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Chapter 1

Banach space, Hilbert spaces and
bounded linear operators

1.1 Recap of some relevant material of B4.1 and notation

Normed and inner product spaces:

Throughout this course we will consider normed spaces (X, ∥ · ∥X) over either R
or C (both allowed unless specified otherwise) and we will often simply write X for
(X, ∥ · ∥X) if we work with a fixed norm.

We recall that X is a Banach space if it is a complete normed space, that X is an
inner product space if ∥ · ∥ is induced by an inner product via ∥x∥ = (⟨x, x⟩)

1
2 and that

X is a Hilbert space if it is a complete inner product space.

Orthogonal complement and projection theorem:

We recall that if X is an inner product space then x and y are said to be orthogonal
if ⟨x, y⟩ = 0 and given a set A ⊂ X we can define

A⊥ := {x ∈ X : ⟨a, x⟩ = 0 for all a ∈ A}

which is always a closed subspace of X.

We recall that if Y itself is a closed subspace of X and X is a Hilbert space then the
projection theorem ensures that X = Y ⊕ Y ⊥ and that the corresponding orthogonal
projections P Y : X → Y and P Y ⊥

: X → Y ⊥ are bounded linear operators with
I = P Y + P Y ⊥

and

∥P Y (x)∥2 + ∥P Y ⊥
(x)∥2 = ∥x∥2.

We also recall that the closed linear span of a set S in a normed space X is the
smallest closed subspace of X containing S, i.e. the intersection of all such subspaces
and that this set is always given by the closure of the linear span SpanS := {

∑n
j=1 ajsj :

sj ∈ S, aj ∈ F, n ∈ N}.

A useful consequence of the projection theorem is that the closed linear span of any
subset S of a Hilbert space is S⊥⊥.

We recall that the Cauchy-Schwarz inequality holds in inner product spaces, i.e.
that |⟨x, y⟩| ≤ ∥x∥∥y∥ with equality if and only if x and y are linearly dependent. In
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6 CHAPTER 1. SPACES AND OPERATORS

particular,

∥x∥ = sup
∥y∥=1

|⟨x, y⟩|. (1.1)

Bounded linear operators:

We denote the space of bounded linear operators between two normed spaces by

B(X,Y ) := {T : X → Y linear s.t. ∃M with ∥Tx∥Y ≤ M∥x∥X for all x ∈ X}

and will always equip this space with the operator norm

∥T∥ := inf{ such M} = sup
x ̸=0

∥Tx∥
∥x∥

.

Here and in the following we often drop the subscripts of the norms if it is clear from
the context which norms need to be used and will always assume that X is not trivial,
i.e. X ̸= {0}.

In the special cases of Y = X (equipped with the same norm) we write B(X) =
B(X,X) and for Y = F, for F = R respectively C the field over which X is a vector
space, we get the dual space X∗ = B(X,F).

We recall that if Y is Banach then so is B(X,Y ), in particular X∗ is always Banach.

We also recall that T ∈ B(X,Y ) is called invertible if there exists S ∈ B(Y,X) so
that

S ◦ T = IX and T ◦ S = IY

and that this is equivalent to

T is bijective and ∃δ > 0 so that ∥Tx∥ ≥ δ∥x∥ for all x ∈ X. (1.2)

Useful Corollaries of Hahn-Banach:

We recall two useful consequences of the theorem of Hahn-Banach to which we will
refer to later on in the course, namely that

∀x ∈ X ∃f ∈ X∗ so that ∥f∥ = 1 and f(x) = ∥x∥ (1.3)

and that for any closed proper subspace Y of X and any x ∈ X \Y there exists f ∈ X∗

so that

f |Y = 0 but f(x) ̸= 0. (1.4)

Riesz-Representation theorem and adjoints:

We also recall the following fundamental result for Hilbert spaces:

Theorem 1.1 (Riesz representation theorem). Let X be a Hilbert space. Then for any
T ∈ X∗ there exists a unique element xT ∈ X so that

T (y) = ⟨y, xT ⟩ for all y ∈ X.

Furthermore, this xT satisfies ∥xT ∥ = ∥T∥.
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If X is a real vector space then the map T 7→ xT is linear, and hence provides an
isometric isomorphism between X and X∗. If F = C then T 7→ xT is still additive, but
not linear since xλT = λ̄xT .

If X and Y are two Hilbert spaces then we can associate to each T : X → Y its
adjoint operator T ∗ : Y → X where T ∗y is defined as the unique element xℓ (given by
Riesz) which represents the bounded linear functional ℓ : x 7→ ⟨Tx, y⟩. This adjoint
operator T ∗ : Y → X is hence the unique operator for which

⟨Tx, y⟩Y = ⟨x, T ∗y⟩X for all x ∈ X, y ∈ Y.

You have seen in B4.1 that the adjoint operator has some useful properties, including
the fact that

• T ∗ ∈ B(Y,X) with ∥T ∗∥ = ∥T∥ and T ∗∗ = T

• (ST )∗ = T ∗S∗

• T is invertible if and only if T ∗ is invertible

• the kernel and image of an operator and its adjoint are related by

ker(T ) = (ImT ∗)⊥ and (kerT )⊥ = Im(T ∗) (1.5)

Compactness of sets:

We recall that for metric spaces, and hence in particular for normed spaces, com-
pactness and sequential compactness are equivalent. We also recall that any compact
set of a metric space is always closed and bounded. On the other hand, you have seen
in B4.1

Theorem 1.2 (Heine-Borel). Let X be a normed space.

(i) If dim(X) < ∞ then every bounded closed subset of X is compact.

(ii) If the closed unit ball B̄X is compact then dim(X) < ∞.

Here and in the following we use the following notation for balls: We write Br(x) :=
{y : ∥x−y∥ < r} for the open ball with radius r and centre x, B̄r(x) := {y : ∥x−y∥ ≤ r}
for the corresponding closed ball which of course agrees with the closure of Br(x) and
will write for short B and B̄ for the open/closed unit ball around x = 0.

At times, we will be working with balls in different spaces at the same time, and
will hence include a superscript to clarify in which space we consider these balls, i.e.
write BX

r (x), BX ,... for the corresponding balls in the space X.

1.2 Normal, Unitary and Selfadjoint operators

In many applications one works with operators that have additional properties and in
this section we will discuss the basic properties of special types of operators between
inner product spaces, namely of
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Definition 1.3. Let X and Y be inner product spaces.
We say that an operator T ∈ B(X,Y ) is isometric if ∥Tx∥ = ∥x∥ for every x ∈ X

and we say that T ∈ B(X,Y ) is unitary if it is both isometric and surjective.
On the other hand, we say that an operator S ∈ B(X) from a Hilbert space to itself

is normal if S∗S = SS∗ and S is called selfadjoint if S∗ = S.

Every selfadjoint operator is hence trivially normal while the converse is not true.
We also observe that for any S ∈ B(X) the operator SS∗ is selfadjoint as (ST )∗ = T ∗S∗

and S∗∗ = S so (SS∗)∗ = (S∗)∗S∗ = SS∗.

We have the following characterization of isometric and unitary operators on Hilbert-
spaces.

Proposition 1.4. Let T,U : X → Y be bounded linear operators between Hilbert spaces.

(i) The following are equivalent:

(a) T is isometric.

(b) ⟨Tx, Ty⟩ = ⟨x, y⟩ for all x, y ∈ X.

(c) T ∗T = IX .

(ii) The following are equivalent:

(a) U is unitary.

(b) U∗U = IX and UU∗ = IY .

(c) Both U and U∗ are isometric.

Proof. Exercise.

We hence conclude that an operator S ∈ B(X) is unitary if and only if it is isometric
and normal.

Examples. (i) The right-shift operator on ℓ2 is isometric but not unitary. The left-
shift operator on ℓ2 is not isometric.

(ii) A multiplication operator Mh : f 7→ fh is unitary on L2(R) if and only if |h| = 1
a.e.

(iii) If g is a non-negative and measurable function on R, then the map f 7→ g1/2f is
isometric from L2(R, g dt) to L2(R). It is unitary if and only if g > 0 a.e.

We furthermore have that

Lemma 1.5. An operator T ∈ B(X) on a Hilbert space X is normal if and only if
∥Tx∥ = ∥T ∗x∥ for every x ∈ X.

Proof of Lemma 1.5. If T is normal then we have for every x

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨x, T ∗Tx⟩ = ⟨x, TT ∗x⟩ = ⟨T ∗x, T ∗x⟩ = ∥T ∗x∥2.

Conversely if ⟨Tx, Tx⟩ = ⟨T ∗x, T ∗x⟩ for all x then we get by polarisation that
⟨Tx, Ty⟩ = ⟨T ∗x, T ∗y⟩ for all x, y ∈ X. Hence for every x ∈ X we have

⟨T ∗Tx, y⟩ = ⟨Tx, Ty⟩ = ⟨T ∗x, T ∗y⟩ = ⟨T ∗∗T ∗x, y⟩ = ⟨TT ∗x, y⟩ for all y ∈ X

which implies that T ∗Tx = TT ∗x.
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We will furthermore use

Lemma 1.6. Let X be a Hilbert space.

(i) If T ∈ B(X), then

∥T∥B(X) = sup{|⟨Tx, y⟩| : ∥x∥ = ∥y∥ = 1}.

(ii) If T ∈ B(X) and T is self-adjoint, then

∥T∥B(X) = sup{|⟨Tx, x⟩| : ∥x∥ = 1}.

Proof of Lemma 1.6. The first assertion follows from the definition of the operator
norm and (1.1).

To prove (ii) we set K = sup{|⟨Tx, x⟩| : ∥x∥ = 1} and note that by Cauchy-Schwarz
we always have K ≤ ∥T∥. We hence only need to show that if T is selfadjoint then
K ≥ ∥T∥ − ε for all ε > 0 and hence also K ≥ ∥T∥.

Given ε > 0 we can use (i) to find x, y with ∥x∥ = ∥y∥ = 1 so that |⟨Tx, y⟩| >
∥T∥ − ε. Replacing y by ay for some scalar a with |a| = 1, we may assume that
|⟨Tx, y⟩| = ⟨Tx, y⟩. This implies that

∥T∥ − ε ≤ ⟨Tx, y⟩ = Re ⟨Tx, y⟩ = 1
4

[
⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩

]
≤ 1

4K(∥x+ y∥2 + ∥x− y∥2) = 1
4K(2∥x∥2 + 2∥y∥2) = K,

as desired, where the penultimate step uses the parallelogram identity.

As A∗A is self-adjoint for any A ∈ B(X), and ⟨A∗Ax, x⟩ = ⟨Ax,Ax⟩ = ∥Ax∥2 for
every x we deduce following useful result.

Proposition 1.7. Let X be a Hilbert space and A ∈ B(X). Then

∥A∗A∥B(X) = ∥A∥2B(X).

In particular, if A is self-adjoint, then ∥A2∥B(X) = ∥A∥2B(X).

1.3 Orthonormal sets and bases of Hilbert spaces

In our later discussion of spectral properties of operators on Hilbert spaces and of
Fourier series we will use that for Hilbert spaces there is a straightforward extension
of the concept of orthonormal bases that you have seen in prelims Linear Algebra and
that a Hilbert space always has such an orthonormal basis, see below. Namely we say

Definition 1.8. A subset S of a Hilbert space X is called an orthonormal set if ∥x∥ = 1
for all x ∈ S and ⟨x, y⟩ = 0 for all x, y ∈ S with x ̸= y.

S is called an orthonormal basis (or on-basis for short) for X if S is an orthonormal
set and its closed linear span is X.1

To analyse orthonormal sets we will often use

1In the literature an orthonormal basis is sometimes also called a complete orthonormal set
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Theorem 1.9 (Pythagorean theorem). Let X be a Hilbert space and let S = {x1, x2, . . . , xm}
be a finite orthonormal set in X. Then

∥x∥2 =
m∑

n=1

|⟨x, xn⟩|2 +
∥∥∥x−

m∑
n=1

⟨x, xn⟩xn
∥∥∥2 for every x ∈ X.

The proof of this is a direct computation and is omitted. An simple consequence is:

Lemma 1.10 (Bessel’s inequality). Let X be a Hilbert space and let S = {x1, x2, . . .}
be an orthonormal sequence in X. Then

∞∑
n=1

|⟨x, xn⟩|2 ≤ ∥x∥2 for every x ∈ X.

We furthermore have

Theorem 1.11. Let X be a Hilbert space and let S = {x1, x2, . . .} be an orthonormal
sequence in X. Then the closed linear span of S consists of all vectors of the form

x =
∞∑
n=1

an xn (1.6)

for sequences of scalar (a1, a2, . . .) ∈ ℓ2(F).
Here the sum in (1.6) converges in the sense of the Hilbert space norm, the element

x ∈ X and the sequence (aj) ∈ ℓ2 are related by

an = ⟨x, xn⟩. (1.7)

and Parseval’s Identity holds, i.e.

∥x∥2 =
∞∑
n=1

|an|2. (1.8)

Proof of Theorem 1.11. We first show that the series in (1.6) converges in X for any
(ak) ∈ ℓ2. To see this we note that the partial sums Sk :=

∑
n≤k anxn form a Cauchy

sequence since the orthogonality of the xi means that for m ≥ k ≥ N

∥Sk − Sm∥2 =
∑

k+1≤n≤m

|an|2∥xn∥2 ≤
∑

n≥N+1

|an|2 → 0

as N → ∞. As X is Banach the series hence converges.
As the closed linear span Y of S is by definition closed and as it contains span(S)

and hence each of the partial sums Sk, we additionally know that x :=
∑∞

n=1 anxn =
limk→∞ Sk is in Y . Also as S is on, we know that an = ⟨Sk, xn⟩ for every k ≥ n and
thus obtain the claimed relation (1.7) in the limit k → ∞. Similarly, as ∥x− Sk∥ → 0
we obtain Parseval’s identity from the Pythagorean theorem.

Finally, we need to show that element x of the closed linear span Y can indeed be
written in the form (1.6). To see this we set an := ⟨x, xn⟩ use that Bessel’s inequality
implies that (an) ∈ ℓ2. By the previous part of the proof the series

∑∞
n=1 an xn thus

converges and x̃ =
∑∞

n=1 an xn is an element of Y . We now observe that x − x̃ is
orthogonal to all xn and deduce that x − x̃ ∈ (spanS)⊥ = Y ⊥ since the closed linear
span agrees with the closure of the span and since we always have A⊥ = (Ā)⊥. But
this means that x− x̃ ∈ Y ∩ Y ⊥ = {0}, so x = x̃ has indeed the desired form.
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We can use in particular

Corollary 1.12. If {e1, e2, . . . , ..} is a countable on-basis of a Hilbert space X then

x =
∑

⟨x, ej⟩ej for every x ∈ X.

We note that X having a countable on-basis implies that X is separable (and is
indeed equivalent to this for Hilbert spaces) and that we more generally have

Theorem 1.13. Every Hilbert space contains an orthonormal basis.

Proof of Theorem 1.13. We will only give a proof in the case when X is separable, i.e.
contains a countable dense subset S. The proof in the more general case draws on more
sophisticated arguments such as Zorn’s lemma.

We label the elements of S as y1, y2, . . .. Applying a slight modification of the Gram-
Schmidt process2, where we simply drop elements whenever they are linearly dependent
to the previous elements and continue the process for all n, we obtain an orthonormal
set B = {x1, x2, . . .} such that, for every n, the span of {x1, . . . , xn} contains y1, . . . , yn.
As S̄ = X, this implies that X = spanB.

There are some well known orthonormal bases of Hilbert spaces such as

(a) The trigonometric functions { 1√
2π
, 1√

π
sinnx, 1√

π
cosnx, n = 1, 2, . . .} and { 1√

2π
einx, n ∈

Z} in L2([−π, π],F) for F = R respectively F = C.

(b) The Legendre polynomials pn(t), indexed by their degrees, in L2(−1, 1).

(c) The Laguerre polynomials Ln(t) in L2((0,∞); e−tdt).

(d) The Hermite polynomials Hn(t) in L2(R; e−t2 dt).

In the next chapter we will prove that the trigonometric system is indeed an on-
basis of L2([−π, π]) and will discuss closely related properties of Fourier series, which
are nothing else than the expansion of elements of L2(−π, π) with respect to this on-
basis as described in Corollary 1.12 above.

1.4 Compact operators

In the last part of this introductory chapter we finally introduce another important
class of bounded linear operators, namely compact operators between normed spaces.

Definition 1.14. Let X, Y be normed spaces, T ∈ B(X,Y ). Then T is called compact

if the image of the closed unit ball is precompact, i.e. if T (B̄X) is compact.

On problem sheet 1 you will establish the following basic properties of compact
operators:

2The Gram-Schmidt process is usually applied to a set of finitely many linearly independent vectors
yielding an orthogonal basis of the same cardinality. In our setting, we will lose the latter property as
the vectors yi’s are not necessarily linearly independent.
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Lemma 1.15. Let T ∈ B(X,Y ) and S ∈ B(Y,Z) for X,Y, Z normed spaces. Then

(i) T is compact if and only if every bounded sequence (xn) in X has a subsequence
xnj which is so that Txnj converges (in Y ).

(ii) If dim(TX) < ∞ then T is compact.

(iii) If either S or T is compact then also S ◦ T is compact.

(iv) If Y is Banach and (Tn) ⊂ B(X,Y ) is a sequence of compact operators which
converges, Tn → T , in the sense of B(X,Y ) then also T is compact.

Example. T : ℓ1 → ℓ1 defined by T (x1, x2, ...) := (x1,
x2
2 ,

x3
3 , ...) is a compact operator

since Tj → T for the operators Tj defined by (Tj(x))k = xk
k if k ≤ j and (Tj(x))k = 0

for k > j which have finite dimensional image.

Typical examples of compact operators between function spaces are integral op-
erators and to show that such operators are compact we need characterisations of
(pre)compact subsets of the corresponding function spaces. The most famous such
result is

Theorem 1.16. (Theorem of Arzela-Ascoli) Let Ω ⊂ Rn be compact, let X = C(Ω)
equipped with the supremum norm and let F ⊂ X be any subset of X. Then F is
compact if and only if the functions in F are uniformly bounded and equicontinuous,
i.e. if and only if the following two conditions hold

(i) There exists M so that ∥f∥sup ≤ M for every f ∈ F

(ii) For every ε > 0 there exists δ > 0 so that for all f ∈ F and all x, y ∈ Ω with
|x− y| ≤ δ we have |f(x)− f(y)| ≤ ε

We will use this result without proof.3

We also remark that an analogue result, called the Theorem of Riesz-Kolmogorov,
holds for Lp spaces and in discussed in C4.3 Functional Analytic methods for PDEs.

Example. Integration I : f 7→ I(f), I(f)(x) :=
∫ x
a f(t)dt is a compact operator from

X = C([a, b]) to itself.

To see this we note that I(f) is continuous if f is continuous and that for ev-
ery f ∈ X with ∥f∥sup ≤ 1 the resulting I(f) is so that ∥I(f)∥ ≤ (b − a) and
|I(f)(x) − I(f)(y)| ≤ |x − y|. Hence I ∈ B(X) with ∥I∥ ≤ (b − a) (indeed =),
and F := I(B̄X) is uniformly bounded (with M := (b − a)) and equicontinuous (we
can always choose δ = ε) so by Arzela Ascoli precompact.

Compact operators have a number of important properties, in particular

3The proof of the Theorem of Arzela-Ascoli is non-examinable, but also not difficult. We can e.g.
choose a dense countable subset S of Ω, then use a standard diagonal sequence argument to pass to a
subsequence of a given sequence (fn) for which fnj (s) converges for every s ∈ S (this part uses uniform
boundedness and Bolzano Weierstrass) and finally to use the equicontinuity and density of S to show
that this subsequence is indeed a Cauchy sequence in X.
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Proposition 1.17. Let X be a Banach space and let T ∈ B(X) be a compact operator.
Then

(i) dim(ker(I− T )) < ∞

(ii) (I− T )(X) is closed

(iii) If X is a Hilbert space and T is additionally selfadjoint then

ker(I− T )⊥ = (I− T )(X).

We note that the last statement in particular implies that

X = (I− T )(X)⊕ V

for a finite dimensional vectorspace V (here V = ker(I− T )) for which

dim(ker(I− T )) = dim(V )

This statement holds true more generally also for compact operators T ∈ B(X) on
Banach spaces and you can see this as a generalisation of the rank-nullity theorem
from prelims Linear Algebra to infinite dimensions as it tells you that the codimension
of the image of I − T (which for X finite dimensional is dim(X) − rk(I − T )) is the
same as the nullity of this operator.

For the proof of (ii) we will use the following lemma, which we will also use later on
to analyse the spectrum of more general bounded linear operators on Banach spaces.

Lemma 1.18. Let X be a Banach space and suppose that S ∈ B(X) is so that

∃δ > 0 so that for all x ∈ X we have ∥Sx∥ ≥ δ∥x∥. (1.9)

Then S is injective and SX ⊂ X is closed. In particular, if SX is additionally dense
in X then S is invertible.

Warning. This result is wrong if X is not assumed to be complete and we also remark
that the image of general bounded linear operators from Banach spaces is not closed.
As an example consider the inclusion map i : (C[0, 1], ∥ ·∥sup) → (L1[0, 1], ∥ ·∥L1) which
is a bounded linear operator whose image is the subspace of L1 given by all continuous
functions which cannot be closed in L1 as it is a dense proper subspace of L1.

Proof of Lemma 1.18. The only statement whose proof is not trivial is that the image
SX is closed and we can prove this as follows: Given any sequence yn in SX which
converges yn → y to some y ∈ X, we let xn ∈ X be so that Sxn = yn. We then note
that as (yn) is a Cauchy-sequence, the assumption (1.9) implies that

∥xn − xm∥ ≤ δ−1∥S(xn − xm)∥ = δ−1∥yn − ym∥ −→
n,m→∞

0,

i.e. that also (xn) is Cauchy and thus, as X is complete, that xn → x for some x ∈ X.
As S is continuous we thus get that y = lim yn = limSxn = Sx ∈ SX.
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Proof of Proposition 1.17. We write for short Y := ker(I− T ).
To prove (i) we note that y = Ty for y ∈ Y so we can view the unit ball B̄Y = {y ∈

Y : ∥y∥ ≤ 1} in Y as a subset of the image of the unit ball BX := {x ∈ X : ∥x∥ ≤ 1},
i.e. use that B̄Y = T (B̄Y ) ⊂ T (B̄X) ⊂ T (B̄X). As Y is closed (since it is a kernel) we

hence know that B̄Y = B̄X ∩Y is a closed subset of the compact set T (B̄X) and hence
itself compact. Having thus shown that the closed unit ball in the normed space Y is
compact we thus deduce that Y is finite dimensional by the theorem of Heine Borel.

To prove (ii) we recall that a consequence of the Theorem of Hahn-Banach is that
every finite dimensional subspace of a Banach space has a closed complement. As Y
is finite dimensional there is hence a closed subspace V of X so that X = Y ⊕ V . As
V is a closed subspace of a Banach space it is also Banach and we can consider the
map S := (I − T )|V : V → X whose image is S(V ) = (I − T )(V ) = (I − T )(X) as
(I − T )(Y ) = {0}. It hence suffices to show that S(V ) is closed and this follows from
Lemma 1.18 provided we show that S satisfies (1.9), which we will do by contradiction.

So suppose that there is no δ > 0 so that ∥Sv∥ ≥ δ∥v∥ for all v ∈ V . Then we
can choose vn ∈ V so that ∥Svn∥ < 1

n∥vn∥ and replacing vn by vn
∥vn∥ we can assume

that ∥vn∥ = 1 and hence ∥Tvn − vn∥ = ∥Svn∥ → 0. As T is compact we can pass to
a subsequence so that Tvnj converges, say Tvnj → z. As T (vnj ) − vnj → 0 this also
implies that vnj → z. As V is closed we must hence have z ∈ V and as ∥vnj∥ = 1 we
must have ∥z∥ = 1 so z ̸= 0. However as T is continuous and hence z = limTvnj =
T (lim vnj ) = Tz we also have z ∈ Y so z ∈ Y ∩ V = {0} which gives a contradiction.

The final claim of the proposition immediately follows since T is assumed to be
selfadjoint and since the image of I− T is closed and hence, by (1.5),

(ker(I− T ))⊥ = (I− T ∗)(X) = (I− T )(X) = (I− T )(X).



Chapter 2

Introduction to convergence of
Fourier series

Recall that the Fourier series of a function f ∈ L1(−π, π) = L1((−π, π),C) is given by

F (f) =

∞∑
n=−∞

ane
inx, an =

1

2π

∫ π

−π
f(x) e−inx dx.

Setting en = 1√
2π
einx we hence have

F (f) =
∞∑

n=−∞
⟨f, en⟩en

and as the en are orthonormal in the complex Hilbert space L2(−π, π) know that the
infinite sum converges in L2. We will see soon that {en}n∈Z is in fact an orthonormal
basis of L2(−π, π) and so f = F (f) as L2 functions.

The question then arises whether the Fourier series of f converges to f in any better
sense. This is a difficult question and to have a satisfactory answer requires knowledge
which goes beyond what this course can cover. We are content instead with some brief
discussion on the subject.

In the following we can always use that we can extend any function f ∈ L1(−π, π)
to a 2π periodic function on R and that if f is continuous and f(−π) = f(π) then this
extension is also continuous.

We note

Proposition 2.1 (Termwise differentiation of Fourier series). Suppose that f ∈ L1(−π, π)
is so that a0(f) = 0 and let

F (x) =

∫ x

0
f(t) dt.

Then F ∈ C0([−π, π]) is so that F (π) = F (−π) so can be extended to a continuous
2π-periodic function on R and the Fourier coefficients of F and f are related by

an(f) = inan(F ) for n ̸= 0,

i.e. if F (F ) =
∑

cne
inx, then F (f) =

∑
in cn e

inx.

15
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Note that if a0(f) ̸= 0 then we can apply this to g(x) = f(x) − a0(f), which has
a0(g) = 0 since a0(1) = 1, and the corresponding G(x) = F (x)− a0(f)x to see that

F (F (x)− a0(f)x) = c0 +
∑
n̸=0

an(f)

in
einx

for some c0 ∈ C.

Proof of Proposition 2.1. As a0(f) = 0 we have

F (π)− F (−π) =

∫ π

−π
f(x)dx = 2πa0(f) = 0

and F is continuous by standard properties of integration. To get the claimed relation
on the coefficients with n ̸= 0, we integrate by parts

an(f) =
1

2π

∫ π

−π
f(x) e−inx dx =

in

2π

∫ π

−π
F (x) e−inx dx = inan(F )

where this integration by parts that involves an L1 function f can be justified using a
density argument and where we use that F (π) = F (−π). This concludes the proof.

Theorem 2.2 (Completeness of the trigonometric system). For every f ∈ L2(−π, π)
the partial Fourier sum SNf(x) :=

∑
|n|≤N an(f)e

inx converges

SNf → f in L2(−π, π).

In other words,
{

1√
2π
einx

}
n∈Z

is an orthonormal basis of L2(−π, π).

Proof of Theorem 2.2. Note that if we let f̃ be the limit of SNf , then the Fourier
coefficients of f − f̃ are all zero. Thus, to prove the result, it suffices to show that if
the Fourier coefficients of a function f ∈ L2(−π, π) are all zero, then f = 0 a.e.

We will only consider the case when f is real-valued. The complex-valued case is
left as an exercise.

Suppose first that f is a continuous function with f(−π) = f(π) and that we can
hence extend f to a continuous periodic function on R. If f ̸= 0, then |f | attains it
maximum value M > 0 at some point x0 ∈ [−π, π] and replacing f by −f if necessary,
we may assume that f(x0) = M > 0. As f is continuous we can choose δ > 0 so that
f(x) ≥ 1

2M on [x0 − δ, x0 + δ] and now consider the function

g(x) = 1 + cos(x− x0)− cos δ.

As gn is a trigonometric polynomial, the fact that the Fourier coefficients of f are
zero implies that

∫ π
−π f(x) g

n(x) dx = 0 for all n.
We can however also use that |g| ≤ 1 for δ ≤ |x − x0| ≤ π, while g ≥ 1 > 0 for

1
2δ < |x− x0| ≤ δ and g > 1 + cos(δ/2)− cos(δ) > 1 for |x− x0| ≤ 1

2δ to see that∫ π

−π
f(x) gn(x) dx =

∫ x0+π

x0−π
f(x) gn(x) dx

≥
∫ x0+δ/2

x0−δ/2
f(x) gn(x) dx−

∫
δ≤|x−x0|≤π

|gn(x)f(x)| dx

≥ 1

2
M (1 + cos

δ

2
− cos δ)n δ − 2πM 1n

n→∞−→ ∞



17

which contradicts the fact that the right hand side is equal to zero for all n.
Having shown the claim for continuous 2π periodic functions we now consider the

general case where f ∈ L2(−π, π). As an(f) = 0 for all n, so in particular for n = 0
we know from Proposition 2.1 that F (x) =

∫ x
0 f(t) dt is 2π-periodic and, by standard

properties of integration, also continuous. At the same time, Proposition 2.1 implies
that an(F ) = 0 for all n ̸= 0 so we can apply the first case to F − a0(F ) to see that F
is constant and as F (0) = 0 must hence be identically zero. This implies that f = 0
a.e. as desired.

Remark. The proof above actually shows a stronger statement: if f is an integrable
function and if all Fourier coefficients of f are zero, then f = 0 a.e.

An immediate consequence of Theorem 1.11 and the fact that the functions en form
an on-basis of L2 that we have just established is Parseval’s identity for Fourier-series,
i.e.

Corollary 2.3. For every f ∈ L2(−π, π) we have

∞∑
−∞

|an(f)|2 =
1

2π

∫ π

−π
|f |2 dx.

In particular, the Fourier coefficients of any L2 function tend to zero as n → ±∞
and indeed we have more generally that

Proposition 2.4 (Riemann-Lebesgue Lemma). Let f ∈ L1(−π, π). Then∫ π

−π
f(t) eikt dt → 0 as k → ±∞

Proof of the Riemann-Lebesgue Lemma. If f ∈ L2(−π, π), this follows from Parseval’s
identity.

For the general case f ∈ L1(−π, π) we fix any ε > 0, use that the continuous
functions are dense in L1 to determine g ∈ C[−π, π] so that h = f − g satisfies
∥h∥L1(−π,π) ≤ ε and use that∫ π

−π
g(t) eikt dt → 0 as k → ±∞

since g ∈ C[−π, π] ⊂ L2, while∣∣∣ ∫ π

−π
h(t) eikt dt

∣∣∣ ≤ ∫ π

−π
|h(t)| dt ≤ ε.

Combined we get that lim supk→±∞ |
∫ π
−π f(t) e

ikt dt| ≤ ε which implies the conclusion
as ε > 0 was arbitrary.

We can now ask whether imposing stronger conditions on f allows us to deduce
further convergence results on the Fourier series. To this end we first note that asking
that f is continuous is not sufficient to ensure that the Fourier series converges point-
wise everywhere. Indeed, as a consequence of the Uniform boundedness principle that
we will prove in the next chapter, we will be able to show
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Theorem 2.5. There exists a 2π-periodic continuous function f0 : R → R whose
Fourier series diverges at x = 0.

Remark. One can use the above to build a continuous function whose Fourier series
diverges at any n arbitrarily given points (cf problem sheets).

If we want to obtain pointwise convergence of Fourier series then we hence need to
impose stronger conditions on the regularity of f . The right condition turns out to be
Hölder continuity:

Definition 2.6. Let α ∈ (0, 1]. We say that a function f is α-Hölder continuous at a
point x if there is some A > 0 and δ > 0 such that

|f(x+ h)− f(x)| ≤ A|h|α for |h| ≤ δ.

When α = 1, we say f is Lipschitz continuous at x.

Given a < b we can also consider the Hölder space C0,α([a, b]) which is the set of
functions f : I := [a, b] → R for which

[f ]α := sup{|f(x)− f(y)|
|x− y|α

: x, y ∈ I, x ̸= y} < ∞

We remark that this space equipped with ∥ · ∥0,α := ∥f∥sup + [f ]α is a Banach space.

Theorem 2.7. Assume that f ∈ L1
loc(−π, π) is 2π-periodic and α-Hölder continuous

at a point x0 ∈ [−π, π] for some α ∈ (0, 1]. Then

lim
N→∞

SNf(x0) = f(x0).

To prove this result we note that we can write the N -th partial Fourier sum of a
function f as

SNf(x) =
N∑

n=−N

an e
inx =

∫ π

−π
f(t) kN (x− t) dt

where a simple computation gives

kN (x) =
1

2π

N∑
n=−N

einx =
1

2π

sin((N + 1
2)x)

sin x
2

=
1

2π
cos(Nx) +

1

2π

cos x
2

sin x
2

sin(Nx). (2.1)

Proof of Theorem 2.7. It suffices to consider real valued functions as we can split any
complex valued f into its real and imaginary part. Also, as the theorem trivially holds
for constant functions f we can assume that f(x0) = 0, as we can otherwise replace
f by f − f(x0) and we can also assume without loss of generality that x0 = 0 as we
can otherwise replace f by f(· − x0) and use that translations of the variable commute
with F .

Given any δ > 0 we then note that we can apply the Riemann-Lebesgue lemma to

the functions 1
2πf1[−π,π]\[−δ,δ] and

1
2π

cos x
2

sin x
2
f1[−π,π]\[−δ,δ] to see that

lim
N→∞

∫
[−π,π]\[−δ,δ]

f(t) kN (t) dt → 0.
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On the other hand, using the Hölder continuity of f at x0 = 0, we have |f(h)| ≤
A|h|α for small |h|, so if δ is small in particular for all |h| ≤ δ and we thus get∣∣∣ ∫ δ

−δ
f(t) kN (t) dt

∣∣∣ ≤ A

∫ δ

−δ
|t|α |kN (t)| dt ≤ A

π

∫ δ

0

tα

sin t
2

dt.

Using the inequality sin t
2 ≥ t

π for 0 ≤ t ≤ π, we see that the right hand side is bounded
from above by A

α δ
α. Putting everything together we obtain

lim sup
N→∞

|SNf(0)| ≤ A

α
δα.

Since δ > 0 was arbitrary, this implies SNf(0) → 0 = f(0), as desired.
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Chapter 3

The Baire category theorem and
fundamental results for bounded
linear operators

In B4.1 you have already seen one of the fundamental results of functional analysis,
namely the Theorem of Hahn-Banach. In this section we discuss other corner stones on
which many results in Functional Analysis are built, and which, together with Hahn-
Banach, are hence sometimes referred to as the principles of Functional Analysis. These
are the uniform boundedness principle and the Open mapping theorem (and the closely
related closed graph theorem). The proofs of these theorems are all based on a basic
but key result for complete metric spaces, namely the Baire category theorem.

3.1 The Baire category theorem

Let (M,d) be a metric space. We recall that a subset of a metric space M is called
dense if S̄ = M . We furthermore define

Definition 3.1. A subset S of a metric space M is

(i) nowhere dense in M if S̄ has empty interior.

(ii) has Baire category 1 if it can be written as a countable union S =
⋃

i∈NAi of
nowhere dense sets Ai.

(iii) has Baire category 2 if it has not category 1.

(iv) residual if Sc has category 1.

Example. While Q is dense in R it is a category 1 set since it is given by the countable
union of singletons which have non-empty interior in R. Hence the set of irrationals
in R is a residual set (and as we will see below hence has category 2).

We will use cat(S) ∈ {1, 2} as shorthand for the Baire category of a set.

From the definition it is immediately clear that the countable union of category 1
sets is again category 1 and that any subset of a category 1 set is again category 1.
This might look similar to the concept of null-sets in integration, and there are further

21
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parallels in that both of these concepts can be thought of giving a notion of ”sets being
small”, but we point out not every category 1 set in R is null and not every null set is
category 1.

We note that for closed respectively open sets, the notions of dense and nowhere
dense are related by

Lemma 3.2. Let A be a subset of a metric space. Then the following are equivalent

(i) A is closed and nowhere dense

(ii) Ac is open and dense.

Proof of Lemma 3.2. If Ac is open and dense then A is of course closed. If it was not
nowhere dense then Ā = A would have non-empty interior so would contain some ball
Br(x), r > 0, x ∈ M . But then there would be no y ∈ Ac so that d(x, y) < r which
contradicts the assumption that Ac is dense.

If we instead know that A is closed and nowhere dense then we of course know that
Ac is open. Given x ∈ M and ε > 0 we know that Bε(x) cannot be fully contained in A
(as this would contradict A nowhere dense) so there must be y ∈ Ac with d(x, y) < ε.
As x and ε > 0 were arbitrary we hence get that Ac is dense.

Theorem 3.3 (The Baire category theorem). Let (M,d) be a non-empty complete
metric space. Then

(i) cat(M) = 2, so M cannot be written as the countable union of nowhere dense
sets.

(ii) Every residual set is dense, i.e. cat(Ac) = 1 implies that A = M .

Remark. (ii) immediately implies (i): If M was category 1 then (ii) would imply that
∅ = M c was dense in M which is obviously wrong (as M ̸= ∅) This second statement
is hence sometimes called the ”strong form” of the Baire category theorem (and (i) the
weak form), and while also (i) would suffice to derive the key results on bounded linear
operators mentioned above, it turns out that the proof of (ii) is equally simple/difficult,
so we prove the full result.

Proof of the Baire Category Theorem. One can either work directly with nowhere dense
sets, or use Lemma 3.2 to instead translate everything into claims about dense sets.
Here we choose the later route and as main step of the proof show:

Claim 1: Let Uj , j ∈ N, be open and dense. Then
⋂

j∈N Uj is dense.
Proof of Claim 1: Let x ∈ M , ε > 0. We need to show that there exists y ∈

⋂
Uj

so that d(x, y) ≤ ε. To this end we inductively construct a sequence (yj)j≥1 by first
setting ε0 =

ε
2 and y0 = x and then for j ≥ 0

• use that Uj+1 is dense to get yj+1 ∈ Uj+1 with d(yj , yj+1) ≤ εj
2

• use that Uj+1 is open to get εj+1 ∈ (0,
εj
2 ] so that B̄εj+1(yj+1) ⊂ Uj+1.

This construction ensures that

• εj+1 ≤ 1
2εj ≤ ... ≤ 2−jε1 so εj → 0 as j → ∞
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• As εj+1 + d(yj , yj+1) ≤ εj we have B̄εj+1(yj+1) ⊂ B̄εj (yj) for every j and hence

B̄εj (yj) ⊂
j⋂

n=1

Un.

• (yj) is a Cauchy sequence since εN → 0 as N → 0 and since for j, k ≥ N we have
yj , yk ∈ B̄εN (yN ) so d(yj , yk) ≤ 2εN .

As (M,d) is complete we hence find that yj → y for some y which needs to be in
B̄εj (yj) for every j as the tail of the sequence is contained in these closed balls. As

B̄εj (yj) ⊂
⋂j

n=1 Un we hence get y ∈
⋂j

n=1 Un for every j so y ∈
⋂∞

n=1 Un. Finally, as
y ∈ B̄ε0(y0) and y0 = x, ε0 = 1

2ε we have d(y, x) ≤ ε as desired. This completes the
proof of claim 1.

Proof that Claim 1 implies (ii): If cat(A) = 1 then we can writeA =
⋃

j∈NAj for

nowhere dense sets Aj . As Aj is closed and nowhere dense we know that the sets (Aj)
c

are open and dense and that their intersection is hence also dense. As A ⊂
⋃

j∈NAj

this means that Ac ⊃
(⋃

j∈NAj

)c
=

⋂
j∈N(Aj)

c contains a set which is dense in M , so
is itself dense in M .

3.2 Principle of uniform boundedness

Theorem 3.4 (Principle of uniform boundedness; Theorem of Banach-Steinhaus). Let
X be a Banach space and let Y be a normed space. Let F ⊂ B(X,Y ) be a set of
bounded linear operators from X into Y which is pointwise bounded, i.e. so that for
every x ∈ X we have supT∈F ∥Tx∥ < ∞. Then F is uniformly bounded, i.e. so that

sup
T∈F

∥T∥ < ∞.

Here we use the conventions familiar from part A integration that we extend the
definition of the supremum also to (non-empty) subsets A ⊂ R which are not bounded
from above and in this case write supA = ∞.

The above statement hence means that if for each x the set {∥Tx∥, T ∈ F} is
bounded from above (so as it’s a subset of [0,∞) equivalently bounded) then also
{∥T∥, T ∈ F} is a bounded set.

Warning. This theorem does not hold if X is not complete. Consider e.g. the space
X = C([0, 1]) equipped with the L1 norm rather than the usual sup norm. Then it is

easy to see that the operators Tn(f) = n
∫ 1

n
0 f(t)dt are bounded pointwise (since each

element of X is a bounded function) but that their operator norms are not bounded.

Proof of the Uniform Boundedness Principle. For each n ∈ N we set An = {x ∈ X :
∥Tx∥Y ≤ n for all T ∈ F} and note that this set is closed as all T are continuous.

By hypothesis, each x ∈ X belongs to some An and so X = ∪∞
n=1An. By the Baire

category theorem, we hence cannot have that all An are nowhere dense, so there must
be some n0 such that An0 = Ān0 has non-empty interior i.e. contains some ball Br0(x0),
x0 ∈ X, r0 > 0.
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We now want to get a uniform bound on ∥Tx∥Y that is valid for all T ∈ F and all
∥x∥X < r0.

For this we note that for each such x, we have x0 + x ∈ Br0(x0) and so, by the
definition of An0 ,

∥T (x0 + x)∥Y ≤ n0 for all T ∈ F .

As also x0 ∈ Br0(x0) we also have ∥T (x0)∥Y ≤ n0 for all T ∈ F so by the triangle
inequality get

∥Tx∥Y ≤ ∥T (x0 + x)∥Y + ∥Tx0∥Y ≤ 2n0 for all T ∈ F and all ∥x∥X < r0.

Since all T ’s are linear this implies that ∥Tx∥ ≤ 2n0r
−1
0 for all x with ∥x∥ < 1, so by

continuity also for all x with ∥x∥ ≤ 1. This shows that supT∈F ∥T∥B(X,Y ) ≤ 2n0 r
−1
0 <

∞.

The principle of uniform boundedness has far reaching consequences and we will see
many results that are based on it throughout the course. One very useful consequences
is

Theorem 3.5. Let X and Y be Banach spaces and consider a sequence Tn ∈ B(X,Y ).
Then the following statements are equivalent.

(i) There exists T ∈ B(X,Y ) such that, for every x ∈ X, Tnx → Tx as n → ∞.

(ii) For each x ∈ X, the sequence (Tnx) is convergent.

(iii) There is a constant M and a dense subset Z of X such that ∥Tn∥ ≤ M and so
that the sequence (Tnz) is convergent for each z ∈ Z.

Warning. In the above theorem, the convergence of Tn to T is in the pointwise sense,
and the above statements do not imply convergence in the sense of B(X,Y ). To see
this consider for example X = ℓ2, Y = R and Tn((a1, a2, . . .)) = an. Then, for every
x ∈ ℓ2, Tnx → 0, but ∥Tn∥ = 1 ̸→ 0.

Proof. It is clear that (i) ⇒ (ii). That (ii) ⇒ (iii) is a direct application of the principle
of uniform boundedness as pointwise convergence yields pointwise boundedness.

It remains to prove (iii) ⇒ (i), so suppose that the assumptions of (iii) hold:
We first claim that, for every x ∈ X, (Tnx) is Cauchy, and hence convergent. To

see this, fix any x ∈ X, ϵ > 0, and note that, for every z ∈ Z,

∥Tnx− Tmx∥ ≤ ∥Tnz − Tmz∥+ ∥Tn(x− z)∥+ ∥Tm(x− z)∥
≤ ∥Tnz − Tmz∥+ 2M∥x− z∥.

In particular, if we choose z ∈ Z such that ∥x − z∥ ≤ ϵ
4M and choose N such that

∥Tnz − Tmz∥ ≤ ϵ
2 for n,m ≥ N , we obtain ∥Tnx − Tmx∥ ≤ ϵ for all n,m ≥ N . This

proves the claim
For each x ∈ X, we can hence define Tx as the limit of Tnx. As each Tn is linear

also T is linear. Finally, we have

∥Tx∥ = lim
n→∞

∥Tnx∥ ≤ lim sup
n→∞

∥Tn∥∥x∥ ≤ M∥x∥ for all x ∈ X

Thus T is a bounded linear operator on X and we have established (i).
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A useful consequence of the Riesz representation theorem and the uniform bound-
edness principle is

Theorem 3.6. Let X be a Hilbert space and suppose that F is a subset of B(X) such
that

sup
T∈F

|⟨Tx, y⟩| < ∞ for each x, y ∈ X.

Then supT∈F ∥T∥ < ∞.

Proof of Theorem 3.6. By the principle of uniform boundedness, it suffices to show
that, for each fixed x ∈ X, {∥Tx∥ : T ∈ F} is bounded.

Fix an x ∈ X. Define KT,x ∈ X∗ by KT,x(y) = ⟨y, Tx⟩. Then, for each y ∈ X,
{|KT,x(y)| : T ∈ F} is bounded. The principle of uniform boundedness implies then
{∥KT,x∥∗ : T ∈ F} is bounded. As ∥KT,x∥∗ = ∥Tx∥, we conclude the proof.

As a consequence of the Uniform boundedness principle we can now also complete
the proof of Theorem 2.5 which asserted that there exists a continuous 2π periodic
function whose Fourier series at x0 = 0 diverges:

Proof of Theorem 2.5. The convergence of the Fourier series of a function f at x0 = 0
means that

lim
N→∞

SNf(0) = lim
N→∞

∫ π

−π
f(x)kN (x) dx exists.

Let X = {f ∈ C[−π, π] : f(π) = f(−π)} and define AN ∈ X∗ by

AN (f) =

∫ π

−π
f(x) kN (x) dx.

Assume by contradiction that the Fourier series of every continuous function converges
at x0 = 0. Then AN (f) is bounded for every f . By the principle of uniform bounded-
ness, this means that ∥AN∥∗ is bounded.

However, we can easily check that

∥AN∥∗ =
∫ π

−π
|kN (x)| dx.

so using the formula for kN given in (2.1) and the inequality sinx ≤ x for x > 0, we
get

∥AN∥∗ ≥
1

π

∫ π

−π

∣∣∣ sin((N + 1
2)x)

∣∣∣dx|x| = 2

π

∫ (N+
1
2)π

0
| sinx|dx

|x|
≥ C logN

for some positive constant C independent of N . This gives a contradiction and con-
cludes the proof.

3.3 The open mapping theorem

Definition 3.7. A map f between two metric spaces X and Y (or more generally two
topological spaces) is called open if f(U) is open for every open subset U of X.

For linear operators we have the following simple way of testing whether a map is
open:
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Lemma 3.8. Let X,Y be normed spaces, T : X → Y linear. Then the following are
equivalent

(i) T is open

(ii) There exists δ > 0 so that BY
δ ⊂ T (BX

1 )

(iii) There exists ε > 0, y0 ∈ Y and R > 0 so that BY
ε (y0) ⊂ T (BX

R )

To avoid confusion here we indicate in which space which ball lies by writing BX
r (x)

for the open ball with radius r around x and to shorten notation we abbreviate balls
around the origin with BX

r .

Proof of Lemma 3.8. (i) ⇒ (ii) follows as 0 ∈ T (BX
1 ) and (ii) ⇒ (iii) is trivially true.

Proof that (ii) implies (i):
Let U be open, y ∈ T (U). Then there exists x ∈ U so that y = Tx and since
U is open there exists r > 0 so that BX

r (x) ⊂ U . By linearity and (ii) hence
T (BX

r (x)) = {Tx}+ rT (BX
1 ) ⊃ {Tx}+ rBY

δ = BY
δr(Tx).

Proof that (iii) implies (ii): Note that Ω := T (BX
R ) is convex (as T is linear and

as BX
R is convex) and symmetric in the sense that if y ∈ Ω then also −y ∈ Ω (again as

the ball has this property and as T is linear).

Hence also BY
ε (−y0) ⊂ Ω and so for each y ∈ BY

ε we know that both ±y0 + y are
in Ω and hence, by convexity, so is y = 1

2(y0 + y) + 1
2(−y0 + y).

Thus BY
ε ⊂ T (BX

R ) so by linearity BY
ε/R ⊂ T (BX

1 ).

Based on the Baire-category theorem we can now establish the following fundamen-
tal result about bounded linear operators between Banach spaces:

Theorem 3.9 (Open mapping theorem). Let X,Y be Banach spaces and let T ∈
B(X,Y ) be surjective. Then T is an open map.

Note that for linear maps the converse is trivially true (in particular also if X,Y
are not complete).

Proof of the open mapping theorem. We first show

Claim 1: There exists ε > 0 so that BY
2ε ⊂ T (BX

1 ).
Proof of Claim 1: As Y = T (X) = T (

⋃
n(B

X
n )) =

⋃
T (BX

n ) and as Y is Banach we
know by the Baire category theorem that at least one of the T (BX

n ) is not nowhere
dense, so T (BX

n ) has nonempty interior, so contains some ball BY
δ (y0). As in the proof

of the above lemma we can easily check that this implies that BY
δ ⊂ T (BX

n ) and we get
the claim for ε = δ

2n .
To complete the proof we now show that

Claim 2: For this ε we have BY
ε ⊂ T (BX

1 ).
Proof of Claim 2: Let y ∈ BY

ε . The idea is to construct a sequence (xk) so that
∥xk∥ < 2−k and so that

∑m
k=1 Txk converges to y in Y .



3.3. THE OPEN MAPPING THEOREM 27

To get such a sequence we can use that BY
2−j+1ε

⊂ T (B2−j ) by the first part and
linearity. As y0 = y ∈ BY

ε we can hence choose x1 with ∥x1∥ ≤ 2−1 so that y1 :=
y0 − Tx1 is so that ∥y1∥ < ε2−1.

We then proceed inductively, so suppose we have already found x1, .., xj and y1, . . . , yj
with yk = yk−1 − Txk and ∥xk∥ < 2−k and ∥yk∥ < ε2−k for all k = 1, . . . , j.

Then we use that yj ∈ BY
2−jε

⊂ T (B2−j−1) to choose the next xj+1 ∈ BX
2−(j+1) so

that ∥yj − Txj+1∥ < ε2−j and continue the process with yj+1 = yj − Txj+1.
Since

∑
∥xk∥ < 1 we know that

∑
xk converges in X to some x ∈ BX

1 , as absolute
convergence of series in Banach spaces implies convergence. As y−

∑n
k=1 Txk = yn → 0

in Y we hence get that

y =

∞∑
k=1

Txk = lim
n→∞

n∑
k=1

Txk = lim
n→∞

T (

n∑
k=1

xk) = T (

∞∑
k=1

xk) = Tx

where the third step follows by linearity and the forth by continuity of T . As y was an
arbitrary element of BY

ε this shows that BY
ε ⊂ T (BX

1 ) and hence that T is open.

An important consequence is:

Theorem 3.10 (Inverse mapping theorem). Let X,Y be Banach spaces and let T ∈
B(X,Y ) be bijective. Then T is invertible.

Proof. Exercise.

Application. Let X be a Banach space with respect to two norms ∥ · ∥1 and ∥ · ∥2 and
suppose that there is a constant C > 0 such that ∥x∥1 ≤ C∥x∥2 for all x ∈ X. Then
the two norms are equivalent, i.e. there is a constant C ′ such that ∥x∥2 ≤ C ′∥x∥1 for
all x ∈ X.

As a consequence of the inverse mapping theorem we can also show

Theorem 3.11. Let T ∈ B(X,Y ) be a bounded linear operator between Hilbert spaces.
Then TX is closed if and only if T ∗Y is closed.

In the proof we will use the inverse function theorem and the fact that the adjoint
of an invertible operator between Hilbert spaces is again invertible that you have seen
in B4.1.

Proof of Theorem 3.11. It suffices to show only one direction, as T ∗∗ = T so we prove
that if W := T ∗Y is closed in X then also TX is closed in Y , i.e. TX = TX.

For this we set Z = TX and need to show that Z ⊂ TX as the reverse inclusion
is trivially satisfied. We will prove this by showing that the identity map IZ can be
obtained as a composition of the map T with a suitable map from Z to W ⊂ X which
we construct as follows:

As T maps X into Z we can view it instead as a map into the Banach space Z and
we call the resulting map S, i.e. S ∈ B(X,Z) is simply given by Sx = Tx for all x ∈ X.
The adjoint S∗ of S is an operator from Z to X. By (1.5), Z = ImS = (KerS∗)⊥, so
KerS∗ = {0}, i.e. S∗ is injective.

We claim that ImS∗ = W . To this end we let P be the orthogonal projection from
Y onto Z and compute, for x ∈ X and y ∈ Y ,

⟨Tx, y⟩Y = ⟨Sx, Py⟩Y = ⟨x, S∗Py⟩X .
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This shows that T ∗ = S∗ ◦ P , and so ImS∗ = W , as claimed.
So, S∗ can be regarded as a bounded bijective linear operator between Z and W .

To make the notation clearer, we rename it as V ∈ B(Z,W ), V z = S∗z for all z ∈ Z.
As both Z and W are Banach we can apply the inverse mapping theorem to deduce
that V is invertible, which in turn implies that also V ∗ is invertible.

We finally claim that
IZ = T ◦ (V ∗)−1,

which then immediately implies that Z ⊂ TX and hence that indeed TX = Z = TX.
To show this, i.e. that z = T ((V ∗)−1z) for any given z ∈ Z, we write for short

w = (V ∗)−1z, note that both z and Tw are elements of Z and that for any y ∈ Z:

⟨Tw, y⟩Y = ⟨Sw, y⟩Y = ⟨w, S∗y⟩X = ⟨w, V y⟩X = ⟨V ∗w, y⟩Y = ⟨z, y⟩Y .

Since this holds for all y ∈ Z, so in particular for y = Tw − z, we deduce that Tw = z
and so T ◦ (V ∗)−1 = IZ as desired.

3.4 The closed graph theorem

We recall that if X,Y are normed spaces then we can turn X × Y into a normed space

by defining ∥(x, y)∥ =
√
∥x∥2X + ∥y∥2Y and that this choice of norm ensures that X×Y

inherits all key properties that the spaces X and Y might have, i.e. if X and Y are both
Banach or both inner product spaces or Hilbert spaces or separable then also X × Y
has this property.

A very useful result to test whether a linear map is bounded is

Theorem 3.12 (Closed graph theorem). Let X and Y be Banach spaces and let T be
a linear operator from X into Y . Then T is bounded if and only if its graph

Γ(T ) = {(x, y) ∈ X × Y : y = Tx}

is closed in X × Y .

Proof of the Closed Graph Theorem. If T is bounded, then it is continuous so if a se-
quence (xn, Txn) of elements of Γ(T ) converges to some (x, y) we must have y =
limTxn = T limxn = Tx, i.e. (x, y) ∈ Γ(T ). Thus Γ(T ) is closed.

Conversely, assume that Γ(T ) is closed. We note that the graph of any linear
operator is a subspace, so as Γ(T ) is closed and as X × Y is Banach we find that Γ(T )
itself is also a Banach space with the norm induced by the norm on X × Y . Consider
now the projections onto the components of elements of Γ(T ), i.e. the continuous maps
P1 : Γ(T ) → X and P2 : Γ(T ) → Y defined by

P1(x, Tx) = x and P2(x, Tx) = Tx.

It is clear that P1 is a bijection. By the inverse mapping theorem, P1 has a continuous
inverse P−1

1 . The conclusion follows from the fact that T = P2 ◦ P−1
1 .

Remark. Usually, to show that a map A from a normed space X to another normed
space Y is continuous, one needs to show that if xn → x, then A(xn) → A(x). In many
situations, one struggles to prove some kind of convergence for A(xn), let alone the
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convergence to A(x). However, if X and Y are Banach spaces and if A is linear, then
by virtue of the closed graph theorem, one may assume from the beginning that A(xn)
is convergent in the sense of norm!

Example. Let X be a Banach space, and let Y and Z be closed subspaces of X such
that X = Y ⊕ Z. Then the direct sum projection P : X → Y from X onto the first
summand Y is bounded.

Proof. By the closed graph theorem, it suffices to show that the graph of P is closed,
i.e. that if a sequence (xn, yn) of elements of the graph converge to some (x, y) then
y = Px, i.e. y ∈ Y and x− y ∈ Z.

This immediately follows since the spaces Y and Z are closed and since for element
of the graph we have yn = Pxn: namely as yn → y we have that y ∈ Y and as
xn − yn = xn −Pxn are by definition of P elements of Z and as they converge to x− y
we have that x− y ∈ Z, so indeed Px = y, as desired.

Furthermore, a useful consequence of the closed graph theorem is

Proposition 3.13. Let X be a Hilbert space and let T : X → X be linear. If ⟨Tx, y⟩ =
⟨x, Ty⟩ for all x, y ∈ X, then T is bounded and so self-adjoint.

Proof of Proposition 3.13. As before, we only need to show that if xn → x and Txn →
z, then z = Tx as we can then apply the closed graph theorem. Indeed, for any y ∈ X,
we have

⟨Tx, y⟩ = ⟨x, Ty⟩ = lim
n→∞

⟨xn, T y⟩ = lim
n→∞

⟨Txn, y⟩ = ⟨z, y⟩,

which implies z = Tx.

Example. It is clear that if h ∈ L∞(R), then the multiplication operator f 7→ hf =:
Mhf maps L1(R) into itself. The converse of this is also true: If h is some measurable
function such that Mhf ∈ L1(R) for all f ∈ L1(R), then h ∈ L∞(R).

Proof. By hypothesis Mh maps L1(R) into itself. We claim that Mh is bounded. To
this end, we need show that if fn → f and Mhfn → g, then g = Mhf in the sense of
L1, i.e. a.e. Once we have shown this we deduce that Mh is bounded from the closed
graph theorem as L1 is a Banach space.

For this we use that any sequence that converges in a space Lp has a subsequence
that converges pointwise almost everywhere to the same limit.

We first apply this to fn and use that as fn → f in L1, there is a subsequence,
say fnj , which converges to f a.e. It follows that Mhfnj → Mhf a.e. Since we also
know that Mhfnj → g in L1, we can pass to a further subsequence so that Mhfnjk

→ g
pointwise almost everywhere and hence conclude that Mhf = g a.e. as desired.

Having thus shown that Mh is bounded we now claim that h ∈ L∞ and that indeed

|h| ≤ ∥Mh∥ a.e.

Suppose that this was not the case i.e. that Z := {x : |h(x)| > ∥Mh∥} was not a null
set. Since we can write Z =

⋃
n∈N Zn for Zn := {x ∈ [−n, n] : |h(x)| > ∥Mh∥ + 1

n}
and as the countable union of null sets would be null, there must be some n so that
L(Zn) > 0 and hence so that the corresponding characteristic function f := 1Zn is a
non-zero element of L1.
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However, as |h| > ∥Mh∥+ 1
n on Zn and as ∥f∥ = L(Zn) > 0 we have for this f that

∥Mhf∥L1 ≥
∫
Zn

∥Mh∥+
1

n
dt = L(Zn)(∥Mh∥+

1

n
) = (∥Mh∥+

1

n
)∥f∥ > ∥Mh∥∥f∥,

contradicting the definition of the operator norm.
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Weak convergence

The fact that bounded sequences in infinite dimensional spaces cannot be expected to
have a convergent subsequence means that many arguments that you are familiar with
from the analysis of functions from R (or Rn) no longer work in infinite dimensional
spaces. This is particularly problematic as most interesting objects (like functions,
sequences, curves, surfaces,.....) are not part of a finite dimensional space, but rather
form subsets of infinite dimensional spaces. Rather than accepting that we can no longer
pass to subsequences which have additional convergence properties, a key idea in the
analysis of problems on infinite dimensional spaces is to introduce a weaker notation of
convergence. While we cannot expect that such a weaker notion of convergence will still
have all of the nice properties of the ”standard convergence” (often also called strong
convergence or convergence in norm to distinguish clearly from weak convergence), it
turns out that several key properties still hold and, most importantly, that in a large
class of infinite dimensional spaces (namely all reflexive Banach spaces so in particular
all Hilbert spaces) every bounded sequence will have a subsequence that converges in
this weak sense.

4.1 Definition and examples

Definition 4.1. A sequence (xn) in a normed space X is said to converge weakly to
x ∈ X if

lim
n→∞

ℓ(xn) = ℓ(x) for all ℓ ∈ X∗.

This relation is indicated by a half arrow

xn ⇀ x,

or to make it clearer (and recommended for handwritten notes to avoid confusion be-
tween weak and strong convergence) by xn

w
⇀ x.

As elements of X∗ are continuous we know that any sequence (xn) that converges
(strongly) to x, i.e. for which ∥xn − x∥ → 0, also converges weakly to the same
limit. Conversely, in many infinite dimensional spaces, weak convergence does not
imply strong convergence.

There are some exceptional spaces where weak and strong convergence are equiva-
lent, most notably finite dimensional spaces and the sequence space ℓ1.

31
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You will see the following typical example of sequences that converge weakly but
not strongly on problem sheet 3

Example. Let X = Lp(R), p ∈ [1,∞), let fn = n1/p
1[0, 1

n
] Then

• fn does not converge strongly

• For p ∈ (1,∞) we have fn ⇀ 0.

• For p = 1 the sequence does not converge weakly in L1.

4.2 Basic properties and Mazur’s theorem

Lemma 4.2 (Uniqueness of limit). The weak limit, if it exists, is unique.

Proof of Lemma 4.2. Suppose that xn ⇀ x and xn ⇀ x̃ for x ̸= x̃. Then by the
Corollary of Hahn-Banach that we recalled in (1.3) there would be f ∈ X∗ so that
f(x) ̸= f(x̃). This contradicts the uniqueness of limits for the sequence of numbers
f(xn).

Proposition 4.3. If xn ⇀ x then (xn) is bounded and

∥x∥ ≤ lim inf ∥xn∥.

Proof of Proposition 4.3. We recall that the canonical injection ι : X → X∗∗ is isomet-
ric and hence that each xn defines an element Tn = ιxn ∈ X∗∗ with ∥Tn∥∗∗ = ∥xn∥
by

Tn(ℓ) = ℓ(xn) for all ℓ ∈ X∗.

Now for each ℓ ∈ X∗, Tn(ℓ) = ℓ(xn) is convergent, and hence bounded. The
principle of uniform boundedness, which is applicable as X∗ is Banach, thus implies
that ∥Tn∥∗∗ is bounded and hence that (xn) is bounded.

To get the second part, we apply the consequence (1.3) of Hahn-Banach to choose
ℓ ∈ X∗ such that

∥x∥ = ℓ(x) and ∥ℓ∥∗ = 1.

The conclusion then follows from the inequality

|ℓ(xn)| ≤ ∥ℓ∥∗∥xn∥ = ∥xn∥

and the fact that ℓ(xn) → ℓ(x) = ∥x∥.

The second part of this proposition, is a special case of the following stronger
statement:

Theorem 4.4 (Mazur). Let K be a closed convex subset of a normed space X and
let (xn) be a sequence of elements of K which converges weakly to some x ∈ X. Then
x ∈ K.

We assume for granted the following result, which can be obtained as a consequence
of the Hahn-Banach theorem.
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Theorem 4.5 (Hyperplane separation theorem). Let X be a normed space, let A and

B be disjoint convex subsets of X so that
◦
B ̸= ∅. Then A and B can be separated by a

hyperplane, i.e. there is ℓ ∈ X∗ \ {0} and a number c such that

Re ℓ(x) ≤ c ≤ Re ℓ(y) for all x ∈ A, y ∈ B. (4.1)

We note that (4.1) indeed also holds for x ∈ Ā and y ∈ B̄ as ℓ is continuous.

This, and related results, will be discussed in C4.1 Further Functional Analysis.

We will use the following consequence of the above theorem:

Corollary 4.6. Let K be a closed convex subset of a normed space X and let x0 ∈ X\K.
Then there exists ℓ ∈ X∗ and δ > 0 so that

Re(ℓ(y)) ≤ Re(ℓ(x0))− δ for all y ∈ K.

Proof of Corollary 4.6. Since x0 ∈ Kc and Kc is open, there is some r > 0 such that
Br(x0) ∩ K = ∅. By the hyperplane separation theorem applied for A = K and
B = Br(x0), there is ℓ ∈ X∗ \ {0} and a number c ∈ R such that

Re(ℓ(y)) ≤ c ≤ Re(ℓ(z)) for all y ∈ K and z ∈ Br(x0). (4.2)

As ℓ ̸= 0 there exists x̄ ∈ X with ∥x̄∥ = 1 and ℓ(x̄) > 0. Setting δ := rℓ(x̄) > 0 and
noting that x0 − rx̄ ∈ B̄r(x0) we then get that

Re(ℓ(y)) ≤ Re(ℓ(x0 − rx̄)) = Re(ℓ(x0))− δ for all y ∈ K

as claimed.

Proof of Mazur’s theorem. Assume by contradiction that x /∈ K. Then Corollary gives
ℓ ∈ X∗ and δ > 0 so that

Re(ℓ(y)) ≤ Re(ℓ(x))− δ for all y ∈ K.

But this means that Re(ℓ(xn)) ≤ Re(ℓ(x))− δ which contradicts ℓ(xn) → ℓ(x).

A more geometric way of viewing the above results is to use Corollary 4.6 to show

Theorem 4.7 (Geometric version of Mazur). Every closed convex subset K of a normed
space can be written as an intersection of half-spaces, i.e. there exist families of bounded
linear operators ℓι, ι ∈ I, and numbers cι, ι ∈ I, so that the corresponding half-spaces
Hℓι,cι := {x : Re(ℓι(x)) ≤ cι} are so that

K =
⋂
ι∈I

Hℓι,cι .

We note that these families are not assumed to be countable and that indeed the
easiest way of deriving this result from corollary 4.6 is choose all pairs (ℓι, cι) ∈ X∗×R
for which K ⊂ Hℓι,cι . (This proof is an optional exercise on sheet 3.)
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4.3 Weak convergence in Hilbert spaces

For sequences in Hilbert spaces we additionally have

Lemma 4.8. Let X be a Hilbert space, (xn) a sequence in X and x ∈ X. Then the
following are equivalent:

(i) xn → x

(ii) xn ⇀ x and ∥xn∥ → ∥x∥

Proof. Exercise

Proposition 4.9. Let X be a Hilbert space, let {eι}ι∈I be an orthonormal basis of
X and let (xn) be a bounded sequence in X and let x ∈ X. Then the following are
equivalent:

(i) (xn) converges weakly to x

(ii) ⟨xn, eι⟩ → ⟨x, eι⟩ for all ι ∈ I.

As we can extend any orthonormal sequence (zn) to a orthonormal basis, by using
an orthonormal basis of (span{zn})⊥ we obtain in particular

Corollary 4.10. Let (xn) be an orthonormal sequence. Then xn tends weakly, but not
strongly, to zero.

Proof of Proposition 4.9. (i) ⇒ (ii) is trivially true as y 7→ ⟨y, eι⟩ is an element of X∗.
So suppose that (ii) holds and let ℓ be any element of X∗. By the Riesz represen-

tation theorem, there exists y ∈ X such that

ℓ(x) = ⟨x, y⟩ for all x ∈ X.

We thus need to show that
lim
n→∞

⟨xn − x, y⟩ = 0

or equivalently that lim sup |⟨xn − x, y⟩| ≤ ε for every ε > 0.
Given ε > 0 we can use that X = span{eι} since {eι} is an on-basis and hence that

there exists yε ∈ span{eι} with ∥y − yε∥ ≤ ε
M where we set M := sup ∥xn∥+ ∥x∥.

As yε is a finite linear combination of eι’s the assumption (ii) ensures that ⟨xn −
x, yε⟩ → 0 and we hence get that

lim sup
n→∞

|⟨x− xn, y⟩| ≤ lim sup
n→∞

∥x− xn∥∥y − yε∥ ≤ ε.

4.4 Weak sequential compactness

Definition 4.11. A subset A of a Banach space X is called weakly sequentially compact
if every sequence of A has a subsequence that converges weakly to an element x of A.

A cruical feature of weak convergence is the following compactness result which has
far reaching consequences, most of which go beyond the remit of this course.
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Theorem 4.12 (Weak sequential compactness in reflexive Banach spaces). Let X be
a reflexive Banach space. Then the closed unit ball {x : ∥x∥ ≤ 1} is weakly sequentially
compact.

This statement is equivalent to

Corollary 4.13. Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Proof of Theorem 4.12. We will only prove the theorem in the case of Hilbert spaces,
which are reflexive thanks to the Riesz representation theorem.

So let (xn) be a sequence in the unit ball of a Hilbert space X. We first show:

Claim 1: There exists a subsequence (xnj ) of (xn), such that ⟨xnj , xm⟩ converges
for every m.

Proof of Claim 1:

We use a diagonal sequence argument: As (xn) is bounded we know from Cauchy-
Schwarz that the sequence ⟨xn, x1⟩ is a bounded sequence in F. By Bolzano-Weierstrass,

we can hence extract a subsequence n
(1)
j such that ⟨x

n
(1)
j

, x1⟩ is convergent.

We then consider ⟨x
n
(1)
j

, x2⟩, which is again a bounded sequence in F and select a

convergent subsequence ⟨x
n
(2)
j

, x2⟩. Clearly, ⟨xn(2)
j

, x1⟩ is also convergent.

Proceeding in this way, we construct nested subsequence (n
(k)
j ) such that ⟨x

n
(k)
j

, xm⟩
is convergent (with respect to j) for every m ≤ k.

Finally we set xnj = x
n
(j)
j

and use that for every fixed m, (nj)j≥m is a subsequence

of (n
(m)
j )j≥m. It follows that ⟨xnj , xm⟩ is convergent for every m.

For this subsequence, we then show

Claim 2: ⟨xnj , x⟩ converges for every x ∈ X.

Proof of Claim 2:

By linearity and claim 1 it is clear that for every y ∈ Y := span{x1, x2, ....} as
elements of this space are finite linear combinations of elements xm.

Next we claim that if y is in the the closed linear span Ȳ of {x1, . . .} then ⟨xnj , y⟩
is a Cauchy sequence so also converges.

To see this it suffices to consider ε > 0 with , use that Y is dense in Ȳ and that we
can hence choose ỹ ∈ Y with ∥y − ỹ∥ ≤ 1

4ε. As we know that ⟨xnj , ỹ⟩ is convergent,
and hence Cauchy, we can then choose N so that |⟨xnj − xnk

, ỹ⟩| < 1
2ε for all j, k ≥ N .

Applying first the triangle inequality and then Cauchy-Schwarz thus gives

|⟨xnj − xn′
j
, y⟩| ≤ |⟨xnj − xn′

j
, ỹ⟩|+ |⟨xnj − xn′

j
, ỹ − y⟩| ≤ 1

2ε+ 2∥y − ỹ∥ ≤ ε.

On the other hand, it is clear that ⟨xnj , z⟩ = 0 for all z ∈ Y ⊥. Hence, asX = Ȳ ⊕Y ⊥

by the projection theorem, we have that ⟨xnj , x⟩ is convergent for all x ∈ X.

We can now finally show

Claim 3 xnj converges weakly to some x∗.
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Proof of Claim 3: As ⟨xnj , x⟩ is convergent for all x ∈ X we can define the linear
map

ℓ(x) = lim
j→∞

⟨x, xnj ⟩, x ∈ X

which is an element of X∗ with ∥ℓ∥ ≤ 1 since Cauchy-Schwarz ensures that ∥ℓ(x)∥ ≤
sup ∥xnj∥∥x∥ ≤ ∥x∥ for every x. By the Riesz representation theorem, there is hence
some x∗ ∈ X with ∥x∗∥ ≤ 1 such that ℓ(x) = ⟨x, x∗⟩ for all x ∈ X. This implies that
⟨xnj − x∗, x⟩ = ⟨x, xnj − x∗⟩ → 0 for every x and hence that T (xnj − x∗) → 0 for every
T ∈ X∗ as the Riesz representation theorem allows us to write any such T as map
z 7→ ⟨z, x⟩ for some x. This establishes that xnj −x∗ ⇀ 0 i.e. that xnj ⇀ x∗ and hence
completes the proof.

We note that the converse of Theorem 4.12 is true, a result which we will not prove.

Theorem 4.14 (Eberlein). The closed unit ball in a Banach space X is weakly sequen-
tially compact only if X is reflexive.

As an application of Theorem 4.12, we obtain the following generalization to reflex-
ive Banach spaces of the fact the distance dist(x,C) between a point x and a convex
closed subset C of a Hilbert-space is always achieved.

Theorem 4.15 (Closest point in a closed convex subset). Let K be a non-empty closed
convex subset of a reflexive Banach space X. Then, for every x ∈ X, there is a point
y ∈ K such that

∥x− y∥ = dist(x,K) := inf
z∈K

∥x− z∥.

Note that unlike in the Hilbert space case we do not claim uniqueness.

The proof of this result is a particular instance of a far more general idea, called
the ”direct method of calculus of variations”, which can be used in many instances to
establish the existence of a minimiser of a functional.

The basic idea of such proofs is the following: Given a (usually non-linear) function
E : Ω → R that is defined on a subset of a reflexive Banach space we

• choose a minimising sequence un, i.e. a sequence in Ω so that E(un) → inf E(u)
(which by the definition of the infimum will always exist)

• Try to prove that any such minimising sequence is bounded (whether this works
depends on the properties of E)

• Use sequential weak compactness to get a subsequence un which converges weakly
to some u ∈ X

• Try to prove that u is still in Ω (this depends on the properties of Ω)

• Try to prove that in this process the energy cannot increase in the limit, i.e. that
E(u) ≤ lim infn→∞E(un).

If this all works then we get that E(u) ≤ infΩE, but at the same time also u ∈ Ω so
E(u) ≥ infΩE so u is the desired minimiser.

Following this basic principle (also called the direct method of calculus of varia-
tions), we can prove Theorem 4.15 as follows:
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Proof of Theorem 4.15. Let yn be a minimising sequence, i.e. a sequence in K so that
∥yn − x∥ → d(x,K). Then (yn) must be bounded since for n large we have ∥yn∥ ≤
∥yn−x∥+ ∥x∥ ≤ d(x,K)+ 1+ ∥x∥. By weak compactness we hence get a subsequence
ynj that converges weakly to some y ∈ X. As K is closed and convex Mazur’s theorem
ensures that indeed y ∈ K and as ynj − x ⇀ y − x we get from Proposition 4.3 that
∥y − x∥ ≤ lim inf ∥yn − x∥ = d(x,K) so indeed ∥y − x∥ = d(x,K).
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Chapter 5

Spectral theory

5.1 Definitions and basic properties

The spectral theory for operators on infinite dimensional space is far richer than the
one on finite dimensional spaces and of fundamental importance for understanding
the operators themselves. Unlike for linear operators from a finite dimensional spaces
where the rank nullity theorem ensures that an operator is invertible if and only if it is
injective, for linear operator between Banach spaces there are several reasons why an
operator might not be invertible.

In the following we will always consider a complex Banach space X and a bounded
linear operator T : X → X and we define

Definition 5.1. Let X be a complex Banach space and T ∈ B(X).

(i) The resolvent set ρ(T ) of T is defined as

ρ(T ) := {λ ∈ C : T − λI is invertible}

and for λ ∈ ρ(T ), we define the resolvent operator of T at λ as Rλ(T ) = (T−λI)−1

.

(ii) The spectrum σ(T ) of T is the complement of the resolvent set, i.e.

σ(T ) := {λ ∈ C : T − λI is not invertible }

(iii) The point spectrum σp(T ) of T is the set of complex numbers λ such that T − λI
is not injective, i.e. so that Ker(T − λI) is non-trivial. The elements of σp(T )
are called the eigenvalues of T , and, if λ ∈ σp(T ), the non-trivial elements of
Ker(T − λI) are called the eigenvectors of T .

(iv) The residual spectrum σr(T ) of T is the set of complex numbers λ such that T−λI
is injective and Im(T − λI)) is not dense in X.

(v) The continuous spectrum σc(T ) of T is the set of complex numbers λ for which
T − λI is injective and (T − λI)(X) is a proper dense subset of X.

(vi) The approximate point spectrum σap(T ) of T is the set of complex numbers λ such
that there is a sequence xn ∈ X such that ∥xn∥ = 1 and ∥Txn − λxn∥ → 0.

39
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As X is a Banach space the inverse mapping theorem ensures that T −λI is invert-
ible if and only if it is bijective so σ(T ) is the disjoint union of σp(T ), σr(T ) and σc(T ).

We note that λ is in the approximate point spectrum if and only if there does not
exist any δ > 0 so that ∥(T − λI)(x)∥ ≥ δ∥x∥ for all x ∈ X, i.e. if and only if the
assumption (1.9) of Lemma 1.18 is violated for S = T −λI. As this lemma ensures that
the image of operators satisfying (1.9) is always closed we hence immediately deduce

Corollary 5.2.

σc(T ) ⊂ σap(T ).

When X is a Hilbert space, we can also give an alternative proof of this Corollary
which is not based on Lemma 1.18, but instead uses weak sequential compactness:

Alternative proof of Corollary 5.2 for Hilbert spaces. Let λ ∈ σc(T ) so that Y := Im(λI−
T ) is a dense proper subspace of X. Pick p ∈ X \ Y . Then there is some sequence xn
such that pn := (λI − T )xn → p.

If (xn) is bounded, then, by the weak sequential compactness property of the unit
ball, we may assume without loss of generality that xn converges weakly to some x.
This implies, for z ∈ X, that

⟨pn, z⟩ = ⟨(λI − T )xn, z⟩ = ⟨xn, (λ̄I − T ∗)z⟩ → ⟨x, (λ̄I − T ∗)z⟩ = ⟨(λI − T )x, z⟩.

In other words, pn converges weakly to (λI −T )x. But we also know that pn converges
strongly to p, so obtain p = (λI − T )x, which contradicts the choice of p. We thus
deduce that (xn) is unbounded. Replacing (xn) by a subsequence if necessary, we may
assume that ∥xn∥ → ∞.

Let zn = ∥xn∥−1 xn. We then have ∥zn∥ = 1 and ∥(λI −T )zn∥ = ∥xn∥−1 ∥pn∥ → 0.
Hence λ ∈ σap(T ).

We also recall from B4.1:

Lemma 5.3. (Neumann-series) Let X be a Banach space (over R or C) and let S ∈
B(X) be so that ∥S∥ < 1. Then I− S is invertible with (I− S)−1 =

∑∞
n=0 S

n.

From this we can immediately deduce

Corollary 5.4.

σ(T ) ⊂ D̄∥T∥ = {µ ∈ C : |µ| ≤ ∥T∥}

Proof of Corollary 5.4. If |λ| > ∥T∥ then ∥λ−1T∥ < 1 so T − λI = −λ(I − λ−1T ) is
invertible by the above lemma on Neumann-series.

5.2 Examples

Example 1. (Operators on finite dimensional space) If X is finite dimensional
then you know from Linear Algebra (and the rank-nullity theorem) that a linear map
L : X → X is injective if and only if it is surjective. As all linear operators on finite
dimensional spaces are continuous we thus have that in this case σ(T ) = σP (T ).
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Example 2. (An operator on ℓ∞ for which σP ̸= σAP ) Consider the opera-
tor T ∈ B(ℓ∞) defined by T (x) = (

xj

j )j∈N. Then each λ = 1
j is an eigenvalue as we

have T (e(j)) = 1
j e

(j) for e(j) = (δjk)k∈N. While λ = 0 is not an eigenvalue it is in the

approximate point spectrum as e.g. e(k) gives a sequence in ℓ∞ with ∥e(k)∥∞ = 1 and
∥T (e(k))∥ → 0.

Example 3. (An Integral operator) Let X = C([0, 1]), as always equipped with
the sup norm, and consider T ∈ B(X) defined by Tx(t) :=

∫ t
0 x(s)ds.

Claim: σ(T ) = {0} while σP (T ) = ∅
Proof: We first show that λ = 0 ∈ σ(T ) \ σP (T ). Indeed differentiating the equa-

tion Tx = 0 (which is allowed as Tx ∈ C1 for x ∈ X) we immediately get that x(t) = 0
for every t and hence that λ = 0 is not an eigenvalue. On the other hand for any x ∈ X
we have that Tx(t = 0) = 0 so TX ⊂ {x ∈ X : x(0) = 0} ≠ X. So T is not surjective
and thus 0 ∈ σ(T ). Indeed 0 ∈ σr(T ) as {x ∈ X : x(0) = 0} is a closed proper subspace
of X and hence TX cannot be dense in X.

Let now λ ̸= 0. Then we can use that the proof of Picard’s Theorem from DE1
shows that for any y ∈ C([0, 1]) the integral equation Tx−λx = y has a unique solution
x = (T −λI)−1(y); here we note that for y ∈ C1 the equation is equivalent to the initial
value problem x′(t) − λ−1x(t) = −λ−1y′(t) on [0, 1] with x(0) = 0, but that the proof
of Picard from DE1 actually applies to give the existence of a unique solution of the
integral equation also just for y continuous.

Furthermore the fact that this solution depends continuously on y can e.g. be
obtained from Gronvall’s lemma. Hence λ is not in the spectrum.

An alternative proof that σ(T ) = {0}, based on the general properties of the spec-
trum of compact operators that we prove in a later section can also be given.

Example 4.(Left shift operator on ℓ1) Consider T : ℓ1 → ℓ1 defined by
T (x1, x2, x3, . . .) = (x2, x3, . . .). We first determine the eigenvalues, i.e. the point spec-
trum. So suppose that λ ∈ C is so that for some x ∈ ℓ1 \ {0} we have Tx = λx. Then
T jx = λjx so xj+1 = (T j(x))1 = λjx1. Hence x1 ̸= 0 (as x ̸= 0) and x = x1(1, λ, λ

2, . . .)
which satisfies Tx = λx for all values of λ, but is only an element of ℓ1 if |λ| < 1. We
hence conclude that σP (T ) is the open unit disc B1(0) ⊂ C.

We may now check that every point in the closed unit disc D̄1 := {λ : |λ| ≤ 1} is
an approximate eigenvalue and hence that indeed

σ(T ) = σAP (T ) = D̄1

as
D̄1 ⊂ σAP (T ) ⊂ σ(T ) ⊂ D̄∥T∥ = D̄1

ensures that all these sets agree.

5.3 The spectrum of bounded linear operators on Banach
spaces

Our first main result about the spectrum of bounded linear operators on general com-
plex Banach spaces is
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Theorem 5.5 (Properties of the spectrum of bounded linear operators on Banach
spaces). Let (X, ∥ · ∥) be a complex Banach space. Then for any T ∈ B(X) we have

(i) The resolvent set ρ(T ) is open and the map

ρ(T ) ∋ λ 7→ Rλ(T )

is analytic, i.e. for any λ0 ∈ ρ(T ) there exists a neighbourhood U of λ0 and
’coefficients’ Aj(λ0, T ) ∈ B(X) so that for every λ ∈ U the resolvent operator is
given by the convergent power series

Rλ(T ) =

∞∑
j=0

(λ− λ0)
jAj(λ0, T ).

(ii) The spectrum σ(T ) is non-empty, compact and contained in D̄∥T∥.

One of the most important aspects of the above theorem is the last part, i.e. that
every bounded operator has non-empty spectrum. Here we crucially use that the vector
space is over C. The claim is not true if we were to only consider the real spectrum as
you already know from Linear Algebra.

Proof of Theorem 5.5. Let λ0 be any element of the resolvent set, i.e. so that (T −λ0I)
is invertible, and denote by Rλ0(T ) its continuous inverse. Then for any S ∈ B(X)
with ∥S∥ < δ := ∥Rλ0(T )∥−1 we can write T − λ0I − S = (T − λ0I) · (I − Rλ0(T )S)
where we note that ∥Rλ0(T )S∥ < ∥Rλ0(T )∥δ = 1 and hence that (I − Rλ0(T )S) is
invertible and its inverse is given by the corresponding Neumann-series. As λ0 ∈ ρ(T )
also (T − λ0I) is invertible so we find that T − λ0I − S is invertible for any ∥S∥ < δ
with

(T − λ0I + S)−1 =
(
(T − λ0I) · (I−Rλ0(T )S)

)−1
= (I−Rλ0(T )S)

−1Rλ0(T )

=

∞∑
j=0

(Rλ0(T )S)
jRλ0(T ).

Given any λ ∈ C with |λ− λ0| < δ, we may apply this argument to S = (λ− λ0)I,
which has ∥S∥ = |λ−λ0| to obtain that T −λI = T −λ0I−S is invertible with inverse

Rλ(T ) = (T − λI)−1 =

∞∑
j=0

(λ− λ0)
jRλ0(T )

j+1. (5.1)

Hence any such λ ∈ Bδ(λ0) ⊂ C is in the resolvent set, so the resolvent set is open and
the resolvent operator is analytic in λ.

To prove (ii) we first note that (i) implies that the spectrum σ(T ) = C \ ρ(T ) is
closed. We have already seen that it is a subset of D̄∥T∥ so it is also bounded and as
bounded closed subsets of finite dimensional spaces are compact hence compact.

We furthermore note that for λ > ∥T∥

∥Rλ(T )∥ ≤ |λ|−1∥(I− 1
λT )

−1∥ ≤ |λ|−1
∞∑
j=0

∥T
λ ∥

j ≤ |λ|−1
∞∑
j=0

(∥T∥
λ )j =

1

|λ| − ∥T∥
. (5.2)
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We now want to combine this with the Theorem of Hahn-Banach (applied to functionals
on B(X), i.e elements of (B(X))∗, instead of X∗) from B4.1 and Liouville’s Theorem
from A.1 Complex Analysis which we recall says that the only holomorphic maps g :
C → C which are bounded are the constant maps.

So suppose that σ(T ) is empty. Then the resolvent operator Rλ is defined on all of
C so given any f ∈ (B(X))∗ we can define a function gf : C → C by

gf (λ) := f(Rλ(T )).

We note that this function is not only well defined, but furthermore that for any λ0 ∈ C
the function gf is analytic in a neighbourhood of λ0, namely

gf (λ) =
∞∑
j=0

(λ− λ0)
jf(Rλ0(T )

j+1) (5.3)

in the neighbourhood of λ0 where the expansion (5.1) converges. In particular, gf is
holomorphic.

We now claim that gf is also bounded. To see this we first note that as gf is
continuous, it is bounded on any compact set, in particular on the closed disc D̄2∥T∥.
On the other hand, for any λ ∈ C with |λ| ≥ 2∥T∥ we know from (5.2) that ∥Rλ(T )∥ ≤

1
|λ|−∥T∥ ≤ 1

∥T∥ and hence

|gf (λ)| ≤ ∥f∥(B(X))∗∥Rλ(T )∥ ≤ ∥f∥(B(X))∗∥T∥−1

so that gf is also bounded on (D̄2∥T∥)
c.

From the Theorem of Liouville we thus obtain that gf must be constant, gf (λ) = Cf

for a constant that depends only on the element f ∈ (B(X))∗ used in the definition of
gf . Returning to the expansion (5.3) we thus conclude that all terms with j ≥ 1 must
be zero, i.e. that for any number λ0 ∈ C and any k ≥ 2 we have that

f(Rλ0(T )
k) = 0 for every f ∈ (B(X))∗.

But by the Corollary of the theorem of Hahn-Banach that we recalled in (1.3), this
implies that all the operators Rλ0(T )

k, k ≥ 2, must be zero, which is of course wrong
since all of these operators are powers of invertible operators and thus invertible.

We note that it is not only true that if S is invertible then also S2 is invertible as
we used in the above proof, but that also the converse of this holds and that we indeed
have the following useful lemma

Lemma 5.6. Let (X, ∥ · ∥) be a normed space, S, T ∈ B(X). Suppose that ST = TS
and that ST is invertible. Then also S and T are invertible.

Proof of Lemma 5.6. By symmetry it suffices to prove the claim for T and we shall
prove this by an argument by contradiction. So suppose that the claim is false. Then
we either have that T is not surjective, which is impossible as in this case we would
have that ST (X) = TS(X) = T (SX) ⊂ TX ⫋ X so ST would not be surjective, or
there exists no δ > 0 so that (1.9) holds. In this case we can choose xn ∈ X \ {0} so

that ∥Txn∥
∥xn∥ → 0 and thus conclude that also

∥STxn∥
∥xn∥

≤ ∥S∥B(X)
∥Txn∥
∥xn∥

→ 0,
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which means that (1.9) does not hold true for ST , and hence that ST does not have a
bounded inverse.

We note that the above proof works for all normed spaces and could be shortened
significantly for Banach spaces by using the inverse mapping theorem.

Based on this lemma we can now prove the following useful result.

Theorem 5.7. Let X be a complex Banach space, T ∈ B(X) and let p be a complex
polynomial. Then

σ(p(T )) = p(σ(T )) := {p(λ) : λ ∈ σ(T )}.

Here we set p(T ) :=
∑n

j=0 ajT
j if the polynomial p is given by p(z) =

∑n
j=0 ajz

j ,

with the usual convention that T 0 = I.

Proof of Theorem 5.7. We first remark that if p is constant, say p = c ∈ R, then the
spectrum of p(T ) = cI is simply {c} while the fact that σ(T ) is non-empty implies
that also p(σ(T )) = {c}. So suppose that p has degree n ≥ 1 and let µ ∈ C be
any given number. As we are working in C we can factorise p(·) − µ and write it as
p(z)− µ = α(z − β1(µ)) . . . (z − βn(µ)) for some α ̸= 0 and equally factorise

p(T )− µI = α(T − β1(µ)I) . . . (T − βn(µ)I) (5.4)

where we note that all operators on the right hand side commute which will allow us
to apply Lemma 5.6.

We now note that since the zeros βj(µ) of p(·)−µ can be equivalently characterised
as the solutions t = βj(µ) of the equation p(t) = µ we have that

µ ∈ p(σ(T )) ⇔ ∃j so that βj(µ) ∈ σ(T ).

We then note that, applying Lemma 5.6 to (5.4) yields that if βj(µ) ∈ σ(T ) then p(T )−
µI cannot be invertible, i.e. µmust be an element of σ(p(T )). Hence p(σ(T )) ⊂ σ(p(T )).
We now prove that also p(σ(T ))c ⊂ σ(p(T ))c and hence that p(σ(T )) ⊂ σ(p(T )). To
see this we note that if µ /∈ p(σ(T )) then βj(µ) /∈ σ(T ) so T − βj(µ)I is invertible for
all j = 1, . . . , n. But then (5.4) shows that p(T ) − µI is the composition of invertible
operators so invertible and thus µ ∈ ρ(T ) = σ(p(T ))c.

We also remark that a similar argument shows that for T invertible λ is an eigenvalue
of T if and only if λ−1 is an eigenvalue of T−1.

As an immediate consequence of the above lemma we also obtain

Corollary 5.8. Let (X, ∥ · ∥) be a Banach space, T ∈ B(X). Then for any k ∈ N and
any λ ∈ σ(T ) we have λk ∈ σ(T k). In particular

|λ| ≤ inf
j
∥T j∥1/j for all λ ∈ σ(T ), j ∈ N.

Definition 5.9. The spectral radius of an operator T ∈ B(X) is defined as

rσ(T ) := sup{|λ| : λ ∈ σ(T )}.

From the above we know that rσ(T ) ≤ infj ∥T j∥1/j . Indeed, one can show that
∥T j∥1/j converges as j → ∞ with limj→∞ ∥T j∥1/j = infj∈N ∥T j∥1/j and that
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Theorem 5.10 (Gelfand’s formula). Let (X, ∥ · ∥) be a complex Banach space. Then
for any T ∈ B(X) we have

r(T ) = lim
j→∞

∥T j∥1/j = inf
j∈N

∥T j∥1/j .

We will use this result without proof.

We recall that in the special case where X is a Hilbert space and where T is
selfadjoint we have ∥T 2∥ = ∥T∥2 and hence by iteration ∥T 2j∥ = ∥T∥2j . In this case
we hence obtain

Corollary 5.11. If X is a C-Hilbert space and T ∈ B(X) is selfadjoint then

rσ(T ) = ∥T∥.

Furthermore, we have the following close connection between the spectrum of an
operator and the spectrum of its dual operator T ′ ∈ B(X∗):

Theorem 5.12. Let (X, ∥ · ∥) be a Banach space, let T ∈ B(X) and let T ′ ∈ B(X∗)
be the corresponding dual operator defined by (T ′f)(x) = f(Tx). Then

σ(T ) = σAP (T ) ∪ σP (T
′).

Proof of Theorem 5.12. By definition σAP (T ) ⊂ σ(T ), so it is enough to prove

Claim 1: σP (T
′) ⊂ σ(T )

and

Claim 2: σ(T ) \ σAP (T ) ⊂ σP (T
′)

Proof of Claim 1: Let λ ∈ σP (T
′). Then there exists f ∈ X∗ with f ̸= 0 so that

T ′f = λf , i.e. so that for every x ∈ X

0 = (T ′f − λf)(x) = f(Tx)− λf(x) = f(Tx− λx).

Hence the restriction f |Y of f to the image Y = (T − λI)X of T − λI is zero, so as f
is not the zero element, we must have that Ȳ ̸= X. Thus the image of T − λI is not
dense in X so λ is either in the point spectrum (if it’s also not injective) or else in the
residual spectrum, and in any case λ ∈ σ(T ).

Proof of Claim 2: Let λ ∈ σ(T ) \ σAP (T ). Then as λ is not an approximate
eigenvalue of T we know that there exists some δ > 0 so that ∥Tx− λx∥ ≥ δ∥x∥ for all
x ∈ X which, thanks to Lemma 1.18, implies that the image Y = (T −λI)(X) is closed.
At the same time Y cannot be all of X as otherwise T − λI would have a bounded
inverse, so Y is a proper closed subspace of X. We can thus apply the consequence
(1.3) of Hahn-Banach, to conclude that there exists some f ∈ X∗ with f ̸= 0, so that
f |Y = 0. This implies that T ′(f) = λf and thus that λ ∈ σP (T

′) since for every x ∈ X
we have Tx− λx ∈ Y and thus (T ′(f)− λf)(x) = f(Tx− λx) = 0.
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5.4 Spectral theory on Hilbert spaces

In the rest of the chapter, we will specialize to the case where X is a Hilbert space
(over C). Note that in this case, the notions of dual operator and adjoint operator can
be linked via the Riesz representation theorem and we can hence immediately see that

λ ∈ σ(T ′) ⇔ λ̄ ∈ σ(T ∗).

From Theorem 5.12 we hence deduce

Theorem 5.13. Let X be a complex Hilbert space and let T ∈ B(X). Then

σ(T ) = σap(T ) ∪ σ′
p(T

∗)

where σ′
p(T

∗) = {λ : λ̄ ∈ σp(T
∗)}.

This can also be proven directly based on the basic properties of the adjoint that
we recalled in the first chapter which, when applied to (λI − T )∗ = λ̄I − T ∗, yield that

• λI − T is invertible if and only if λ̄I − T ∗ is invertible, so λ ∈ σ(T ) if and only if
λ̄ ∈ σ(T ∗).

• Ker(λI − T ) = Im(λ̄I − T ∗)⊥ and Ker(λI − T )⊥ = Im(λ̄I − T ∗).

For selfadjoint operators we already know that rσ(T ) = ∥T∥ and we can indeed
prove far more than that:

Theorem 5.14. Let X be a complex Hilbert space and let T ∈ B(X) be self-adjoint.
Then

(i) σ(T ) = σap(T ) ⊂ [a, b] ⊂ R, for

a = inf
∥x∥=1

⟨x, Tx⟩ and b = sup
∥x∥=1

⟨x, Tx⟩

and both a and b are in the spectrum.

(ii) T has no residual spectrum, i.e. σ(T ) = σp(T ) ∪ σc(T ).

(iii) Eigenvectors corresponding to different eigenvalues of T are orthogonal.

We note that as T is selfadjoint we have

⟨Tx, x⟩ = ⟨x, T ∗x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩

so ⟨Tx, x⟩ is real for any x ∈ X and recall that ∥T∥ = sup∥x∥=1 |⟨Tx, x⟩|, compare
Lemma 1.6.

Proof of Theorem 5.14. We first prove that σap(T ) ⊂ [a, b].
So let λ ∈ σap(T ). Then there exist xn with ∥xn∥ = 1 so that Txn − λxn → 0.

Thanks to Cauchy-Schwarz this implies that

|⟨Txn, xn⟩ − λ| ≤ ∥Txn − λxn∥ → 0.
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Hence λ = lim⟨Txn, xn⟩ ∈ [a, b] ⊂ R since we know that ⟨Tx, x⟩ ∈ [a, b] ⊂ R.
This in particular implies that all eigenvalues of T = T ∗ are real and hence that

σ′
P (T

∗) = σ′
P (T ) = σP (T ) so Theorem 5.13 implies that indeed σ(T ) = σap(T ) ∪

σ′
P (T

∗) = σap(T ) and hence also that the every element of the spectrum is a real
number that is contained in [a, b].

We next show that the endpoints of this interval are indeed both in σ(T ). By
definition of a, b, we have |a| ≤ ∥T∥ and |b| ≤ ∥T∥. But as σ(T ) ⊂ [a, b] and as
rσ(T ) = ∥T∥ since T is selfadjoint, we have also ∥T∥ = rσ(T ) ≤ max(|a|, |b|). Hence at
least one of a and b belongs to σ(T ). Now note that, if c is a real constant, then the
spectrum of cI + T is shifted by c and the “a” and “b” of cI + T are also shifted by
c. Applying what we just established to cI + T for suitable c, we conclude that both a
and b belong to σ(T ).

This establishes the first statement (i) of the Theorem.

To see that the residual spectrum of T is empty we use that

(T − λI)(X) = (ker(T ∗ − λ̄I))⊥ = (ker(T − λI))⊥

where the first equality follows from (1.5) while the second follows as T ∗ = T and as
the spectrum is real.

Hence, if λ is so that the image of (T −λI) is not dense in X then we must have that
ker(T − λI) ̸= {0}, i.e. that λ will be in the point spectrum rather than the residual
spectrum.

The final part of the claim follows by direct computation, exactly as in the case of
finite dimensional symmetric matrices discussed in prelims Linear Algebra.

Alternatively, we can show that σ(T ) ⊂ [a, b] as follows: It suffices to show that if λ
is a real number such that λ > b then λI − T is invertible. (A similar argument apply
to λ < a.) We have

⟨x, (λI − T )x⟩ = λ∥x∥2 − ⟨x, Tx⟩ ≥ (λ− b)∥x∥2.

It thus follows that ⟨x, y⟩λ := ⟨x, (λI − T )y⟩ defines a scalar product on X and its
associated norm ∥x∥λ := ⟨x, (λI − T )x⟩1/2 is equivalent to ∥ · ∥.

For every z ∈ X, consider the linear functional

ℓz(x) = ⟨x, z⟩.

By the Riesz representation theorem, there is some y depending on z such that

ℓz(x) = ⟨x, y⟩λ i.e. ⟨x, z⟩ = ⟨x, (λI − T )y⟩ for every x.

It thus follows that λI − T is surjective. Since λI − T is self-adjoint, this implies that
λI − T is also injective, and hence invertible.

We conclude the section with a result on spectra of unitary operators.

Proposition 5.15. Let X be a complex Hilbert space and let U ∈ B(X) be unitary.
Then |λ| = 1 for all λ ∈ σ(U).
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Proof. By Proposition 1.4, U is a surjective isometry and U−1 = U∗.

As ∥U∥ = 1 it follows that |λ| ≤ ∥U∥ = 1 for all λ ∈ σ(U).

Assume by contradiction that there is some λ with |λ| < 1 such that λI − U is
not invertible. It follows that λ̄I − U∗ is also not invertible. Consequently, λ̄U − I =
(λ̄I − U∗)U is also not invertible (since U is invertible), and so λ̄−1 ∈ σ(U). This
amounts to a contradiction as |λ̄−1| > 1.

5.5 Spectrum of compact operators

We recall that if T ∈ B(X) is compact then ker(I − T ) is finite dimensional and the
image of I− T is closed, compare Proposition 1.17. Additionally we have:

Lemma 5.16. Let X be a Banach space, T ∈ B(X) compact and suppose that S :=
I− T is injective. Then S is also surjective.

Proof of Lemma 5.16. We argue by contradiction so assume that X1 := S(X) is a
proper subspace of X. We set Xk := Sk(X), note that these spaces are nested, Xk+1 ⊂
Xk ⊂ ... ⊂ X1 ⊊ X and we claim that these inclusions must all be strict.

Indeed, as X1 ̸= X we can fix some x ∈ X \ X1 and get that Snx is obviously in
Xn, but cannot be in Xn+1 as otherwise there would be y ∈ X with Snx = Sn+1y, i.e.
with Sn(x − Sy) = 0 which would be a contradiction to x /∈ SX since Sn is injective
(since S is injective).

As sums and powers of compact operators are compact we can write Sn = (I− T )n

also in the form I− Tn for a compact operator Tn so know from Proposition 1.17 that
the spaces Xn are all closed.

By the Riesz-lemma from B4.1 we can hence pick xk ∈ Xk with ∥xk∥ = 1 and
dist(xk, Xk+1) ≥ 1

2 and we want to argue that this bounded sequence does not have a
subsequence for which Txnj converges.

To see this we note that since (T − I)(xk) ∈ Xk+1 = (I − T )(Xk) we can write
Txk = xk + (T − I)(xk) to see that

dist(Txk, Xk+1) = dist(xk, Xk+1) ≥
1

2
.

On the other hand, we know that for every l we have Txl = xl+(T−I)(xl) ∈ Xl+Xl+1 =
Xl.

Thus, as the sets are nested we have Txl ∈ Xk+1 whenever l ≥ k+1 and thus ∥Txl−
Txk∥ ≥ dist(Txk, Xk+1) ≥ 1

2 . This means that (Txk) cannot have any subsequence
that is Cauchy and hence cannot have any subsequence that converges.

Based on this we can now prove

Theorem 5.17. (Spectral theorem for compact (selfadjoint) operators) Let X be an
infinite dimensional Banach space and let T be a compact selfadjoint operator. Then

(i) σ(T ) \ {0} = σP (T ) \ {0}, the eigenspace ker(T − λI) is finite dimensional for
every λ ∈ σp(T ) \ {0} and λ = 0 is in the spectrum.

(ii) For every r > 0 there are at most finitely many eigenvalues λ with |λ| ≥ r. Hence
λ = 0 is the only potential accumulation point of σ(T ).
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(iii) If X is a Hilbert space and T is additionally selfadjoint then there exists a count-
able (either finite or countably infinite) on basis {ek} of ker(T )⊥ that consists of
eigenvectors ek to eigenvalues λk ̸= 0, with |λk| → 0 if the basis is infinite, and
for each x ∈ X

Tx =
∑

λk⟨x, ek⟩ek

In (iii) we can always extend the {ek} to an eigenbasis of the whole space by
including additionally an on-basis of ker(T ), though we note that this basis will only
be countable if X is separable.

We also remark that an important special case of the above result is

Corollary 5.18. Suppose that T is a selfadjoint compact operator on an infinite di-
mensional Hilbert space which is positive definite, i.e. so that ⟨Tx, x⟩ > 0 for all
x ∈ X. Then X must be separable and there exists a (countable) on-basis e1, e2, ... of
eigenvectors corresponding to eigenvalues λ1 ≥ λ2 ≥ .... with λk ↘ 0 as k → ∞.

Proof of Theorem 5.17. The fact that each λ ∈ σ(T ) \ {0} must be an eigenvalue with
finite dimensional eigenspace follows from Proposition 1.17 and Lemma 5.16 as we can
write (T − λI) = −λ(I− λ−1T ) for λ ̸= 0 and use that λ−1T is compact.

Furthermore, as T is compact, we cannot have that T is invertible as that would
imply that the identity map I = T−1 ◦ T is also compact which would contradict the
theorem of Heine Borel as our space is infinite dimensional. Hence 0 ∈ σ(T ).

To prove (ii) we want to argue by contradiction and suppose that there is some
r > 0 so that there infinitely many distinct λk ∈ σ(T ) with |λ| ≥ r. By (i) all these λk

are eigenvalues.
We can use a very similar argument as carried out in the proof of Lemma 5.16 to

get a contradiction, now using spaces Xk = Eλ1⊕ ...⊕Eλk
, Eλi

the (finite dimensional!)
eigenspaces to λi.

We note that these spaces are all closed (as finite dimensional), so that TXk ⊂ Xk

(as Xk is built out of eigenspaces), and so that Xk is a proper subspace of Xk+1.
Additionally we note that (T − λkI)(Xk) ⊂ Xk−1 as Eλk

is the kernel of this map.
Similar to above we can now use the Riesz-lemma to get a sequence of unit vectors

xk ∈ Xk with dist(xk, Xk−1) ≥ 1
2 .

If n < m then Xm−1 contains both Xn, and thus Txn ∈ T (Xn) ⊂ Xn, and also
(T − λmI)(Xm), and thus Txm − λxm, so we get that

∥Txm − Txn∥ = ∥λmxm + (T − λm)xm − Txn∥ ≥ dist(λmxm, Xm−1)

≥ 1
2 |λm| ≥ 1

2r > 0

The sequence (Txn) hence cannot have any subsequence which is Cauchy, which leads
to a contradiction as (xn) is bounded and T is compact.

We note that ifX is Hilbert and T is selfadjoint then this argument can be simplified
significantly: We first pass to a subsequence to ensure that the λj converge, then choose
for each λj a unit eigenvector ej and use that as T is selfadjoint these ej are orthonormal
and hence so that ∥ej − ek∥ =

√
2.

At the same time, as T is compact there is a subsequence so that Tejn = λjejn
converges and combined with the convergence of the λj → λ ̸= 0 this gives convergence
of ejn , contradiction.
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It hence remains to show (iii) and for this we inductively construct the ek using
that Corollary 5.11 (which was a consequence of Gelfand’s formula) ensures that the
spectral radius of any selfadjoint operator is equal to the norm of the operator.

We first set S1 = T and consider this as an operator on X1 = X, apply Corollary
5.11 to find λ1 ∈ σ(S1) so that |λ1| = ∥S1∥ and let e1, . . . , ek1 be an on-basis of the
(finite dimensional as S1 compact!) space Z1 := ker(S1 − λ1IX1). We then let X2 be
the orthogonal complement of Z1 in X1. This is a closed subspace of a Hilbert space
so again a Hilbert space. We claim that T maps X2 into itself. Indeed, since Z1 is an
eigenspace we have T (Z1) ⊂ Z1 and hence get that if z ∈ X2 then ⟨Tz, y⟩ = ⟨z, Ty⟩ = 0
for all y ∈ Z1 so Tz ∈ (Z1)

⊥ = X2.
We then set S2 := T |X2 ∈ B(X2) and repeat this argument, obtaining the next

eigenvalue λ2 with an on-eigenbasis ek1+1, . . . , ek1+k2 of Z2 = ker(S2 − λ2I). We note
that Z2 is the eigenspace of T for λ2 as Z2 = ker(S2 − λ2I) = ker(T − λ2I) ∩ X2 =
ker(T − λ2I) since the eigenspaces are orthogonal and hence ker(T − λ2I) ⊂ (ker(T −
λ1I))

⊥ = X2.
We continue to apply this argument to the restriction of T to the next space Xk+1

obtained as orthogonal complement of Zk in the Hilbert space Xk.
This process either ends with us obtaining an operator Sk which is identically zero

(and hence a finite set of eigenvalues), or continues for all k ∈ N to give a countably
infinite set of distinct eigenvalues with |λk| ≥ |λk+1| > 0 which by (ii) must converge
to zero.

To obtain the final claim we first note that the right hand side converges thanks to
Bessel’s inequality. We then set Kj := k1 + . . .+ kj note that e1, . . . , eKj is an on-basis

of Z1 ⊕ . . . ⊕ Zj = (Xj+1)
⊥. Hence Pjx :=

∑
k≤Kj

⟨x, ek⟩ek is simply the orthogonal
projection onto Z1 ⊕ . . .⊕ Zj while I − Pj is the orthogonal projection onto Xj+1.

Thus

∥Tx−
∑
k≤Kj

λk⟨x, ek⟩ek∥ = ∥T (x− Pjx)∥ = ∥T |Xj+1 ◦ (I − Pj)(x)∥

≤ ∥T |Xj+1∥∥I − Pj∥∥x∥ ≤ |λj+1| · 1 · ∥x∥ → 0
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