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Recent breakthroughs in deep learning applications:
Much of why we are interested in deep learning is its remarkable efficacy

Deep learning is now widespread in applications, showing
remarkable abilities to perform complex tasks.

I Computer vision; image classification, Imagenet challenges.

I Complex strategy games such as Go.

I AI for art with style transfer, sound generation from videos,
and text generation.

I Deep learning is now increasingly used in scientific
applications: gravitational lensing and weather prediction
(DGMR),

I AlphaFold for protein structure interaction prediction.

I And many many more applications: e.g. medical
diagnostics....
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
Image classification, localization, and detection:

http://image-net.org

ImageNet was first presented in 2009 to help benchmark image
classification algorithms in the ILSVRC.
2010-14: Image classification; 1.2 million training labeled images
2011-14: Single object localisation; 524,000 training labeled bbox
2013-14: All object classification per scene; 456,000 training set
https://link.springer.com/article/10.1007/s11263-015-0816-y
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ImageNet Large Scale Visual Recognition Challenge
Image classification, localization, and detection: complex set of similar data

“The ILSVRC dataset contains many more fine-grained classes
compared to the standard PASCAL VOC benchmark; for example,
instead of the PASCAL “dog” category there are 120 different
breeds of dogs in ILSVRC2012-2014 classification and single-object
localization tasks.”
https://link.springer.com/article/10.1007/s11263-015-0816-y
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ImageNet Large Scale Visual Recognition Challenge
Image classification, localization, and detection

2013-14: All object classification per scene; 456,000 training set
https://arxiv.org/pdf/1409.0575.pdf
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ImageNet Large Scale Visual Recognition Challenge
Image classification, localization, and detection: “super-human performance.”

https://arxiv.org/pdf/1409.0575.pdf

2012 ILSVRC classification won using 7 layer CNN by Krizhevsky,
Sutskever, and Hinton; users in widespread use of ConvNets.
This success marked the start of DNNs widespread use.
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Deep learning for games
Improved with reinforcement learning.

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
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Deep learning style transfer: architecture
Deep learning allows easy combination architecture tasks.

More complex architectures can allow learning and transferring
characteristics of objects.
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_

CVPR_2016_paper.pdf
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Deep learning style transfer: examples
Applications such as these seem impossible without DL

Photos can be transitioned to paintings with prescribed styles
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_

CVPR_2016_paper.pdf

Why deep learning: application and approximation. 9

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf


Deep learning sound generation from video
DL is able to generate realistic synthetic data.

Expected sound characteristics can be learned from video with
sound and then generated and added to video lacking sound.
https://arxiv.org/pdf/1512.08512.pdf

https://www.youtube.com/watch?v=0FW99AQmMc8

Many similar examples exist, see e.g. DeepFakes and automatic
text generations. https://en.wikipedia.org/wiki/GPT-3
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Deep learning image generation from text
Realistic images can be automatically generated from text

DALL·E: We’ve trained a neural network called DALL·E that creates

images from text captions for a wide range of concepts expressible in

natural language.

https://openai.com/blog/dall-e/

https://arxiv.org/abs/2102.12092
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DeepLens for detecting rare events
Some tasks are not scalable without machine learning.

For many science applications the quantity of data is beyond
human inspection, use DL: Large Synoptic Survey Telescope
https://academic.oup.com/mnras/article/473/3/3895/3930852

One approach to scale the visual inspection effort to the size of
these surveys is to use crowdsourcing. This is the idea behind the
Space Warps project (Marshall et al. 2015; More et al. 2015),
which crowdsourced the visual inspection of a sample of 430 000
images from the CHFTLS to a crowd of 37 000 citizen scientists,
yielding a new sample of gravitational lens candidates. The authors
further estimate that a similar crowdsourcing effort can be scaled
up to LSST sizes, where a considerable crowd of 106 volunteers
could visually inspect 106 LSST targets in a matter of weeks.
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AlphaFold
Predicting the 3D shape of proteins from its amino-acid sequence

DNNs are increasingly used in scientific applications that
historically required laborious lab work.
https://www.nature.com/articles/d41586-020-03348-4
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Deep Generative Model for Rainfall (DGMR)
Predicting accurate near term rainfall on a fine mesh

Machine learning is increasingly state-of-the-art for scientific
computing tasks.
https://www.nature.com/articles/s41586-021-03854-z
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Machine Learning added mathematical conjectures
Aiding mathematicians proofs of fundamental conjectures

The practice of mathematics involves discovering patterns and using

these to formulate and prove conjectures, resulting in theorems. Since

the 1960s, mathematicians have used computers to assist in the discovery

of patterns and formulation of conjectures1, most famously in the Birch

and Swinnerton-Dyer conjecture2, a Millennium Prize Problem3. Here we

provide examples of new fundamental results in pure mathematics that

have been discovered with the assistance of machine

learning—demonstrating a method by which machine learning can aid

mathematicians in discovering new conjectures and theorems.

https://www.nature.com/articles/s41586-021-04086-x
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AI for drug discovery
Finding new antibiotic effective against resistant bacteria

The computer model, which can screen more than a hundred million
chemical compounds in a matter of days, is designed to pick out
potential antibiotics that kill bacteria using different mechanisms than
those of existing drugs.

“We wanted to develop a platform that would allow us to harness the

power of artificial intelligence to usher in a new age of antibiotic drug

discovery,” says James Collins, the Termeer Professor of Medical

Engineering and Science in MIT’s Institute for Medical Engineering and

Science (IMES) and Department of Biological Engineering. “Our

approach revealed this amazing molecule which is arguably one of the

more powerful antibiotics that has been discovered.”

https://www.cell.com/cell/pdf/S0092-8674(20)30102-1.pdf
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ChatGPT: Generative pre-trained transformer
Large language models generate text/speech that feels lifelike

[T]he fastest-growing consumer software application in history, gaining
over 100 million users and contributing to OpenAI’s valuation growing to
$29 billion.

In May 2023, in a personal injury lawsuit against Avianca Airlines filed in

the Southern New York U.S. District Court (with Senior Judge P. Kevin

Castel presiding), the plaintiff’s attorneys reportedly used ChatGPT to

generate a legal motion for the case. ChatGPT generated numerous

fictitious legal cases with fabricated quotations and internal citations in

the legal motion, and the plaintiff’s attorneys are now facing potential

judicial sanction and disbarment for filing the legal motion and for

presenting the fictitious legal decisions ChatGPT generated as being

authentic.

https://en.wikipedia.org/wiki/ChatGPT
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Is your area of interest immune from deep learning?
Deep deep trouble: A case study by Michael Elad for image denoising:

Thousands of papers addressing this fundamental task [image denoising]
were written over the years. Researchers developed beautiful and deep
mathematical ideas with tools from partial differential equations, such as
anisotropic diffusion and total variation, energy minimization viewpoint,
adoption of a geometric interpretation of images as manifolds, use of the
Beltrami flow, and more.... We have hence gained vast knowledge in
image processing over the past three decades.

In 2012, Harold Burger, Christian Schuler, and Stefan Harmeling decided

to throw deep learning into this problem. The idea was conceptually

quite simple: take a huge set of clean images, add synthetic noise, and

then feed them to the learning process that aims to turn a noisy image

into its clean version. While the process was tedious, frustrating, and

lengthy — the end result was a network that performed better than any

known image denoising algorithm at that time.

https://sinews.siam.org/Details-Page/deep-deep-trouble
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Maths of why DNNs: DNNs as function approximators
Functions act as classifiers and other machine learning tasks

Classification of inputs x ∈ Rn to c classes denoted by {ei}ci=1, is
modelled by a function H(x) for which H(x) = ei for all x in class
i where ei (`) = 1 for i = ` and 0 otherwise.
Approximation Theory concerns the ability to approximate
functions from a given representation; see accompanying lectures.

Some of the most well studied examples include approximation of a
function f (x) over x ∈ [−1, 1] with some smoothness, say three
times differentiable, by polynomials of degree at most k or
trigonometric exponentials.

Here our focus is on the ability to approximate functions H(x ; θ)
given by a deep network architecture; for x ∈ Rn.
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Representational benefits of depth (Telgarsky 15’)
Two layer ReLU network: sawtooth basis function

Telegarsky (2015) considered a specific construction of a function
from a deep network which requires an shallow network to have
exponential width.
Let φ(x) = ReLU(x) = max(x , 0) and consider the two layer net:

h2(x) = 2φ(x)− 4φ(x − 1/2) =


0 x < 0

2x x ∈ [0, 1/2]
2− 2x x > 1/2

and h3(x) = φ(h2(x)) set to zero the negative portion for x > 1.
Here W (1) = (1 1)T , b(1) = (0 − 1/2)T , W (2) = (2 − 4), b(2) = 0.

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Composition gives exponential growth in complexity

For φ(x) = max(x , 0) let f (x) = h3(x) = φ(2φ(x)− 4φ(x − 1/2))
and iterate this 2-layer network k times to obtain a 2k-layer
network f k(x) = f (f (· · · (f (x) · · · )) with the property that it is
piecewise affine with change in slope at xi = i2−k for
i = 0, 1, . . . , 2k and moreover takes on the values f k(xi ) = 0 for i
even and f k(xi ) = 1 for i odd.
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Representational benefits of depth (Telgarsky 15’)
Composition gives exponential growth in complexity: width vs. depth

In contrast, a two-layer network with the same φ(x) of the form

φ
(∑m

j=1 αjφ(wjx − bj)
)

requires m = 2k to exactly express f k(x).

The deep network can be thought of as having 6k parameters,
whereas the two-layer network requires 3 · 2k parameters;
exponentially more. https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Classification error rates

Define the function class F (φ;m, `) be the space of functions
composed of ` layer fully connected m width feed forward nets
with nonlinear activation function φ. Let
R(f ) := n−1

∑n
i=1 χ[f (xi ) 6= yi ] count the number of incorrect

labels of the data set {(xi , yi )}ni=1.

Theorem 1.1 (Telgarsky 15’)

Consider positive integers k, `,m with m ≤ 2(k−3)/`−1, then there
exists a collection of n = 2k points {(xi , yi )}ni=1 with xi ∈ [0, 1] and
yi ∈ {0, 1} such that

min
f ∈F (φ;2,2k)

R(f ) = 0 and min
g∈F (φ;m,`)

R(g) ≥ 1

6
.

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
More general bound.

Let F(φ;m, `; k) denote space of functions generated by
composing functions from F(φ;m, `) k times.

Theorem 1.2 (Telgarsky 15’)

Consider positive integers k , number of layers ` with m width per
layer. Let φ(·) be a t−sawtooth function and φR(x) = max(x , 0)
is a 2−sawtooth function. Consider the data xi = i2−k for i =
0, 1, . . . , 2k with yi = 0 for i even and yi = 1 for i odd, then

min
f ∈F (φR ;2,2;k)

R(f ) = 0 and min
g∈F (φ;m,`)

R(g) ≥ n − 4(tm)`

3n
.

Theorem 1.1 follows from Theorem 1.2 with m ≤ 2(k−3)/`−1.
https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Ingredients of the proof

We refer to φ(·) as a t− sawtooth function if it is piecewise affine
with t pieces; that is R is partitioned into t consecutive intervals
and φ(·) is affine within each interval.

Lemmas 2.1(Telgarsky 15’)

Let φ(·) be a t−sawtooth function then every f ∈ F(φ;m, `) with
f : R→ R is a (tm)`-sawtooth.

Lemmas 2.3(Telgarsky 15’)

Let f : R → R and g : R → R be k− and `−sawtooth functions
respectively, then f + g is a (k + `)−sawtooth function and f ◦ g is
a k`−sawtooth function.

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Proof of Theorem 2.1: g ∈ F (φ; m, `) at (mt)`−sawtooth functions

Consider the first layer h2 = φ(Wx + b), each entry of this
m-vector is an affine function, i.e. 1−sawtooth, for which φ is then
applied and as it is a t−sawtooth each entry in φ(Wx + b) is a
t−sawtooth.
The second layer has each entry in Wh2 + b being a liner
combination of m different t-sawtooth functions, resulting in each
entry of Wh2 + b being a mt-sawtooth function. The second layer
concludes with h3 = φ(Wh2 + b) which is composing a
t−sawtooth function with each mt-sawtooth function for each
entry in h3 being an mt2-sawtooth function.
Inductively h` ∈ Rm has as each entry m−1(mt)i -sawtooth
functions and the final from Rm to R is a linear combination of
these m functions to give an (mt)`−sawtooth function.
https://arxiv.org/abs/1509.08101
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