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Recent breakthroughs in deep learning applications:

Much of why we are interested in deep learning is its remarkable efficacy

Institute

Deep learning is now widespread in applications, showing
remarkable abilities to perform complex tasks.
» Computer vision; image classification, Imagenet challenges.
» Complex strategy games such as Go.

» Al for art with style transfer, sound generation from videos,
and text generation.

» Deep learning is now increasingly used in scientific
applications: gravitational lensing and weather prediction
(DGMR),

» AlphaFold for protein structure interaction prediction.

» And many many more applications: e.g. medical
diagnostics....
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) o

Image classification, localization, and detection: Mathematical
Institute

http //image-net.org

ImageNet was first presented in 2009 to help benchmark image
classification algorithms in the ILSVRC.

2010-14: Image classification; 1.2 million training labeled images
2011-14: Single object localisation; 524,000 training labeled bbox
2013-14: All object classification per scene; 456,000 training set

https://link.springer.com/article/10.1007/s11263-015-0816-y
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ImageNet Large Scale Visual Recognition Challenge g

Image classification, localization, and detection: complex set of similar data Mathematical
Institute

PASCAL ILSVRC

birds

ruffed grouse quail partridge

ﬂammgo

Egyuuan cat Persian cat Siamese cat tabby

cats

keeshond miniature schnauzer standard schnauzer giant schnauzer

dalmatian

“The ILSVRC dataset contains many more fine-grained classes
compared to the standard PASCAL VOC benchmark; for example,
instead of the PASCAL “dog” category there are 120 different
breeds of dogs in ILSVRC2012-2014 classification and single-object

localization tasks.”
https://link.springer.com/article/10.1007/s11263-015-0816-y
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ImageNet Large Scale Visual Recognition Challenge D

Image classification, localization, and detection Mathematical
Institute

P | scale Scale
sSteeldrum | Teshirt T-shirt
Folding chair | steeldrum Giant panda
_ Loudspeaker | Brumstick Drumstick
| Mud turtie Mud turtle
Ground truth Accuracy: 1 Accuracy: 1 Accuracy: 0

i Single-object localization

Q7

Ground truth Accuracy: 1

Object detection

Ground truth AP: 1.0 1.0 1.0 1.0 AP: 0.0 0.5 1.0 0.3 AP: 1.0 0.7 0.5 0.9

2013-14: All object classification per scene; 456,000 training set
https://arxiv.org/pdf/1409.0575.pdf
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ImageNet Large Scale Visual Recognition Challenge

Image classification, localization, and detection: “super-human performance.”

OXFORD

Mathematical
Institute

Percentage ertor rate

3

«

ILSVRC Year

https://arxiv.org/pdf/1409.0575.pdf
2012 ILSVRC classification won using 7 layer CNN by Krizhevsky,
Sutskever, and Hinton; users in widespread use of ConvNets.
This success marked the start of DNNs widespread use.

Oxford
Mathematics

Why deep learning: application and approximation.


https://arxiv.org/pdf/1409.0575.pdf

Deep learning for games

Improved with reinforcement learning.

Mathematical
Institute

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez', Laurent Sifre!, George van den Driessche!,

Julian Schrittwieser', loannis Antonoglou', Veda Panneershelvam', Marc Lanctot!, Sander Dieleman', Dominik Grewe!,
John Nham? Nal Kalchbrenner', Ilya Sutskever?, Timothy Lillicrap!, Madeleine Leach!, Koray Kavukcuoglu!,

Thore Graepel! & Demis Hassabis'

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search prog; that ds of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo sunulanon with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go prog; and defeated the human European Go
champion by 5 games to 0. This is the first time that a comp program has d da human pr ional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
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Deep learning style transfer: architecture

Deep learning allows easy combination architecture tasks.

D

Mathematical
Institute
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More complex architectures can allow learning and transferring
characteristics of objects.

https://wuw.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer
CVPR_2016_paper.pdf
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Deep learning style transfer: examples

Applications such as these seem impossible without DL

Mathematical
Institute

Photos can be transitioned to paintings with prescribed styles

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_

CVPR_2016_paper.pdf
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Deep learning sound generation from video

DL is able to generate realistic synthetic data. Mathematical
Institute

Figure 1: We train a model to synthesize plausible impact sounds from silent videos, a task that requires implicit knowledge of material
properties and physical interactions. In each video, someone probes the scene with a drumstick, hitting and scratching different objects.
‘We show frames from two videos and below them the predicted audio tracks. The locations of these sampled frames are indicated by the
dotted lines on the audio track. The predicted audio tracks show seven seconds of sound, corresponding to multiple hits in the videos.

Expected sound characteristics can be learned from video with
sound and then generated and added to video lacking sound.
https://arxiv.org/pdf/1512.08512.pdf
https://www.youtube.com/watch?v=0FW99AQmMc8

Many similar examples exist, see e.g. DeepFakes and automatic
text generations. https://en.wikipedia.org/wiki/GPT-3
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Deep learning image generation from text

Realistic images can be automatically generated from text

OXFORD

Mathematical
Institute

DALL-E: We've trained a neural network called DALL-E that creates
images from text captions for a wide range of concepts expressible in
natural language
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https://openai.com/blog/dall-e/
https://arxiv.org/abs/2102.12092
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Deeplens for detecting rare events

Some tasks are not scalable without machine learning.

For many science applications the quantity of data is beyond
human inspection, use DL: Large Synoptic Survey Telescope
https://academic.oup.com/mnras/article/473/3/3895/3930852

One approach to scale the visual inspection effort to the size of
these surveys is to use crowdsourcing. This is the idea behind the
Space Warps project (Marshall et al. 2015; More et al. 2015),
which crowdsourced the visual inspection of a sample of 430 000
images from the CHFTLS to a crowd of 37 000 citizen scientists,
yielding a new sample of gravitational lens candidates. The authors
further estimate that a similar crowdsourcing effort can be scaled
up to LSST sizes, where a considerable crowd of 108 volunteers
could visually inspect 10° LSST targets in a matter of weeks.
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AlphaFold

Predicting the 3D shape of proteins from its amino-acid sequence Mathematical
Institute

STRUCTURE SOLVER

DeepMind’s AlphaFold 2 algorithm significantly
ocutperformed other teams at the CASP14 protein-
folding contest — and its previous version’s
performance at the Last CASP.
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DNNs are increasingly used in scientific applications that
historically required laborious lab work.
https://www.nature.com/articles/d41586-020-03348-4
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Deep Generative Model for Rainfall (DGMR) ®

OXFORD

Predicting accurate near term rainfall on a fine mesh Mathematical

Institute

Machine learning is increasingly state-of-the-art for scientific
computing tasks.
https://www.nature.com/articles/s41586-021-03854-z
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Machine Learning added mathematical conjectures

Aiding mathematicians proofs of fundamental conjectures

Institute

The practice of mathematics involves discovering patterns and using
these to formulate and prove conjectures, resulting in theorems. Since
the 1960s, mathematicians have used computers to assist in the discovery
of patterns and formulation of conjecturesl, most famously in the Birch
and Swinnerton-Dyer conjecture2, a Millennium Prize Problem3. Here we
provide examples of new fundamental results in pure mathematics that
have been discovered with the assistance of machine
learning—demonstrating a method by which machine learning can aid
mathematicians in discovering new conjectures and theorems.
https://www.nature.com/articles/s41586-021-04086-x
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Al for drug discovery

Finding new antibiotic effective against resistant bacteria

The computer model, which can screen more than a hundred million
chemical compounds in a matter of days, is designed to pick out
potential antibiotics that kill bacteria using different mechanisms than
those of existing drugs.

“We wanted to develop a platform that would allow us to harness the
power of artificial intelligence to usher in a new age of antibiotic drug
discovery,” says James Collins, the Termeer Professor of Medical
Engineering and Science in MIT's Institute for Medical Engineering and
Science (IMES) and Department of Biological Engineering. “Our
approach revealed this amazing molecule which is arguably one of the
more powerful antibiotics that has been discovered.”
https://www.cell.com/cell/pdf/S0092-8674(20)30102-1.pdf
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ChatGPT: Generative pre-trained transformer

Large language models generate text/speech that feels lifelike

[T]he fastest-growing consumer software application in history, gaining
over 100 million users and contributing to OpenAl’s valuation growing to
$29 billion.

In May 2023, in a personal injury lawsuit against Avianca Airlines filed in
the Southern New York U.S. District Court (with Senior Judge P. Kevin
Castel presiding), the plaintiff's attorneys reportedly used ChatGPT to
generate a legal motion for the case. ChatGPT generated numerous
fictitious legal cases with fabricated quotations and internal citations in
the legal motion, and the plaintiff’s attorneys are now facing potential
Jjudicial sanction and disbarment for filing the legal motion and for
presenting the fictitious legal decisions ChatGPT generated as being
authentic.

https://en.wikipedia.org/wiki/ChatGPT
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Is your area of interest immune from deep learning?
Deep deep trouble: A case study by Michael Elad for image denoising:

Thousands of papers addressing this fundamental task [image denoising]
were written over the years. Researchers developed beautiful and deep
mathematical ideas with tools from partial differential equations, such as
anisotropic diffusion and total variation, energy minimization viewpoint,
adoption of a geometric interpretation of images as manifolds, use of the
Beltrami flow, and more.... We have hence gained vast knowledge in
image processing over the past three decades.

In 2012, Harold Burger, Christian Schuler, and Stefan Harmeling decided
to throw deep learning into this problem. The idea was conceptually
quite simple: take a huge set of clean images, add synthetic noise, and
then feed them to the learning process that aims to turn a noisy image
into its clean version. While the process was tedious, frustrating, and
lengthy — the end result was a network that performed better than any
known image denoising algorithm at that time.
https://sinews.siam.org/Details-Page/deep-deep-trouble
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Maths of why DNNs: DNNs as function approximators

Functions act as classifiers and other machine learning tasks

Classification of inputs x € R" to ¢ classes denoted by {e;}{_;, is
modelled by a function H(x) for which H(x) = ¢; for all x in class
i where e;(¢) =1 for i = ¢ and 0 otherwise.

Approximation Theory concerns the ability to approximate
functions from a given representation; see accompanying lectures.

Some of the most well studied examples include approximation of a
function f(x) over x € [—1, 1] with some smoothness, say three
times differentiable, by polynomials of degree at most k or
trigonometric exponentials.

Here our focus is on the ability to approximate functions H(x; 6)
given by a deep network architecture; for x € R".
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Representational benefits of depth (Telgarsky 15')

Two layer ReLU network: sawtooth basis function

Mathematical
Institute

Telegarsky (2015) considered a specific construction of a function
from a deep network which requires an shallow network to have
exponential width.

Let ¢(x) = ReLU(x) = max(x,0) and consider the two layer net:

0 x <0
ha(x) = 2¢(x) — 4¢(x — 1/2) = 2x  x€10,1/2]
2 2% x>1/2

and h3(x) = ¢(h2(x)) set to zero the negative portion for x > 1.
Here W = (1 )T, bW = (0 —1/2)7, W@ = (2 —4), b@ =0.
https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15')

Composition gives exponential growth in complexity

Insti

For ¢(x) = max(x, 0) let f(x) = h3(x) = ¢(2¢(x) — 4o (x — 1/2))
and iterate this 2-layer network k times to obtain a 2k-layer
network fX(x) = f(f(---(f(x)---)) with the property that it is
piecewise affine with change in slope at x; = 2~ for
i=0,1,...,2% and moreover takes on the values f¥(x;) = 0 for i
even and f(x;) =1 for i odd.

1///\
o . E
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Representational benefits of depth (Telgarsky 15')

Composition gives exponential growth in complexity: width vs. depth

In contrast, a two-layer network with the same ¢(x) of the form

o (Zj"zl ajo(wjx — bj)) requires m = 2k to exactly express £¥(x).

The deep network can be thought of as having 6k parameters,
whereas the two-layer network requires 3 - 2% parameters;
exponentially more. https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15')

Classification error rates Mathematical
Institute

Define the function class F(¢; m,¢) be the space of functions
composed of £ layer fully connected m width feed forward nets
with nonlinear activation function ¢. Let

R(f) := n"1 37 x[f(xi) # yi] count the number of incorrect
labels of the data set {(x;,yi)}" ;.

Consider positive integers k, ¢, m with m < 2(k=3)/4=1 then there
exists a collection of n = 2K points {(x;, y;)}7_; with x; € [0,1] and
yi € {0,1} such that

i R(f)=0 d i R >
rerin y FU)=0 and min R{g)=2

| =

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15')

More general bound.

Let F(¢; m,¥; k) denote space of functions generated by
composing functions from F(¢; m,¢) k times.

Consider positive integers k, number of layers £ with m width per
layer. Let ¢(-) be a t—sawtooth function and ¢gr(x) = max(x,0)
is a 2—sawtooth function. Consider the data x; = 2~k for i =
0,1,...,2% with y; = 0 for i even and y; = 1 for i odd, then

i . n— 4(tm)f
FeF(opi2.2:k) (f) L (&)= ——,
Theorem 1.1 follows from Theorem 1.2 with m < o(k—=3)/¢-1

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15')

Ingredients of the proof

We refer to ¢(-) as a t— sawtooth function if it is piecewise affine
with t pieces; that is R is partitioned into t consecutive intervals
and ¢() is affine within each interval.

Let ¢(-) be a t—sawtooth function then every f € F(¢; m,{) with
f:R — Ris a (tm)‘-sawtooth.

Let f : R — R and g : R — R be k— and /—sawtooth functions
respectively, then f + g is a (k + ¢)—sawtooth function and f o g is
a kf{—sawtooth function.

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15')

Proof of Theorem 2.1: g € F(¢; m, £) at (mt)éfsawtooth functions

Consider the first layer h, = ¢(Wx + b), each entry of this
m-vector is an affine function, i.e. 1—sawtooth, for which ¢ is then
applied and as it is a t—sawtooth each entry in ¢(Wx + b) is a
t—sawtooth.

The second layer has each entry in Why + b being a liner
combination of m different t-sawtooth functions, resulting in each
entry of Why + b being a mt-sawtooth function. The second layer
concludes with h3 = ¢(Why + b) which is composing a
t—sawtooth function with each mt-sawtooth function for each
entry in hs being an mt?-sawtooth function.

Inductively h, € R™ has as each entry m~!(mt)’-sawtooth
functions and the final from R™ to R is a linear combination of
these m functions to give an (mt)‘—sawtooth function.
https://arxiv.org/abs/1509.08101
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