ≥ 0,

is Gaussian and compute the covariance of Xt and Xs.

(The same result holds true for locally bounded Borel functions f .)
Hint: You may use that the space of mean-zero Gaussian variables is a closed subspace of L2.

Since f is continuous, the approximation via Riemann sums of the Lebesgue integral
∫
f(u)du

converges pointwise and in L2.
The stopped process Bt is in H2 and f ∈ L2(Bt), where ft(ω) = f(t), and so Proposition 8.18 of
lectures gives the limit in probability, but here we also know that everything lives in L2 and so

Xt = (f •B)t = lim
n→∞

2n−1∑
k=0

f
( tk

2n

)(
B t(k+1)

2n
−B tk

2n

)
,
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where limit is in L2.

Clearly each finite sum is Gaussian and hence the limit is also Gaussian (using the hint).

E[Xt] = E[(f •B)t] = 0,

E[X2
t ] = E[⟨f •B⟩t] =

∫ t

0
f(u)2du.

Now (Xt1 , . . . , Xtn) is a limit in L2 of similar sums, the approximating vector(∑
f
( tk

2n

)(
B t1(k+1)

2n
−B tk

2n

)
, . . . ,

∑
f
( tnk
2n

)(
B t(k+1)

2n
−B tk

2n

))
is an image under a linear map of Gaussian vector (of Brownian increments). Thus it is Gaussian
and so is the limit. Further, X is a martingale and hence E[(Xt −Xs)Xs] = 0. It follows that

E[XsXt] = E[X2
s +Xs(Xt −Xs)] =

∫ s

0
f(u)2du =

∫ s∧t

0
f(u)2du, for s ≤ t.

Big hammer method (not as intuitive, but nice to know):
It is enough to show the statement for t ∈ [0, T ], with arbitrary T . The statement is clearly true
for f = 1(s,t], for any 0 ≤ s < t ≤ T and these functions generate the Borel σ-algebra. The
statement then follows by the monotone class theorem (one should check carefully that the class
of Borel measurable bounded functions for which the statement holds satisfies the assumptions
of the monotone class theorem).

4. Suppose that (Bt)t≥0 is standard Brownian motion and f and g are twice continuously dif-
ferentiable real-valued functions. Using Itô’s formula, decompose the semimartingale Xt =
exp

(
f(Bt)−

∫ t
0 g(Bs)ds

)
into a local martingale and a bounded variation part and hence find an

expression relating f and g which guarantees that (Xt)t≥0 is a local martingale.

We apply Ito’s formula to X giving, in differential form,

dXt = f ′(Bt)XtdBt +
1

2

(
f ′′(Bt) + f ′(Bt)

2
)
Xtdt− g(Bt)Xtdt.

Thus Xt = X0 +Mt +At, where the local martingale part is

Mt =

∫ t

0
f ′(Bs)XsdBs.

The finite variation part is

At =

∫ t

0

1

2

(
f ′′(Bs) + f ′(Bs)

2 − g(Bs)
)
Xsds.

Then to get a local martingale we need the finite variation term to be 0. Thus we require f, g to
satisfy

1

2
f ′′(x) +

1

2
f ′(x)2 = g(x), ∀x ∈ R.
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5. Let B be a standard Brownian motion. Recall that M θ
t := exp(θBt − θ2

2 t) is a local martingale.
Expanding as a Taylor series in θ, around θ = 0, we can write

M θ
t =

∞∑
k=0

θkHk(t, Bt),

where Hk(t, x) are polynomials.

(a) Find the first four of the Hk(t, x) and show that (Hk(t, Bt) : t ≥ 0), k = 0, 1, 2, 3, 4 are local
martingales. (Hint: you may use the Itô formula to verify the local martingale property)

H0(t, x) =M0
t = 1,

H1(t, x) =
∂Mθ

t

∂θ
|θ=0 = (x− θt)M θ

t |θ=0 = x,

H2(t, x) =
1

2!

∂2M θ
t

∂2θ
|θ=0 =

1

2!
{(x− θt)2 − t}M θ

t |θ=0 =
1

2
(x2 − t),

H3(t, x) =
1

3!

∂3M θ
t

∂3θ
|θ=0 =

1

6
{(x− θt)3 − 3t(x− θt)}M θ

t |θ=0 =
1

6
(x3 − 3tx),

H4(t, x) =
1

4!

∂4M θ
t

∂4θ
|θ=0 =

1

4!
{(x− θt)4 − 6t(x− θt)2 − 3t2}M θ

t |θ=0

=
1

24
(x4 − 6tx2 + 3t2).

Hence it is easy to see that

H0(t, Bt) = 1, H1(t, Bt) = Bt, H2(t, Bt) =
1

2
(B2

t − t)

are local martingales. In fact, they are martingales.

To see H3(t, Bt) and H4(t, Bt) are local martingales, we apply Ito’s formula to H3 and H4

and find that, written in a differential notation for brevity,

dH3(t, Bt) =
1

6
(3B2

t − 3t)dBt −
3Bt

6
dt+

1

2

1

6
3× 2Btd⟨B⟩t =

1

6
(3B2

t − 3t)dBt,

dH4(t, Bt) =
1

24

{
(4B3

t − 12tBt)dBt − 6B2
t dt+ 6tdt+

1

2
(12B2

t − 12t)d⟨B⟩t
}

=
1

24
(4B3

t − 12tBt)dBt.

The drift terms are cancelled out, hence H3(t, Bt) and H4(t, Bt) are indeed local martingales.

(b) We now show that in fact for any local martingale M , Hk(⟨M⟩t,Mt) are local martingales
and deduce a stochastic integral representation for them. Define hk via

∞∑
k=0

ukhk(x) = exp(ux− u2/2), u, x ∈ R.

Let f(x) = exp(−x2/2) and deduce that

hk(x) =
(−1)k

k!f(x)
f (k)(x).
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Note that for a > 0, we have

exp(ux− au2/2) = exp

(
u
√
a

(
x√
a

)
− (u

√
a)2

2

)
and deduce that Hk(a, x) = ak/2hk(x/

√
a). Give the value of Hk(0, x).

We first note that

F (u, x) = exp(ux− u2

2
) = exp(

x2

2
) exp(−1

2
(x2 − 2ux+ u2))

= exp(
x2

2
) exp(−1

2
(x− u)2) =

f(x− u)

f(x)
.

Therefore

hk(x) :=
1

k!

∂kF (u, x)

∂uk
|u=0

=
1

k!
(−1)k

f (k)(x− u)|u=0

f(x)
=

(−1)k

k!f(x)
f (k)(x).

For a > 0, we have

Gu(a, x) = exp(ux− au2/2) = exp
(
u
√
a(

x√
a
)− (u

√
a)2

2

)
= F

(
u
√
a,

x√
a

)
⇒ Hk(a, x) =

1

k!

∂kGu(a, x)

∂uk
|u=0 = (

√
a)khk(x/

√
a) ∀k ≥ 0.

To compute Hk(0, x), first note Gθ(0, x) = exp(θx). Hence

Hk(0, x) =
1

k!

∂kGθ(0, x)

∂θk
|θ=0 =

xk

k!
.

(c) Use Itô’s formula and the above representation to show that if M is a continuous local
martingale, then (Hk(⟨M⟩t,Mt) : t ≥ 0) is a continuous local martingale.

Applying Ito’s formula to Hk(⟨M⟩t,Mt), we derive that

dHk(⟨M⟩t,Mt) =
∂Hk

∂x
(⟨M⟩t,Mt)dMt +

(∂Hk

∂a
+

1

2

∂2Hk

∂x2

)
(⟨M⟩t,Mt)d⟨M⟩t.

In order to conclude that Hk(⟨M⟩t,Mt) is a local martingale, we need to show that

∂Hk

∂a
+

1

2

∂2Hk

∂x2
= 0.

First we observe (or prove by induction)

fk+1(x) + xfk(x) + kfk−1(x) = 0 ∀k ≥ 1.

This gives us

∂Hk

∂x
(a, x) =a

k−1
2 h′k(x/

√
a)

=a
k−1
2

(−1)k

k!f(x/
√
a)

(
f (k+1)(x/

√
a) +

x√
a
f (k)(x/

√
a)
)

=a
k−1
2

(−1)k

k!f(x/
√
a)

(−kf (k−1)(x/
√
a)) = Hk−1(a, x).
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Hence

∂Hk

∂a
+

1

2

∂2Hk

∂x2

=
k

2
a

k−1
2 hk(x/

√
a) + x(−1

2
)a−

3
2a

k
2 h′k(x/

√
a) +

1

2
a

k
2 a−1h′′k(x/

√
a)

=
a

k
2
−1

2
(hk(x/

√
a)k − x√

a
hk−1(x/

√
a) +

1

2
hk−2(x/

√
a))

=
a

k
2
−1

2

(−1)k

(k − 1)!f(x/
√
a)

{fk(x/
√
a) +

x√
a
fk−1(x/

√
a) + (k − 1)fk−2(x/

√
a)} = 0.

So dHk(⟨M⟩t,Mt) =
∂Hk
∂x (⟨M⟩t,Mt)dMt and hence

Hk(⟨M⟩t,Mt) =Hk(0, 0) +

∫ t

0

∂Hk

∂x
(⟨M⟩s,Ms)dMs

=0 +

∫ t

0
Hk−1(⟨M⟩s,Ms)dMs.

(d) Observe that ∂Hk
∂x (a, x) = Hk−1(a, x). Show by induction that

Hk(⟨M⟩t,Mt) =

∫ t

0

∫ s1

0
· · ·

∫ sn−1

0
1 dMsn · · · dMs2 dMs1 .

As H0(a, x) = 1, the result is a simple induction.

Section C (Extra practice questions, not for hand-in)

1. Use a heuristic argument based on a Taylor expansion to check that for Stratonovich stochastic
calculus the chain rule takes the form of the classical (Newtonian) one.

Taylor’s expansion says that for a C3 function (for simplicity),

f(t) = f(s) + f ′(s)(s− t) +
1

2
f ′′(s)(s− t)2 +O((s− t)3)

= f(s) + f ′(t)(s− t)− 1

2
f ′′(t)(s− t)2 +O((s− t)3)

The second expansion comes from expanding around t and rearranging. Averaging these two out,
we obtain

f(t) = f(s) +
f ′(s) + f ′(t)

2
(t− s) +

f ′′(s)− f ′′(t)

2
(t− s)2 +O((s− t)3)

To calculate f(X), where X is a Brownian motion (or more generally a continuous semimartin-
gale), we take a partition π with end points t0 = 0 and tN(π) = t,

f(Xt) = f(X0) +
∑
π

(
f(Xti+1)− f(Xti)

)
= f(X0) +

∑
π

(f ′(Xti+1) + f ′(Xti)

2
(Xti+1 −Xti)

)
+
∑
π

(f ′′(Xti+1)− f ′′(Xti)

2
(Xti+1 −Xti)

2
)

+
∑
π

O((Xti+1 −Xti)
3)
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Heuristically taking the limit as ∥π∥ → 0, we know that the 3-variation of X is zero and f ′ and
f ′′ are continuous, so we get

f(Xt) = f(X0) +

∫ t

0
f ′(Xs) ◦ dXs + 0 + 0

which is the classical chain rule.

2. Let B be a three-dimensional Brownian motion with B0 an independent random variable in
R3\{0}. (You may assume that this proces does not hit 0 and is transient in that |Bt| → ∞ as
t → ∞).

(a) Show using Itô’s formula and Levy’s characterization of Brownian motion that the radial
part, X = |B|, satisfies

Xt = X0 +

∫ t

0

1

Xs
ds+Wt,

where W is a Brownian motion.

(b) Show using Itô’s formula that 1/|Bt| is a local martingale.

(c) Let B0 = y, and set Mt = |Bt+1 − y|−1 for t ≥ 0. Show that EM2
t = 1/(1 + t) and hence

that the process M is an L2-bounded local martingale.

(d) Show that M is a supermartingale.

(e) Using the martingale convergence theorm, show that M is not a martingale.

(a) use Itô’s formula with the SDE for X, the radial part of a 3-d Brownian motion,

dX =
1

X
dt+

3∑
i=1

Bi

X
dBi,

Then Levy’s characterization shows that the local martingale part is a Brownian motion, so we
have the required equation.

(b) To show that 1/|Bt| = 1/X is a local martingale we use Ito and the SDE for X and hence

d(
1

X
) = − 1

X2
dW.

(c) From here on the solution to this question is in section VI.33 of Rogers andWilliams. E(M2
t ) =

1
t+1 can be calculated directly from the density

EM2
t =

∫
R3

|x− y|−2 1

(
√
2π(t+ 1))3

exp(−|x− y|2

2(t+ 1)
)dx

=

∫ ∞

0

∫ π

0

∫ 2π

0
r−2 1

(
√
2π(t+ 1))3

exp(− r2

2(t+ 1)
)r2 sin θdϕdθdr

=
1

t+ 1
.

It follows immediately that M is uniformly bounded in L2, and this implies that it is uniformly
integrable.
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(d) Since t 7→ Bt+1 − y is a Brownian motion, an application of part (a) tells us Mt is a local
martingale, but don’t forget to note that the filtration here is Gt = Ft+1. SinceM is a nonnegative
local martingale with E|M0| < ∞, M is a supermartingale from basic properties of non-negative
local martingales.

(e) If M was a martingale, then it would be a uniformly integrable continuous martingale, and
the martingale convergence theorem would imply the existence of an L1 random variable M∞
such that Mt → M∞ both a.s. and in L1. Suppose this holds. Since Bt → ∞ a.s. as t → ∞,
we must have M∞ = 0. Hence, also by martingale convergence, Mt = E [M∞|Gt] = 0, which is a
contradiction and hence M cannot be a true martingale!

This shows that, even with good integrability properties a local martingale need not necessarily
be a true martingale.

3. (Brownian local time at zero) Let B be a standard Brownian motion. Let f(x) = |x| and fn be a
sequence of convex C2 functions converging pointwise to f(x) with f ′

n(x) increasing in n to f ′
−(x)

(the left-hand derivative of f which is well defined everywhere).

Such a sequence can be constructed quasi-explicitly. Indeed, take h(x) a non-negative C∞ func-
tion supported on [−1, 0] and

∫ 0
−1 h(x)dx = 1. Put fn(x) := n

∫ 0
−1 f(x+ y)h(ny)dy and verify it

satisfies the required properties.

Apply Itô’s formula to fn(Bt) and denote by Ln
t the finite variation term in the resulting semi-

martingale decomposition of fn(Bt). Observe that Ln
t is a non-decreasing process.

(a) Determine the region where f ′′
n(x) is non-zero and hence comment when, along the paths of

B, the process Ln is increasing and when it is constant and deduce what, if it existed, the
limit would measure.

(b) Define sgn(x) to be 1 for x > 0 and −1 for x ≤ 0. Use the stochastic dominated convergence
theorem to show that for any t > 0,

∫ t
0 f

′
n(Bs)dBs converge, in probability and uniformly in

s ≤ t, to
∫ t
0 sgn(Bs)dBs.

(c) Deduce that Ln
t converges in probability to some process Lt which is non-decreasing and in

particular that |Bt| is a semimartingale.
Hint: to deduce monotonicity of L you may want to take a subsequence and pass to a.s.
convergence.

(d) Finally, using Itô on B and |B| for a suitable choice of function, show that

∀t ≥ 0

∫ t

0
|Bs|dLs = 0 a.s.

from which you should deduce that L is supported on Z a.s.
(i.e. for any s < t, Lt(ω)− Ls(ω) =

∫ t
s dLu(ω) =

∫
[s,t]∩Z(ω) dLu(ω) a.s.)

The process L is called the local time in zero.

(e) How would you go about defining local time at level a?

(f) Does the above extend to an arbitrary continuous local martingale M?

We have

fn(Bt) = fn(0) +

∫ t

0
f ′
n(Bs)dBs +

1

2

∫ t

0
f ′′
n(Bs)ds.
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Note that by convexity of | · | we have

fn(λx+ (1− λ)z) = n

∫ 0

−1/n
|λ(x+ y) + (1− λ)(z + y)|h(ny)dy ≤ λfn(x) + (1− λ)fn(z) (1)

so that fn is convex, in particular Ln
t := 1

2

∫ t
0 f

′′
n(Bs)ds is non-decreasing.

(a) Further, in (1) we had equality if (x + y) and (z + y) were of the same sign, i.e. if x, z < 0
or x, z > 1/n. It follows that fn is affine on (−∞, 0] ∪ [1/n,∞) and hence f ′′

n is strictly positive
only in the neighbourhood of zero and Ln

t is increasing when B visits the neighbourhood of zero.
We might expect that Ln

t in the limit as n → ∞ (if the normalisation is correct) would give a
measure of time B spends in zero.

(b) We know that f ′
n(x) → f ′

−(x) = sgn(x). Further, by convexity of fn and since |f ′
n(·)| = 1

on (−∞, 0] ∪ [1/n,∞) it follows that |f ′
n(·)| ≤ 1. In particular we may apply the stochastic

dominated convergence theorem to deduce that for any t > 0, as n → ∞∫ s

0
f ′
n(Bu)dBu −→

∫ s

0
sgn(Bu)dBu,

in probability and uniformly in s ≤ t.

(c) It follows that we can take a subsequence on which the convergence above is a.s. for all s ≤ t.
It then follows, since fn(x) → |x| that Ln

s , s ≤ t, converges a.s. (on a subsequence) to a process
(Ls : s ≤ t). Repeating this argument for t = 1, 2, . . . we obtain (Lt : t ≥ 0) a.s. well defined for
all t (we may put Lt ≡ 0 on the remaining null set). Lis then a.s. non-decreasing and satisfies

|Bt| =
∫ t

0
sgn(Bs)dBs + Lt, t ≥ 0, a.s.

It follows that Lt is in fact continuous. It is of finite variation since it is non-decreasing and hence
(|Bt| : t ≥ 0) is a continuous semimartingale (the above gives its semimartingale decomposition).

Note that Xt =
∫ t
0 sgn(Bs)dBs is a continuous local martingale, X0 = 0 and

⟨X⟩t =
∫ t

0
(sgn(Bs))

2ds =

∫ t

0
ds = t

so that by Lévy’s characterisation theorem, X is a Brownian motion. In particular, ⟨|B|⟩t =
⟨X⟩t = t.

(d) We now apply Itô formula to B2
t and to (|Bt|)2 to deduce, for all t ≥ 0,

B2
t = 2

∫ t

0
B2

sdBs + t,

B2
t = |Bt|2 = 2

∫ t

0
|Bs|d|Bs|+ ⟨|B|⟩t = 2

∫ t

0
|Bs|sgn(Bs)dBs + 2

∫ t

0
|Bs|dLs + t

Subtracting we obtain the desired result:

∀t ≥ 0

∫ t

0
|Bs|dLs = 0 a.s.

In particular, Bs = 0 dLs-a.e. a.s., i.e. dLs is supported on the set of Brownian zeros Z a.s.
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(e) The above readily generalises to f(x) = |x− a| which will yield

|Bt − a| = |a|+
∫ t

0
sgn(Bs − a)dBs + La

t ,

for a non-decreasing continuous process La which we will call the local time at the level a.

(f) All the analysis also extends to a continuous local martingale M since

⟨
∫

sgn(Ms)dMs⟩t =
∫ t

0
(sgn(Ms))

2d⟨M⟩s = ⟨M⟩t.
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