Robustness and Accuracy: Are We Trying to Have Our
Cake and Eat It Too?

Abstract

The phenomenon of training robust deep neural networks coinciding with reduced
accuracy has extensively manifested itself empirically. We look at theoretical
explanations for why this observed tradeoff may be inherent and examine a state-of-
the-art defense method, designed trade adversarial robustness off against accuracy.
We also consider the perspective that models which are both robust and accurate can
be obtained, and evaluate if batch normalization can be of benefit in this pursuit.

1 Introduction

Deep neural networks have become increasingly popular and have been deployed in many machine
learning tasks in the domains of images, text and speech, with remarkable success. These include
safety-critical applications such as road-sign recognition in autonomous vehicles (). Simultane-
ously many works ({17], {3]. [7]) have shown that DNNs are vulnerable to adversarial examples.
To deal with this a number of countermeasures have been considered ( [14], ). However, when
implemented these have reduced the accuracy on standard examples ([|16]). This leads us to question
if the apparent trade-off is inevitable.

2 Notations

We consider an input x € X C R, a binary or multi-class classification problem with labels y €
Y:i={-1,+1}or Y :={1,...,C}, sampled from an unknown distribution (X, Y") ~ D. The labels
partion X into disjoint classes X ~, X+ or X1 ... X(©) For a classifier g : X — ) the natural
error is defined as Rpq¢(9) := E(x,v)~p1{g(X) # Y} and the robust error under the threat of an ¢-
bounded perturbation as R,o5(9) := E(x,y)~p1{IX’ € B(X, €) s.t. g(X') # Y }. For all classifiers
9> Rrob(9) = Rnai(g), with equality if e = 0. In the context of binary classification, given a score
function f : X — R we will extend our notation writing R (f) := Ex,y)~p1{sign(f(X)) # Y}
and Ryop(f) = E(x,y)~p1{IX' € B(X, €) s.t.sign(f(X')) # Y} for associated natural and robust
errors. The natural and robust accuracies are defined as A, = 1 — Rypqe and Aop = 1 — Ryop
respectively. || - || represents a generic norm, we specify when required e.g. || - [2. We define
[x — XD|| = mingcxe ||x — x| and | XD — X@|| = MiNy e () wexo [[X — X'||. We limit
ourselves to classification tasks with /,-bounded adversaries.

3 Robustness May Be at Odds with Accuracy
‘We commence by examining , in this paper the following input-label distribution is constructed:

w.a.r. + w.p. i.i.d.
Yy NT {'17+1}a T = { _g w.p. 18]7 ) T2, ... Td41 1N N(nyvl)a
where 0.5 < p < 1 and 7 is chosen to be large enough e.g. n = O(%) will suffice. For this

distribution, a linear classifier gaug(X) := sign(w,,; (X), where wynis = [0, g, .-, 11, achieves
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natural accuracy arbitrarily close to 100%, for sufficiently large d. This classifier does not consider x1
and instead relies on the weakly correlated features s, . . ., 441, obtaining high accuracy through
implicitly pooling and treating s, . . ., Zq4+1, as a single "meta-feature". Now consider a lo-bounded
perturbation with e = 27, which shifts each x,..., %441 towards —y. The resulting features
xY,..., Ty, of the perturbed input a’ are sampled i.i.d. from the anti-correlated distribution
—N(ny, 1). Consequently, the robust accuracy of ga., Will be arbitrarily close to 0%. We can draw
a distinction between robust features z; and non-robust features s, . . ., T4+1 ande note that any
classifier which achieves a natural accuracy > p has to at least in part rely on non-robust features, this
allows the authors to establish a generalisation of the trade-off between natural and robust accuracy
demonstrated by gq.g to any classifier:

Theorem 3.1 Any classifier that attains at least 1 — & standard accuracy on D has robust accuracy
ar most Tg—pa against an lo-bounded adversary with € > 2.

Since p < 1, as § —+ 0 and natural accuracy approaches 100%, adversarial accuracy falls to 0% for
any classifier just as seen with gq.g. Numerically, if p = 0.95, all classifiers with natural accuracy
> 96%, > 99% have robust accuracy > 76% and > 19% respectively. The perturbation required to

achieve this is small relative to the size of the input (||x||os > 1) with e = O(n) and 7 = O(z).

Thus we have a concrete example for which the robustness-accuracy tradeoff has been proven. The
result is particularly notable as it holds even in the regime of infinite data. This combined with
the empirical results in the appendix of this paper and the extremely extensive empirical results in
, which after inspecting 18 deep image classification models against several attacks concluded

more accurate network models appear to be less robust in terms of the required adversarial attack
strength defined in I, ball", may lead to the viewpoint that the afromentioned tradeoff is inherent. The
hypothesis that highly accurate classifiers learn non-robust features can also explain the phenomenon
of transferability of adversarial attacks (, ). It also demonstrates the necessity of adversarial
training algorithms which learn robust features when robustness is the goal.

4 Theoretically Principled Trade-off between Robustness and Accuracy

Taking the above perspective, introduces a new method for adversarial training which the authors
name TRADES (TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization). Instead
of 0-1 loss which is non-differentiable, making any optimisation challenging, a surrogate loss function
 is considered. To derive the following bounds a weak assumption on ¢ is made - it is classification-
calibrated (). Tableh'sts some common surrogate loss functions that satisfy this assumption and
states their associated -transforms. For a score function f : X — R, let Ry, = mins Rnat(f),
Ry(f) =E(o(f(X),Y)) and RY = ming Rg4(f), then:

Theorem 4.1 For any non-negative classification-calibrated loss function 1 s.1. ¥(0) > 1, any
measurable f : X — R, any probability distribution on X x {—1,+1}, and any A > 0, we have

Rrob(F) ~ Rt <97 (RolF) = RG) +E( max 4/ (0)f(X)/)

Theorem 4.2 Suppose that |X| > 2. For any non-negative classification-calibrated loss function
Y s.t. p(z) = 0asx — oo, any € > 0, and any 6 € [0,1], there exists a probability distribution
on X x {—1,+1}, a function f : RY — R, and a regularization parameter A > 0 such that
Rrob(f) — Riar = 0 and
0—E ¥ X’/\><R ~Ry < p(0-E , X)1(X)/N))

p(0-B( max (S (KFXK)/N)) < Ro(H)—R5 < $(0-E( max  4(FH0IK)/N))+¢
Thus given (z) — 0 as  — oo (which holds for all ¢ in Table Theorem[4.2] demonstrates that
the bound in Theorem[4.T]is tight. The optimality of Theorem([4.]1s also shown empirically by fitting
a classifier on the MINST dataset with R},,; = 0 and the expectation estimated over the test data.

Relying on A to approximately reflect the effect of 1)1, when 1(6) # 0, Theorem suggests the
following method of optimization (as R}, is independent of f):

minE{ §(/(X)Y) +  max d(/(X)S(X)/) }

accuracy

robustness



Table 1: Classification-calibrated surrogate loss ¢ and its associated v-transform. Here 104 (0) =
1(1—0)loga(1 — 0) + 5(1 + 0)logz(1 +0).

Loss o(a) ¥(0)

Hinge maz{l — a,0} 0

Sigmoid 1 — tanh(a) 0
Exponential ezp(—a) 1—+1-6?
Logistic loga(1+ exp(—a))  tiog(0)

The first term reduces natural error encouraging accuracy. Minimising the second term moves the
boundary of the classifier away from the sample instances, thus they become less susceptible to small
norm perturbations, hence encouraging robustness. The parameter \ balances these goals, with higher
values prioritising natural accuracy and lower values prioritising robust accuracy. In order to extend
to more general defenses, the authors heuristically allow for multi-class classification via replacing P
with a multi-class calibrated loss £ and approximately solving the minimax problem via alternating
gradient descent. A widely utilized example of a multi-class calibrated loss is cross-entropy loss

({T3])). This gives:
. /
minB{£(7/(X), )+ max  £(f(X), /(X)/N)}

where f(X) is the output vector (with softmax operator in the final layer) and Y is the label-indicator
vector. The pseudocode, that aims to minimize the empirical form of the above, is displayed in
Algorithm|1| Projected gradient descent in Step 7 should be highlighted, as it is essential we initialize
x} by adding a small, random perturbation around x; for inner maximization. This is done as x;
is the global minimum with zero gradient of g(x') = L(f(x;), f(x')). The resulting new form of
surrogate loss for adversarial training performed exceptionally on MNIST and CIFAR10 datasets
against a variety of white-box and black-box threat models, won the NeurIPS 2018 Adversarial Vision
Challenge with over 2,000 submissions and is still refered to as "state-of-the-art" ().

Algorithm 1 Adversarial training by TRADES

1: Input: Step sizes 71 and 772, batch size m, number of iterations K in inner optimization,
network architecture parametrized by 6

2: Output: Robust network fy

3: Randomly initialize network fp, or initialize network with pre-trained configuration

4: repeat

5: Read mini-batch B = {x1, ..., X;, } from training set

6: fori = 1,...,m (in parallel) do

7 x} + x; +0.001 - N(0, )

8: fork=1,...,K do

9: x} ¢ Ipx, o) (msign(V L(fo(x:), fo(x})))+x}), here ITis the projection operator
10: end for
11: end for

120 04 0—m )0, VolL(fo(xi,yi) + L{(fo(x:), fo(x7))/Al/m
13: until training converged

5 A Closer Look at Accuracy vs. Robustness

The authors of [21], take a different viewpoint. For a data distribution they introduce:

Definition 5.1 (r-separation) A data distribution over U;cy,. oy X is r-separated if | X @ —
XD|| > 2r for all i # j.

Given r-separation, it is theoretically established that a classifier which achieves perfect robust (with

radius r) and natural accuracy exists. In the binary and multi-class classification case consider the
. —X || —|lx=x"t .
functions fyin (%) = MZT”"—" and frne(x) = L-(|[x— XD, ..., ]x— X)) respectively.

By directly showing that these functions satisfy the requirements, the following theorems are proved:



Table 2: Separation of real data. Perturbation radii ¢ are those used in , and respectively.

Perturbation ~ Minimum Minimum

radii e Train-Train ~ Test-Train

separation  separation
Fashion-MNIST 0.1 0.318 0.322
Chest X-Ray Images 0.1 0.482 0.463
GTSRB 0.1 0.035 0.055

Theorem 5.1 Suppose X = X~ U X7 is r-separated. Then, there exists f : X — R s.t.
(a) f is locally Lipschitz with constant L on a ball of radius v around all x € X, and
(b) the classifier g = sign(f) has .A,mt(g) = 1and Ayop(g9) =1 withe=r.

Theorem 5.2 Suppose X = Uie{1,‘..,c} X js r-separated. Then, there exists f : X — R s.t.

(a) f is locally Lipschitz with constant } on a ball of radius v around all x € X, and
(b) the classifier g = argminie(y, . oy (f)i has Anat(g) = 1 and Arop(g) = 1 with € = 7.

The paper argues that real image datasets are r-separated, with ¢ < 7, where e is the typical size of
adversarial perturbation. Specifically, MNIST, CIFAR-10, SVHN and Restricted ImageNet datasets
are considered with respect to lo.-distance. Let the Train-Train Separation be the minimum distance
between two examples in the training set with different class labels, and the Test-Train Separation
be the minimum distance between an example in the test set and an example in the training set with
a different class label. Upon removing four pairs of duplicate examples with multiple labels and
three examples which when examined are visibly highly noisy, both the Train-Train and Test-Train
separations are higher than 2 for all considered datasets. A limitation of the results is that they
are empirical, whilst the definition of r-separation refers to the underlying distribution of the data,
which is unknown. However considering the size of the datasets, it is reasonable to assume that
the data supports are representative of the support of the distribution. To exemplify the theoretical
existence, for the MNIST, CIFAR-10 and SVHN datasets, proof-of-concept neural networks are also
constructed, which achieve A, q; and A, > 0.999.

It can also be argued that the choice of datasets lacks scope, with MINST and SVHN, as well
as CIFAR-10 and Restricted ImageNet (containing only nine animal classes), being very similar.
Consequently, we choose to examine three further datasets: Fashion-MNIST, Chest X-Ray Images
(Pneumonia) and GTSRB(German Traffic Sign Recognition Benchmark). The former was chosen due
to its high usage in academic papers and the latter two due to their relevance to practical applications
of deep learning. Our findings are presented in Table. We verify that Fashion-MNIST and Chest
X-Ray Images datasets are 7-separated with sufficiently large 7. This is not the case for GTSRB, at
least relative to € values used in . This is also not solved by removing a few examples as 7221
images in the test set and 2236 in images in the train set (out of 39209 and 12630) have a neighbor in
the train set with a different label less than 2¢ away. Nonetheless a choice of e = 0.005 which is used
with Restricted ImageNet would satisfy r < 2¢ (empirically). Finally, we note that the distribution
constructed in @ does not contradict Theorem p < 1 and the Guassians have infinite support.

The paper proposes two possible explanations for why the trade-off has been observed in experimental
results. One is that the current training methods fail to impose the local Lipschitzness properly and
another may be that they fail to generalise properly. Their experimental results largely support these
ideas with more robust methods imposing higher degrees of local Lipschitzness, but also have larger
natural and adversarial generalization gap. The authors observe that dropout reduces the gap.

6 Our Experimental Results

Taking the framework provided by we consider another model adjustment - batch normalisation
(BN) ([9). In [9] BN was shown to improve natural accuracy, [4] and [2] however demonstrated
that it produces adversarial vulnerable models. further argued that BN produces models to rely
more on non-robust features to explain their findings. This work is novel (to our best knowledge),
the impact of BN on natural robustness, adversarial robustness and local Lipschitzness of classifiers
produced by TRADES, has not been considered prior. We use the same setup as the experiment on



Table 3: Tmpact of implementing BN.

Architecture  Train Test Gap Adv. Adv. Adv. Test

acc. acc. train  test gap lipschitz
acc. acc.
Natural CNNI1 100.00 99.16 0.84 6137 6125 0.2 50.39
Natural CNNI1_BNI1 100.00 99.27 0.73 5542 55.65 -023 73.82
Natural CNNI_BN2 100.00 99.26 0.74 3271 34.11 -14 9124
TRADES(+ = 0.5) CNNI 99.92 9928 0.64 985 9623 227 10.87

TRADES(i:Oﬁ) CNN1_BN1 9997 993 0.67 99.08 96.34 274 10.17

TRADES(%:O‘B) CNN1_BN2 9997 99.25 0.72 99.24 96.54 2.7 9.63

TRADES(% =1) CNNI1 99.81 99.25 0.56 98.76 96.71 2.05 9.24
TRADES(¥ =1) CNN1_BN1 99.84 9922 0.62 99.00 96.87 213 7.93
TRADES(5 = 1) CNNI_BN2 99.87 99.24 0.63 99.06 96.79 227 8.12

TRADES(% =2) CNNI1 99.51 99.14 0.37 9859 96.78 1.81 7.86
TRADES(% =2) CNNI_BNI 9952 99.13 039 98.68 9695 173 6.68
TRADES(% =2) CNNI1_BN2 9948 99.16 032 9845 9698 147 6.23

TRADES(% =3) CNNI1 99.22 9897 025 9791 9645 146 17.66
TRADES(§ =3) CNNI_BNI 99.14 9895 0.19 9781 96.67 1.14 5.28
TRADES(5 = 3) CNNI_BN2 99.04 98.84 02 97.66 96.73 093 4.57

MINST in @] (network structure = CNN1, optimizer = SGD with momentum 0.9, batch size = 64,
adversarial attack = PGD with e = 0.1, running 160 epochs on the training dataset, decaying the
learning rate by a factor 0.1 in the 40th, 80th 120th and 140th epochs, starting at 0.0001). CNN 1 has
two convolutional layers followed by two fully connected layers, with dropout layers preceding each
of the fully connected layers. We consider adding BN after the first convolutional layer (CNN 1_BN1)
and after the first and second convolutional layer (CNN1_BN2). We do not consider adding BN after
further layers as having dropout proceed BN has been shown to lead to adverse results ({11]). In

TRADES with 1/)\ = 1,3 were shown to perform well, thus we consider 1/A=0.5,1,2 and 3. We

empirically measure the local Lipschitzness as: % Z?:l MaXy! By, (7€) nfl(l—i)__,fl(lg”% The results
are presented in Table For natural learning they agree with previous findings, the implementation
of BN improved natural accuracy and reduced robust accuracy. For TRADES, however robust
accuracy tended to increase with each implementation of BN. In both the impact on robust accuracy
agrees with the hypothesis and empirical results in , that robustness correlates positively with
local Lipschitzness. Considering [2] we also can put forward the idea that by using an appropriate
adversarial training method, the drawback of BN causing models to favour learning non-robust

features may be alleviated.

7 Conclusion

Unfortunately, the question we asked ourselves in the introduction remains an open one. Whilst no
classifier that is robust and accurate exists for the distribution in , it can be argued that this is
not representative of the tasks faced by DNNs. After all the human eye has been widely assumed to
be both accurate and impenetrable to small norm perturbations in typical settings, this can however
be disputed as even for image classification DNNs can outperform humans ([6]). It also is hard to
make the case that DNNs are not expressive enough to achieve this as they can fit not just adversarial
but completely randomly labeled data perfectly . At the same time obtaining a concrete result
is challenging as it is likely to require some assumptions on the underlying distribution of the data,
which in most real-world settings is unknown. Furthermore, even if we demonstrate that an accurate
and classifier exists, we are left with the challenge of establishing a framework for finding it (although
dropout and BN may be steps in the right direction). Notably, the classifiers used to prove results in
cannot be learned as they require knowledge of class supports.
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