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1 Equations of motion

1.1 Introduction

We begin by deriving the equations of motion for an inviscid fluid, that is a fluid with zero
viscosity. We treat the fluid as a continuum. This means that it can be described by a number
of state variables, namely density ρ, velocity u, pressure p and temperature T , all of which
depend continuously on position x and time t. In fact we assume throughout this section that
ρ, u, p and T are all continuously differentiable functions of x and t. Later we will examine
what happens when this assumption is relaxed, when analysing shock waves.

We start with the equations for incompressible flow, then introduce the equation of state
to describe compressible flows, and the concept of entropy. Finally, we consider the equations
of motion in a rotating frame, required for describing atmospheric and oceanic flows.

1.2 Reynolds’ transport theorem

We begin by proving a theorem that will be very useful in deriving the equations representing
conservation of mass, momentum and energy.

Consider a time-dependent volume V (t) that is convected by the fluid, so that it always
consists of the same fluid particles. Then, for any function f(x, t) that is continuously differ-
entiable with respect to all of its arguments,

d

dt

∫∫∫
V (t)

f dV =

∫∫∫
V (t)

∂f

∂t
+ ∇ · (fu) dV. (1.1)

We first give a simple-minded derivation of (1.1) before presenting a more rigorous proof,
using Lagrangian variables, in section 1.3.

Denote by I(t) the integral on the left-hand side of (1.1), that is

I(t) =

∫∫∫
V (t)

f(x, t) dV. (1.2)

At some slightly later time t+ δt, the integral is modified to

I(t+ δt) =

∫∫∫
V (t+δt)

f(x, t+ δt) dV. (1.3)

It follows that

I(t+ δt)− I(t) =

∫∫∫
V (t+δt)

f(x, t+ δt)− f(x, t) dV +

∫∫∫
δV
f(x, t) dV, (1.4)

where δV = V (t+δt)\V (t) is the volume swept out by the boundary ∂V in the small time δt.
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Figure 1.1: (a) A material volume V at times t and t+ δt. (b) A schematic showing how the
volume is swept out by the boundary with velocity u.

As shown in figure 1.1, δV comprises thin shell whose thickness is approximately u ·n δt,
where n is the unit normal to ∂V . On the other hand, the first integral in (1.4) may be
estimated by applying the mean value theorem to the integrand, so (1.4) implies that

I(t+ δt)− I(t)

δt
∼
∫∫∫

V (t+δt)

∂f

∂t
(x, t) dV +

∫∫
∂V
f(x, t)u · ndS. (1.5)

By letting δt→ 0, we obtain

dI

dt
=

∫∫∫
V

∂f

∂t
dV +

∫∫
∂V
fu · ndS, (1.6)

and application of the divergence theorem to the final integral leads to (1.1).

1.3 Lagrangian variables

For a more careful derivation of (1.1), we define Lagrangian variables X = (X,Y, Z) as follows.
At any time t, suppose the fluid element whose current position vector is x = (x, y, z) was
initially at position X. As the fluid moves, the Lagrangian variables follow the flow, in that
a fixed value of X always corresponds to the same fluid particle for all time. In contrast, the
Eulerian variables x remain fixed in space as the fluid flows relative to them.

For this reason, the time derivative in the Lagrangian frame (i.e. with X fixed) is referred
to as the convective derivative, or the material derivative or simply the derivative following
the flow. It may be related to the normal Eulerian time derivative by using the chain rule,
viz.

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+
∂x

∂t

∣∣∣∣
X

∂f

∂x
+
∂y

∂t

∣∣∣∣
X

∂f

∂y
+
∂z

∂t

∣∣∣∣
X

∂f

∂z
, (1.7)

where f is any continuously differentiable function of position and time.
Now, if we follow the fluid, then the rate of change of the (Eulerian) position vector

x = (x, y, z) is simply the velocity u = (u, v, w), so (1.7) may be written as

∂f

∂t

∣∣∣∣
X

=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
=
∂f

∂t
+ u ·∇f, (1.8)



B5.4 Waves & compressible flow 3

where (u ·∇) is shorthand for the directional derivative in the direction of u, that is

(u ·∇) ≡ u ∂
∂x

+ v
∂

∂y
+ w

∂

∂z
. (1.9)

We use the notation
D

Dt
=

∂

∂t

∣∣∣∣
X

=
∂

∂t
+ (u ·∇) (1.10)

for the convective derivative, although d/dt is also common.
Now we transform the integral I(t) defined by (1.2) into Lagrangian variables to obtain

I(t) =

∫∫∫
V (t)

f dxdydz =

∫∫∫
V (0)

fJ dXdY dZ, (1.11)

where

J =
∂(x, y, z)

∂(X,Y, Z)
(1.12)

is the Jacobian of the transformation. In (1.11), the Lagrangian integral is over the fixed
initial domain V (0) corresponding to the moving volume V (t). We can therefore integrate
through the integral as follows

dI

dt
=

∫∫∫
V (0)

D

Dt
(fJ) dXdY dZ, (1.13)

where the time derivative is taken with the integration variables (X,Y, Z) held fixed.
Now we calculate DJ/Dt by differentiating the determinant row-by-row.

DJ

Dt
=

D

Dt

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

D

Dt

(
∂x

∂X

)
D

Dt

(
∂x

∂Y

)
D

Dt

(
∂x

∂Z

)
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂X

∂x

∂Y

∂x

∂Z
D

Dt

(
∂y

∂X

)
D

Dt

(
∂y

∂Y

)
D

Dt

(
∂y

∂Z

)
∂z

∂X

∂z

∂Y

∂z

∂Z

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
D

Dt

(
∂z

∂X

)
D

Dt

(
∂z

∂Y

)
D

Dt

(
∂z

∂Z

)

∣∣∣∣∣∣∣∣∣∣∣∣
.

(1.14)

For convenience we denote the three determinants on the right-hand side of (1.14) by ∆1, ∆2

and ∆3 respectively. Since the convective derivative is taken with X fixed, it commutes with
X-, Y - and Z-derivatives. Recalling also that Dx/Dt = u, we can rewrite ∆1 as

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂u

∂X

∂u

∂Y

∂u

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.15)
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We apply the chain rule to each of the derivatives in the first row to obtain

∆1 =
∂u

∂x

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

∣∣∣∣∣∣∣∣∣∣∣∣
+
∂u

∂y

∣∣∣∣∣∣∣∣∣∣∣∣

∂y

∂X

∂y

∂Y

∂y

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

∣∣∣∣∣∣∣∣∣∣∣∣
+
∂u

∂z

∣∣∣∣∣∣∣∣∣∣∣∣

∂z

∂X

∂z

∂Y

∂z

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.16)

The final two determinants in (1.16) have repeated rows and are therefore identically zero. It
follows that

∆1 =
∂u

∂x
J, (1.17)

and analogous manipulations lead to

∆2 =
∂v

∂y
J, ∆3 =

∂w

∂z
J. (1.18)

By substituting these into (1.14), we obtain Euler’s identity

DJ

Dt
= J∇ · u. (1.19)

Now we expand out the derivative in (1.13) and use (1.19) to obtain

dI

dt
=

∫∫∫
V (0)

(
Df

Dt
+ f∇ · u

)
J dXdY dZ =

∫∫∫
V (t)

Df

Dt
+ f∇ · u dxdydz. (1.20)

The definition (1.10) of the convective derivative then leads to Reynolds’ Transport Theo-
rem (1.1).

1.4 Conservation of mass

As a first application of (1.1), consider the mass M of a volume V (t) that moves with the
fluid, namely

M =

∫∫∫
V (t)

ρdV, (1.21)

where ρ is the density. Since mass can be neither created nor destroyed, M must be constant
in time, that is

0 =
dM

dt
=

∫∫∫
V

∂ρ

∂t
+ ∇ · (ρu) dV. (1.22)

Since the volume V (t) is arbitrary, we deduce that the integrand must be zero (assuming it
is continuous), that is

∂ρ

∂t
+ ∇ · (ρu) = 0. (1.23)

We can use (1.23) to deduce the following useful corollary of the transport theorem. If
f = ρh in (1.1), where h is any continuously differentiable function, then

d

dt

∫∫∫
V (t)

ρhdV =

∫∫∫
V (t)

ρ
Dh

Dt
dV. (1.24)
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1.5 Conservation of momentum

Next we apply Newton’s second law, namely “rate of change of momentum equals applied
force” to a material volume V (t). The net momentum of such a volume is∫∫∫

V
ρudV,

while the applied force has two ingredients. First there is the external body force, assumed
to be solely due to gravitational acceleration g, which contributes a net force∫∫∫

V
ρg dV.

Second there is the internal force exerted on each volume V by the surrounding fluid. We
suppose that this may be accounted for by a pressure, p, which acts in the inward normal
direction at each point, so the net internal force on V is∫∫

∂V
−pndS =

∫∫∫
V
−∇p dV,

using a well-known corollary of the divergence theorem. Here we have assumed that the fluid
is inviscid : a viscous fluid would transmit tangential as well as normal internal forces.

Now we can formulate Newton’s second law in the form

d

dt

∫∫∫
V
ρu dV =

∫∫∫
V
−∇p dV +

∫∫∫
V
ρg dV. (1.25)

To calculate the left-hand side, we apply the transport theorem corollary (1.24) and hence
obtain ∫∫∫

V
ρ

Du

Dt
+ ∇p− ρg dV = 0, (1.26)

which must hold for all material volumes V . It follows that (assuming it is continuous) the
integrand must be zero, and we therefore obtain the momentum equation

ρ
Du

Dt
= −∇p+ ρg, (1.27)

which is often known as Euler’s equation.

1.6 Potential flow

So far we have derived (1.23) and the vector equation (1.27) representing conservation of mass
and momentum respectively. These comprise four scalar equations in total, although ρ, p and
the three components of u give us five unknown dependent variables. It is clear, therefore,
that we need one more piece of information to obtain a well posed problem. The simplest
additional assumption is that the fluid is incompressible, meaning that the density ρ of each
fluid element is constant, expressed by

Dρ

Dt
= 0. (1.28)
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The assumption of incompressibility is a good approximation for most liquids, whose densities
typically do not vary much unless they are subjected to very high pressure. Gases, though,
are relatively easy to compress, and (as we shall see) well-known phenomena such as sound
waves and shock waves behind supersonic aircraft cannot be explained without considering
compressibility effects.

Often, but not necessarily, ρ takes the same known constant value throughout the fluid
(which is a stronger statement than (1.28)). If so, then mass conservation (1.23) reduces to

∇ · u = 0, (1.29)

which, along with (1.27), gives us four equations for p and the three components of u.
The problem is simplified further if we assume that the flow is irrotational, meaning that

∇× u = 0. (1.30)

If this is true, then there must exist a velocity potential φ such that

u = ∇φ. (1.31)

By substituting this into (1.29), we find that φ satisfies Laplace’s equation

∇2φ = 0. (1.32)

Given suitable boundary conditions, (1.32) allows us to determine φ and hence the velocity
u, and the pressure is then found from (1.27). This final step may be simplified as follows.
The gravitational body force g is conservative and so may be described using a gravitational
potential function χ such that

g = −∇χ. (1.33)

(For example, if g = −gez as usual, then χ = gz.) We also expand out the convective
derivative on the left-hand side of (1.27) to obtain

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p−∇χ. (1.34)

On the left-hand side, we use the vector identity

(u ·∇)u ≡∇
(
1
2 |u|

2
)

+ (∇× u)× u, (1.35)

which is readily established by taking components. By substituting this into (1.34) and using
(1.31), we obtain

∂∇φ

∂t
+ ∇

(
1
2 |∇φ|2

)
= −1

ρ
∇p−∇χ. (1.36)

Since the t-derivative commutes with ∇ and ρ is constant, we can rearrange this to

∇
{
∂φ

∂t
+ 1

2 |∇φ|2 +
p

ρ
+ χ

}
= 0. (1.37)

It follows that the quantity in braces can be a function only of t, that is

∂φ

∂t
+ 1

2 |∇φ|2 +
p

ρ
+ χ = F (t), (1.38)
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which is known as Bernoulli’s equation.
In (1.38), the function F (t) may be chosen arbitrarily to make the equations as convenient

as possible. This is because the velocity potential is only defined up to an arbitrary function
of t; if we define

φ = φ̃+ f(t), (1.39)

then φ̃ is a potential corresponding to exactly the same velocity field through (1.31). In
addition, (1.38) then becomes

∂φ̃

∂t
+ 1

2 |∇φ̃|2 +
p

ρ
+ χ = F (t)− f ′(t) (1.40)

so we can, for example, obtain (1.38) with F (t) ≡ 0 by choosing f ′(t) = F (t).
Finally, we should ask ourselves whether it is reasonable to assume that the flow is irrota-

tional. We will now justify this assumption by showing that, if the flow is irrotational initially,
then it is so for all time. We will do so by first establishing Kelvin’s circulation theorem, for
a closed curve C(t) that is convected by the flow. We define the circulation around such a
curve by

Γ(t) =

∮
C(t)

u · dx =

∫∫
S(t)

(∇× u) · ndS, (1.41)

where S is any surface spanning C, the latter identity following by Stokes’ theorem. Kelvin’s
theorem states that Γ is independent of t, and we will prove it by showing that dΓ/dt is zero.

To differentiate Γ, it is helpful to transform the integral to Lagrangian variables, using
the chain rule. We follow the summation convention, in which summation is assumed over
any repeated suffix, to obtain

dΓ

dt
=

d

dt

∮
C(t)

ui dxi =
d

dt

∮
C(0)

ui
∂xi
∂Xj

dXj =

∮
C(0)

D

Dt

(
ui
∂xi
∂Xj

)
dXj , (1.42)

where we hold the integration variables X constant when differentiating through the integral.
We expand out the derivative in the integrand, using the fact that D/Dt commutes with
∂/∂Xj , to obtain

dΓ

dt
=

∮
C(0)

Dui
Dt

∂xi
∂Xj

+ ui
∂ui
∂Xj

dXj =

∮
C(t)

Dui
Dt

dxi +

∮
C(t)

ui dui. (1.43)

The second integral here can be performed immediately, and we use (1.34) to substitute for
the acceleration in the first integral:

dΓ

dt
= −

∮
C(t)

∂

∂xi

(
p

ρ
+ χ

)
dxi +

[
u2i
2

]
C(t)

=

[
−p
ρ
− χ+

1

2
|u|2

]
C(t)

, (1.44)

where [·]C(t) denotes the change in · as the closed loop C is traversed. Since p, χ and u are
all single-valued functions of position, we deduce that the right-hand side is zero and, hence,
that Γ is constant.

Now, we can use this property to show that an initially irrotational flow remains irrota-
tional for all time. Suppose for contradiction that ∇ × u = 0 at t = 0 but that ∇ × u is
nonzero at some later time t. By (1.41), we can thus find a closed loop C(t) such that the
circulation Γ(t) is nonzero. Since Γ is independent of t, Γ(0) must likewise be nonzero, which
is impossible because ∇× u was supposed to be zero initially.
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1.7 The energy equation

If we do not assume that the fluid is incompressible, then (1.23) and (1.27) are insufficient to
determine ρ, u and p. We obtain a further equation by applying the principle of conservation
of energy as follows. The total energy contained in a material volume V (t) consists of the
kinetic energy and the thermal energy, given by∫∫∫

V

1

2
ρ|u|2 dV and

∫∫∫
V
ρcvT dV

respectively, where T is the absolute temperature (i.e. relative to absolute zero) and cv is the
specific heat. In SI units, cv is the energy required to raise a kilogram of fluid by one degree
in temperature, while keeping the volume constant. We will assume throughout that cv is
constant although, in general, it may depend on temperature.

The internal energy changes due to the work done by the external body force g and by
the pressure on the boundary of V ; these are respectively given by∫∫∫

V
ρg · udV and

∫∫
∂V
−pu · ndS.

Energy may also flow through ∂V by thermal conduction. Fourier’s law of conduction gives
the heat flux into V as ∫∫

∂V
k∇T · ndS,

where k is the thermal conductivity. Finally, we allow for internal production of thermal
energy (by, for example, microwave heating) at a rate q per unit mass.

Putting all these effects together, we arrive at the equation

d

dt

∫∫∫
V

1

2
ρ|u|2 + ρcvT dV =

∫∫∫
V
ρg · u dV −

∫∫
∂V
pu · ndS

+

∫∫
∂V
k∇T · ndS +

∫∫∫
V
ρq dV, (1.45)

representing net conservation of energy. By using the transport theorem and the divergence
theorem, we rewrite this equation as∫∫∫

V

{
ρu · Du

Dt
+ ρcv

DT

Dt
− ρg · u + ∇ · (pu)−∇ · (k∇T )− ρq

}
dV = 0, (1.46)

which must hold for all material volumes V (t). It follows that the integrand, if continuous,
must be identically zero. The resulting energy equation may be simplified further by using
(1.27), leading to

ρcv
DT

Dt
= −p∇ · u + ∇ · (k∇T ) + ρq. (1.47)

Under most practical conditions, gases are rather poor conductors of heat, so the energy
transport by conduction may be neglected.1 Henceforth, we will therefore assume that (1.47)

1This approximation may be made more rigorous by nondimensionalising the equations and identifying
a dimensionless parameter that measures the importance of conduction. Here the relevant parameter is the
Péclet number Pe = ρcvUL/k, where U and L are typical magnitudes of u and x respectively. If Pe is large,
which is true for gases under most conditions of practical interest, then thermal conductivity is negligible. It
is also worth noting that, in gases, the Péclet and Reynolds numbers are roughly equal, so neglecting thermal
conductivity is consistent with neglecting viscosity.
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is well approximated by

ρcv
DT

Dt
= −p∇ · u + ρq. (1.48)

1.8 The equation of state

We have now succeeded in obtaining the energy equation (1.48) to supplement our model, but
at the expense of introducing a further unknown: the temperature T . We are therefore still
one equation short. The final piece of information we need is an equation of state, relating
the pressure, density and temperature. For a so-called perfect gas, this equation reads

p = ρRT, (1.49)

where R is called the gas constant.2 If a fixed mass M of gas occupies a volume V , then
(1.49) reads

pV = MRT. (1.50)

Thus, if the temperature is fixed, then pV is constant, which is known as Boyle’s Law. On
the other hand, if the pressure is fixed, then the gas expands as it heats, with the volume
being proportional to T ; this is Charles’ Law.

Now let us imagine heating up a mass M of gas under two different conditions, as shown
schematically in figure 1.2. We start with the gas at temperature T0, occupying a volume V0,
subject to an ambient pressure p0. According to (1.50) these are related by p0V0 = MRT0,
and recall that the internal energy associated with such a scenario is E0 = McvT0. If the
volume is kept fixed, as depicted in figure 1.2(a), then the temperature may be raised by an
amount ∆T by supplying a thermal energy

∆Ev = Mcv∆T. (1.51)

If instead we raise the temperature by ∆T while keeping the pressure p0 constant then, as
indicated in figure 1.2(b), the gas will expand by an amount ∆V , which may be found from
(1.50):

p0∆V = MR∆T. (1.52)

The final thermal energy contained in the gas is still given by E = E0 + Mcv∆T but now
the gas, by expanding, has done some work to the external atmosphere. In the setup shown
in figure 1.2(b), the gas occupies a cylindrical container, on the lid of which it exerts a force
p0A, where A is the cross-sectional area. The work done when the lid rises by a distance ∆z
is therefore p0A∆z, that is

work done = p0∆V. (1.53)

It is easy to show that the work done by a gas at constant pressure p0 expanding by a volume
∆V is always given by (1.53), not just for the simple geometry shown in figure 1.2(b).

The net energy that must be supplied to effect this temperature change and expansion is
thus given by

∆Ep = Mcv∆T + p0∆V, (1.54)

2If Mu is the molar mass of the gas (i.e. the mass of one mole), then R = R∗/Mu, where
R∗ ≈ 8.3143510 J mol−1 K−1 is the universal gas constant.
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Cross-section

area = A

Pressure = p0

Pressure = p0

Temp = T0

Vol = V0

Vol = V0

Vol = V0 + ∆V

∆z

(a)

(b)

Temp = T0 + ∆T

Temp = T0 + ∆T

Figure 1.2: Schematic of a mass of gas heating up under (a) constant volume, (b) constant
pressure.

where the subscript p indicates that the temperature change occurs at constant pressure
rather than constant volume. By using (1.52) we can write this as

∆Ep = Mcp∆T, (1.55)

where cp is the specific heat at constant pressure (as opposed to the specific heat at constant
volume cv), given by

cp = R+ cv. (1.56)

1.9 Entropy

Using (1.23) and (1.49), we can write the energy equation (1.48) in the form

ρq = ρcv
DT

Dt
− p

ρ

Dρ

Dt
=
(cv
R

)
ρ

D

Dt

(
p

ρ

)
− p

ρ

Dρ

Dt
. (1.57)

If we define the ratio of specific heats

γ =
cp
cv

= 1 +
R

cv
, (1.58)
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then (1.57) becomes

ρq =
1

γ − 1

(
Dp

Dt
− γp

ρ

Dρ

Dt

)
=

ργ

γ − 1

D

Dt

(
p

ργ

)
(1.59)

=
p

γ − 1

D

Dt

{
log

(
p

ργ

)}
. (1.60)

By using the equation of state (1.49) once more, we thus obtain

q = T
DS

Dt
, (1.61)

where

S = S0 + cv log

(
p

ργ

)
, (1.62)

and S0 is a constant.
The function S is called the entropy of the fluid per unit mass. Since internal radiative

cooling, as opposed to heating, is thought to be physically impossible, q must be non-negative
and (1.61) then shows that the entropy is a non-decreasing function of time. This is an instance
of the so-called Second Law of Thermodynamics. If, as is usually the case, there is no internal
heating, then (1.61) reduces to

DS

Dt
= 0, (1.63)

which implies that the entropy of each material element of fluid is constant. Such a flow is
called isentropic. This means that, if the entropy is spatially uniform initially, then it is so
for all time, and the flow is then called homentropic.

In homentropic flow, we thus have a simple functional relation

p = Cργ (1.64)

between p and ρ, where C is constant. The exponent γ is a constant greater than 1; for
example γ ≈ 1.4 in air. By combining (1.64) with the mass- and momentum-conservation
equations (1.23) and (1.27) we finally have a closed system of equations for ρ, u and p.

1.10 Boundary conditions

If the fluid is in contact with a fixed rigid boundary B, then the normal velocity of the fluid
there must be zero, that is

u · n = 0 on B, (1.65)

where n denotes the unit normal to B. This condition states that the fluid can neither flow
through B nor separate from B, leaving behind a vacuum.3

Next consider a moving boundary B(t), for example a piston or a moving membrane. The
condition corresponding to (1.65) is that the velocity of the fluid normal to B must equal the
velocity of B normal to itself, that is

u · n = vB · n, (1.66)

3Notice the contrast with a viscous fluid, in which all the velocity components are zero on a fixed boundary:
u = 0 on B. While a viscous fluid “sticks” to B, an inviscid fluid may slide past.
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where vB is the velocity of B. At each instant t of time, B is a surface whose equation may
be written implicitly as

f(x, t) = 0 (1.67)

for some function f . By writing n in terms of f , (1.66) may be written as

u ·∇f = vB ·∇f. (1.68)

Now, any point x = xB(t) that is fixed to the boundary B(t) must satisfy

dxB
dt

= vB and f(xB(t), t) ≡ 0. (1.69)

By differentiating the latter equation with respect to t, we obtain

∂f

∂t
+ vB ·∇f = 0. (1.70)

Hence (1.68) implies that

∂f

∂t
+ u ·∇f =

Df

Dt
= 0 when f = 0. (1.71)

This so-called kinematic boundary condition implies that, if any fluid element starts at f = 0,
then f remains at zero for that particular element. In other words, any fluid element that
starts on B(t) must stay there.

If the boundary B is prescribed, whether it be fixed or moving, then just one boundary
condition is needed, and either (1.65), (1.66) or (1.71) will suffice. One more condition is
needed at a free boundary, whose position is unknown in advance. The simplest example is
the interface between two impermeable fluids, for example water and air. If surface tension
is neglected, then the pressure must be continuous across such an interface. Otherwise the
interface would experience a finite force, which is impossible since it has zero mass.

1.11 Rotating fluids

To describe the flow in the Earth’s atmosphere or oceans, it makes sense to express the
equations of motion relative to axes that rotate with the Earth instead of “inertial” axes
fixed in space. However, the governing equations we have derived so far apply only in an
inertial frame. We must determine how the equations transform when we switch to a rotating
frame.

Let S be an inertial frame, and R a rotating frame, rotating with angular velocity Ω with
respect to S. Let (ê1, ê2, ê3) be a basis fixed in the rotating frame R. Then the motion of
each êi as viewed in S is given by (

dêi
dt

)
S

= Ω× êi. (1.72)

We can express any vector v in terms of its components with respect to the basis {êi} by
writing v = viêi (where we have adopted the summation convention). Then(

dv

dt

)
S

=
dvi
dt

êi + vi(Ω× êi). (1.73)
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The first term on the right-hand side can be interpreted as the time derivative of v in the
rotating frame R, since it is obtained by differentiating each component in the basis fixed in
R. Hence we obtain (

dv

dt

)
S

=

(
dv

dt

)
R

+ Ω× v, (1.74)

which holds for any vector v.
By setting v = x(t) the position of a fluid element, we obtain(

dx

dt

)
S

=

(
dx

dt

)
R

+ Ω× x. (1.75)

Then, by applying (1.74) again with v = (dx/dt)S , we get(
d2x

dt2

)
S

=
d

dt

((
dx

dt

)
R

+ Ω× x

)
R

+ Ω×
((

dx

dt

)
R

+ Ω× x

)
=

(
d2x

dt2

)
R

+ 2Ω×
(

dx

dt

)
R

+

(
dΩ

dt

)
R

× x + Ω× (Ω× x). (1.76)

We now note that(
dx

dt

)
S

= uS ,

(
d2x

dt2

)
S

=

(
DuS
Dt

)
S

, (1.77)

where uS is the fluid velocity as seen in the inertial frame S. Similarly we have(
dx

dt

)
R

= uR,

(
d2x

dt2

)
R

=

(
DuR
Dt

)
R

. (1.78)

With Ω taken to be constant, the two results (1.75) and (1.76) therefore become

uS = uR + Ω× x, (1.79a)(
DuS
Dt

)
S

=

(
DuR
Dt

)
R

+ 2 Ω× uR + Ω× (Ω× x). (1.79b)

The change of frame from S to R affects only the time derivatives of vectors, so the
mass- and energy-conservation equations (1.23) and (1.48) are unchanged when we move the
rotating frame. Using the results (1.79), and dropping the subscript Rs, we see that the
momentum equation (1.27) becomes

Du

Dt
+ 2 Ω× u + Ω× (Ω× x) = −1

ρ
∇p+ g (1.80)

in the rotating frame R.
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2 Models for linear wave
propagation

2.1 Introduction

In this section we derive several different models for the propagation of waves in fluids. In each
case, we assume the amplitude is sufficiently small for the equations to be linearised. Our first
example is acoustic waves in a gas, which are governed by the wave equation and therefore
move at a well-defined constant wave-speed. In contrast, gravity waves on the surface of a
layer of fluid are dispersive, meaning that waves with different wavelengths move at different
speeds. We also derive models for internal gravity waves in a stratified fluid and inertial
waves in a rotating fluid.

2.2 Acoustic waves in a gas

The wave equation

Here we consider so-called barotropic flow, in which the pressure is a given function of the
density, say

p = P (ρ). (2.1a)

We have shown, for example, that an ideal gas with uniform entropy satisfies (2.1a), with
P (ρ) = Cργ , but for the moment we will study the more general case (2.1a). The equations
for conservation of mass and momentum, namely

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1b)

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ ρg, (2.1c)

combined with (2.1a), provide a closed system for ρ, u and p. For the moment, we will assume
that the body force g is negligible.

The system (2.1) is nonlinear and hence very difficult to solve in general. We therefore try
to simplify the equations, by considering small disturbances about an assumed uniform initial
state. Suppose the fluid starts at rest with constant density ρ0 and pressure p0 = P (ρ0). We
perturb about these initial conditions by setting

ρ = ρ0 + ρ′, u = 0 + u′, p = p0 + p′, (2.2)

in which the primed variables are assumed to be small.1 If we apply Taylor’s Theorem to
(2.1a) and neglect products of primed variables, we obtain

p′ = c20ρ
′, (2.3)

1Exactly what we mean by “small” here may be quantified by nondimensionalising the equations and
identifying an appropriate small dimensionless parameter.
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where the positive constant c0 is defined by

c20 =
dP

dρ
(ρ0). (2.4)

In a homentropic ideal gas, for example, we have c20 = γp0/ρ0.

Linearisation of the momentum equation (2.1c) leads to

ρ0
∂u′

∂t
= −∇p′ = −c20∇ρ′ (2.5)

and, by taking the curl of this equation, we obtain

∂

∂t

(
∇× u′

)
= 0. (2.6)

Hence, if ∇×u′ = 0 initially (which is true if the fluid starts from rest) then it is zero for all
time and we can write

u′ = ∇φ, (2.7)

where φ is the velocity potential. Substituting (2.7) back into (2.5), we obtain

∇
(
ρ0
∂φ

∂t
+ c20ρ

′
)

= 0 (2.8)

and it follows that

ρ0
∂φ

∂t
+ c20ρ

′ = F (t) (2.9)

where F is an arbitrary scalar function. Since an arbitrary function of t may be added to φ
without affecting (2.7), we may set F (t) ≡ 0 without loss of generality and thus obtain

ρ0
∂φ

∂t
+ c20ρ

′ = 0. (2.10)

This is the linearised version of Bernoulli’s equation.

Linearisation of (2.1b) gives

∂ρ′

∂t
+ ρ0∇2φ = 0 (2.11)

and, by eliminating ρ′ between (2.10) and (2.11), we find that φ satisfies the wave equation:

∂2φ

∂t2
= c20∇2φ. (2.12a)

From (2.3) and (2.10), it is clear that ρ′ and p′ also satisfy exactly the same partial differential
equation, that is

∂2ρ′

∂t2
= c20∇2ρ′,

∂2p′

∂t2
= c20∇2p′. (2.12b)
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One-dimensional waves

If p is a function only of one spatial variable x and time t, then (2.12a) reads

∂2p′

∂t2
= c20

∂2p′

∂x2
. (2.13)

It is straightforward to show that the general solution of (2.13) is

p′ = F (x− c0t) +G(x+ c0t), (2.14)

where F and G are arbitrary scalar functions. These represent waves, with initial shapes given
by F (x) and G(x), moving at speed c0 from left to right and from right to left respectively.
These are sound waves, and c0 is the speed of sound in the undisturbed fluid.

Suppose, for example, that a transducer at x = 0 imposes a periodic pressure fluctuation
with frequency ω, that is

p′(0, t) = a cos(ωt) + b sin(ωt), (2.15)

for some constants a and b. It is convenient to write (2.15) in the form

p′(0, t) = Re
{
Ae−iωt

}
, (2.16)

where A = a+ ib is the complex amplitude. We can then seek a solution of (2.13) in the form

p′(x, t) = Re
{
f(x)e−iωt

}
, (2.17)

for some (complex-valued) function f(x). In fact, because taking the real part commutes with
diffentiation, we can ignore the “Re” for the moment and then simply take the real part at
the end of the calculation. Note that this approach only works for linear problems.

Substitution for p′ from (2.17) into (2.13) and (2.16) leads to the problem

d2f

dx2
+
ω2

c20
f = 0, f(0) = A. (2.18)

The general solution of (2.18) is

f(x) = αeiωx/c0 + βe−iωx/c0 , where α+ β = A. (2.19)

Evidently one more piece of information is needed to determine the two constants α and β.
We impose a radiation condition, namely that the source at x = 0 can only cause outward -
travelling waves. In x > 0, we therefore want waves travelling to the right, with p′ a function
of x− c0t. This implies that β must be zero, and an analogous argument shows that α must
be zero in x < 0. We therefore obtain

f(x) =

{
Aeiωx/c0 x > 0,

Ae−iωx/c0 x < 0,
(2.20)

and by substituting this into (2.17) we find the solution

p′(x, t) =

Re
{
Ae−iω(t−x/c0)

}
x > 0,

Re
{
Ae−iω(t+x/c0)

}
x < 0.

(2.21)
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Waves due to a point source

If p′ is a function only of distance from the origin, r =
√
x2 + y2 + z2, and time t, then

(2.12b) reads
∂2p′

∂t2
= c20∇2p′ = c20

(
∂2p′

∂r2
+

2

r

∂p′

∂r

)
=
c20
r

∂2

∂r2
(
rp′
)
. (2.22)

It follows that (rp′) satisfies the usual wave equation in r and t and, hence, that the general
solution is

p′ =
F (r − c0t)

r
+
G(r + c0t)

r
. (2.23)

Notice that these radial waves are generally unbounded at the origin, with p′ ∼ 1/r as r → 0.
Let us again try to find the wave-field generated by a point transducer at the origin. In

the light of (2.23), we suppose that the pressure behaves like

rp′(r, t)→ Ae−iωt as r → 0, (2.24)

where the real part is assumed. Seeking a separable solution of the form

p′(r, t) = f(r)e−iωt, (2.25)

we find that f(r) satisfies

d2

dr2
(rf) +

ω2

c20
(rf) = 0, rf(r)→ A as r → 0. (2.26)

To get a unique solution, we must again impose a radiation condition, namely that p′ should
be a function of r − c0t rather than r + c0t. The appropriate solution of (2.26) is

f(r) =
Aeiωr/c0

r
(2.27)

and hence the pressure perturbation is

p′(r, t) =
Re
{
Ae−iω(t−r/c0)

}
r

. (2.28)

Waves due to a moving source

Now suppose the source is moving with speed U , while emitting waves that propagate at
speed c0. The qualitative behaviour depends crucially on the Mach number

M =
U

c0
. (2.29)

If M < 1 then source travels slower than the speed of sound, and is referred to as subsonic.
The sound waves propagate ahead of the source, as illustrated in figure 2.1 (when M = 0.5).
The waves in front of the source are compressed while those behind are stretched, so a fixed
observer would hear the pitch of the sound decrease as the source travels past; this is the
celebrated Doppler effect.

If M = 1 (so the flow is sonic) then the source travels at exactly the same speed as the
sound that it is emitting. Thus, as illustrated in figure 2.1, it can never escape from its own



B5.4 Waves & compressible flow 19

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

M = 0.5 M = 1.0

M = 1.5

µ

Figure 2.1: A source moving with Mach number M = 0.5, 1.0, 1.5. In the final case, the angle
of the cone is the Mach angle µ.

noise. Finally, if M > 1, then the source outstrips the sound waves, and is called supersonic.
The noise is confined to a cone, as shown in figure 2.1 with M = 1.5. Outside the cone is a
zone of silence, and a stationary observer would hear nothing until the cone reaches him or
her. The vertex of the cone makes an angle known as the Mach angle µ, and it is a simple
exercise in trigonometry to show that

sinµ =
1

M
. (2.30)

To describe such effects mathematically, it is easiest to work in a frame with the source
fixed (say at the origin) and the fluid flows past at uniform speed U . Hence we put

ρ = ρ0 + ρ′, u = U êx + u′, p = p0 + p′, (2.31)

into (2.1) and again linearise with respect to the primed variables, resulting in

∂ρ′

∂t
+ U

∂ρ′

∂x
+ ρ0∇ · u = 0, ρ0

(
∂u′

∂t
+ U

∂u′

∂x

)
= −∇p′, p′ = c20ρ

′. (2.32)
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Again, it is straightforward to show that the flow is irrotational for all time if it is so initially,
so we can introduce a velocity potential φ such that u′ = ∇φ.

Now, if an arbitrary function of t is absorbed into φ as before, we find that φ and ρ′ satisfy
the coupled equations

ρ0

(
∂φ

∂t
+ U

∂φ

∂x

)
+ c20ρ

′ = 0,
∂ρ′

∂t
+ U

∂ρ′

∂x
+ ρ0∇2φ = 0. (2.33)

By eliminating between these, we can obtain a single partial differential equation for either
φ, ρ′ or p′, namely

∂2φ

∂t2
+ 2U

∂2φ

∂x∂t
+ U2∂

2φ

∂x2
= c20∇2φ, (2.34a)

∂2ρ′

∂t2
+ 2U

∂2ρ′

∂x∂t
+ U2∂

2ρ′

∂x2
= c20∇2ρ′,

∂2p′

∂t2
+ 2U

∂2p′

∂x∂t
+ U2∂

2p′

∂x2
= c20∇2p′. (2.34b)

To understand the implications of these equations, let us consider some special cases.
First, for sound propagating in just one space dimension, say p′ = p′(x, t), (2.34b) becomes

∂2p′

∂t2
+ 2U

∂2p′

∂x∂t
+ (U2 − c20)

∂2p′

∂x2
= 0. (2.35)

It is readily verified that this partial differential equation is hyperbolic, with characteristics
given by

dx

dt
= U ± c0. (2.36)

For subsonic flow, U < c0 and the characteristic velocities (2.36) take different signs, indicating
that waves travel in both directions. For supersonic flow, U > c0 so the characteristic velocities
are both positive. This means that waves can only propagate downstream in this case, and
there is a zone of silence upstream of the source.

Next, we try looking for two-dimensional steady solutions, setting p′ = p′(x, y), so (2.34b)
becomes

(1−M2)
∂2p′

∂x2
+
∂2p′

∂y2
= 0, (2.37)

where M = U/c0 is the Mach number as before. For M < 1, (2.37) is elliptic, and is
qualitatively similar to Laplace’s equation. For M > 1, though, (2.37) is hyperbolic, and is
analogous to the wave equation; indeed, the general solution of (2.37) in this case is readily
found to be

p′ = f

(
y − x√

M2 − 1

)
+ g

(
y +

x√
M2 − 1

)
, (2.38)

where f and g are two arbitrary scalar functions
The change of type of the partial differential equation (2.37) as the Mach number passes

through 1 is associated with a dramatic change in the character of the flow. In subsonic
flow, the elliptic equation causes localised effects to be felt everywhere instantaneously. In
supersonic flow, however, disturbances can only propagate along the characteristics, given by

dy

dx
= ± 1√

M2 − 1
= ± tanµ, (2.39)

where µ = sin−1(1/M) is the Mach angle as before. This explains the differences depicted in
figure 2.1. In the subsonic flow, waves from the source penetrate the whole space while, in
supersonic flow, they are only felt in the Mach cone downstream of the source.
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Figure 2.2: Definition sketch of the geometry for Stokes waves on a fluid layer of depth h.

2.3 Stokes waves on a free surface

Equations and boundary conditions

Stokes waves are small-amplitude gravity waves on the surface of an incompressible fluid, for
example small ripples on a container of water. As shown in section 1, we may assume that
the flow is irrotational, if it is so initially. We therefore introduce a velocity potential φ, such
that u = ∇φ and φ satisfies Laplace’s equation:

∇2φ = 0. (2.40)

We also recall from section 1 Bernoulli’s equation,

∂φ

∂t
+ 1

2 |∇φ|2 +
p

ρ
+ χ = F (t), (2.41)

where χ is the gravitational potential and F (t) may be chosen arbitrarily.
We consider a layer of fluid of depth h, between a rigid base at z = −h and a free surface

that is initially at z = 0, where the z-axis points vertically upwards. Small-amplitude waves
then perturb the fluid such that the free surface is displaced to z = η(x, y, t), as illustrated in
figure 2.2.

On the base z = −h, the normal velocity w must be zero, that is

∂φ

∂z
= 0 at z = −h. (2.42)

On the free surface z = η we have the kinematic boundary condition

D

Dt
(z − η) = 0 (2.43)
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which, when written out in terms of φ, reads

∂φ

∂z
=
∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y
at z = η(x, y, t). (2.44)

We also have the dynamic boundary condition that the pressure must be continuous across
the interface, that is

p = pa at z = η(x, y, t), (2.45)

where pa is the atmospheric pressure, assumed constant.

We can use Bernoulli’s equation (2.41) to turn (2.45) into a boundary condition for φ.
With the z-axis pointing upwards, the gravitational potential is χ = gz. We can also choose
F (t) = pa/ρ to eliminate the constant pressure and thus end up with

∂φ

∂t
+ 1

2 |∇φ|2 + gη = 0 at z = η(x, y, t). (2.46)

The problem, then, is to solve (2.40) for φ, subject to the boundary conditions (2.42), (2.44)
and (2.46). Notice that one more condition is needed at the free surface than at the base,
since the displacement η(x, y, t) is also unknown in advance.

Although Laplace’s equation is linear, the boundary conditions (2.44) and (2.46) on the
free surface are nonlinear, and the problem is therefore difficult to solve in general. If the
disturbances are small, then the boundary conditions can be simplified by linearising, that
is neglecting products of terms involving η and φ. For example, if we neglect the quadratic
terms in (2.44), we find

∂φ

∂z
=
∂η

∂t
at z = η(x, y, t). (2.47)

This can be simplified further by Taylor-expanding the left-hand side as follows:

∂φ

∂z
(x, y, η, t) ∼ ∂φ

∂z
(x, y, 0, t) +

∂2φ

∂z2
(x, y, 0, t)η + · · · , (2.48)

in which all terms except the first are nonlinear. When linearising the boundary conditions,
it is thus consistent also to evaluate the left-hand side of (2.47) at z = 0 rather than z = η.
The same simplification applies when we linearise (2.46), so we end up with the boundary
conditions

∂φ

∂z
=
∂η

∂t
,

∂φ

∂t
+ gη = 0 at z = 0. (2.49)

One-dimensional waves

Now we look for solutions in which η is of the form

η(x, t) = Aei(kx−ωt), (2.50)

where A is a constant and the real part is assumed. (Because the problem is linear, we
can proceed with the complex solution (2.50) and then take the real part at the end.) The
parameter ω represents the frequency at which the surface oscillates at any fixed position x.
The wavenumber k is 2π/λ, where λ is the wavelength; thus k is small for long waves and
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large for short waves. The phase velocity at which the waves propagate is related to ω and k
by

cp =
ω

k
. (2.51)

It is consistent with (2.50) to assume that φ is of the form

φ(x, z, t) = f(z)ei(kx−ωt). (2.52)

By substituting this into Laplace’s equation (2.40), we find that f satisfies

d2f

dz2
− k2f = 0. (2.53)

Clearly f is a linear combination of ekz and e−kz, and the correct combination to satisfy the
boundary condition (2.42) on the base is

f = B cosh
(
k(z + h)

)
, (2.54)

where B is an arbitrary constant.

By substituting (2.50) and (2.54) into the free-surface conditions (2.49), we obtain a linear
system of equations for A and B, which may be written in the form(

iω k sinh(kh)
g −iω cosh(kh)

)(
A
B

)
= 0. (2.55)

This homogeneous linear system admits the solution A = B = 0, corresponding to zero
disturbance: η = φ = 0. A nontrivial solution can only exist if the determinant of the
left-hand side is zero, that is

ω2 = gk tanh(kh). (2.56)

This equation for the frequency in terms of the wavenumber is called the dispersion relation.
From it we can infer the wave-speed

c2p =
g

k
tanh(kh), (2.57)

which depends on the wavenumber k; that is, waves with different wavenumbers move at
different speeds. Such waves are called dispersive, in contrast with acoustic waves, which
have a constant wave speed.

As depicted in figure 2.3, for positive k, the right-hand side of (2.57) is a decreasing
function, indicating that long waves travel faster than short waves. The maximum wave
speed occurs in the limit k → 0, which yields

cp 6
√
gh. (2.58)

Extensions

Here we briefly summarise a few common generalisations of Stokes waves.
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Figure 2.3: The squared wave-speed c2p given by (2.57) versus wavenumber k.

Flowing fluid We can study waves on a flowing liquid by linearising about uniform flow,
setting

u = U êx + ∇φ, (2.59)

where φ and its derivatives are again assumed to be small. It is clear that φ still satisfies
Laplace’s equation, and the only effect is to modify the free-surface conditions to

∂φ

∂z
=
∂η

∂t
+ U

∂η

∂x
,

∂φ

∂t
+ U

∂φ

∂x
+ gη = 0 at z = 0. (2.60)

Two fluids Suppose the interface z = η separates two fluids with different densities, say
ρ = ρ1 in z < 0 and ρ = ρ2 in z > 0. We denote the velocity potentials and pressures on
either side by φ1, φ2 and p1, p2 respectively. The kinematic condition (2.44) applies to both
sides of the interface, and leads to the linearised boundary conditions

∂η

∂t
=
∂φ1
∂z

=
∂φ2
∂z

at z = 0. (2.61)

The dynamic boundary condition (2.45) is replaced by the pressure continuity condition
p1 = p2 at z = η. After use of Bernoulli’s equation and linearisation, this leads to the
boundary condition

ρ1

(
∂φ1
∂t

+ gη

)
= ρ2

(
∂φ2
∂t

+ gη

)
at z = 0. (2.62)

Notice that (2.49) is recovered if we let the density ratio ρ2/ρ1 tend to zero.

Surface tension Real fluid interfaces exhibit a phenomenon called surface tension, which
acts like a membrane stretched over the interface to a tension γ. In figure 2.4 we show the
forces acting on small two-dimensional element of the interface, namely the pressures on either
side and the surface tension at the ends. These forces must sum to zero, that is∫ b

a
(p1 − p2)

(
− sin θ
cos θ

)
ds+

[
γ

(
cos θ
sin θ

)]b
a

= 0, (2.63)
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Figure 2.4: Schematic showing the surface tension γ acting at a fluid interface.

where s is arc length and θ is the angle made by the interface with the horizontal. Assuming
γ is constant, we can rewrite this as∫ b

a

{
(p1 − p2)

(
− sin θ
cos θ

)
+ γ

d

ds

(
cos θ
sin θ

)}
ds = 0, (2.64)

which holds for all a and b, so the integrand must be zero. Hence there is a pressure jump
across the interface, given by

p1 − p2 = −γκ, (2.65)

where

κ =
dθ

ds
=

{
1 +

(
∂η

∂x

)2
}−3/2

∂2η

∂x2
(2.66)

is the curvature of the interface.2 The latter equality can be obtained from the relations

∂η

∂x
= tan θ,

dx

ds
= cos θ. (2.67)

After linearisation, the dynamic boundary condition is thus modified to

ρ1

(
∂φ1
∂t

+ gη

)
− ρ2

(
∂φ2
∂t

+ gη

)
= γ

∂2η

∂x2
at z = 0 (2.68)

to take account of surface tension. Note that (2.62) is recovered if γ is set to zero.

Example

We illustrate all these effects by analysing the situation shown in figure 2.5, where a layer
of depth h2 and density ρ2 flows at speed U over a layer of depth h1 and density ρ1. The

2In three dimensions, (2.65) still holds, with κ equal to the mean curvature of the interface, that is

κ =
∂

∂x

∂η

∂x

/√
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2

+
∂

∂y

∂η

∂y

/√
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2

 .
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Figure 2.5: Schematic of a fluid layer of thickness h2 and density ρ2 flowing at speed U over
a layer of thickness h1 and ρ1.

disturbance potentials φ1, φ2 and the free-surface deflection η satisfy

∇2φ1 = 0 −h1 <z < 0, ∇2φ2 = 0 0 <z < h2, (2.69a)

∂φ1
∂z

= 0 z = −h1,
∂φ2
∂z

= 0 z = h2, (2.69b)

∂φ1
∂z

=
∂η

∂t
,

∂φ2
∂z

=
∂η

∂t
+ U

∂η

∂x
,

ρ1

(
∂φ1
∂t

+ gη

)
− ρ2

(
∂φ2
∂t

+ U
∂φ2
∂x

+ gη

)
= γ

∂2η

∂x2

 z = 0. (2.69c)

We look for travelling waves of the form

η = Aei(kx−ωt), φ1 = Bei(kx−ωt) cosh
(
k(z + h1)

)
, φ2 = Cei(kx−ωt) cosh

(
k(z − h2)

)
, (2.70)

and find the dispersion relation

ω2ρ1 coth(kh1) + (ω − Uk)2ρ2 coth(kh2) =
(
(ρ1 − ρ2)g + γk2

)
k. (2.71)

For simplicity, we take the limit where both layers are very deep, that is h1, h2 →∞, so (2.71)
becomes

(ρ1 + ρ2)ω
2 − 2(ρ2Uk)ω + ρ2U

2k2 −
(
(ρ1 − ρ2)g + γk2

)
|k| = 0. (2.72)

If there is no relative flow, that is U = 0, then (2.72) reduces to

ω2 =

(
(ρ1 − ρ2)g + γk2

)
|k|

ρ1 + ρ2
. (2.73)

If ρ1 > ρ2 then the right-hand side of (2.73) is positive, but if ρ1 < ρ2, it is negative for some
values of k, namely

|k| <

√
(ρ2 − ρ1)g

γ
. (2.74)
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k

Figure 2.6: The right-hand side of (2.75) versus wavenumber k.

For these wavenumbers, ω is pure imaginary, so the disturbance grows exponentially. Hence
the situation with the denser fluid above the lighter fluid is (not surprisingly) unstable; this
is known as the Rayleigh–Taylor instability.

When U is nonzero, we can examine the discriminant of the quadratic equation (2.72) to
find that ω is complex (so the flow is unstable) when

U2 >

(
ρ1 + ρ2
ρ1ρ2

)(
(ρ1 − ρ2)g + γk2

|k|

)
. (2.75)

Assuming ρ1 > ρ2 (so the lighter fluid is on top), the right-hand side of (2.75) tends to infinity
as |k| → 0 and as |k| → ∞, with a minimum at |k| = k∗ =

√
(ρ1 − ρ2)g/γ (see figure 2.6).

This corresponds to a critical value of U , given by

U2
∗ =

2(ρ1 + ρ2)

ρ1ρ2

√
γ(ρ1 − ρ2)g. (2.76)

If U > U∗, then there is a band of values of k for which (2.75) is satisfied and for which ω
is therefore complex. In other words the flow is unstable if the velocity of the upper fluid
exceeds this critical value. This Kelvin–Helmholtz instability is responsible for the formation
of waves by wind blowing over the sea.

2.4 Internal gravity waves in a stratified fluid

Now we consider waves in a fluid that is incompressible, so the density of each fluid element
is conserved, i.e.

Dρ

Dt
= 0 ⇔ ∇ · u = 0. (2.77)

However, we no longer assume that the density is constant. The aim is to study waves in a
stratified fluid, where the density varies with depth, for example in the sea, where ρ depends
on the salinity of the water. We therefore start with a stationary solution of the form

u = 0, ρ = ρ0(z), p = p0(z). (2.78)

Stokes waves may be viewed as a special case of (2.78) in which ρ0(z) is piecewise constant.
From the momentum equation (2.1c), with g = −gêz, we find that the pressure must take
the form

p0(z) = pa − g
∫ z

0
ρ0(ζ) dζ, (2.79)
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where pa is a constant reference pressure.
Now we linearise about (2.78), setting

u = 0 + u′, ρ = ρ0(z) + ρ′, p = p0(z) + p′, (2.80)

where the primed variables are again assumed to be small. With all nonlinear terms neglected,
the equations reduce to

∂ρ′

∂t
+ w′

dρ0
dz

= 0,
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0, (2.81a)

ρ0
∂u′

∂t
= −∂p

′

∂x
, ρ0

∂v′

∂t
= −∂p

′

∂y
, ρ0

∂w′

∂t
= −∂p

′

∂z
− ρ′g, (2.81b)

in which (u′, v′, w′) are the components of u′. We now eliminate u′, v′, ρ′ and p′ from these
equations to obtain a single equation for w′. Cross-differentiating the horizontal momentum
equations and using the second conservation-of-mass equation we find that

− ∂2p′

∂x2
− ∂2p′

∂y2
= ρ0

∂

∂t

(
∂u′

∂x
+
∂v′

∂y

)
= −ρ0

∂2w′

∂z∂t
. (2.82)

Taking the time derivative of the vertical momentum equation and using the first conservation-
of-mass equation we find that

ρ0
∂2w′

∂t2
= − ∂

2p′

∂z∂t
− g∂ρ

′

∂t
= − ∂

2p′

∂z∂t
+ gw′

dρ0
dz

. (2.83)

Then elimination of p′ between (2.82) and (2.83) leads to

∂2

∂t2

(
∂2w′

∂x2
+
∂2w′

∂y2
+
∂2w′

∂z2

)
=

g

ρ0

dρ0
dz

(
∂2w′

∂x2
+
∂2w′

∂y2
− 1

g

∂3w′

∂z∂t2

)
. (2.84)

To get an idea of the behaviour of the solutions to this equation, we briefly examine a
simplified version based on the following assumptions. We consider purely two-dimensional
disturbances so that w′ is a function only of x, z and t. We also suppose that

β =
1

ρ0

dρ0
dz

(2.85)

is constant, which occurs if ρ0 is proportional to eβz. Finally, we assume that gravity domi-
nates and we may thus neglect the final term multiplied by 1/g in (2.84), to obtain

∂2

∂t2

(
∂2w′

∂x2
+
∂2w′

∂z2

)
= βg

∂2w′

∂x2
. (2.86)

We can look for propagating two-dimensional waves by setting

w′(x, z, t) = Aei(kx cosα+kz sinα−ωt), (2.87)

where the amplitude A is arbitrary, k is the wavenumber, and the direction of propagation
makes an angle α with the x-axis. Substitution of (2.87) into (2.86) results in the dispersion
relation

ω2 = −βg cos2 α. (2.88a)



B5.4 Waves & compressible flow 29

Hence waves travel with a positive frequency ω provided β is negative. If β is positive (so the
density decreases with depth) then ω is imaginary: the fluid is unstably stratified. The most
unstable waves have α = 0 or π, so they travel in the horizontal direction.

Note that we can check a posteriori whether the term we omitted from (2.84) actually is
negligible. With the extra term included, (2.88a) becomes(

1− iβ sinα

k

)
ω2 = −βg cos2 α, (2.88b)

so the approximation is good provided β � k, that is, if the wavelength is much smaller than
the length-scale over which ρ0 varies.

2.5 Inertial waves in a rotating fluid

Now we examine the possibility of waves in a constant-density fluid rotating with constant
angular velocity Ω. If gravity is neglected then, as shown in section 1, the governing equations
are

∇ · u = 0,
∂u

∂t
+ (u ·∇)u + 2Ω× u + Ω× (Ω× x) = −1

ρ
∇p. (2.89)

This can be simplified by using the identity

Ω× (Ω× x) ≡ −1

2
∇
(
|Ω× x|2

)
, (2.90)

which may easily be proved by taking components. Hence the momentum equation may be
written in the form

∂u

∂t
+ (u ·∇)u + 2Ω× u = −1

ρ
∇P, (2.91)

where the reduced pressure P is defined to be

P = p− ρ

2
|Ω× x|2. (2.92)

We look for small disturbances by linearising about the uniform steady state u = 0,
P = const and find that the perturbations satisfy

∇ · u′ = 0,
∂u′

∂t
+ 2Ω× u′ = −1

ρ
∇P ′. (2.93)

Equation (2.93) describes large-scale flows in the Earth’s atmosphere.3 In steady flow, (2.93)
implies that u′ ·∇P ′ = 0, which explains why the wind is usually parallel to isobars (lines of
constant pressure).

If we now take the curl of (2.93b) and make use of (2.93a) when expanding the vector
triple product, we obtain

∂

∂t
(∇× u′) = 2 (Ω ·∇)u′. (2.94)

3The linearisation is valid provided the Rossby number Ro = U/LΩ is small, where U and L are typical
scales for u and x respectively.
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Applying another time derivative and a curl to (2.94), we obtain

∂2

∂t2
[
∇× (∇× u′)

]
= 2 (Ω ·∇)

∂

∂t
(∇× u′). (2.95)

On the left-hand side, we can now expanding the double curl using the vector identity ∇ ×
(∇ × f) ≡ ∇(∇ · f) − ∇2f , and apply (2.93a) once more. On the right-hand side we can
substitute using (2.94). We obtain

∂2

∂t2

(
∇2u′

)
+ 4

(
Ω ·∇

)2
u′ = 0. (2.96)

Substituting in a plane wave proportional to ei(k·x−ωt), we obtain the dispersion relation

ω2 =
4 (Ω · k)2

|k|2
. (2.97)

Since ω is always real, these waves are always stable. Observe that the frequency depends
only on the direction of k, and not on its magnitude. The highest frequencies are obtained
when the wavevector k is aligned with the rotation axis Ω, and indeed the fastest wavespeeds
are obtained in this direction also.

2.6 Some other wave models

Electromagnetic waves

In free space (where there are no charges or currents) the electric field E and magnetic field
B satisfy Maxwell’s equations

∇ ·E = 0, ∇×E = −µ∂B
∂t

∇ ·B = 0, ∇×B = ε
∂E

∂t
, (2.98)

where ε and µ are positive constants known as the permittivity and permeability respectively.
It is straightforward by cross-differentiation to find that E and B both satisfy the wave
equation

∂2E

∂t2
= c2∇2E,

∂2B

∂t2
= c2∇2B, (2.99)

where c = 1/
√
εµ. Hence free space supports non-dispersive electromagnetic waves moving

at constant speed c, and c represents the speed of light in a vacuum.

Waves on an elastic string or membrane

Consider an elastic string, of mass m per unit length, stretched along the x-axis to a tension
T . Suppose the string undergoes small transverse displacements so that its position at time
t is given by z = w(x, t). It is easy to show that these displacements are governed by the
one-dimensional wave equation

∂2w

∂t2
= c2

∂2w

∂x2
, (2.100a)

with c =
√
T/m. Thus the string transmits non-dispersive waves at constant speed c.
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This theory is easily generalised to describe an elastic membrane stretched to a tension T
across the plane z = 0. Now small transverse displacements satisfy the two-dimensional wave
equation

∂2w

∂t2
= c2

(
∂2w

∂x2
+
∂2w

∂y2

)
, (2.100b)

where c =
√
T/σ and σ is now the mass of the membrane per unit area. Again the wave-speed

c is constant.

Waves on an elastic plate

Unlike a membrane, an elastic plate has a significant bending stiffness B. It can be shown
that small one-dimensional transverse displacements of an unstretched plate satisfy the beam
equation

σ
∂2w

∂t2
+B

∂4w

∂x4
= 0, (2.101)

where σ is the area density as above. The waves governed by (2.101) are dispersive, with the
dispersion relation given by

ω = ±k2
√
B

σ
. (2.102)

For two-dimensional displacements, (2.101) is generalised to

σ
∂2w

∂t2
+B∇4w = 0, (2.103)

where ∇4 = (∇2)2 is the biharmonic operator.

Elastic waves in an isotropic elastic solid

It may be shown that small displacements u of an isotropic elastic medium satisfy the Navier
equation

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u), (2.104)

in which ρ is the density, while λ and µ are called the Lamé constants. (Roughly speaking, λ
measures a material’s resistance to compression and µ its resistance to shear.) It is straight-
forward to show that (2.104) supports two different kinds of waves with different wave-speeds.
First taking the divergence of (2.104), we find that (∇ · u) satisfies the wave equation

∂2(∇ · u)

∂t2
= c2p∇2(∇ · u), (2.105)

where c2p = (λ + 2µ)/ρ. Equation (2.105) describes pressure waves or P-waves moving at
speed cp. On the other hand, taking the curl of (2.104) results in an equation describing
shear waves or S-waves, namely

∂2(∇× u)

∂t2
= c2s∇2(∇× u), (2.106)

where c2s = µ/ρ.
The existence of two different wave speeds explains why, following an underground earth-

quake, two initial shocks are felt at the surface: the P-waves arrive first, followed by the
S-waves.
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Quantum mechanics

A quantum-mechanical particle of mass m, moving in one-dimension under a potential V (x),
is described by the Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ, (2.107)

where ~ is Planck’s constant. The so-called wave function Ψ is related to the probability
density function P (x, t), measuring the probability of finding the particle at position x at
time t, by

P (x, t) = |Ψ(x, t)|2 . (2.108)

In three dimensions, the second-order x-derivative in (2.107) is replaced by ∇2.
With just one t-derivative on the left-hand side, (2.107) does not at first glance resemble

a wave equation at all. However, if we set Ψ = u+ iv and, for simplicity, ignore the potential
V we find that the real and imaginary parts of Ψ satisfy the beam equation (2.101):

∂2u

∂t2
+

(
~

2m

)2 ∂4u

∂x4
=
∂2v

∂t2
+

(
~

2m

)2 ∂4v

∂x4
= 0. (2.109)

Hence (2.107) supports dispersive waves and, if V is constant, the dispersion relation is

ω =
~k2

2m
+
V

~
. (2.110)
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3 Theories for linear waves

3.1 Introduction

In this section we present several methods for analysing linear wave problems. In finite
domains, the well-known technique of separation of variables allows the natural modes and
natural frequencies to be determined. Then any solution may be expressed as a superposition
of such modes. In infinite domains, instead it is more relevant to seek travelling waves
and determine the dispersion relation between their frequency amd wavenumber. Again, an
arbitrary wave motion may then be considered as a superposition of such travelling waves,
and this is clarified by use of the Fourier transform. It is often difficult to invert the Fourier
transforms encountered in practice. Nevertheless, good estimates of the solutions may be
obtained using the method of stationary phase. Alternatively, linear hyperbolic problems
may be solved by the method of characteristics.

Finally, we combine these methods to analyse the flow past a thin wing at sub- and
supersonic speeds.

3.2 Separation of variables

This technique is suitable for solving linear partial differential equations in finite domains. To
apply the method, choose a coordinate system in which the domain boundaries are coordinate
surfaces.

Example 1: acoustic waves in a box

Consider one-dimensional waves in a box of length L, where the two ends x = 0 and x = L
are fixed. Thus the velocity potential φ satisfies the one-dimensional wave equation

∂2φ

∂t2
= c20

∂2φ

∂x2
, (3.1a)

subject to the boundary conditions

∂φ

∂x
= 0 at x = 0, x = L. (3.1b)

We look for a time-periodic solution of the form

φ(x, t) = f(x)e−iωt, (3.2)

where the real part is assumed. This supposes that the gas all oscillates at a single frequency ω,
assume positive without loss of generality; such a motion is called a normal mode. Substitution
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into (3.1) leads to

d2f

dx2
+

(
ω

c0

)2

f = 0,
df

dx
(0) =

df

dx
(L) = 0. (3.3)

This is an eigenvalue problem, which admits nontrivial solutions of the form

f = A cos
(nπx
L

)
, (3.4)

only if ω takes special values, namely

ωn =
nπc0
L

, (3.5)

where n is a positive integer. Equation (3.5) defines a countably infinite set of frequencies at
which the gas may oscillate without forcing, and these are known as the natural or resonant
frequencies of the pipe.

Since the problem (3.1) is linear and homogeneous, the separable solutions found above
may be superimposed. Thus

φ(x, t) =

∞∑
n=1

cos
(nπx
L

){
Bn cos

(
nπc0t

L

)
+ Cn sin

(
nπc0t

L

)}
(3.6)

satisfies (3.1) for any values of the arbitrary constants Bn and Cn. If we impose the initial
conditions

φ = f(x),
∂φ

∂t
= g(x) at t = 0, (3.7)

then the constants may be evaluated using the theory of Fourier series:

Bn =
2

L

∫ L

0
f(x) cos

(nπx
L

)
dx, Cn =

2

nπc0

∫ L

0
g(x) cos

(nπx
L

)
dx. (3.8)

Now, suppose the left-hand end of the box is oscillated, so at time t its position is x =
ae−iωt, where a is small. The left-hand boundary condition for φ is thus modified to

∂φ

∂x
= −iωae−iωt at x = ae−iωt. (3.9a)

As shown in section 2, it is consistent, when linearising for small a and φ, to apply this
boundary conditions on x = 0 rather than x = ae−iωt, that is

∂φ

∂x
= −iωae−iωt at x = 0. (3.9b)

Now, if we seek a separable solution φ(x, t) = f(x)e−iωt, we find that f must satisfy

d2f

dx2
+

(
ω

c0

)2

f = 0,
df

dx
(0) = −iωa,

df

dx
(L) = 0, (3.10)

which is easily solved to give

f = −ic0a cosec

(
ωL

c0

)
cos

(
ω(L− x)

c0

)
. (3.11)
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Notice that the amplitude of f (and hence also of φ) becomes unbounded as ω approaches
one of the natural frequencies ωn. This is the phenomenon of resonance and explains (among
other things) how many musical instruments work: you can create large-amplitude sound
waves by driving a column of air close to one of its resonant frequencies.

If ω is at one of the resonant frequencies, then there is no time-periodic solution for φ.
We can instead look for a so-called secular solution, in which the amplitude grows linearly
with time, by trying

φ(x, t) =
(
f(x) + tg(x)

)
eiωnt. (3.12)

Substitution into the wave equation leads to two differential equations for f and g, whose
solution, subject to the boundary conditions is

f(x) = − iac0
2ωnL

{
2ωn(L− x) sin

(
ωnx

c0

)
− c0 cos

(
ωnx

c0

)}
+A cos

(
ωnx

c0

)
, (3.13a)

g(x) = −ac
2
0

L
cos

(
ωnx

c0

)
, (3.13b)

where A is arbitrary.

In practice, if ω is at or close to one of the resonant frequencies, then the amplitude of
the oscillations eventually becomes so large that our linearisation is no longer valid. The
nonlinear terms that we have neglected become significant and prevent the amplitude from
growing without bound. It is also likely that viscous effects may become important in very
large-amplitude oscillations.

It is straightforward to extend the above analysis to higher dimensions. For example,
normal modes in gas confined to the two-dimensional box {0 < x < L, 0 < y < b} take the
form

φ = ae−iωt cos
(nπx
L

)
cos

(
iπy

b

)
, (3.14)

where n and i are integers. There is thus a doubly-infinite family of natural frequencies, given
by

ω2
n,i = π2c20

(
n2

L2
+
i2

b2

)
. (3.15)

In general, there is an infinite family of normal modes for each spatial dimension in the
problem. For the three-dimensional box {0 < x < L, 0 < y < b, 0 < z < h}, the modes and
corresponding frequencies are

φ = ae−iωt cos
(nπx
L

)
cos

(
iπy

b

)
cos

(
jπz

h

)
, ω2

n,i,j = π2c20

(
n2

L2
+
i2

b2
+
j2

h2

)
, (3.16)

for any integer values of n, i, j.

Example 2: spherical waves

Suppose gas is contained in the annular region a < r < b, where r is the usual spherical polar
coordinate. For spherically symmetric waves, the velocity potential φ(r, t) satisfies

∂2φ

∂t2
= c20∇2φ =

c20
r

∂2

∂r2
(rφ) ,

∂φ

∂r
= 0 on r = a,

∂φ

∂r
= 0 on r = b. (3.17)
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We look for normal modes of the form

φ(r, t) = f(r)e−iωt, (3.18)

so that f must satisfy

d2

dr2
(rf) +

(
ω

c0

)2

(rf) = 0,
df

dr
(a) =

df

dr
(b) = 0. (3.19)

Hence f is given by

f =
A cos (kr) +B sin (kr)

r
, (3.20)

where k = ω/c0, and application of the boundary conditions leads to the following system of
equations for the arbitrary constants A and B:(

cos(ka) + ka sin(ka) sin(ka)− ka cos(ka)
cos(kb) + kb sin(kb) sin(kb)− kb cos(kb)

)(
A
B

)
= 0. (3.21)

For a nontrivial solution to exist, the determinant of the left-hand side must be zero, which
leads to the equation (

1 + k2ab
)

tan
(
k(b− a)

)
= k(b− a). (3.22)

Given a and b, this transcendental equation has a countably infinite set of solutions for k,
each corresponding to a natural frequency.

Example 3: waves in a circle

Consider waves in gas confined to the circle r < a, where r is the plane polar radial coordinate.
The radially-symmetric wave equation reads

∂2φ

∂t2
= c20∇2φ = c20

(
∂2φ

∂r2
+

1

r

∂φ

∂r

)
, (3.23a)

and, assuming the edge r = a is fixed and that φ is bounded as r → 0, we have the boundary
conditions

|φ| <∞ as r → 0,
∂φ

∂r
= 0 at r = a. (3.23b)

We seek normal modes of the form

φ(r, t) = f(r)e−iωt (3.24)

and find that f must satisfy

d2f

dr2
+

1

r

df

dr
+

(
ω

c0

)2

f = 0, |f | <∞ as r → 0,
df

dr
(a) = 0. (3.25a)

If we define ξ = kr, where k = ω/c0, then (3.25a) becomes

ξ2
d2f

dξ2
+ ξ

df

dξ
+ ξ2f = 0, |f | <∞ as ξ → 0,

df

dξ
(ka) = 0. (3.25b)
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Figure 3.1: Plots of the first few Bessel functions Jn(ξ) and Yn(ξ) for n = 0 (solid), n = 1
(dashed), n = 2 (dot-dashed).

This is Bessel’s equation of order zero, and the two linearly independent solutions are denoted
J0(ξ) and Y0(ξ), although only J0(ξ) is bounded as ξ → 0.

We must therefore have f = AJ0(ξ) for some constant A, and the condition at r = a is
satisfied if

ka = ξ0,i (i = 1, 2, . . .), (3.26a)

where ξ0,1 < ξ0,2 < · · · are the extrema of J0(ξ). As indicated in figure 3.1, there are an
infinite number of these and ξ0,i →∞ as i→∞. The natural frequencies of the gas are thus
given by

ωi =
c0ξ0,i
a

(i = 1, 2, . . .). (3.26b)

Next we drop the assumption of radial symmetry and consider waves in a circular pipe
of radius a and length L, with closed ends. In terms of cylindrical polar coordinates (r, θ, z),
the velocity potential φ satisfies

∂2φ

∂t2
= c20∇2φ = c20

(
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
+
∂2φ

∂z2

)
, (3.27a)
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|φ| <∞ as r → 0,
∂φ

∂r
= 0 at r = a,

∂φ

∂z
= 0 at z = 0, L, (3.27b)

plus the condition that φ must be a 2π-periodic function of θ.
It is readily shown that time-periodic separable solutions satisfying the boundary condi-

tions are of the form

φ(r, θ, z, t) = f(r)
(
A cos(nθ) +B sin(nθ)

)
cos

(
jπz

L

)
e−iωt, (3.28)

where n and j are integers. It follows that f satisfies

r2
d2f

dr2
+ r

df

dr
+
(
k2r2 − n2

)
f = 0, |f | <∞ as r → 0,

df

dr
(a) = 0, (3.29a)

where

k2 =
ω2

c20
− j2π2

L2
. (3.29b)

Setting ξ = kr as before, we find that (3.29a) becomes

ξ2
d2f

dξ2
+ ξ

df

dξ
+
(
ξ2 − n2

)
f = 0, |f | <∞ as ξ → 0,

df

dξ
(ka) = 0. (3.29c)

This is Bessel’s equation of order n, whose two linearly dependent solutions are denoted Jn(ξ)
and Yn(ξ); the cases n = 0, 1, 2 are plotted in figure 3.1. For any integer n, Yn(ξ) is singular
as ξ → 0, so we must have f = AJn(ξ) for some constant A, and the condition at r = a is
satisfied if

ka = ξn,i (i = 1, 2, . . .), (3.30)

where ξn,1 < ξn,2 < · · · are the extrema of Jn(ξ). Again, there are an infinite number of these
and ξn,i →∞ as i→∞.

The natural frequencies of the pipe are thus given by

ω2
n,i,j = c20

(
j2π2

L2
+
ξ2n,i
a2

)
, (3.31)

where n, i and j are arbitrary integers, so there is a triply-infinite family of normal modes
that depend on the three spatial coordinates (r, θ, z).

3.3 Travelling waves

On an infinite domain, instead of normal modes, we can look for travelling harmonic waves,
and attempt to determine the dispersion relation between the frequency and the wavenumber.

Example 1: waveguide

Linear waves propagating in the x-direction through gas contained between two rigid walls
at z = 0 and z = h can be described by a velocity potential of the form

φ(x, z, t) = A cos
(nπz
h

)
ei(kx−ωt), (3.32)
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where n is an integer. By substituting this into the wave equation, we find the dispersion
relation

ω2 = c20

(
k2 +

n2π2

h2

)
. (3.33a)

The speed of propagation of waves along the waveguide is thus given by

c2p =
ω2

k2
= c20

(
1 +

n2π2

h2k2

)
. (3.33b)

Whenever n is nonzero, these waves are dispersive, since cp varies with k.

Multidimensional travelling waves

If the dependent variable (say φ) depends on multiple spatial variables, we can look for a
general harmonic travelling wave by setting

φ = ae(ikx+`y+mz−ωt) = aei(k·x−ωt), (3.34)

where
k = (k, `,m)T (3.35)

is the wavenumber vector. The direction of k represents the direction in which the waves
propagate, while the magnitude of k is related to the wavelength λ by |k| = 2π/λ.

The phase velocity of the waves is

cp =
ωk

|k|2
. (3.36)

For nondispersive waves, we would expect the wave speed |cp| to be independent of k, and
we see from (3.36) that this is true if and only if

ω = cp|k|, (3.37)

where cp is constant. If the dispersion relation takes any form other than (3.37), then the
waves are dispersive.

Example 2: internal gravity waves

As shown in section 2, small-amplitude waves in a stratified fluid of ambient density ρ0 = Reβz

are governed by the equation

∂2

∂t2

(
∂2w′

∂x2
+
∂2w′

∂y2
+
∂2w′

∂z2

)
= βg

(
∂2w′

∂x2
+
∂2w′

∂y2
− 1

g

∂3w′

∂z∂t2

)
. (3.38)

If we try a travelling-wave solution of the form

w′ = aei(k·x−ωt), (3.39)

we find that the dispersion relation is

ω2 = −βg(k2 + `2)

|k|2 − iβm
, (3.40)
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and the waves are thus dispersive. Recall that β < 0 for stable stratification. Nevertheless,
there are two complex roots for ω whenever m is nonzero and, since (3.40) is an equation
for ω2, at least one of these roots must have a positive imaginary part. Thus the amplitude
grows exponentially whenever m is nonzero, and the fluid is always unstable to waves in the
z-direction.

3.4 Fourier transform

In section 3.2, we showed that a general flow in a finite domain may be written as a superposi-
tion of normal modes. An initial-value problem may thus be solved by choosing the weightings
of the different modes appropriately. Similarly, the general solution in an infinite domain may
be written as a superposition of harmonic waves, and initial conditions can be imposed by
a suitable choice of the weighting function. Here we show how this can be achieved in some
simple cases using the Fourier transform.

Given a suitable function f , we define the Fourier transform f̂ by

f̂(k) =

∫ ∞
−∞

f(x)e−ikx dx. (3.41)

We will now quote some basic properties of the Fourier transform.

1. Inverse Fourier transform
If we have calculated f̂ , the orginal function f is recovered using

f(x) =
1

2π

∫ ∞
−∞

f̂(k)eikx dk. (3.42a)

2. Convolution theorem
If f̂ can be written as the product of two Fourier transforms that we know, say f̂(k) =
ĝ(k)ĥ(k), then f is the convolution of g and h, that is

f(x) = (g ? h)(x) =

∫ ∞
−∞

g(ξ)h(x− ξ) dξ. (3.42b)

3. Fourier transform of derivatives
The Fourier transform turns x-derivatives into multiples of k, specifically

d̂nf

dxn
= (ik)nf̂ . (3.42c)

Hence ordinary differential equations are transformed into algebraic equations, and par-
tial differential equations into ordinary differential equations.

Stokes waves

We now illustrate the use of the Fourier transform to solve the problem of two-dimensional
Stokes waves on a semi-infinite layer of fluid. The velocity potential φ(x, z, t) and free-surface
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displacement z = η(x, t) satisfy the equations and boundary conditions

∂2φ

∂x2
+
∂2φ

∂z2
= 0 z < 0, (3.43a)

∂φ

∂z
=
∂η

∂t
,

∂φ

∂t
+ gη = 0 z = 0, (3.43b)

φ→ 0 z → −∞. (3.43c)

The problem is closed by specifying the initial displacement and velocity of the free surface.
We suppose the fluid starts from rest with the free surface given by z = η0(x), so that

η = η0(x),
∂η

∂t
= 0 at t = 0. (3.43d)

We take a Fourier transform in x, denoted with ̂ as above, so the problem becomes

∂2φ̂

∂z2
− k2φ̂ = 0 z < 0, (3.44a)

∂φ̂

∂z
=
∂η̂

∂t
,

∂φ̂

∂t
+ gη̂ = 0 z = 0, (3.44b)

φ̂→ 0 z → −∞, (3.44c)

η̂ = η̂0,
∂η̂

∂t
= 0 t = 0. (3.44d)

It follows that
φ̂ = A(k, t)e|k|z, (3.45)

where A satisfies

|k|A =
∂η̂

∂t
,

∂A

∂t
+ gη̂ = 0. (3.46)

Solving these equations and applying the initial conditions, we find that

η̂ = η̂0 cos(ωt), A = −ωη̂0
|k|

sin(ωt), (3.47)

where the frequency ω(k) is given by the dispersion relation

ω(k) =
√
g|k|. (3.48)

The evolution of the free surface is then found by inverting the transform, resulting in

η(x, t) =
1

2π

∫ ∞
−∞

η̂0(k) cos
(
ω(k)t

)
eikx dk. (3.49a)

If the cosine is expanded out, to give

η(x, t) =
1

4π

∫ ∞
−∞

η̂0(k)
(

ei(kx−ωt) + ei(kx+ωt)
)

dk, (3.49b)

it becomes clear that this represents a superposition of waves travelling up- and downstream
with phase speed cp = ω(k)/k.
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If the fluid does not start from rest, say

∂η

∂t
= w0(x) at t = 0, (3.50)

then (3.49b) becomes

η(x, t) =
1

2π

∫ ∞
−∞

(
η̂0(k) cos

(
ω(k)t

)
+
ŵ0(k)

ω(k)
sin
(
ω(k)t

))
eikx dk. (3.51)

This expression may be applied to generalised Stokes waves problems (with, for example,
finite depth or surface tension) by modifying the dispersion relation for ω(k) appropriately.
However, except for very simple dispersion relations, it is difficult to evaluate the inversion
integrals exactly. Instead, we will show below in section 3.5 how the large-time asymptotic
behaviour of the solution may be estimated.

Multidimensional Fourier transform

The methods outlined above can be generalised to higher spatial dimensions. For a function
of three spatial dimensions f(x, y, z), for example, we can define the triple Fourier transform

f̂(k, `,m) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y, z)e−i(kx+`y+mz) dx dy dz. (3.52a)

If we define the wavenumber vector k = (k, `,m)T as before, then a convenient shorthand for
(3.52a) is

f̂(k) =

∫∫∫
R3

f(x)e−i(k·x) dx, (3.52b)

and the inverse transform then reads

f(x) =
1

8π3

∫∫∫
R3

f̂(k)ei(k·x) dk. (3.53)

Consider for example the inertial wave equation (3.38). The triple Fourier transform ŵ of
w′ satisfies (

|k|2 − iβm
) ∂2ŵ
∂t2

= βg
(
k2 + `2

)
ŵ. (3.54)

If, for example, we start with

w′ = w0(x),
∂w′

∂t
= 0 at t = 0, (3.55)

then the appropriate solution of (3.54) is

ŵ = ŵ0(k) cos
(
ω(k)t

)
, (3.56)

where ω(k) is given by the dispersion relation (3.40). The inverse transform thus gives

w′(x, t) =
1

8π3

∫∫∫
R3

ŵ0(k) cos
(
ω(k)t

)
ei(k·x) dk, (3.57a)
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or

w′(x, t) =
1

16π3

∫∫∫
R3

ŵ0(k)
(

ei(k·x+ω(k)t) + ei(k·x−ω(k)t)
)

dk, (3.57b)

which may be identified as a superposition of harmonic waves with wavenumber vector k and
frequency ±ω(k). Now the superposition takes place over all possible vectors k, that is over
all possible wavenumbers and propagation directions.

If ω(k) is complex for any k such that ŵ0(k) is nonzero, then (3.57) implies that w′ grows
exponentially in time and the base state is therefore unstable. From the dispersion relation
(3.40), we see that ω is complex whenever m is nonzero. The perturbation therefore grows
exponentially unless ŵ0(k, `,m) ≡ 0 whenever m 6= 0, which occurs only if w0 is independent
of z. Hence the base state in this case is unstable to all z-dependent perturbations.

3.5 Method of stationary phase

Motivation

In section 3.4, we used a Fourier transform to solve the problem of two-dimensional Stokes
waves on a semi-infinite fluid layer, subject to zero initial velocity and a given free-surface
displacement η0(x) at t = 0. From (3.49b) we see that an observer travelling at speed V , so
that his or her position at time t is x = V t, will observe a free surface displacement

η(V t, t) =
1

4π

∫ ∞
−∞

η̂0(k)ei
(
kV−ω(k)

)
t dk +

1

4π

∫ ∞
−∞

η̂0(k)ei
(
kV+ω(k)

)
t dk, (3.58)

where ω(k) is given by (3.48) or, in general, by some other dispersion relation.
The Fourier integrals in (3.58) are in general difficult to evalute explicitly. To understand

how they behave for large t, we now consider the general case

I(t) =

∫ b

a
f(k)eiψ(k)t dk, (3.59)

where f and ψ are arbitrary functions, known as the amplitude and phase respectively, while
a and b are fixed constants. We will start by illustrating the method for the simple cases
in which ψ is a linear or quadratic function of k. We will apply some ad hoc asymptotic
estimates, but emphasise that these can be made rigorous by using more careful analysis.

Example 1: linear ψ(k)

First consider the simple case where ψ(k) is a linear function of k, that is

ψ(k) = α+ βk (3.60)

for some real constants α and β, so that I(t) takes the form

I(t) = eiαt
∫ b

a
f(k)eiβkt dk. (3.61)

When t is large, eiψ(k)t is a highly oscillatory function. The positive and negative contributions
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Figure 3.2: (a) The real part of f(k)eiψ(k)t plotted versus k with f(k) =
(
1 + (k − 1)2

)−1
,

ψ(k) = 1 + k and t = 10. (b) A close-up of (a) indicating cancellation of the positive and
negative contributions.

to the integral I(t) almost exactly cancel each other out, with the cancellation becoming
perfect in the limit t → ∞. This is shown schematically in figure 3.2 for the case f(k) =(
1 + (k − 1)2

)−1
, ψ(k) = 1 + k and t = 10.

The integral I(t) therefore tends to zero as t → ∞; in particular, the Riemann–Lebesgue
Lemma tells us that

I(t) = O

(
1

βt

)
as t→∞. (3.62)

(To prove (3.62), integrate (3.61) by parts to obtain

I(t)e−iαt =
1

iβt

{[
f(k)eiβkt

]b
a
−
∫ b

a
f ′(k)eiβkt dk

}
. (3.63)

The term in braces may be bounded using the assumed continuity of f ′, resulting in |I(t)| 6
M/(βt) for some constant M .) The result (3.62) also applies in the limit a→ −∞, b→ +∞
provided |f ′(k)| is integrable over this range.
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Figure 3.3: (a) The real part of f(k)eiψ(k)t plotted versus k with f(k) =
(
1 + (k − 1)2

)−1
,

ψ(k) = 1 + k2 and t = 10. (b) A close-up of (a) showing how cancellation of the positive and
negative contributions fails near k = 0.

Example 2: quadratic ψ(k)

Next consider the case where ψ(k) is a quadratic function, say

ψ(k) = α+ γk2, (3.64)

where α and γ are real constants. Note that this ψ(k) has a single extremum which we have
assumed, without loss of generality, to be at k = 0. In figure 3.3 we plot Re{f(k)eiψ(k)t}
versus k for the case f(k) =

(
1 + (k − 1)2

)−1
, ψ(k) = 1 + k2 and t = 10. Again the positive

and negative contributions approximately cancel, with increasing accuracy as |k| increases.
However, near k = 0, where ψ(k) is stationary, the cancellation is relatively poor. For large
t, the behaviour of I(t) is therefore dominated by the contribution from a neighbourhood of
k = 0.

With ψ(k) given by (3.64), I(t) takes the form

I(t) = eiαt
∫ b

a
f(k)eiγk

2t dk, (3.65)

If a and b are both positive, then k is positive throughout the range of integration, so we may
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change integration variable to ` = k2, resulting in

I(t) = eiαt
∫ b2

a2

f
(√

`
)

2
√
`

eiγ`t d`. (3.66)

Since ` is bounded away from zero, the Riemann–Lebesgue Lemma applies and tells us that
I(t) = O (1/γt). By an analogous argument, we also have I(t) = O (1/γt) if a and b are both
negative.

If a < 0 < b, then our integration region includes the origin, so the change of variable that
gives rise to (3.66) is invalid. However, as shown schematically in figure 3.3, we expect the
main contribution to I(t) to come from a neighbourhood of k = 0, so we split up the range
of integration as follows:

I(t)e−iαt =

∫ −ε
a

f(k)eiγk
2t dk +

∫ b

ε
f(k)eiγk

2t dk +

∫ ε

−ε
f(k)eiγk

2t dk, (3.67a)

where ε is a fixed small constant. The Riemann–Lebesgue Lemma applies to the first two
integrals, leaving us with

I(t)e−iαt =

∫ ε

−ε
f(k)eiγk

2t dk + O

(
1

γt

)
. (3.67b)

If ε is sufficiently small then, to leading order, we may replace f(k) with f(0). Supposing for
the moment that γ is positive, the change of variable s = k

√
γt thus leads to

I(t)e−iαt ∼ 1√
γt

∫ ε
√
γt

−ε
√
γt
f(0)eis

2
ds+ O

(
1

γt

)
. (3.67c)

A straightforward contour integral shows that∫ R

−R
eis

2
ds→ (1 + i)

√
π

2
+ O

(
1

R

)
(3.68)

as R→∞. We therefore deduce from (3.67c) that the leading-order behaviour of I(t) is

I(t) ∼ (1 + i)eiαtf(0)

√
π

2γt
+ O

(
1

γt

)
as t→∞. (3.69)

This establishes mathematically what is illustrated schematically in figure 3.3. With ψ(k)
given by (3.64), the cancellation in the integrand of I(t) is poor near k = 0, and I(t) therefore
converges to zero less rapidly than it does when ψ(k) is linear. Furthermore, the large-time
behaviour of I(t) is dominated by the behaviour of the integrand near k = 0; hence only f(0)
appears in (3.69).

Recall that (3.67c) was obtained under the assumption that γ is positive. For negative γ,
the change of variable s = k

√
−γt leads to

I(t) ∼ eiαt√
−γt

∫ ε
√
−γt

−ε
√
−γt

f(0)e−is
2

ds+ O

(
1

γt

)
, (3.70)

and the result ∫ R

−R
e−is

2
ds→ (1− i)

√
π

2
+ O

(
1

R

)
as R→∞, (3.71)
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which is an obvious corollary of (3.68), then leads to

I(t) ∼ (1− i)eiαtf(0)

√
π

−2γt
+ O

(
1

γt

)
as t→∞. (3.72a)

We can combine (3.69) and (3.72a) into the handy form

I(t) ∼ f(0)ei(αt±π/4)
√

π

|γ|t
(3.72b)

as t→∞, where the ± corresponds to the sign of γ.

The general case

Now we generalise the analysis given above to arbitrary exponents ψ(k). We will assume only
that ψ is real-valued and twice continuously differentiable.

First suppose that ψ′(k) is nowhere zero on [a, b] and hence is either uniformly positive or
uniformly negative. It follows that ψ(k) is strictly monotonic on [a, b], so we can invert the
one-to-one relation between k and ψ(k) to write

k = κ(ψ). (3.73)

Thus I(t) may be written as

I(t) =

∫ b

a
f(k)eiψ(k)t dk =

∫ ψ(b)

ψ(a)
f
(
κ(ψ)

)
eiψtκ′(ψ) dψ, (3.74)

and the Riemann–Lebesgue Lemma implies that I(t) = O (1/t).
Next suppose that ψ′(k) has a simple zero at just one point k∗ ∈ [a, b]. We divide up the

integration range as follows:

I(t) =

∫ k∗−ε

a
f(k)eiψ(k)t dk +

∫ b

k∗+ε
f(k)eiψ(k)t dk +

∫ k∗+ε

k∗−ε
f(k)eiψ(k)t dk, (3.75)

where ε is a fixed small constant. Since ψ is monotonic over each of the intervals [a, k∗ − ε]
and [k∗ + ε, b], the first two integrals in (3.75) are O (1/t), by the argument given above. In
the final integral, we use the smallness of ε to approximate f and ψ near k = k∗ as

f(k) ∼ f(k∗), ψ(k) ∼ ψ(k∗) +
ψ′′(k∗)

2
(k − k∗)2, (3.76)

since ψ′(k∗) = 0. Thus (3.75) becomes

I(t) ∼
∫ k∗+ε

k∗−ε
f(k∗)e

iψ(k∗)t exp

(
itψ′′(k∗)

2
(k − k∗)2

)
dk + O

(
1

t

)
(3.77)

and, if ψ′′(k∗) is positive, the change of variable

k = k∗ + s

√
2

tψ′′(k∗)
(3.78)
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leads to

I(t) ∼ f(k∗)e
iψ(k∗)t

√
2

ψ′′(k∗)t

∫ ε
√
ψ′′(k∗)t/2

−ε
√
ψ′′(k∗)t/2

eis
2

ds+ O

(
1

t

)
. (3.79)

Application of (3.68) thus leads to the estimate

I(t) ∼ (1 + i)f(k∗)e
iψ(k∗)t

√
π

ψ′′(k∗)t
+ O

(
1

t

)
(3.80)

as t→∞. An analogous argument may also be applied for the case where ψ′′(k∗) is negative,
and leads to the general result

I(t) ∼ f(k∗)e
i
(
ψ(k∗)t±π/4

)√
2π

|ψ′′(k∗)| t
(3.81)

as t→∞, where the ± takes the sign of ψ′′(k∗). In either case, we see that I(t) = O
(
1/
√
t
)

rather than O (1/t), and that the dominant contribution to I(t) comes from a neighbourhood
of k = k∗. Recall that this is where the phase ψ(k) is stationary, and the asymptotic procedure
leading to (3.81) is therefore known as the method of stationary phase.

If ψ′(k) has multiple zeros, then each may be considered in isolation by employing a domain
decomposition analogous to (3.75). Hence the leading-order behaviour of I(t) is simply the
sum of all the contributions of the form (3.81) due to each point where ψ is stationary. It is
also worth noting that, in deriving (3.81), we have assumed that ψ′′(k∗) is nonzero. We will
not bother here to spell out the generalised versions of (3.81) that apply to higher-order zeros
of ψ′(k).

Group velocity

Now we are in a position to apply the estimate (3.81) to (3.58), which we write as

η(V t, t) = I+(t) + I−(t), where I±(t) =
1

4π

∫ ∞
−∞

η̂0(k)ei
(
kV∓ω(k)

)
t dk. (3.82)

Each integral I±(t) is of the required form (3.59), with

a = −∞, b =∞, f(k) =
η̂0(k)

4π
, ψ(k) = V k ∓ ω(k). (3.83)

The method of stationary phase tells us that the main contribution to η comes from wavenum-
bers k = k∗ where ψ is stationary, that is

ψ′(k∗) = V ∓ ω′(k∗) = 0. (3.84)

Thus an observer travelling at speed V will see waves of wavenumber k∗ satisfying (3.84). In
other words, waves with wavenumber k travel at speed V = ±cg(k), where

cg(k) =
dw

dk
(3.85)

is called the group velocity.
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Figure 3.4: Schematic of a moving wave packet with (a) cg < cp, (b) cg > cp. One wave crest
is highlighted to illustrate how it moves relative to the packet.

Notice that cg(k) is different from the phase velocity cp(k) = ω/k unless ω/k is constant,
which occurs only for non-dispersive waves. At first glance, it might seem paradoxical that
waves can travel at a group velocity different from their phase velocity. The explanation is
that, after a long time, dispersive waves separate into wave packets corresponding to different
wavenumbers. Within each wave packet, the waves move at speed cp, but the packet as a
whole moves at speed cg.

This phenomenon is illustrated in figure 3.4 for a single wave packet travelling from left
to right at speed cg. The wave crests in the packet move with speed cp so, if cg < cp then,
as indicated in figure 3.4(a), the wave crests move through the packet, seeming to appear at
the back and disappear at the front. This behaviour can be observed in the radiating ripples
caused by throwing a stone into a pond. On the other hand, if the group velocity is greater
than the phase velocity then the wave crests move more slowly than the wave packet, as
shown in figure 3.4(b). This can sometimes be observed in very small ripples, which appear
to move backwards relative to a radiating wave packet.

For gravity waves on deep water, the dispersion relation is

ω(k) =
√
g|k|, (3.86a)

so the phase and group velocities are given by

cp =

√
g|k|
k

, cg =

√
g|k|
2k

. (3.86b)

We therefore always have |cg| < |cp| in this case, that is the situation depicted in figure 3.4(a).

If surface tension γ is included then it may be shown, as in section 2, that the dispersion
relation (3.86a) is modified to

ω(k) =

√
g|k|

(
1 +

γk2

ρg

)
. (3.87)
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It is straightforward to determine the group and phase velocities and hence show that

cg
cp

=
3

2
−
(

1 +
γk2

ρg

)−1
. (3.88)

It follows that |cg| < |cp| when |k| < kc and |cg| > |cp| when |k| > kc, where the critical
wavenumber kc is given by

kc =

√
ρg

γ
. (3.89a)

This corresponds to a critical wavelength

λc =
2π

kc
= 2π

√
γ

ρg
, (3.89b)

known as the capillary length. Thus waves shorter than λc travel backwards relative to
their wavepackets, like those depicted in figure 3.4(b). For water, ρ ≈ 1000 kg m−3 and
γ ≈ 0.07 N m−1, so the capillary length is about 1.7 cm.

Example: localised disturbance

For the two Fourier integrals I±(t) defined by (3.82), the phase and its derivatives are given
by

ψ(k) = kV ∓
√
g|k|, ψ′(k) = V ∓

√
g|k|
2k

, ψ′′(k) = ±
√
g|k|

4k2
. (3.90)

Hence, at the critical wavenumber k∗ where ψ is stationary, we have

k∗ = ± g

4V 2
, ψ(k∗) = ∓ g

4V
, ψ′′(k∗) = ±2V 3

g
. (3.91)

Assuming that V is positive, this means that critical wavenumber is positive for I+ and
negative for I−. By applying the estimate (3.81) to each integral I±(t), we thus obtain the
following asymptotic approximation for the free surface displacement:

η(V t, t) ∼ 1

4

√
g

πV 3t

{
η̂0

( g

4V 2

)
ei(π/4−gt/4V ) + η̂0

(
− g

4V 2

)
ei(gt/4V−π/4)

}
. (3.92)

To make further progress, we need to specify the initial displacement η0(x) so that we can
determine its Fourier transform η̂0(k). Here we consider the example

η0(x) =
εa

π (ε2 + x2)
, (3.93)

which represents a localised initial disturbance near x = 0 and might model, for example, the
ripples caused by throwing a stone into a pond. If ε is small, then η0(x) is approximately zero
except near x = 0. Nevertheless, η0 has constant area, that is∫ ∞

−∞
η0(x) dx ≡ a, (3.94)
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Figure 3.5: Free surface displacement η(x, t) given by (3.97) versus x with

η0(x) = −
(
π(1 + x2)

)−1
and t

√
g = 50. The dashed line shows the asymptotic approxi-

mation (3.96).

whatever the value of ε. Hence, as ε is reduced towards zero, η0 is concentrated in a vanishingly
small neighbourhood, of size O (ε), near x = 0.1

The Fourier transform of η0(x) is readily found by contour integration to be

η̂0(k) = ae−ε|k|, (3.95)

so (3.92) becomes

η(V t, t) ∼ a

2

√
g

πV 3t
e−εg/4V

2
cos

(
gt

4V
− π

4

)
(3.96a)

or, substituting V = x/t,

η(x, t) ∼ at

2

√
g

πx3
e−εgt

2/4x2 cos

(
gt2

4x
− π

4

)
. (3.96b)

When η0 is given by (3.93), the inverse Fourier transform for η may be calculated exactly
and written in the form

η(x, t) = η0(x)−
t
√
g

2
√
π

Re

{
1

(1− ix)3/2
exp

(
− t2g

4(1− ix)

)
erfi

(
t
√
g

2
√

1− ix

)}
(3.97)

where erfi is the so-called imaginary error function, and we have chosen a = −1, ε = 1 for
simplicity. In figure 3.5, we compare this exact solution with our asymptotic approximation
(3.96) when t

√
g = 50, showing excellent agreement.

If
x

t
= V �

√
εg

2
, (3.98)

then (3.96) may be simplified further by approximating the exponential, so that

η(x, t) ∼ at

2

√
g

πx3
cos

(
gt2

4x
− π

4

)
. (3.99)

1In the limit ε→, η0(x) approaches aδ(x), where δ is the so-called Dirac delta-function, which is defined to
be zero for all nonzero x but to have unit area.
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It may be shown that this is the universal behaviour of η far from an initial localised distur-
bance.

3.6 Method of characteristics

As shown in section 2, acoustic waves in one dimension satisfy the wave equation

∂2φ

∂t2
− c20

∂2φ

∂x2
= 0, (3.100)

which can be written in the form(
∂

∂t
+ c0

∂

∂x

)(
∂φ

∂t
− c0

∂φ

∂x

)
= 0. (3.101)

Hence, if we write

Φ =
∂φ

∂t
− c0

∂φ

∂x
, (3.102)

then we have
∂Φ

∂t
+ c0

∂Φ

∂x
= 0, (3.103a)

which implies that
dΦ

dt
= 0 when

dx

dt
= c0. (3.103b)

It follows that Φ is constant on the straight lines x − c0t = const, so that Φ must be
a function only of (x − c0t). By an analogous argument, with the differential operators in
(3.101) swapped, we find that(

∂φ

∂t
± c0

∂φ

∂x

)
= const when (x± c0t) = const. (3.104)

The straight lines x ± c0t = const are the characteristics of the partial differential equation
(3.100). It is straightforward (e.g. by changing variables to ξ = x + c0t and η = x − c0t) to
show that the general solution of (3.100) is

φ(x, t) = f(x− c0t) + g(x+ c0t), (3.105)

where the scalar functions f and g are arbitrary. If, for example, we impose the initial
conditions

φ = φ0(x),
∂φ

∂t
= v0(x) at t = 0, (3.106)

then f and g are readily determined, resulting in the so-called D’Alembert solution:

φ(x, t) =
1

2

(
φ0(x− c0t) + φ0(x+ c0t)

)
+

1

2c0

∫ x+c0t

x−c0t
v0(s) ds. (3.107)

For a general second-order linear partial differential equation of the form

A
∂2φ

∂t2
+ 2B

∂2φ

∂x∂t
+ C

∂2φ

∂x2
= f, (3.108)



B5.4 Waves & compressible flow 53

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � � x

y
U

y = f+(x)

y = f−(x)

a−a

Figure 3.6: Schematic of a thing wing with upper and lower surfaces given by y = f±(x).

where f may in general depend on φ, ∂φ/∂x and ∂φ/∂t, the characteristics are curves whose
slopes are given by

dx

dt
= λ, where Aλ2 − 2Bλ+ C = 0. (3.109)

The equation is hyperbolic if these slopes are real and distinct, that is, if B2 > AC.
In the simple case where A, B and C are constant and f is zero, (3.108) may be written

as

A

(
∂

∂t
+ λ1

∂

∂x

)(
∂φ

∂t
+ λ2

∂φ

∂x

)
= 0, (3.110a)

where λk (k = 1, 2) are the roots of (3.109). We thus deduce (provided A is nonzero) that(
∂φ

∂t
+ λi

∂φ

∂x

)
= const when x− λjt = const, (3.110b)

where i 6= j ∈ {1, 2}, and the general solution of (3.108) is then

φ(x, t) = f(x− λ1t) + g(x− λ2t). (3.111)

3.7 Flow past a thin wing

Equations and boundary conditons

Now we consider two-dimensional flow at speed U past a thin wing. As illustrated in figure 3.6,
the wing is assumed to lie along the x-axis between x = −a and x = a, with upper and lower
surfaces given by y = f+(x) and y = f−(x) respectively. Since the wing is supposed to be thin,
the flow is only slightly disturbed from a uniform velocity u = U êx. As shown in section 2,
the disturbance potential therefore satisfies

(
1−M2

) ∂2φ
∂x2

+
∂2φ

∂y2
= 0, (3.112a)

where M = U/c0 is the Mach number as before. The normal velocity on the wing must be
zero, which leads, after linearisation, to the boundary conditions

∂φ

∂y
= U

df±
dx

on y = 0±, |x| < a. (3.112b)
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Elsewhere on y = 0, both the normal velocity v = ∂φ/∂y and the pressure are continuous, so
the boundary conditions are[

∂φ

∂x

]+
−

=

[
∂φ

∂y

]+
−

= 0 on y = 0, |x| > a. (3.112c)

The character of the solution to (3.112a), in particular the appropriate far field condition to
apply to φ, depends crucially on whether the flow is subsonic (M < 1) or supersonic (M > 1).
We consider each case in turn below.

Once φ has been determined, the pressure perturbation is given by the linearised Bernoulli
equation:

p′ = −ρ0U
∂φ

∂x
. (3.113)

Hence we can calculate the lift L experienced by the wing as

L =

∫ a

−a
−
[
p′
]+
− dx = ρ0U

∫ a

−a

[
∂φ

∂x

]+
−

dx. (3.114a)

Without loss of generality, we suppose that φ is continuous across y = 0 ahead of the wing,
that is [φ]+− is zero at x = −a. Then the lift reduces to

L = −ρ0UΓ, where Γ = φ(a, 0−)− φ(a, 0+) (3.114b)

is the circulation around the wing. This reproduces Kutta–Joukowski Lift Theorem, which is
well known for incompressible flow past an aerofoil. In particular, if the circulation is zero,
then the wing experiences no force at all, which is D’Alembert’s Paradox.

Subsonic flow

If M < 1, the partial differential equation (3.112a) is elliptic, and requires a condition on φ
to be imposed at infinity. We assume that the disturbance flow decays to zero far from the
wing, that is

∇φ→ 0 as |x| → ∞. (3.115)

Now, (3.112a) can be transformed into Laplace’s equation by defining

Y = βy, Φ = βφ, where β =
√

1−M2. (3.116)

Thus Φ(x, Y ) satisfies

∂2Φ

∂x2
+
∂2Φ

∂Y 2
= 0, (3.117a)

∂Φ

∂Y
= U

df±
dx

Y = 0±, |x| < a, (3.117b)[
∂Φ

∂x

]+
−

=

[
∂Φ

∂Y

]+
−

= 0 Y = 0, |x| > a, (3.117c)

∂Φ

∂x
,
∂Φ

∂Y
→ 0 x2 + Y 2 →∞, (3.117d)
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which is identical to the problem of incompressible flow past the same wing. Thus, if we can
calculate the incompressible potential Φi(x, Y ), then the corresponding compressible potential
is

φ(x, y) =
1√

1−M2
Φi

(
x, y
√

1−M2
)
. (3.118)

Notice that the disturbance flow grows in amplitude as the Mach number approaches 1, even-
tually invalidating our linearisation. This explains why the force experienced by an aerofoil
increases dramatically as it approaches the speed of sound, which caused great difficulties for
early attempts to break the “sound barrier”.

The solution of (3.117) is particularly simple if f−(x) ≡ −f+(x), i.e. if the wing is sym-
metric. If so, then we can look for a solution that is symmetric about Y = 0 and replace
(3.117) with

∂2Φ

∂x2
+
∂2Φ

∂Y 2
= 0 Y > 0, (3.119a)

∂Φ

∂Y
= Uη(x) Y = 0, (3.119b)

∂Φ

∂x
,
∂Φ

∂Y
→ 0 x2 + Y 2 →∞, (3.119c)

where

η(x) =


df+
dx

|x| < a,

0 |x| > a.
(3.120)

This problem can be solved by taking a Fourier transform in x. The Fourier transform of
∂Φ/∂Y is easily found to be

∂Φ̂

∂Y
= Uη̂e−|k|Y (3.121)

so, by the convolution theorem,

∂Φ

∂Y
= Uη ? g, where ĝ = e−|k|Y . (3.122)

By inverting ĝ, we obtain

g(x, Y ) =
Y

π(x2 + Y 2)
(3.123)

and hence
∂Φ

∂Y
= U

∫ ∞
−∞

η(ξ)g(x− ξ, Y ) dξ =
U

π

∫ a

−a

Y f ′+(ξ) dξ

(x− ξ)2 + Y 2
. (3.124)

Finally, we integrate both sides with respect to Y , using the condition (3.119c) to obtain (up
to an arbitrary constant)

Φ =
U

2π

∫ a

−a
log
(
(x− ξ)2 + Y 2

)
f ′+(ξ) dξ. (3.125)

Thus the wing is represented by a distribution of sources along the x-axis. For an asymmetric
wing with f− 6= f+, (3.125) must be generalised to include also a distribution of vortices.
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Figure 3.7: Schematic of the characteristics for supersonic flow past a thin wing.

Supersonic flow

For the case M > 1, (3.112a) is hyperbolic and its general solution may be written as

φ(x, y) = F (x−By) +G(x+By), where B =
√
M2 − 1. (3.126)

Notice that F (x−By) and G(x+By) are constant on the characteristics x−By = const and
x + By = const respectively. Instead of the far field condition (3.115), we now impose the
condition of causality, namely that causes must occur before effects. With the flow passing
the wing from left to right, information therefore travels along the characteristics from left to
right, as indicated by the arrows in figure 3.7.

We suppose that the flow upstream of the wing is undisturbed, that is

φ→ 0 as x→ −∞. (3.127)

If follows that F = C and G = −C, where C is a constant, along each of the characteristics
that enter from x = −∞. Thus φ is zero throughout the regions marked (1) and (4) in
figure 3.7. Equally, in regions (3) and (6) we see that the characteristics coming from x = −∞
without intersecting the wing force each of F and G to be constant, so that φ = C1 say in
region (3) and φ = C2 say in region (6), where C1 and C2 are constants. Thus there are
zones of silence in which ∇φ = 0 both ahead of the wing and behind it, and the flow is only
affected by the presence of the wing in the regions of influence (2) and (5).

First consider region (2). The characteristics x+By = const entering from x = −∞ imply
that G = −C, and the condition (3.112b) on y = 0+ then leads to

−BF ′(x) = Uf ′+(x). (3.128)

The potential in region (2) is thus given by

φ+(x, y) = −U
B

(
f+(x−By)− f+(−a)

)
, (3.129a)
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where we have subtracted an appropriate constant to make φ continuous between regions (1)
and (2). By a similar argument, the potential in region (5) is

φ−(x, y) =
U

B

(
f−(x+By)− f−(−a)

)
. (3.129b)

Imposing continuity of φ across the boundary of regions (2) and (3) gives φ = C1 =
−U
(
f+(a)−f+(−a)

)
/B in region (3). Similarly, imposing continuity of φ across the boundary

of regions (5) and (6) gives φ = C2 = U
(
f−(a) − f−(−a)

)
/B in region (6). The resulting

jump in the potential across the boundary of regions (3) and (6), i.e. across the wake, is equal
to the circulation Γ = φ(a, 0−)− φ(a, 0+) = C2 − C1.

Finally, we can substitute (3.129) into (3.114) to calculate the lift on the wing. Assuming
the wing is smooth at either end, we can set

f+(−a) = f−(−a) = 0 (without loss of generality) and f+(a) = f−(a) = λ, (3.130)

so that λ represents the difference between the heights of the two ends. Since the circulation
Γ = C2 − C1 = 2λU/B, the lift is found to be

L = − 2ρ0λU
2

√
M2 − 1

. (3.131)

Thus the lift is positive if the rear of the wing is lower than the front, and zero if they are at
the same height (as in figure 3.6 for example). Note again that the force experienced by the
wing becomes large as the Mach number approaches 1.
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4 Nonlinear waves

4.1 Introduction

In this section we present some nonlinear models for wave propagation, concentrating on two
particular examples. The first is one-dimensional gas dynamics, which may be applied to the
motion of gas in a tube. The second is shallow water theory, which describes tidal waves and
long waves in rivers and canals. We will show that both problems may be modelled using the
same system of partial differential equations.

Since these equations are nonlinear, none of the techniques presented in section 3 can be
used to solve them. However, we show that certain quantities, known as Riemann invariants,
are conserved along curves known as characteristics. This allows us to infer the solution in
simple situations, such as the flow caused by the motion of a piston in a tube or due to a dam
break.

We find that the solutions may become multivalued, so that (e.g.) the velocity appears to
take two distinct values at a single position and time. This is a generic property of nonlinear
hyperbolic partial differential equations, and a single-valued solution may be obtained by
introducing shock waves, which will be discussed in section 5.

4.2 One-dimensional gas dynamics

Governing equations

Consider an inviscid fluid, for example gas in a tube, flowing in just one space dimension x
and time t. If the body force is negligible, the velocity u = u(x, t)êx, density ρ(x, t) and
pressure p(x, t) satisfy the one-dimensional Euler equations

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (4.1a)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
. (4.1b)

Assuming the flow is homentropic (as shown in section 1, this is true if the entropy is initially
uniform), we also have the equation of state

p

ργ
= const =

p0
ργ0
. (4.2)

If we define the speed of sound c by

c2 =
dp

dρ
=
γp0ρ

γ−1

ργ0
, (4.3)
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then both ρ and p may be expressed in terms of c:

ρ =

(
ργ0
γp0

)1/(γ−1)
c2/(γ−1), p =

(
ργ0
γp0

)1/(γ−1)
c2γ/(γ−1)

γ
. (4.4)

Hence (4.1) may be turned into a system of two equations for u and c, namely

2

γ − 1

(
∂c

∂t
+ u

∂c

∂x

)
+ c

∂u

∂x
= 0, (4.5a)

∂u

∂t
+ u

∂u

∂x
+

2c

γ − 1

∂c

∂x
= 0. (4.5b)

By adding and subtracting (4.5a) and (4.5b), we obtain

∂

∂t

(
u+

2c

γ − 1

)
+ (u+ c)

∂

∂x

(
u+

2c

γ − 1

)
= 0, (4.6a)

∂

∂t

(
u− 2c

γ − 1

)
+ (u− c) ∂

∂x

(
u− 2c

γ − 1

)
= 0, (4.6b)

which can be combined to give(
∂

∂t
+ (u± c) ∂

∂x

)(
u± 2c

γ − 1

)
= 0. (4.7)

If we define the characteristics as curves in the (x, t) plane satisfying dx/dt = u ± c, then
(4.7) becomes

d

dt

(
u± 2c

γ − 1

)
= 0. (4.8)

Hence

u± 2c

γ − 1
is constant on curves satisfying

dx

dt
= u± c. (4.9)

The quantities u ± 2c/(γ − 1) which are conserved along characteristics are known as
Riemann invariants. Although it is not possible to write down the general solution of (4.7),
we can use the property (4.9) to infer the solution in simple cases, as we now illustrate.

Example: flow due to a piston

Suppose that gas occupying the half-space x > 0 starts at rest with c = c0. Then a piston,
starting at x = 0, is withdrawn such that its position at time t is x = s(t), where s(0) = 0
and ṡ(t) < 0 for t > 0, using ṡ as shorthand for ds/dt. To model this situation, we apply the
boundary and initial conditions

u = 0, c = c0 at t = 0, u = ṡ(t) at x = s(t). (4.10)

The solution is best understood by sketching the (x, t) plane, as shown in figure 4.1, in which
the characteristics are represented by dashed lines.

First consider the region penetrated by both families of characteristics starting from t = 0.
On the positive characteristics ẋ = u+ c, u+ 2c/(γ − 1) is conserved and therefore equal to
its value at t = 0, that is

u+
2c

γ − 1
=

2c0
γ − 1

. (4.11a)
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t

x = s(t)

x = c0t

x
u = 0, c = c0

Figure 4.1: Sketch of the (x, t) plane for the piston withdrawal problem. The piston position
is x = s(t) and the characteristics are shown as dashed lines.

Similarly, on the negative characteristics ẋ = u− c, we have

u− 2c

γ − 1
= − 2c0

γ − 1
. (4.11b)

It follows from (4.11) that we must have u ≡ 0 and c ≡ c0 wherever both sets of characteristics
started from t = 0, x > 0. The characteristics in this region are thus given by ẋ = ±c0, from
which we can deduce that the region is bounded by the characteristic x = c0t and hence

u = 0, c = c0 in x > c0t. (4.12)

In x < c0t, we still have negative characteristics that started from t = 0, so the identity
(4.11b) still holds. The positive characteristics, though, start from the piston x = s(t), so we
cannot use (4.11a). However, we know that u + 2c/(γ − 1) is conserved along each positive
characteristic and, since u and c are also related by (4.11b), it follows that both u and c are
constant along each positive characteristic (but different constants on each one). It follows
that each positive characteristic has a constant slope u + c and, hence, that the positive
characteristics are straight lines.

We can use these observations to construct the solution in x < c0t as follows. Consider
the positive characteristic that starts at the point t = τ , x = s(τ) on the piston. Since it is a
straight line, it must have an equation of the form

x = s(τ) +A(τ)
(
t− τ

)
, (4.13)

for some A(τ). On each such characteristics, u is constant and thus equal to its value ṡ(τ) at
the piston, and c may then be inferred from (4.11b). Finally, by using the fact that the slope
of the positive characteristics is A = u + c, we end up with the solution in the parametric
form

u = ṡ(τ), c = c0 +

(
γ − 1

2

)
ṡ(τ), x = s(τ) +

{
c0 +

(
γ + 1

2

)
ṡ(τ)

}
(t− τ). (4.14)



62 Mathematical Institute University of Oxford

x = c0t

x
u = 0, c = c0

x = −Ut

t
x =

(
c0 − (γ + 1)U/2

)
t

Figure 4.2: Sketch of the (x, t) plane for the piston withdrawal problem with s(t) = −Ut.

Recall that c is proportional to ρ(γ−1)/2 which must be nonnegative. We therefore deduce
from (4.14) the inequality

− ṡ(τ) 6
2c0
γ − 1

. (4.15)

If the withdrawal speed is ever faster than this, then the piston leaves the gas behind, and
there is a region of vacuum near the piston. Suppose, for example, that the piston accelerates
such that (4.15) is satisfied only until τ = τc. If so, then (4.14) holds for τ 6 τc, and is
replaced by c = 0 when τ > τc.

Expansion fans

Only if the piston position s(t) takes a particularly simple form is it possible to eliminate τ
from (4.14) and thus obtain u and c explicitly. For example, suppose the piston is withdrawn
at constant speed U , so that s = −Ut and (4.14) becomes

u = −U, c = c0 −
(
γ − 1

2

)
U, x = −Uτ +

{
c0 −

(
γ + 1

2

)
U

}
(t− τ). (4.16)

In this case we therefore find that u and c are both constant. Notice, though, that this
solution is only valid in the region penetrated by positive characteristics starting from the
piston. The first of these is at τ = 0, so (4.16) tells us that

u = −U, c = c0 −
(
γ − 1

2

)
U in x <

{
c0 −

(
γ + 1

2

)
U

}
t. (4.17)

We also have the solution u = 0 and c = c0 in x > c0t, but there is a region between not
penetrated by any positive characteristics either from the piston or from t = 0. The negative
characteristics mean that (4.11b) is still satisfied in this region, and it follows as before that
the positive characteristics are straight lines, along each of which both u and c are conserved.
The only way to avoid them crossing x = c0t or x =

(
c0− (γ+ 1)U/2

)
t, either of which would

lead to a contradiction, the positive characteristics must be straight lines through the origin,
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as shown in figure 4.2. This structure, with the characteristics radiating out from the origin,
is known as an expansion fan.

Since the positive characteristics have slope ẋ = u+ c, their equation must be

x/t = u+ c. (4.18)

From this and (4.11b), we obtain both u and c in the fan region, namely

u =
2(x/t− c0)
γ + 1

, c =
2c0 + (γ − 1)x/t

γ + 1
. (4.19)

In summary, then, the solution for a piston being withdrawn at constant speed is

u =



−U −U <
x

t
< c0 −

(γ + 1)U

2
,

2

γ + 1

(x
t
− c0

)
c0 −

(γ + 1)U

2
<
x

t
< c0,

0
x

t
> c0,

(4.20a)

c =



c0 −
(γ − 1)U

2
−U <

x

t
< c0 −

(γ + 1)U

2
,

1

γ + 1

(
2c0 + (γ − 1)

x

t

)
c0 −

(γ + 1)U

2
<
x

t
< c0,

c0
x

t
> c0.

(4.20b)

If U > 2c0/(γ − 1), then (4.20) can no longer be valid since it gives a negative value of c.
In this case, the expansion fan stops where c reaches zero and there is a vacuum thereafter,
so (4.20) is modified to

u =



undefined −U <
x

t
< − 2c0

γ − 1
,

2

γ + 1

(x
t
− c0

)
− 2c0
γ − 1

<
x

t
< c0,

0
x

t
> c0,

(4.21a)

c =



0 −U <
x

t
< − 2c0

γ − 1
,

1

γ + 1

(
2c0 + (γ − 1)

x

t

)
− 2c0
γ − 1

<
x

t
< c0,

c0
x

t
> c0.

(4.21b)

Here the gas expands freely, and the velocity of the piston no longer affects the solution.

Simple waves

In all the cases analysed above, it is the fact that the Riemann invariant u − 2c/(γ − 1) is
constant throughout the fluid that enables us to make analytical progress. Solutions in which
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one of the Riemann invariants is constant are called simple waves. The known Riemann
invariant allows us to eliminate one unknown and thus obtain a first-order partial differential
equation in just one variable. Here, if we use (4.11b) to write

c = c0 +

(
γ − 1

2

)
u (4.22)

and substitute this expression for c into (4.6a), we obtain

∂u

∂t
+

(
c0 +

(γ + 1)u

2

)
∂u

∂x
= 0. (4.23)

This can be solved using the standard method of characteristics for first-order quasilinear
partial differential equations. The characteristic equations are

dx

dt
= c0 +

(γ + 1)u

2
,

du

dt
= 0, (4.24)

which can be integrated to give

x−
(
c0 +

(γ + 1)u

2

)
t = const, u = const. (4.25)

It follows that the general solution for u is

u = f

(
x− c0t−

(γ + 1)ut

2

)
, (4.26)

where f is an arbitrary function. All the solutions obtained above correspond to particular
choices of the function f .

4.3 Shallow water theory

Governing equations

Shallow water theory is an approximate model describing long waves on a thin layer of fluid.
We will derive the governing equations using ad hoc approximations, although they can also
be obtained by systematic asymptotic methods.

Consider a layer of incompressible fluid flowing in two dimensions between a rigid base
z = 0 and a free surface z = h(x, t). If the velocity field is u = u(x, z, t)êx + w(x, z, t)êz, then
the mass conservation equation reads

∂u

∂x
+
∂w

∂z
= 0, (4.27)

and the kinematic boundary conditions are

w = 0 on z = 0, w =
∂h

∂t
+ u

∂h

∂x
on z = h. (4.28)

Integrating (4.27) with respect to z and applying the boundary conditions (4.28), we obtain

∂h

∂t
+
∂h

∂x
u
∣∣
z=h

+

∫ h

0

∂u

∂x
dz = 0, (4.29)
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or
∂h

∂t
+

∂

∂x
(hu) = 0, (4.30a)

where

u =
1

h

∫ h

0
udz (4.30b)

is the average horizontal velocity in the fluid.

The two-dimensional Euler equations read

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
, (4.31a)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g, (4.31b)

where p is the pressure, ρ is the (constant) density and g is the acceleration due to gravity. In
shallow water theory, we assume that the flow is almost unidirectional, so that |w| � |u| and
the left-hand side of (4.31b) may therefore be ignored. The pressure is thus purely hydrostatic;
with p equal to atmospheric pressure pa on z = h, we obtain

p = pa + ρg(h− z). (4.32)

Assuming the flow is irrotational, we have ∇× u = 0, or

∂u

∂z
− ∂w

∂x
= 0. (4.33)

Again assuming that |w| � |u|, we deduce that u is approximately independent of z, that is

u ≈ u(x, t). (4.34)

It follows that u ≈ u and so (4.30) becomes

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (4.35a)

while the horizontal momentum equation, with p given by (4.32), reads

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0. (4.35b)

The coupled nonlinear equations (4.35) for u and h are known as the shallow water equa-
tions, and they describe tidal waves and long waves in rivers and canals. Unlike the theory
of Stokes waves, we have not assumed that the amplitude of the waves is small; typically,
variations in the depth h are the same order as h. That is why the system (4.35) is nonlinear,
while Stokes waves satisfy linear equations.

We define

c =
√
gh (4.36)
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which, recall from section 2, is the phase velocity of Stokes waves on a layer of depth h. In
terms of c, (4.35) becomes

2

(
∂c

∂t
+ u

∂c

∂x

)
+ c

∂u

∂x
= 0, (4.37a)

∂u

∂t
+ u

∂u

∂x
+ 2c

∂c

∂x
= 0, (4.37b)

which are identical to the equations (4.5) of one-dimensional gas dynamics with γ = 2. The
theory developed above for gas dynamics may therefore be applied directly to shallow water
theory, by setting γ = 2 and identifying c with

√
gh. In particular, the Riemann invariant

statement (4.9) tells us that

u± 2
√
gh is constant on curves satisfying

dx

dt
= u±

√
gh. (4.38)

Example: dam break

Suppose water of depth h0 is held in x > 0 by a dam at x = 0. At time t = 0, the dam
breaks, allowing the water to flow into x < 0. This situation is described by the solution
(4.21), identifying c with

√
gh and setting γ = 2:

u =



undefined
x

t
< −2

√
gh0,

2

3

(x
t
−
√
gh0

)
−2
√
gh0 <

x

t
<
√
gh0,

0
x

t
>
√
gh0,

(4.39a)

h =



0
x

t
< −2

√
gh0,

1

9g

(
2
√
gh0 +

x

t

)2
−2
√
gh0 <

x

t
<
√
gh0,

h0
x

t
>
√
gh0.

(4.39b)

We illustrate the evolution of the height h(x, t) in figure 4.3. The initial discontinuity at
x = 0 spreads into x < 0 and x > 0, while the height at x = 0 remains fixed at 4h0/9 for all
positive t.

4.4 Multi-valued solutions

Example 1: simple wave

Suppose we have a simple wave, in which the Riemann invariant u−2c/(γ−1) is constant ev-
erywhere. As shown in section 4.2, u then satisfies a first-order quasilinear partial differential
equation whose solution, subject to the initial condition u(x, 0) = f(x), is

u = f

(
x− c0t−

(γ + 1)ut

2

)
. (4.40)
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x

h

t = 0

increasing t

Figure 4.3: The evolution of the fluid height h(x, t) following a dam break.

gradient becomes

unbounded

u becomes

multi-valued

x

u

increasing t

t = 0

Figure 4.4: Schematic of a steepening simple wave.
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This may be interpreted as a wave moving from left to right at speed c0 + (γ+ 1)u/2, so that
points on the wave where u is larger move faster.

If we start with an initial localised wave like that shown in figure 4.4, then the wave
steepens as t increases. By differentiating (4.40) with respect to x, we find that

∂u

∂x
=

f ′(ξ)

1 + (γ + 1)f ′(ξ)t/2
, where ξ = x− c0t−

(γ + 1)ut

2
. (4.41)

Thus |∂u/∂x| increases with t wherever f ′ is negative, and reaches infinity after a finite time

tc = min
ξ

(
− 2

(γ + 1)f ′(ξ)

)
, (4.42)

where the minimum is taken over all values of ξ such that f ′(ξ) < 0. Thus, as shown in
figure 4.4, the gradient of u is unbounded as t → tc and, for t > tc, u becomes a multiply-
valued function of x.

This behaviour is physically unreasonable: the gas velocity must take a single, well-defined
value at each point. In addition, we have assumed in deriving our equations of motion that
u is a continuously differentiable function, which it clearly ceases to be at t = tc. We will
discuss the resolution of this problem in section 5.

Example 2: piston moving into a tube

Another situation in which the solution becomes multi-valued is the piston problem analysed
in section 4.2, where the piston is pushed into the tube rather than being withdrawn. Consider,
for example, the case where the piston accelerates uniformly into the tube, so its position at
time t is x = s(t) = at2, and the parametric solution (4.14) becomes

u = 2aτ, c = c0 +
(γ − 1)u

2
, x = aτ2 + {c0 + (γ + 1) aτ} (t− τ) (4.43)

in at2 < x < c0t.

By substituting for τ from (4.43a) into (4.43c), we obtain an implicit equation for u as a
function of x and t, namely

4a(c0t− x) = γu2 + 2
(
c0 − (γ + 1)at

)
u. (4.44)

For each fixed time t, we can use this to plot u versus x, between u = 2at at x = at2 and u = 0
at x = c0t; typical graphs as t is varied are shown in figure 4.5. Evidently x is a quadratic
function of u, whose maximum is at

u =
(γ + 1)at− c0

γ
, x = c0t+

(
(γ + 1)at− c0

)2
4γa

. (4.45)

If t < c0/(γ + 1)a, the maximum occurs in x > c0t where u is negative, which is outside
the region where the solution (4.43) applies. At the critical time

t =
c0

(γ + 1)a
, (4.46)
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gradient becomes

unbounded

u becomes

multi-valued

u

increasing t

x

Figure 4.5: Evolution of the velocity profile u(x, t), caused by the motion of a piston into a
tube, versus x at increasing values of t.

t x = c0t

x
u = 0, c = c0

x = s(t)

Figure 4.6: Characteristic diagram for a piston being pushed into a tube.
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the minimum occurs at x = c0t so that, as shown in figure 4.5, the gradient ∂u/∂x becomes
infinite at x = c0t. For larger values of t, u becomes a multi-valued function of x, which is
physically impossible.

We can also understand this behaviour by examining the characteristics in the (x, t) plane.
On each positive characteristic (corresponding to a particular fixed value of τ), (4.43) gives us
unambiguous values of u, c and x as functions of t. The solution becomes multi-valued when
the positive characteristics start to cross, as illustrated in figure 4.6. When this happens, the
same point in the (x, t) plane corresponds to different possible values of τ .

With s(t) = at2, it is clear the the positive characteristics from the piston must eventually
intersect with x = c0t (since the piston itself does at t = c0/a). From (4.43), we see that the
characteristic with parameter τ crosses x = c0t when

aτ2 + {c0 + (γ + 1) aτ} (t− τ)− c0t = τ
(
(1 + γ)at− c0 − γaτ

)
= 0. (4.47)

Discounting the root x = τ = 0, we thus find that crossing occurs at

t =
c0 + γaτ

(γ + 1)a
. (4.48)

The earliest time at which the solution becomes multivalued is obtained in the limit τ → 0,
which reproduces (4.46).

To maintain a single-valued solution, we must not allow the positive characteristics (or
indeed the negative characteristics) to cross each other, and we will show how this can be
achieved in the next section.
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5 Shock waves

5.1 Introduction

In the previous section we discovered that the equations of one-dimensional gas dynamics
admit solutions that become multivalued in finite time. This is unacceptable physically: it
is impossible for a physical state variable such as velocity, pressure or density to take many
different values at a single point. The solution becoming multivalued is heralded by a wave-
steepening, in which the state variables start to vary rapidly with position; in figure 5.1(a)
we show schematically a typical plot of the velocity u versus position x as time t increases.

In practice, behaviour like that shown in figure 5.1(b) is observed. Rather than become
multivalued, the flow develops a singularity, known as a shock wave or simply a shock, across
which the state variables (here the velocity) are effectively discontinuous. These shock waves
also arise in shallow water theory (where they are known as hydraulic jumps or bores) and
are to be expected from almost any nonlinear hyperbolic partial differential equations. Other
well known examples include models for traffic flow, in which shock waves represent traffic
jams.

x

u

increasing

t

(a) (b)

Figure 5.1: (a) Plot of the velocity u steepening as t increases and finally becoming multival-
ued. (b) Plot of an alternative scenario in which u becomes discontinuous.

In this section we will derive the so-called Rankine–Hugoniot conditions that must be
satisfied across a shock if it is to conserve mass, momentum and energy. These will allow
us to describe physical situations like a shock wave caused by a piston in a tube or a bore
moving into stationary water. We will also show how the Rankine–Hugoniot conditions fit
into the more general theory of weak solutions.
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ρ = ρ+, u = u+

p = p+, T = T+

ρ = ρ−, u = u−
p = p−, T = T−

V

ρ = ρ+, u = u+ − V
p = p+, T = T+

ρ = ρ−, u = u− − V
p = p−, T = T−

fixed shock
(b)

(a)

Figure 5.2: (a) Schematic of a shock moving in a tube at speed V . (b) The equivalent situation
with a fixed shock.

5.2 One-dimensional gas dynamics

Rankine–Hugoniot conditions

Suppose that ρ, u, p and T are discontinuous across a shock moving with speed V . As
shown in figure 5.2(a), we denote the values to the left and right of the shock by − and +
suffices, with the + side being the side on which x is greater. By transforming to a frame
that moves with the shock, as shown in figure 5.2(b), we can equivalently study the problem
of a stationary shock by modifying the velocities on either side according to

u± 7→ u± − V. (5.1)

We will therefore confine our attention to the case V = 0 initially, and then use the transfor-
mation (5.1) to apply our results to a shock moving at arbitrary speed.

If V = 0, then mass enters the shock from the left at a rate ρ−u− (per unit cross-sectional
area), and exits to the right at a rate ρ+u+. Since mass cannot be created or destroyed within
the shock, these must be equal to each other, that is[

ρu
]+
− = 0, (5.2)

where [·]+− denotes the jump in · across the shock.

Next we consider conservation of momentum. In a time δt, a mass ρ−u−δt = ρ+u+δt
crosses the shock from left to right (assuming u± are positive). As it does so, its velocity
changes from u− to u+, so its momentum changes from ρ−u

2
−δt to ρ+u

2
+δt. This change

in momentum must be accounted for the net pressure force acting on the fluid as it passes
through the shock, namely (p− − p+) (per unit cross-sectional area). Putting these together
we obtain (p− − p+)δt = ρ+u

2
+δt− ρ−u2−δt, or[

p+ ρu2
]+
− = 0. (5.3)

Finally, we must ensure that energy is conserved across the shock. By an argument
analogous to that applied to momentum above, the gas that crosses the shock in a time δt
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changes energy from ρ−u−e−δt to ρ+u+e+δt, where

e = cvT +
u2

2
(5.4)

is the energy per unit mass. The net work done by pressure on either side during the same
time interval is (p−u−δt− p+u+δt) and, by equating these, we obtain[

ρue+ up
]+
− = 0. (5.5)

By using the ideal gas law

p = ρRT = (γ − 1)ρcvT, (5.6)

we can write (5.5) in the form [
ρu

(
u2

2
+

γp

(γ − 1)ρ

)]+
−

= 0. (5.7)

Notice that this is satisfied identically if u− (and therefore also u+) is zero. Such a solution,
in which there is no flow across the shock is called a contact discontinuity. Otherwise, we can
use the fact that ρu is conserved across the shock to deduce from (5.7) that[

u2

2
+

γp

(γ − 1)ρ

]+
−

= 0. (5.8)

Equations (5.2), (5.3) and (5.8) are called Rankine–Hugoniot conditions, and they ensure
that mass, momentum and energy are conserved across the shock.

Rankine–Hugoniot conditions for a moving shock

Now as described above, we can apply the Rankine–Hugoniot conditions (5.2–5.8) to a shock
moving with speed dx/dt = V by transforming u± to u± − V :

[
ρ(u− V )

]+
− =

[
p+ ρ(u− V )2

]+
− =

[
(u− V )2

2
+

γp

(γ − 1)ρ

]+
−

= 0. (5.9)

The unknowns are ρ±, u±, p± and V , totalling seven, and we have three Rankine-Hugoniot
conditions, so in general we need to specify four of the state variables on either side of the
shock. Here are some examples of typical situations.

1. Piston entry problem

For a piston being pushed into a tube at constant speed U , we anticipate that a shock
moves ahead of the piston at constant speed V > U . In front of the shock, we specify
the initial pressure, density and velocity,

p+ = p0, ρ+ = ρ0, u+ = 0, (5.10a)

and behind the shock the gas speed must equal the piston speed:

u− = U. (5.10b)



74 Mathematical Institute University of Oxford

These give us the four equations required to supplement (5.9), and we thus end up with
the three equations

ρ−(U − V ) = −ρ0V, (5.11a)

p− + ρ−(U − V )2 = p0 + ρ0V
2, (5.11b)

(U − V )2

2
+

γp−
(γ − 1)ρ−

=
V 2

2
+

γp0
(γ − 1)ρ0

, (5.11c)

from which to determine ρ−, p− and V . It is straightforward to show from (5.11) that
the shock speed V is the positive root of

2V 2 − (γ + 1)UV − 2c20 = 0, (5.12)

where c20 = γp0/ρ0 as before.

2. Shock reflection

Suppose a shock moves at given initial speed V0 > 0 into gas at rest with initial density
ρ0 and p0. The velocity u−, pressure p−, and density ρ− behind the shock are given by

ρ−(u− − V0) = −ρ0V0, (5.13a)

p− + ρ−(u− − V0)2 = p0 + ρ0V
2
0 , (5.13b)

(u− − V0)2

2
+

γp−
(γ − 1)ρ−

=
V 2
0

2
+

γp0
(γ − 1)ρ0

. (5.13c)

Suppose the shock hits a wall and is reflected, and then has speed −V1 < 0. Now the
variables u−, p− and ρ− in front of the reflected shock are given by (5.13), while behind
the shock we have u+ = 0 and ρ+, p+ and V1 are to be determined from

ρ−(u− + V1) = ρ+V1, (5.14a)

p− + ρ−(u− + V1)
2 = p+ + ρ+V

2
1 , (5.14b)

(u− + V1)
2

2
+

γp−
(γ − 1)ρ−

=
V 2
1

2
+

γp+
(γ − 1)ρ+

. (5.14c)

After a straightforward but tedious algebraic manipulation, we find that the reflected
speed is given by

V1 = V0 +
(3− γ)

(
V 2
0 − c20

)
(γ + 1)V0

. (5.15)

Shock relations and entropy

To understand the implications of the Rankine–Hugoniot conditions, we now manipulate them
into a more convenient form. Defining the speed of sound

c2 =
γp

ρ
(5.16)

as before, we find that (5.2), (5.3) and (5.8) may be written as

[
ρcM

]+
− =

[
p
(
1 + γM2

)]+
− =

[
c2
(

1 +
(γ − 1)M2

2

)]+
−

= 0, (5.17)
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γ − 1
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+
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1
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+ →

γ − 1
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Figure 5.3: Graph of M2
+ versus M2

−, as defined by (5.21).

where M = u/c is the Mach number, and we thus deduce the relations(
p+
p−

)(
ρ+
ρ−

)
=
M2
−

M2
+

, (5.18a)

p+
p−

=
1 + γM2

−
1 + γM2

+

, (5.18b)(
p+
p−

)(
ρ−
ρ+

)
=

2 + (γ − 1)M2
−

2 + (γ − 1)M2
+

. (5.18c)

From these we can eliminate the densities and pressures to obtain an equation involving
just M+ and M−, namely(

M2
−

M2
+

)(
2 + (γ − 1)M2

−
2 + (γ − 1)M2

+

)
=

(
1 + γM2

−
1 + γM2

+

)2

, (5.19)

which can be rearranged to(
M2

+ −M2
−
) {

2γM2
+M

2
− − (γ − 1)(M2

+ +M2
−)− 2

}
= 0. (5.20)

One solution is always M+ = M−, but then (5.18) implies that the pressure and density are
also continuous. If there is a shock, we must therefore assume M+ 6= M−, in which case we
can solve (5.20) for (say) M+:

M2
+ =

2 + (γ − 1)M2
−

2γM2
− − (γ − 1)

. (5.21)

As shown in figure 5.3, M2
− and M2

+ are both confined to the range
(
(γ − 1)/2γ,∞

)
, and

either M2
− > 1, M2

+ < 1 or M2
− < 1, M2

+ > 1.

Recall from section 1 that the entropy is defined by

S = S0 + cv log

(
p

ργ

)
. (5.22)
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Figure 5.4: The function E(M2
−) defined by (5.24).

From (5.18), we can deduce

p+/ρ
γ
+

p−/ρ
γ
−

=

(
1 + γM2

−
1 + γM2

+

)1+γ (
M2

+

M2
−

)γ
, (5.23)

or, using (5.21),

exp

(
S+ − S−

cv

)
=

(
2γM2

− − (γ − 1)

γ + 1

)(
2 + (γ − 1)M2

−
(γ + 1)M2

−

)γ
= E

(
M2
−
)
, say. (5.24)

A typical plot of the function E(M2
−) is shown in figure 5.4. By differentiating (5.24) with

respect to M2
−, it may be shown that

E′
(
M2
−
)

=

(
2γ(γ − 1)

γ + 1

)(
2 + (γ − 1)M2

−
(γ + 1)M2

−

)γ (
M2
− − 1

)2
M2
−
(
2 + (γ − 1)M2

−
) (5.25)

and hence that E(M2
−) is an increasing function, with E = 0 at the critical value M2

− =
(γ− 1)/2γ, E(1) = 1 and E →∞ as M2

− →∞. At M2
− = 1, E has a point of inflection, with

E(M2
−) ∼ 1 + O

(
(M2
− − 1)3

)
as M2

− → 1.
At a shock, where M2

− 6= M2
+, we must have M2

− 6= 1, and it follows that E(M2
−) 6= 1, so

the entropy must be discontinuous across a shock. Thus, when we write p = kργ , the constant
k takes different values on either side of the shock. The Second Law of Thermodynamics
tells us that the entropy must, if anything, increase as fluid crosses the shock, rather than
decreasing. Hence, if the fluid travels from the − side to the + side, as illustrated in figure 5.2,
then we require S+ > S−. It follows from (5.24) that M2

− > 1 and from (5.21) that M2
+ < 1,

so the flow changes from supersonic to subsonic as the gas crosses the shock. Any shock that
does not satisfy this condition is unphysical and could not be observed in practice.

Given that M2
+ < 1 < M2

−, it is straightforward to show from (5.18) that p+/p−, ρ+/ρ−
and p+ρ−/p−ρ+ are all greater than 1. Thus the pressure, density and temperature must all
increase as the gas passes through the shock. For this reason, a shock satisfying the condition
of increasing entropy is said to be compressive.

For a shock moving at speed V , the same conclusions follow if M± is defined as the Mach
number relative to the moving shock, that is

M± =
u± − V
c±

. (5.26)
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Figure 5.5: Characteristic diagrams for two possible solutions of the piston withdrawal prob-
lem: (a) solution with an expansion fan; (b) solution with a shock.

Consider, for example, a shock travelling into stationary gas with u+ = 0 and speed of sound
c+ = c0. The entropy condition tells us that the upstream flow must be supersonic, that is
M2

+ = V 2/c20 > 1, and hence the shock speed must be greater than c0.

To illustrate the need for the entropy condition, we return briefly to example 1 from
section 5.2, namely the shock caused by a piston impulsively moved at constant speed U into
a stationary gas. The quadratic equation (5.12) leads to the following expression for the shock
speed V :

V =
(γ + 1)U +

√
(γ + 1)2U2 + 16c20

4
. (5.27)

The solution for the case where U is negative, so the piston is being pulled out rather than
pushed in, was found previously in section 4. However, (5.27) also gives us a possible shock
speed when U < 0, so in this case there are (at least) two possible solutions: one containing
an expansion fan and one containing a shock, as illustrated in figure 5.5.

The entropy condition allows us to eliminate the shock solution and thus reassure ourselves
that the expansion fan solution obtained in section 4 is correct. The upstream Mach number
(relative to the shock) is given by

M2
− =

V 2

c20
= 1 +

(
γ + 1

2

)
UV

c20
, (5.28)

using (5.12). Hence M2
− < 1 if U is negative, so this shock solution fails the entropy condition

and is unphysical.
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Figure 5.6: Schematic of the hydraulic jump formed when a jet of water hits a flat surface.
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Figure 5.7: Schematic of a hydraulic jump.

5.3 Shocks in shallow water theory

Rankine–Hugoniot conditions

Recall from section 4 the shallow water equations

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0, (5.29)

governing the depth h(x, t) and velocity u(x, t) of a thin layer of fluid flowing over a flat
base. Recall also that (5.29) are equivalent to the equations of one-dimensional gas dynamics,
if c is identified with

√
gh and γ = 2. Therefore (5.29) also admit solutions which form

discontinuities, known in the context of shallow water as bores or hydraulic jumps. Examples
include the Severn Bore1, tidal waves and tsunamis, and the rapid jump observed when water
from a tap impacts a flat surface, as illustrated in figure 5.6.

Suppose that u and h are discontinuous across a stationary hydraulic jump, as shown in
figure 5.7. The rate at which fluid flows in from the left (per unit length in the y-direction)
is h−u−. This must equal the rate at which fluid flows out from the right, which leads to[

hu
]+
− = 0. (5.30)

The net force acting to the left of the discontinuity (per unit length in the y-direction) is∫ h

0
(p− − pa) dz =

ρgh2−
2

, (5.31)

1see http://www.severn-bore.co.uk/
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since in shallow water theory the pressure is assumed to be purely hydrostatic, that is

p = pa + ρg(h− z), (5.32)

where pa is the constant atmospheric pressure. An expression analogous to (5.31) gives the
force acting to the right. The fluid that crosses the jump in a time δt has mass ρh−u−δt =
ρh+u+δt and its momentum (per unit length in the y-direction) changes from ρh−u

2
−δt to

ρh+u
2
+δt. By equating the rate of change of momentum to the applied force, we obtain

ρh+u
2
+ − ρh−u2− =

ρgh2−
2
−
ρgh2+

2
, (5.33)

from which we deduce [
hu2 +

gh2

2

]+
−

= 0. (5.34)

In section 4, we pointed out the analogy between the shallow water equations and the
equations of one-dimensional gas dynamics. In particular, we showed that solutions of one-
dimensional gas dynamics problems can be mapped onto solutions of shallow water theory by
setting γ = 2 and identifying c with

√
gh. However, the Rankine–Hugoniot conditions (5.30)

and (5.34) are not the same as the conditions (5.2), (5.3) and (5.8) derived for gas dynamics.
Thus a shallow water bore behaves differently from the corresponding shock in gas dynamics.

Energy

The two Rankine–Hugoniot conditions (5.30) and (5.34) ensure that mass and momentum
are conserved across a hydraulic jump. Now we consider energy conservation. The energy
density e (per unit length in the y-direction) consists of the kinetic and potential energies:

e =

∫ h

0

ρu2

2
+ ρgz dz =

ρhu2

2
+
ρgh2

2
. (5.35)

The rate at which the energy increases as the fluid flows through the jump is thus

[
ue
]+
− =

[
ρhu3

2
+
ρguh2

2

]+
−
. (5.36)

The rate at which work is done by pressure is[∫ h

0
pudz

]+
−

=

[
ρguh2

2

]+
−

(5.37)

so the net rate at which energy flows out of the jump is

Q =

[
ρhu3

2
+ ρguh2

]+
−

= ρhu

[
u2

2
+ gh

]+
−
, (5.38)

using the fact that hu is conserved across the jump,
From (5.30) we have u− = h+u+/h−, so (5.34) may be written as(

h+ −
h2+
h−

)
u2+ =

g

2

(
h2− − h2+

)
, (5.39)
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and, provided h− 6= h+, it follows that

u2+ =
gh−(h− + h+)

2h+
, u2− =

gh+(h− + h+)

2h−
. (5.40)

Hence [
u2

2
+ gh

]+
−

=
g
(
h2− − h2+

)
(h− + h+)

4h−h+
+ g(h+ − h−) =

g(h− − h+)3

4h+h−
, (5.41)

and (5.38) may thus be written as

Q = (ρhu)
g(h− − h+)3

4h+h−
. (5.42)

Unless h− = h+ (in which case there is no jump), we infer that energy is not conserved.
If anything, we would expect energy to be lost as fluid crosses the jump, and in practice
this occurs because of turbulence. We therefore must have Q < 0, which is analogous to the
entropy condition for shocks in gas dynamics, and we deduce from (5.42) that u(h−−h+) < 0.
In other words, h+ > h− if u > 0 or h− > h+ if u < 0; in either case, the depth increases as
the fluid passes through the jump (as shown schematically in figure 5.6).

Assuming u± > 0, so h+ > h−, we can deduce from (5.40) the inequalities

u2+
gh+

< 1 <
u2−
gh−

. (5.43)

Recall from section 4 that
√
gh = c is identified with the wave speed in shallow water theory.

The flow is described as subcritical if |u| < c and supercritical if |u| > c; these are analogous
to the descriptions subsonic and supersonic in gas dynamics. Hence (5.43) tells us that the
fluid must change from supercritical to subcritical as it passes through the jump.

Rankine–Hugoniot conditions for a moving bore

As observed in section 5.2, we can infer the Rankine–Hugoniot relations for a bore moving at
speed V by transforming u± to u± − V , so that (5.30) and (5.34) become

[
h(u− V )

]+
− =

[
h(u− V )2 +

gh2

2

]+
−

= 0. (5.44)

Now we have two equations for the five dependent variables h±, u± and V , so another three
conditions are needed to close the system. Here are some examples of typical situations.

1. Bore moving into stationary water
If we specify the depth h± on either side of the bore and that the water ahead of the
bore is stationary (u+ = 0), then (5.44) gives us

h−(u− − V ) = −h+V, h−(u− − V )2 +
gh2−

2
= h+V

2 +
gh2+

2
, (5.45)

to solve for u− and V . By solving these simultaneous equations, it is straightforward to
find that the shock speed V satisfies

V 2 =
gh−(h+ + h−)

2h+
. (5.46)
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Notice that the sign of V is not determined by the Rankine–Hugoniot condition, so it
appears that the bore could move at speed V in either direction. We have to invoke
the energy condition, which tells us that the height must increase as the fluid passes
through the bore and, hence, that the bore must travel towards the shallower water.

2. Bore reflection
If a bore travels at speed V0 towards stationary water with a given depth h0, then we
deduce from (5.44) that the velocity and depth behind the shock are given by

h−(u− − V0) = −h0V0, h−(u− − V0)2 +
gh2−

2
= h0V

2
0 +

gh20
2
. (5.47)

If the bore is reflected by a stationary wall, then the depth h+ left behind the reflected
bore and the reflected speed V1 satisfy

h−(u− + V1) = h+V1, h−(u− + V1)
2 +

gh2−
2

= h+V
2
1 +

gh2+
2
, (5.48)

with h− and u− determined from (5.47).

5.4 Weak solutions

Weak formulation

Now we briefly make the connection between our approach to shocks and the theory of so-
called weak solutions. We have derived a set of partial differential equations describing (for
example) gas dynamics which apply when the dependent variables (u, ρ, p, etc.) are con-
tinuously differentiable. When the dependent variables are discontinuous across a shock, we
derived (starting again from physical conservation principles) Rankine–Hugoniot conditions
governing the jumps in their values. A weak formulation is a compact statement of the
problem that encompasses both differentiable solutions and discontinuous solutions.

Consider the conservation law
∂P

∂t
+
∂Q

∂x
= 0, (5.49)

where P and Q are differentiable vector functions of x, t and u(x, t), which is the vector
of dependent variables for which we are trying to solve. For example, the equations of one-
dimensional gas dynamics and the shallow water equations may be stated in the form (5.49)
with

u =

ρu
p

 , P =

 ρ
ρu

ρu2/2 + p/(γ − 1)

 , Q =

 ρu
ρu2 + p

ρu3/2 + γpu/(γ − 1)

 (5.50a)

and

u =

(
h
u

)
P =

(
h
hu

)
, Q =

(
uh

hu2 + gh2/2

)
(5.50b)

respectively.
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Figure 5.8: Schematic of a “pill box” contour C around a segment of a shock between two
points A and B.

We define a weak solution of (5.49) to be a function u(x, t) that satisfies∮
C
Qdt− P dx = 0 for all piecewise-smooth simple closed curves C. (5.51)

We emphasise that there are other approaches to formulating weak versions of (5.49), for
example using test functions, but (5.51) will do for our purposes. We should also point out
that not all systems of partial differential equations may be written in the simple conservation
form (5.49). However, physical models based on conservation principles almost inevitably give
rise to systems equivalent to (5.49).

Classical solutions

Suppose for the moment that u(x, t) is continuously differentiable and satisfies (5.51); such a
u is called a classical solution. By applying Green’s Theorem, we deduce from (5.51) that∫∫

S

∂P

∂t
+
∂Q

∂x
dxdt = 0 (5.52)

where S is any region of the (x, t) plane whose boundary C is a piecewise-smooth simple
closed curve C. Since ∂P /∂t and ∂Q/∂x are continuous by assumption, it follows that u
must satisfy the conservation equation (5.49).

On the other hand, if u is a differentiable solution of the conservation law (5.49) then
we can again use Green’s Theorem to deduce that it must also satisfy the weak formulation
(5.51). Hence, so far as classical solutions solutions are concerned, (5.49) and (5.51) are
equivalent.

Shocks

The advantage of the weak formulation over the partial differential equation (5.49) is that
(5.51) makes sense if u (and hence P and Q) is not differentiable or even continuous. Suppose
that a weak solution u is continuously differentiable everywhere except on a shock, across
which it is discontinuous. As shown in figure 5.8, the shock divides the (x, t) plane into two
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regions (labelled as before by + and −) in each of which u is continuously differentiable. It fol-
lows by the argument given above that u must satisfy the conservation law (5.49) everywhere
except on the shock.

Now let A and B be any two points on the shock and let C be a small “pill box” contour
around the segment of the shock between A and B, as shown in figure 5.8. As C is shrunk
towards the shock on either side, the edges near A and B shrink to zero length and we are
left with ∮

C
Q dt− P dx =

∫ B

A
Q+ dt− P+ dx+

∫ A

B
Q− dt− P− dx = 0, (5.53)

where the ± subscript refers to P and Q evaluate on the + and − sides of the shock. We can
write (5.53) as ∫ B

A

[
Q
]+
− dt−

[
P
]+
− dx =

∫ B

A

{[
Q
]+
− − V

[
P
]+
−

}
dt = 0, (5.54)

where

V =
dx

dt
(5.55)

is the shock speed as before. Since A and B are arbitrary, we deduce the Rankine–Hugoniot
conditions [

Q
]+
− = V

[
P
]+
− (5.56)

which must be satisfied across the shock.

Example: one-dimensional gas dynamics

Now we verify that, for one-dimensional gas dynamics, the Rankine–Hugoniot conditions
(5.56) derived via a weak formulation are equivalent to the conditions (5.9) obtained previously
from first principles. With P and Q given by (5.50a), we can write (5.56) as

V =

[
ρu
]+
−[

ρ
]+
−

=

[
ρu2 + p

]+
−[

ρu
]+
−

=

[
ρu3/2 + γpu/(γ − 1)

]+
−[

ρu2/2 + p/(γ − 1)
]+
−

. (5.57)

The first of these is clearly equivalent to the first of (5.9). The second relation in (5.57) may
be rearranged to

0 =
[
ρu(u− V ) + p

]+
− = ρ−(u− − V )

[
u
]+
− +

[
p
]+
−, (5.58)

using the fact that ρ(u− V ) is conserved across the shock. Since
[
V
]+
− = 0, we deduce that

0 = ρ−(u− − V )
[
(u− V )

]+
− +

[
p
]+
− =

[
ρ(u− V )2 + p

]+
−, (5.59)

which reproduces the second relation in (5.9).
From the final relation in (5.57), we obtain

0 =

[
ρu2(u− V )

2
+

γpu

γ − 1
− pV

γ − 1

]
=

[
ρu2(u− V )

2
+
γp(u− V )

γ − 1
+ pV

]+
−
, (5.60)

or, by using (5.59) to evaluate
[
p
]+
−,[

ρ(u− V )

(
u2

2
− uV + V 2 +

γp

(γ − 1)ρ

)]+
−

= 0. (5.61)
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Now, ρ(u − V ) is conserved and nonzero, assuming that our curve is a shock, not a contact

discontinuity. By using the fact that
[
V 2
]+
− = 0, we can thus deduce that[

(u− V )2

2
+

γp

(γ − 1)ρ

]+
−

= 0, (5.62)

which reproduces (5.9).

Example: shallow water theory

Next we confirm that the weak formulation of the shallow water equations yields Rankine–
Hugoniot conditions equivalent to (5.44). With P and Q given by (5.50b), we deduce from
(5.56) the equations

V =

[
hu
]+
−[

h
]+
−

=

[
hu2 + gh2/2

]+
−[

hu
]+
−

, (5.63)

the first of which is clearly equivalent to (5.44). The second relation in (5.63) may be rear-
ranged to

0 =

[
hu(u− V ) +

gh2

2

]+
−

= h−(u− − V )
[
u
]+
− +

[
gh2

2

]+
−
, (5.64)

using the fact that h(u − V ) is conserved across the shock. Since
[
V
]+
− = 0, we can replace[

u
]+
− with

[
u− V

]+
− and thus obtain[

h(u− V )2 +
gh2

2

]+
−

= 0, (5.65)

which is identical to the second equation in (5.44).

Nonuniqueness of conservation laws

One conceptual difficulty with the weak formulation approach described above is that there
may be several different ways of writing the same system of equations in conservation form.
For example, the shallow water equations may be written in conservation form as

∂h

∂t
+

∂

∂x
(uh) = 0,

∂

∂t
(hu) +

∂

∂x

(
hu2 +

gh2

2

)
= 0, (5.66)

or as

∂h

∂t
+

∂

∂x
(uh) = 0,

∂u

∂t
+

∂

∂x

(
u2

2
+ gh

)
= 0, (5.67)

or in many other ways. Different choices of conservation law lead to different Rankine–
Hugoniot conditions; for example, (5.66) corresponds to the Rankine–Hugoniot conditions
(5.63), while (5.67) gives rise to

V =

[
hu
]+
−[

h
]+
−

=

[
u2/2 + gh

]+
−[

u
]+
−

. (5.68)
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Figure 5.9: Schematic of two-dimensional flow through a shock along the y-axis.

So, by putting the same equations into a different conservation form, we obtain different shock
relations and hence different weak solutions (although all classical solutions will be the same).

To avoid this difficulty, we must choose functions P and Q that correspond to the real
physical quantities that we wish the system to conserve. In (5.66a), for example, h and (uh)
represent the mass density and mass flux, and the weak formulation of this conservation
law ensures that mass of fluid is conserved across any shock. Similarly, in (5.66b), hu is
proportional to the momentum density, while (hu2 + gh2/2) represents the momentum flux
and the pressure force. Hence the weak version of (5.66b) conserves momentum across any
shocks. It may be shown that (5.67b) represents conservation of energy, and weak solutions
of (5.67) give rise to shocks that conserve mass and energy rather than mass and momentum.

Nonuniqueness of weak solutions

Once we have chosen a particular conservation form (that is a particular choice of the functions
P and Q) for a system of equations, the Rankine–Hugoniot conditions satisfied across a shock
are given uniquely by (5.56). Nevertheless, the weak solution of the problem may still be
nonunique. We have already encountered this difficulty in section 5.3, when we showed that
the direction of propagation of a bore could not be determined from the Rankine–Hugoniot
conditions. In that case, we managed to select a direction by invoking the condition that the
bore must dissipate energy rather than producing it.

In general, it may be shown that the weak formulation (5.51) has a unique solution when
supplemented by an appropriate entropy condition. For a shallow water bore, this condition
says that the depth must increase as fluid crosses the bore; in gas dynamics the entropy
condition tells us that the fluid must change from supersonic to subsonic as it crosses the
shock.
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5.5 Two-dimensional steady shocks

Rankine–Hugoniot conditions

First we consider a plane shock aligned with the y-axis, as shown schematically in figure 5.9.
As usual, the values of the dependent variables on either side of the shock are denoted by
± subscripts. If mass is to be conserved, the rate at which fluid flows in from the left must
equal the rate at which it flows out from the right, which leads to the condition[

ρu
]+
− = 0. (5.69)

Now, the mass ρuδt that passes through the shock in a time δt changes momentum from
ρ−u−δt(u−, v−) to ρ+u+δt(u+, v+). The rate of change of momentum must be equal to the
net force acting on the shock, namely (p− − p+)êx, which leads to the condition[

ρu

(
u
v

)]+
−

= −
[
p
]+
−

(
1
0

)
. (5.70)

From the first component we obtain [
p+ ρu2

]+
− = 0, (5.71)

while the second component of (5.70) may be written as (ρu)
[
v
]+
− = 0, since ρu is conserved

across the shock. For a shock, as opposed to a contact discontinuity, (ρu) is nonzero, and we
deduce that [

v
]+
− = 0. (5.72)

In a similar way, the mass crossing in time δt changes its energy from ρ−u−e−δt to
ρ+u+e+δt, where

e =
u2 + v2

2
+ cvT =

u2 + v2

2
+

p

(γ − 1)ρ
(5.73)

is the energy density. This change in energy must be equal to the work done by pressure, and
we deduce that [

ρu

(
u2 + v2

2
+

p

(γ − 1)ρ

)]+
−

= −
[
pu
]+
−. (5.74)

Since ρu is conserved (and assumed nonzero), this may be simplified to[
u2

2
+

γp

(γ − 1)ρ

]+
−

= 0, (5.75)

where we have also used (5.72).
In summary, we have shown that the tangential velocity v is conserved across a shock,

while ρ, p and the normal velocity u satisfy the Rankine–Hugoniot conditions (5.69), (5.71)
and (5.75) which are identical to the conditions derived in section 5.2 for a stationary one-
dimensional shock. In other words, we can view the two-dimensional shock illustrated in
figure 5.9 as equivalent to a one-dimensional shock with a superimposed tangential velocity.
The entropy condition derived previously for one-dimensional shocks may thus be applied
directly here, and tells us that the flow must change from supersonic to subsonic as it crosses
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Figure 5.10: Schematic of a curved shock with local axes in the normal and tangential direc-
tions.

the shock. In particular, if the flow is from − to +, then u+ < u− while v+ = v−, which
imples that the flow is deflected towards the shock, as indicated in figure 5.9.

The conditions derived above may be applied to an arbitrary steady shock in two di-
mensions by adopting local axes parallel to the unit normal n and tangent t, as shown in
figure 5.10. Thus we can identify u with the normal velocity un = u · n and v with the
tangential velocity ut = u · t and write the Rankine–Hugoniot conditions as

[
ρun

]+
− =

[
p+ ρu2n

]+
− =

[
ut
]+
− =

[
u2n
2

+
γp

(γ − 1)ρ

]+
−

= 0. (5.76)

Weak formulation

It is worth pointing out that the Rankine–Hugoniot conditions (5.76) for a curved shock may
also be obtained from the weak formulation of the problem. The equations describing steady
gas flow in two dimensions may be written in conservation form as

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (5.77a)

∂

∂x

(
ρu2 + p

)
+

∂

∂y
(ρuv) = 0, (5.77b)

∂

∂x
(ρuv) +

∂

∂y

(
ρv2 + p

)
= 0, (5.77c)

∂

∂x
(ρue+ pu) +

∂

∂y
(ρve+ pv) = 0, (5.77d)

where the internal energy density e is given by (5.73) as before. The equations in (5.77)
represent successively conservation of mass, momentum in the x- and y-directions and energy.

By following the approach adopted in section 5.4, we can infer directly from (5.77) the
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Figure 5.11: Supersonic flow past a wedge of angle θ, with a shock making an angle β with
the flow.

Rankine–Hugoniot conditions satisfied across a shock whose slope is dy/dx:

dy

dx
=

[
ρv
]+
−[

ρu
]+
−

=

[
ρuv

]+
−[

ρu2 + p
]+
−

=

[
ρv2 + p

]+
−[

ρuv
]+
−

=

[
(ρe+ p)v

]+
−[

(ρe+ p)u
]+
−

. (5.78)

If we let θ denote the angle made by the shock with the x-axis at any point, then

tan θ =
dy

dx
, t =

(
cos θ
sin θ

)
, n =

(
sin θ
− cos θ

)
. (5.79)

It is thus straightforward to manipulate (5.78) into the form (5.76).

Example: flow past a wedge

The theory developed above may be applied to supersonic flow past a wedge, as illustrated in
figure 5.11. We consider uniform flow with velocity U− incident on a wedge making an angle
θ with the flow. (We only consider the upper half-plane; a similar flow in the lower-half plane
is obtained by reflection). By inserting a linear oblique shock making an angle β (which is
to be determined) with the flow, we aim to deflect the incoming stream through the required
angle θ.

The Rankine–Hugoniot conditions for this situation are given by (5.76), with

un− = U− sinβ, un+ = U+ sin(β − θ), ut− = U− cosβ, ut+ = U+ cos(β − θ), (5.80)

and hence

U− cosβ = U+ cos(β − θ), (5.81a)

ρ−U− sinβ = ρ+U+ sin(β − θ), (5.81b)

p− + ρ−U
2
− sin2 β = p+ + ρ+U

2
+ sin2(β − θ), (5.81c)

U2
− sin2 β

2
+

γp−
(γ − 1)ρ−

=
U2
+ sin2(β − θ)

2
+

γp+
(γ − 1)ρ+

. (5.81d)

Given the upstream velocity U−, pressure p− and density ρ−, and the wedge angle θ, (5.81)
gives us four equations for U+, p+, ρ+ and the shock angle β.
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Figure 5.12: A plot of wedge slope tan θ versus shock slope tanβ as given by (5.85).

Recall that (5.81b–d) are equivalent to the Rankine–Hugoniot conditions (5.2), (5.3) and
(5.8) for a stationary one-dimensional shock, if we identify u− with U− sinβ and u+ with
U+ sin(β − θ). We can therefore read off from (5.21) the following relation between the up-
and downstream Mach numbers:

M2
+ sin2(β − θ) =

2 + (γ − 1)M2
− sin2 β

2γM2
− sin2 β − (γ − 1)

. (5.82)

From (5.18) and (5.81) we deduce two equations for the density ratio,

ρ+
ρ−

=
tanβ

tan(β − θ)
=

M2
− sin2 β

M2
+ sin2(β − θ)

1 + γM2
+ sin2(β − θ)

1 + γM2
− sin2 β

(5.83)

and, by substituting for M2
+ sin2(β − θ) from (5.82), we obtain the equation

tanβ

tan(β − θ)
=

(γ + 1)M2
− sin2 β

2 + (γ − 1)M2
− sin2 β

. (5.84)

Given the incoming Mach number M− and the wedge angle θ, we can in princple solve (5.84)
for the shock angle β.

To understand the implications of (5.84), we solve it for tan θ:

tan θ =
2
(
(M2
− − 1) tan2 β − 1

)
tanβ

(
(2 + (γ − 1)M2

−) tan2 β + 2 + (γ + 1)M2
−
) . (5.85)

A typical plot of tan θ versus tanβ is shown in figure 5.12. Clearly tan θ = 0 when tanβ =(
M2
− − 1

)−1/2
, which corresponds to

sinβ =
1

M−
. (5.86)
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Figure 5.13: Schematic of supersonic flow past a wedge with angle greater than the critical
angle.

Hence, as the wedge angle approaches zero, β approaches the Mach angle µ defined in sec-
tion 2.

For any fixed values of γ and M2
− > 1, the right-hand side of (5.85), considered as a

function of tanβ, increases to a positive maximum before decaying towards zero, as shown
in figure 5.12. Hence there is a maximum possible wedge angle θc, above which no solution
of the form illustrated in figure 5.11 exists. For wedge angles greater than θc (or indeed
for supersonic flow past a blunt obstacle), it is observed experimentally that a shock forms
upstream of the obstacle, as indicated in figure 5.13. This surprising result appears to violate
causality: how does the obstacle manage to influence the flow usptream of itself?

It is straightforward, by differentiating (5.85) with respect to M2
−, to show that tan θ is an

increasing function of M2
−. Thus the maximum possible wedge angle (over all possible values

of β and M−) is obtained in the hypersonic limit M− →∞. In this limit, (5.85) simplifies to

tan θ =
2 tanβ

(γ − 1) tan2 β + γ + 1
, (5.87)

and it is now straightforward to obtain

tan2 βc =
γ + 1

γ − 1
(5.88)

and the critical wedge angle is therefore given by

tan2 θc =
1

γ2 − 1
. (5.89)


