C6.1 Numerical Linear Algebra

- **SVD** and its properties, applications
- Direct methods for linear systems and least-squares problems
- **Direct methods** for eigenvalue problems
- Iterative (Krylov subspace) methods for linear systems
- Iterative (Krylov subspace) methods for eigenvalue problems
- Randomised algorithms for SVD and least-squares

References

- ▶ Trefethen-Bau (97): Numerical Linear Algebra
 - covers essentials, beautiful exposition
- Golub-Van Loan (12): Matrix Computations
 - classic, encyclopedic
- Horn and Johnson (12): Matrix Analysis (& topics (86))
 - excellent theoretical treatise, little numerical treatment
- ▶ J. Demmel (97): Applied Numerical Linear Algebra
 - impressive content, some niche
- ▶ N. J. Higham (02): Accuracy and Stability of Algorithms
 - bible for stability, conditioning
- H. C. Elman, D. J. Silvester, A. J. Wathen (14): Finite elements and fast iterative solvers
 - PDE applications of linear systems, preconditioning

What is numerical linear algebra?

The study of numerical algorithms for problems involving matrices Two main (only!?) problems:

1. Linear system

$$Ax = b$$

2. Eigenvalue problem

$$Ax = \lambda x$$

 λ : eigenvalue (eigval), x: eigenvector (eigvec)

What is numerical linear algebra?

The study of numerical algorithms for problems involving matrices Two main (only!?) problems:

1. Linear system

$$Ax = b$$

2. Eigenvalue problem

$$Ax = \lambda x$$

 λ : eigenvalue (eigval), x: eigenvector (eigvec)

3. SVD (singular value decomposition)

$A = U \Sigma V^T$

U,V: orthonormal/orthogonal, Σ diagonal

Why numerical linear algebra?

- Many (in fact most) problems in scientific computing (and even machine learning) boil down to a linear problem
 - Because that's often the only way to deal with the scale of problems we face today! (and in future)
 - For linear problems, so much is understood and reliable algorithms available
- Ax = b: e.g. Newton's method for F(x) = 0, $F : \mathbb{R}^n \to \mathbb{R}^n$ nonlinear
 - 1. start with initial guess $x^{(0)} \in \mathbb{R}^n$
 - 2. find Jacobian matrix $J \in \mathbb{R}^{n \times n}$, $J_{ij} = \frac{\partial F_i(x)}{\partial x_i}|_{x=x^{(0)}}$
 - 3. update $x^{(1)} := x^{(0)} J^{-1}F(x^{(0)})$, repeat
- Ax = λx: e.g. Principal component analysis (PCA), data compression, Schrödinger eqn., Google pagerank,
- ▶ Other sources: differential equations, optimisation, regression, data analysis, ...

Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference) The following are equivalent (how many can you name?):

1. A is nonsingular.

Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference) The following are equivalent (how many can you name?):

- 1. A is nonsingular.
- 2. A is invertible: A^{-1} exists.
- 3. The map $A: \mathbb{R}^n \to \mathbb{R}^n$ is a bijection.
- 4. all n eigenvalues of A are nonzero.
- 5. all n singular values of A are positive.

6. $\operatorname{rank}(A) = n$.

- 7. the rows of A are linearly independent.
- 8. the columns of \boldsymbol{A} are linearly independent.

9. Ax = b has a solution for every $b \in \mathbb{C}^n$.

- 10. A has no nonzero null vector. Neither does A^T .
- 11. A^*A is positive definite (not just semidefinite).

12. $det(A) \neq 0$.

13. A^{-1} exists such that $A^{-1}A = AA^{-1} = I_n$. 14. ...

Structured matrices

For square matrices,

- Symmetric: $A = A^T$, i.e. $A_{ij} = A_{ji}$ (Hermitian: $A_{ij} = \bar{A_{ji}}$) has eigenvalue decomposition $A = V\Lambda V^T$, V orthogonal, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$.
 - ▶ symmetric positive (semi)definite $A \succ (\succeq)0$: symmetric and positive eigenvalues
- ▶ Orthogonal: $AA^T = A^TA = I$ (Unitary: $AA^* = A^*A = I$) → note $A^TA = I$ implies $AA^T = I$
- Skew-symmetric: $A_{ij} = -A_{ji}$ (skew-Hermitian: $A_{ij} = -\bar{A_{ji}}$)
- $\blacktriangleright \text{ Normal: } A^T A = A A^T$
- Tridiagonal: $A_{ij} = 0$ if |i j| > 1
- Triangular: $A_{ij} = 0$ if i > j

For (possibly nonsquare) matrices $A \in \mathbb{C}^{m imes n}$, $m \geq n$

- Hessenberg: $A_{ij} = 0$ if i > j + 1
- "orthonormal": $A^*A = I_n$,
- sparse: most elements are zero

other structures: Hankel, Toeplitz, circulant, symplectic, ...

Vector norms

For vectors
$$x = [x_1, \dots, x_n]^T \in \mathbb{C}^n$$

 $\blacktriangleright p$ -norm $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$
 \blacktriangleright Euclidean norm=2-norm $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2}$
 \blacktriangleright 1-norm $||x||_1 = |x_1| + |x_2| + \dots + |x_n|$
 \blacktriangleright ∞ -norm $||x||_{\infty} = \max_i |x_i|$

Norm axioms

$$\begin{aligned} & \|\alpha x\| = |\alpha| \|x\| \text{ for any } \alpha \in \mathbb{C} \\ & \|x\| \ge 0 \text{ and } \|x\| = 0 \Leftrightarrow x = 0 \\ & \|x+y\| \le \|x\| + \|y\| \end{aligned}$$

Inequalities: For $x \in \mathbb{C}^n$,

•
$$\frac{1}{\sqrt{n}} \|x\|_2 \le \|x\|_\infty \le \|x\|_2$$

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1$$

$$\frac{1}{n} \|x\|_1 \le \|x\|_{\infty} \le \|x\|_1$$

 $\|\cdot\|_2$ is unitarily invariant as $\|Ux\|_2 = \|x\|_2$ for any unitary U and any $x \in \mathbb{C}^n$.

Cauchy-Schwarz inequality

For any $x, y \in \mathbb{R}^n$,

 $|x^T y| \le ||x||_2 ||y||_2$

Proof:

- For any scalar c, $||x cy||^2 = ||x||^2 2cx^Ty + c^2||y||^2$.
- ▶ This is minimised w.r.t. c at $c = \frac{x^T y}{\|y\|^2}$ with minimiser $\|x\|^2 \frac{(x^T y)^2}{\|y\|^2}$.
- Since the minimal value must be ≥ 0 , the CS inequality follows.

Matrix norms

For matrices $A \in \mathbb{C}^{m \times n}$. $\blacktriangleright p\text{-norm } ||A||_p = \max_x \frac{||Ax||_p}{||x||}$ ▶ 2-norm=spectral norm (=operator norm) $||A||_2 = \sigma_{max}(A)$ (largest singular value) ▶ 1-norm $||A||_1 = \max_i \sum_{i=1}^m |A_{ii}|$ • ∞ -norm $||A||_{\infty} = \max_i \sum_{i=1}^n |A_{ij}|$ Frobenius norm $||A||_F = \sqrt{\sum_i \sum_j |A_{ij}|^2}$ (2-norm of vectorization) • trace norm=nuclear norm $||A||_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A)$

Red: unitarily invariant norms ||A|| = ||UAV|| for any unitary (or orthogonal) U, V

 $|_2$

Norm axioms hold for each. Inequalities: For $A \in \mathbb{C}^{m \times n}$, (exercise)

Subspaces and orthonormal matrices

Subspace S of \mathbb{R}^n : vectors of form $\sum_{i=1}^d c_i v_i$, $c_i \in \mathbb{R}$

- ▶ v_1, \ldots, v_d are **basis vectors**, linearly independent
- $\triangleright \ x \in \mathcal{S} \Leftrightarrow \sum_{i=1}^{d} c_i v_i$
- $\blacktriangleright \ d \text{ is the } dimension \text{ of } \mathcal{S}$

Representation: S = span(V) (i.e., $x \in S \Leftrightarrow x = Vc$), or just V; often convenient if V(=Q) is orthonormal

Subspaces and orthonormal matrices

Subspace S of \mathbb{R}^n : vectors of form $\sum_{i=1}^d c_i v_i$, $c_i \in \mathbb{R}$

- ▶ v_1, \ldots, v_d are **basis vectors**, linearly independent
- $\triangleright \ x \in \mathcal{S} \Leftrightarrow \sum_{i=1}^d c_i v_i$
- $\blacktriangleright \ d \text{ is the } dimension \text{ of } \mathcal{S}$

Representation: S = span(V) (i.e., $x \in S \Leftrightarrow x = Vc$), or just V; often convenient if V(=Q) is orthonormal

Lemma

$$S_1 = span(V_1)$$
 and $S_2 = span(V_2)$ where $V_1 \in \mathbb{R}^{n \times d_1}$ and $V_2 \in \mathbb{R}^{n \times d_2}$, with $d_1 + d_2 > n$. Then $\exists x \neq 0$ in $S_1 \cap S_2$, i.e., $x = V_1c_1 = V_2c_2$ for some vectors c_1 ,

Proof: Let $M := [V_1, V_2]$, of size $n \times (d_1 + d_2)$. Since $d_1 + d_2 > n$ by assumption, M has a right null vector. Mc = 0. Write $c = \begin{bmatrix} c_1 \\ -c_2 \end{bmatrix}$.

C2.

Some useful results

•
$$(AB)^T = B^T A^T$$

• If A, B invertible, $(AB)^{-1} = B^{-1}A^{-1}$
• If A, B square and $AB = I$, then $BA = I$
• $\begin{bmatrix} I_m & X \\ 0 & I_n \end{bmatrix}^{-1} = \begin{bmatrix} I_m & -X \\ 0 & I_n \end{bmatrix}$
• Neumann series: if $||X|| < 1$ in any norm,

$$(I - X)^{-1} = I + X + X^{2} + X^{3} + \cdots$$

- ▶ Trace $\operatorname{Trace}(A) = \sum_{i=1}^{n} A_{i,i}$ (sum of diagonals, $A \in \mathbb{R}^{m \times n}$). For any X, Y s.t. $\operatorname{Trace}(XY) = \operatorname{Trace}(YX)$. For $B \in \mathbb{R}^{m \times n}$, we have $\|B\|_{F}^{2} = \sum_{i} \sum_{j} |B_{ij}|^{2} = \operatorname{Trace}(B^{T}B)$.
- Triangular structure is invariant under addition, multiplication, and inversion
 Symmetry is invariant under addition and inversion, *but not multiplication*; AB usually not symmetric even if A, B are

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- ► Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

Terminologies:

- \triangleright σ_i : singular values of A.
- rank(A): number of positive singular values.
- ▶ The columns of U: the left singular vectors, columns of V: right singular vectors

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

SVD proof: Take Gram matrix $A^T A$ and its eigendecomposition $A^T A = V \Lambda V^T$. Λ is nonnegative, and $(AV)^T (AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

SVD proof: Take Gram matrix $A^T A$ and its eigendecomposition $A^T A = V \Lambda V^T$. Λ is nonnegative, and $(AV)^T (AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

Full SVD:
$$A = U egin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T$$
 where $U \in \mathbb{R}^{m imes m}$ orthogona

Example: computation
Let
$$A = \begin{bmatrix} -1 & -2 \\ 2 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. To compute the SVD,
1. Compute the Gram matrix $A^T A = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}$.
2. $\lambda(A^T A) = \{10, 2\}$ (e.g. via characteristic polynomial). The eigvec matrix is
 $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ (e.g. via the null vectors of $A - \lambda I$). So $A^T A = V \Sigma^2 V^T$ where
 $\Sigma = \begin{bmatrix} \sqrt{10} \\ \sqrt{2} \end{bmatrix}$.
3. Let $U = AV \Sigma^{-1} = \begin{bmatrix} -3/\sqrt{20} & -1/2 \\ 3/\sqrt{20} & -1/2 \\ 1/\sqrt{20} & -1/2 \\ 1/\sqrt{20} & 1/2 \end{bmatrix}$, which is orthonormal. Thus $A = U \Sigma V^T$.

rank, column/row space, etc

From the SVD one gets

- ▶ rank r of $A \in \mathbb{R}^{m \times n}$: number of nonzero singular values $\sigma_i(A)$ (=# linearly indep. columns, rows)
 - We can always write $A = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i u_i v_i^T$.
- ▶ column space (linear subspace spanned by vectors Ax): span of $U = [u_1, ..., u_r]$
- \blacktriangleright row space: row span of v_1^T,\ldots,v_r^T
- ▶ null space: v_{r+1}, \ldots, v_n

SVD and eigenvalue decomposition

- $\blacktriangleright V \text{ eigvecs of } A^T A$
- U eigvecs (for nonzero eigvals) of AA^T (up to sign)

$$\blacktriangleright \ \sigma_i = \sqrt{\lambda_i(A^T A)}$$

- Think of eigenvalues vs. SVD of symmetric matrices, unitary, skew-symmetric, normal matrices, triangular,...
- ▶ Jordan-Wieldant matrix $\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$: eigvals $\pm \sigma_i(A)$, and m n copies of 0. Eigvec matrix is $\begin{bmatrix} U & U & U_{\perp} \\ V & -V & 0 \end{bmatrix}$, $A^T U_{\perp} = 0$

Uniqueness etc

- ▶ U, V (clearly) not unique: ± 1 multiplication possible (but be careful—not arbitarily)
- When multiple singvals exist $\sigma_i = \sigma_{i+1}$, more degrees of freedom
- Extreme example: what is the SVD(s) of an orthogonal matrix?

Recap: spectral norm of matrix

$$||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)$$

Proof: Use SVD

Recap: spectral norm of matrix

$$||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)$$

Proof: Use SVD

$$\begin{split} \|Ax\|_{2} &= \|U\Sigma V^{T}x\|_{2} \\ &= \|\Sigma V^{T}x\|_{2} \quad \text{by unitary invariance} \\ &= \|\Sigma y\|_{2} \quad \text{with } \|y\|_{2} = 1 \\ &= \sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}y_{i}^{2}} \\ &\leq \sqrt{\sum_{i=1}^{n} \sigma_{1}^{2}y_{i}^{2}} = \sigma_{1}\|y\|_{2}^{2} = \sigma_{1}. \end{split}$$

Recap: spectral norm of matrix

 $\|$

$$||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)$$

Proof: Use SVD

$$\begin{split} Ax\|_{2} &= \|U\Sigma V^{T}x\|_{2} \\ &= \|\Sigma V^{T}x\|_{2} \quad \text{by unitary invariance} \\ &= \|\Sigma y\|_{2} \quad \text{with } \|y\|_{2} = 1 \\ &= \sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}y_{i}^{2}} \\ &\leq \sqrt{\sum_{i=1}^{n} \sigma_{1}^{2}y_{i}^{2}} = \sigma_{1}\|y\|_{2}^{2} = \sigma_{1}. \end{split}$$

Frobenius norm:
$$\|A\|_F = \sqrt{\sum_i \sum_j |A_{ij}|^2} = \sqrt{\sum_{i=1}^n (\sigma_i(A))^2}$$
 (exercise)

Low-rank approximation of a matrix

Given $A \in \mathbb{R}^{m \times n}$, find A_r such that

Storage savings (data compression)

Optimal low-rank approximation by SVD

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \ldots, \sigma_r)$

$$\|A - A_r\|_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} \|A - B\|_2$$

Optimal low-rank approximation by SVD

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \ldots, \sigma_r)$

$$\|A - A_r\|_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} \|A - B\|_2$$

• Good approximation if $\sigma_{r+1} \ll \sigma_1$:

- Optimality holds for any unitarily invariant norm
- Prominent application: PCA
- Many matrices have explicit or hidden low-rank structure (nonexaminable)

Truncated SVD:
$$A_r = U_r \Sigma_r V_r^T$$
, $\Sigma_r = diag(\sigma_1, \ldots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \ldots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

Since $rank(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns.

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = diag(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

Since rank(B) ≤ r, we can write B = B₁B₂^T where B₁, B₂ have r columns.
There exists orthonormal W ∈ C^{n×(n-r)} s.t. BW = 0. Then ||A − B||₂ ≥ ||(A − B)W||₂ = ||AW||₂ = ||UΣ(V^TW)||₂.

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = diag(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

Since rank(B) ≤ r, we can write B = B₁B₂^T where B₁, B₂ have r columns.
There exists orthonormal W ∈ C^{n×(n-r)} s.t. BW = 0. Then ||A - B||₂ ≥ ||(A - B)W||₂ = ||AW||₂ = ||UΣ(V^TW)||₂.
Now since W is (n - r)-dimensional, there is an intersection between W and [v₁,..., v_{r+1}], the (r + 1)-dimensional subspace spanned by the leading r + 1 left singular vectors ([W, v₁,..., v_{r+1}][^{x₁}] = 0 has a solution; then Wx₁ is such a vector).

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = diag(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

- Since $rank(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns.
- ► There exists orthonormal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $\|A - B\|_2 \ge \|(A - B)W\|_2 = \|AW\|_2 = \|U\Sigma(V^TW)\|_2$.
- Now since W is (n-r)-dimensional, there is an intersection between W and $[v_1, \ldots, v_{r+1}]$, the (r+1)-dimensional subspace spanned by the leading r+1 left singular vectors ($[W, v_1, \ldots, v_{r+1}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$ has a solution; then Wx_1 is such a vector).
- ► Then scale x_1, x_2 to have unit norm, and $||U\Sigma V^T W x_1||_2 = ||U_{r+1}\Sigma_{r+1}x_2||_2$, Where U_{r+1}, Σ_{r+1} are leading r+1 parts of U, Σ . Then $||U_{r+1}\Sigma_{r+1}y_1||_2 \ge \sigma_{r+1}$ can be verified directly.

Low-rank approximation: image compression grayscale image=matrix

rank 10

rank 20

rank 50

Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \geq n),$ we have

$$\sigma_i(A) = \max_{\dim S = i} \min_{x \in S} \frac{\|Ax\|_2}{\|x\|_2} \left(= \min_{\dim S = n-i+1} \max_{x \in S} \frac{\|Ax\|_2}{\|x\|_2} \right).$$

• $\min_{x \in S, \|x\|_2=1} \|Ax\|_2 = \min_{Q^T Q = I_i, \|y\|_2=1} \|AQy\|_2 = \sigma_{\min}(AQ) = \sigma_i(AQ),$ where span(Q) = S.

▶ C-F says $\sigma_i(A)$ is maximum possible value over all subspaces S of dimension i.

Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$
(1)

Analogously, for any rectangular $A\in \mathbb{C}^{m\times n}(m\geq n),$ we have

$$\sigma_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \right).$$
(2)

Proof for (2):
Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$
(1)

Analogously, for any rectangular $A\in \mathbb{C}^{m\times n}(m\geq n),$ we have

$$\sigma_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \right).$$
(2)

Proof for (2):

1. Fix S and let
$$V_i = [v_i, \dots, v_n]$$
. We have
 $\dim(\mathcal{S}) + \dim(\operatorname{span}(V_i)) = i + (n - i + 1) = n + 1$, so $\exists \operatorname{intersection} w \in S \cap V_i$,
 $\|w\|_2 = 1$.

Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$
(1)

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \geq n),$ we have

$$\sigma_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \right).$$
(2)

Proof for (2):

Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$
(1)

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \geq n),$ we have

$$\sigma_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \right).$$
(2)

Proof for (2):

- 1. Fix S and let $V_i = [v_i, \dots, v_n]$. We have $\dim(S) + \dim(\operatorname{span}(V_i)) = i + (n - i + 1) = n + 1$, so $\exists intersection \ w \in S \cap V_i$, $\|w\|_2 = 1$.
- For this w, ||Aw||₂ = ||diag(σ_i,...,σ_n)(V_i^Tw)||₂ ≤ σ_i; thus σ_i(A) ≥ min_{x∈S} ||Ax||₂/||x||₂.
 For the reverse inequality, take S = [v₁,...,v_i], for which w = v_i.

Weyl's inequality

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$

Analogously, for any rectangular $A\in \mathbb{C}^{m\times n}(m\geq n),$ we have

$$\sigma_i(A) = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \left(= \min_{\dim \mathcal{S}=n-i+1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \right).$$

Corollary: Weyl's inequality (Proof: exercise)

for singular values

•
$$\sigma_i(A+E) \in \sigma_i(A) + [-\|E\|_2, \|E\|_2]$$

▶ Special case: $||A||_2 - ||E||_2 \le ||A + E||_2 \le ||A||_2 + ||E||_2$

▶ for symmetric eigenvalues $\lambda_i(A + E) \in \lambda_i(A) + [-\|E\|_2, \|E\|_2]$

Singvals and symmetric eigvals are insensitive to perturbation (well conditioned). Nonsymmetric eigvals are different!

Eigenvalues of nonsymmetric matrices are sensitive

Consider eigenvalues of a Jordan block and its perturbation

$$J = \begin{bmatrix} 1 & 1 & & \\ & 1 & \ddots & \\ & & \ddots & 1 \\ & & & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad J + E = \begin{bmatrix} 1 & 1 & & \\ & 1 & \ddots & \\ & & \ddots & 1 \\ \epsilon & & & 1 \end{bmatrix}$$

 $\lambda(J) = 1$ (*n* copies), but $|\lambda(J+E) - 1| \approx \epsilon^{1/n}$

More applications of C-F • $\sigma_i \left(\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \right) \ge \max(\sigma_i(A_1), \sigma_i(A_2))$

More applications of C-F

•
$$\sigma_i \left(\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \right) \ge \max(\sigma_i(A_1), \sigma_i(A_2))$$

Proof (sketch): LHS =
$$\max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}, \|x\|_2=1} \left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\|_2$$
, and for any x ,
 $\left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\|_2 \ge \max(\|A_1x\|_2, \|A_2x\|_2).$

More applications of C-F

•
$$\sigma_i \left(\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \right) \ge \max(\sigma_i(A_1), \sigma_i(A_2))$$

Proof (sketch): LHS =
$$\max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}, \|x\|_2 = 1} \left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\|_2$$
, and for any x ,
$$\left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\|_2 \ge \max(\|A_1 x\|_2, \|A_2 x\|_2).$$

> $\sigma_i(\begin{bmatrix} A_1 & A_2 \end{bmatrix}) \ge \max(\sigma_i(A_1), \sigma_i(A_2))$

More applications of C-F • $\sigma_i\left(\begin{bmatrix} A_1\\ A_2 \end{bmatrix}\right) \ge \max(\sigma_i(A_1), \sigma_i(A_2))$ Proof (sketch): LHS = $\max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}, \|x\|_2=1} \left\| \begin{vmatrix} A_1 \\ A_2 \end{vmatrix} x \right\|$, and for any x, $\left\| \begin{vmatrix} A_1 \\ A_2 \end{vmatrix} x \right\|_{2} \ge \max(\|A_1x\|_{2}, \|A_2x\|_{2}).$ $\bullet \quad \sigma_i(\begin{bmatrix} A_1 & A_2 \end{bmatrix}) \ge \max(\sigma_i(A_1), \sigma_i(A_2))$ Proof: LHS = $\max_{\dim \mathcal{S}=i} \min_{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{S}, \|\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\|_{=1}} \|\begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \|_{2}$, while $\sigma_i(A_1) =$ $\underset{\dim \mathcal{S}=i, \mathsf{range}(\mathcal{S}) \in \mathsf{range}}{\overset{\mathsf{c}}{\underset{0}{\lim \mathcal{S}=i, \mathsf{range}(\mathcal{S}) \in \mathsf{range}(\left[\begin{matrix}I_n\\0\end{matrix}\right])}} \min_{\left[\begin{matrix}x_1\\x_2\end{matrix}\right] \in \mathcal{S}, \left\|\begin{bmatrix}x_1\\x_2\end{bmatrix}\right\|_2 = 1} \left\|\begin{bmatrix}A_1 & A_2\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}\right\|_2.$ max

Since the latter maximises over a smaller S, the former is at least as big.

Matrix decompositions

- $\blacktriangleright \text{ SVD } A = U\Sigma V^T$
- Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - **Symmetric:** X unitary and Λ real
- ► Jordan decomposition: $A = XJX^{-1}$, $J = \text{diag}(\begin{vmatrix} \lambda_i & 1 & \dots \\ & \lambda_i & \ddots \\ & & \ddots & 1 \end{vmatrix}$)
- **Schur** decomposition $A = QTQ^*$: Q orthogonal, T upper triangular
- **\triangleright** QR: Q orthonormal, U upper triangular
- \blacktriangleright LU: L lower triangular, U upper triangular
- Red: Orthogonal decompositions, stable computation available

Solving Ax = b via LU decomposition If A = LU is available

solving Ax = b can be done as follows:

- 1. Solve Ly = b for y,
- 2. solve Ux = y for x.

Each is a **triangular** system, which is easy to solve via forward (or backward) substitution for Ly = b (Ux = y).

LU decomposition

Let $A \in \mathbb{R}^{n \times n}$. Suppose we can decompose (or factorise)

L: lower triangular, U: upper triangular. How to find L, U?

LU decomposition

Let $A \in \mathbb{R}^{n \times n}$. Suppose we can decompose (or factorise)

L: lower triangular, U: upper triangular. How to find L, U?

LU decomposition cont'd

First step:

algorithm:

LU decomposition cont'd 2

(note: nonzero structure crucial in final equality)

Solving Ax = b via LU

$$A = LU \in \mathbb{R}^{n \times n}$$

L: lower triangular, U: upper triangular

• Cost $\frac{2}{3}n^3$ flops (floating-point operations)

For Ax = b,

First solve Ly = b, then Ux = y. Then b = Ly = LUx = Ax.

• triangular solve is always backward stable: e.g. $(L + \Delta L)\hat{y} = b$ (see Higham's book)

- ▶ Pivoting crucial for numerical stability: PA = LU, where P: permutation matrix. Then stability means $\hat{L}\hat{U} = PA + \Delta A$
 - Even with pivoting, unstable examples exist, but still always stable in practice and used everywhere!

▶ Special case where $A \succ 0$ positive definite: $A = R^T R$, Cholesky factorization, ALWAYS stable, $\frac{1}{3}n^3$ flops

LU decomposition with pivots

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} & A_{15} \\ A_{21} & & & \\ A_{31} & & & \\ A_{41} & & & \\ A_{51} & & & & \end{bmatrix} = \begin{bmatrix} 1 & & & \\ A_{21/a} & & & \\ A_{31/a} & & \\ A_{41/a} & & \\ A_{51/a} & & & \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} & A_{15} \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

Trouble if $a = A_{11} = 0!$ e.g. no LU for $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ solution: pivot, permute rows s.t.

largest entry of first (active) column is at top. $\Rightarrow PA = LU$, P: permutation matrix

•
$$PA = LU$$
 exists for any nonsingular A (exercise)

• for
$$Ax = b$$
, solve $LUx = P^T b$

- \blacktriangleright the nonzero structure of L_i, U_i is preserved under P
- ▶ cost still $\frac{2}{3}n^3 + O(n^2)$

Cholesky factorisation for $A \succ 0$

If $A \succ 0$ (symmetric positive definite (S)PD $\Leftrightarrow \lambda_i(A) > 0$), two simplifications:

- ▶ We can take $U_i = L_i^T =: R_i$ by symmetry $\Rightarrow \frac{1}{3}n^3$ flops
- No pivot needed

Notes:

• diag(R) no longer 1's

• A can be written as $A = R^T R$ for some $R \in \mathbb{R}^{n \times n}$ iff $A \succeq 0$ $(\lambda_i(A) \ge 0)$

▶ Indefinite case: when $A = A^*$ but A not PD, $\exists A = LDL^*$ where D diagonal (when $A \in \mathbb{R}^{n \times n}$, D can have 2×2 diagonal blocks), L has 1's on diagonal

QR factorisation

For any $A \in \mathbb{C}^{m \times n}$, \exists factorisation

 $Q \in \mathbb{R}^{m \times n}$: orthonormal, $R \in \mathbb{R}^{n \times n}$: upper triangular

- Many algorithms available: Gram-Schmidt, Householder, CholeskyQR, ...
- various applications: least-squares, orthogonalisation, computing SVD, manifold retraction...
- ▶ With Householder, pivoting A = QRP not needed for numerical stability
 - but pivoting gives rank-revealing QR (nonexaminable)

QR via Gram-Schmidt

Gram-Schmidt: Given $A = [a_1, a_2, \dots, a_n] \in \mathbb{R}^{m \times n}$ (assume full rank rank(A) = n), find orthonormal $[q_1, \dots, q_n]$ s.t. $\operatorname{span}(q_1, \dots, q_n) = \operatorname{span}(a_1, \dots, a_n)$

G-S process:
$$q_1 = \frac{a_1}{\|a_1\|}$$
, then $\tilde{q}_2 = a_2 - q_1 q_1^T a_2$, $q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|}$, repeat for $j = 3, \dots, n$: $\tilde{q}_j = a_j - \sum_{i=1}^{j-1} q_i q_i^T a_j$, $q_j = \frac{\tilde{q}_j}{\|\tilde{q}_j\|}$.

QR via Gram-Schmidt

Gram-Schmidt: Given $A = [a_1, a_2, ..., a_n] \in \mathbb{R}^{m \times n}$ (assume full rank rank(A) = n), find orthonormal $[q_1, ..., q_n]$ s.t. span $(q_1, ..., q_n) = \text{span}(a_1, ..., a_n)$

G-S process:
$$q_1 = \frac{a_1}{\|a_1\|}$$
, then $\tilde{q}_2 = a_2 - q_1 q_1^T a_2$, $q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|}$, repeat for $j = 3, \ldots, n$: $\tilde{q}_j = a_j - \sum_{i=1}^{j-1} q_i q_i^T a_j$, $q_j = \frac{\tilde{q}_j}{\|\tilde{q}_j\|}$.

This gives QR! Let $r_{ij} = q_i^T a_j$ $(i \neq j)$ and $r_{jj} = ||a_j - \sum_{i=1}^{j-1} r_{ij}q_i||$,

But this isn't the recommended way to do QR; numerically unstable

Householder reflectors

$$H = I - 2vv^T, \qquad \|v\| = 1$$

- ► H orthogonal and symmetric: H^TH = H² = I, eigvals 1 (n - 1 copies) and -1 (1 copy)
- For any given $u, w \in \mathbb{R}^n$ s.t. $\|u\| = \|w\|$ and $u \neq v$, $H = I - 2vv^T$ with $v = \frac{w-u}{\|w-u\|}$ gives Hu = w($\Leftrightarrow u = Hw$, thus 'reflector')
- We'll use this mostly for $w = [*, 0, 0, \dots, 0]^T$

Householder reflectors

$$H = I - 2vv^T, \qquad \|v\| = 1$$

- ► H orthogonal and symmetric: H^TH = H² = I, eigvals 1 (n - 1 copies) and -1 (1 copy)
- For any given $u, w \in \mathbb{R}^n$ s.t. $\|u\| = \|w\|$ and $u \neq v$, $H = I - 2vv^T$ with $v = \frac{w-u}{\|w-u\|}$ gives Hu = w($\Leftrightarrow u = Hw$, thus 'reflector')
- We'll use this mostly for $w = [*, 0, 0, \dots, 0]^T$

Householder reflectors for QR

Householder reflectors:

$$H = I - 2vv^{T}, \qquad v = \frac{x - \|x\|_{2}e}{\|x - \|x\|_{2}e\|_{2}}, \qquad e = [1, 0, \dots, 0]^{T}$$

satisfies $Hx = [||x||, 0, \dots, 0]^T$

Householder reflectors for QR

Householder reflectors:

$$H = I - 2vv^{T}, \qquad v = \frac{x - \|x\|_{2}e}{\|x - \|x\|_{2}e\|_{2}}, \qquad e = [1, 0, \dots, 0]^{T}$$

satisfies $Hx = [\|x\|, 0, \dots, 0]^{T}$
 \Rightarrow To do QR, find H_{1} s.t. $H_{1}a_{1} = \begin{bmatrix} \|a_{1}\|_{2} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$,
repeat to get $H_{n} \cdots H_{2}H_{1}A = R$ upper triangular, then
 $A = (H_{1} \cdots H_{n-1}H_{n})R = QR$

Householder QR factorisation, diagram

Apply sequence of Householder reflectors

$$A = \begin{bmatrix} 0.302 & -0.629 & 2.178 & 0.164 \\ 0.400 & -1.204 & 1.138 & 0.748 \\ -0.930 & -0.254 & -2.497 & -0.273 \\ -0.177 & -1.429 & 0.441 & 1.576 \\ -2.132 & -0.021 & -1.398 & -0.481 \\ 1.145 & -0.561 & -0.255 & 0.328 \end{bmatrix}$$

$$H_1 A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & -1.261 & 1.120 & 0.665 \\ 0 & -0.121 & -2.455 & -0.080 \\ 0 & -1.403 & 0.449 & 1.613 \\ 0 & 0.283 & -1.301 & -0.038 \\ 0 & -0.724 & -0.307 & 0.090 \end{bmatrix}$$

$$H_2 H_1 A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & 2.044 & -0.925 & -1.550 \\ 0 & 0 & -2.530 & -0.161 \\ 0 & 0 & -0.419 & 0.673 \\ 0 & 0 & -1.126 & 0.152 \\ 0 & 0 & -0.755 & -0.395 \end{bmatrix}$$

$$H_3H_2H_1A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & 2.044 & -0.925 & -1.550 \\ 0 & 0 & 2.901 & 0.087 \\ 0 & 0 & 0 & 0.692 \\ 0 & 0 & 0 & 0.203 \\ 0 & 0 & 0 & -0.361 \end{bmatrix}$$

$$H_4H_3H_2H_1A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & 2.044 & -0.925 & -1.550 \\ 0 & 0 & 2.901 & 0.087 \\ 0 & 0 & 0 & 0.806 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

Householder QR factorisation

$$H_n \cdots H_2 H_1 A = \begin{bmatrix} * & * & * & * \\ * & * & * \\ & * & * \\ & & * \end{bmatrix} = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

$$\Rightarrow A = (H_1^T \cdots H_{n-1}^T H_n^T) \begin{bmatrix} R \\ 0 \end{bmatrix} =: Q_F \begin{bmatrix} R \\ 0 \end{bmatrix} \text{ (full QR; } Q_F \text{ is square orthogonal)}$$

Vriting $Q_F = [Q \ Q_{\perp}]$ where $Q \in \mathbb{R}^{m \times n}$ orthonormal, $A = QR$ ('thin' QR or just QR)

Properties

¢

ν

- Cost $\frac{4}{3}n^3$ flops with Householder-QR (twice that of LU)
- Unconditionally backward stable: $\hat{Q}\hat{R} = A + \Delta A$, $\|\hat{Q}^T\hat{Q} I\|_2 = \epsilon$ (next lec)
- Constructive proof for A = QR existence
- To solve Ax = b, solve $Rx = Q^T b$ via triangle solve.
 - \rightarrow Excellent method, but twice slower than LU (so rarely used)

Givens rotation

$$G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}, \quad c^2 + s^2 = 1$$

Designed to 'zero' one element at a time. E.g. QR for upper Hessenberg matrix

 $\Leftrightarrow A = G_1^T G_2^T G_3^T G_4^T R \text{ is the QR factorisation.}$

▶ G acts locally on two rows (two columns if right-multiplied)

Non-neighboring rows/cols allowed

Least-squares problem

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$ and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ s.t.

- More data than degrees of freedom
- ▶ 'Overdetermined' linear system; Ax = b usually impossible
- ▶ Thus minimise ||Ax b||; usually $||Ax b||_2$ but sometimes e.g. $||Ax b||_1$ of interest (we focus on $||Ax b||_2$)
- Assume full rank rank(A) = n; this makes solution unique

Least-squares problem via QR

$$\min_{x} \|Ax - b\|_{2}, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Least-squares problem via QR

$$\min_{x} \|Ax - b\|_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}] [\begin{smallmatrix} R \\ 0 \end{smallmatrix}] = Q_F [\begin{smallmatrix} R \\ 0 \end{smallmatrix}]$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^T b$ is the solution. This also gives algorithm:
Least-squares problem via QR

$$\min_x \|Ax - b\|_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}] \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_F \begin{bmatrix} R \\ 0 \end{bmatrix}$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^T b$ is the solution. This also gives algorithm:

- 1. Compute thin QR factorization A = QR
- 2. Solve linear system $Rx = Q^T b$.

Least-squares problem via QR

$$\min_x \|Ax - b\|_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}] \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_F \begin{bmatrix} R \\ 0 \end{bmatrix}$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^T b$ is the solution. This also gives algorithm:

- 1. Compute thin QR factorization A = QR
- 2. Solve linear system $Rx = Q^T b$.
- ► This is backward stable: computed \hat{x} solution for $\min_{x} ||(A + \Delta A)x + (b + \Delta b)||_2$ (see Higham's book Ch.20)
- ▶ Unlike square system Ax = b, one really needs QR: LU won't do the job

Normal equation: Cholesky-based least-squares solver $\min_{x} \|Ax - b\|_{2}, \quad A \in \mathbb{R}^{m \times n}, m \ge n$

 $x = R^{-1}Q^T b$ is the solution $\Leftrightarrow x$ solution for $n \times n$ normal equation

$$(A^T A)x = A^T b$$

• $A^T A \succeq 0$ (always) and $A^T A \succ 0$ if rank(A) = n; then PD linear system; use Cholesky to solve.

► Fast! but NOT backward stable; $\kappa_2(A^T A) = (\kappa_2(A))^2$ where $\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$ condition number (next lecture)

Application: regression/function approximation

Given function $f: [-1,1] \rightarrow \mathbb{R}$,

Consider approximating via polynomial $f(x) \approx p(x) = \sum_{i=0} c_i x^i$. Very common technique: **Regression**

- 1. Sample f at points $\{z_i\}_{i=1}^m$, and
- 2. Find coefficients c defined by Vandermonde system $Ac\approx f$,

$$\begin{bmatrix} 1 & z_1 & \cdots & z_1^n \\ 1 & z_2 & \cdots & z_2^n \\ \vdots & \vdots & & \vdots \\ 1 & z_m & \cdots & z_m^n \end{bmatrix} \begin{bmatrix} c_0 \\ \vdots \\ c_n \end{bmatrix} \approx \begin{bmatrix} f(z_1) \\ f(z_2) \\ \vdots \\ f(z_m) \end{bmatrix}$$

Numerous applications, e.g. in statistics, numerical analysis, approximation theory, data analysis!

Question: Can a computed result trusted?

e.g. is Ax = b always solved correctly via the LU algorithm?

Question: Can a computed result trusted?

e.g. is Ax = b always solved correctly via the LU algorithm?

• The situation is complicated. For example, let $A = U\Sigma V^T$, where $U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 1 & \\ & 10^{-15} \end{bmatrix}$, V = I, and let $b = A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (i.e., $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$).

Question: Can a computed result trusted?

e.g. is Ax = b always solved correctly via the LU algorithm?

► The situation is complicated. For example, let $A = U\Sigma V^T$, where $U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 1 & \\ & 10^{-15} \end{bmatrix}$, V = I, and let $b = A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (i.e., $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$). In MATLAB, $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$ outputs $\begin{bmatrix} 1.0000 \\ 0.94206 \end{bmatrix}$

Question: Can a computed result trusted?

e.g. is Ax = b always solved correctly via the LU algorithm?

► The situation is complicated. For example, let $A = U\Sigma V^T$, where $U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 1 & \\ & 10^{-15} \end{bmatrix}$, V = I, and let $b = A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (i.e., $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$). In MATLAB, $\mathbf{x} = A \setminus \mathbf{b}$ outputs $\begin{bmatrix} 1.0000 \\ 0.94206 \end{bmatrix}$

 ▶ Did something go wrong? NO—this is a ramification of ill-conditioning, not instability
 ▶ In fact, ||Ax - b||₂(= ||Ax̂ - b||₂) ≈ 10⁻¹⁶

(After this section, make sure you can explain what happened above!)

Floating-point arithmetic

- Computers store number in base 2 with finite/fixed memory (bits)
- ▶ Irrational numbers are stored inexactly, e.g. $1/3 \approx 0.333...$
- Calculations are rounded to nearest floating-point number (rounding error)
- Thus the accuracy of the final error is nontrivial

Two examples with MATLAB

•
$$((\text{sqrt}(2))^2 - 2) * 1e15 = 0.4441 \text{ (should be 0..)}$$

• $\sum_{n=1}^{\infty} \frac{1}{n} \approx 30 \text{ (should be } \infty..)$

An important (but not main) part of numerical analysis/NLA is to study the effect of rounding errors $% \left({{\left[{{{\rm{D}}_{\rm{T}}} \right]}_{\rm{T}}} \right)$

Best reference: Higham's book (2002)

Conditioning and stability

• Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to perturbation in inputs, i.e., how large $\kappa := \sup_{\delta x} \|f(x + \delta x) - f(x)\| / \|\delta x\|$ is in the limit $\delta x \to 0$.

(this is *absolute* condition number; equally important is *relative* condition number $\kappa_r := \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(x+\delta x) - f(x)\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|})$

► (Backward) Stability is a property of an algorithm, which describes if the computed solution ŷ is a 'good' solution, in that it is an exact solution of a nearby input, that is, ŷ = f(x + ∆x) for a small ∆x.

Conditioning and stability

• Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to perturbation in inputs, i.e., how large $\kappa := \sup_{\delta x} \|f(x + \delta x) - f(x)\| / \|\delta x\|$ is in the limit $\delta x \to 0$.

(this is *absolute* condition number; equally important is *relative* condition number $\kappa_r := \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(x+\delta x) - f(x)\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|})$

► (Backward) Stability is a property of an algorithm, which describes if the computed solution ŷ is a 'good' solution, in that it is an exact solution of a nearby input, that is, ŷ = f(x + ∆x) for a small ∆x.

If problem is ill-conditioned $\kappa \gg 1$, then blame the problem not the algorithm

Notation/convention: \hat{x} denotes a computed approximation to x (e.g. of $x = A^{-1}b$) ϵ denotes a small term O(u), on the order of unit roundoff/working precision; so we write e.g. u, 10u, (m+n)u, mnu all as ϵ

Consequently (in this lecture/discussion) norm choice does not matter today

Numerical stability: backward stability

For computational task Y = f(X) and computed approximant \hat{Y} ,

• Ideally, error
$$\|Y - \hat{Y}\| / \|Y\| = \epsilon$$
: seldom true

(u: unit roundoff, $pprox 10^{-16}$ in standard double precision)

• Good alg. has Backward stability $\hat{Y} = f(X + \Delta X)$, $\frac{\|\Delta X\|}{\|X\|} = \epsilon$ "exact solution of slightly wrong input "

Numerical stability: backward stability

For computational task Y = f(X) and computed approximant \hat{Y} ,

• Ideally, error
$$||Y - \hat{Y}|| / ||Y|| = \epsilon$$
: seldom true

(u: unit roundoff, $pprox 10^{-16}$ in standard double precision)

- Good alg. has Backward stability $\hat{Y} = f(X + \Delta X)$, $\frac{\|\Delta X\|}{\|X\|} = \epsilon$ "exact solution of slightly wrong input "
- Justification: Input (matrix) is usually inexact anyway! f(X + ΔX) is just as good at f(X) at approximating f(X_{*}) where ||ΔX|| = O(||X X_{*}||) We shall 'settle with' such solution, though it may not mean Ŷ − Y is small
- Forward stability $||Y \hat{Y}|| / ||Y|| = O(\kappa(f)u)$ "error is as small as backward stable alg." (sometimes used to mean small error; we follow Higham's book [2002])

Backward stable+well conditioned=accurate solution Suppose

► Y = f(X) computed backward stably i.e., $\hat{Y} = f(X + \Delta X)$, $||\Delta X|| = \epsilon$. Then with conditioning $\kappa = \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(X) - f(X + \Delta X)\|}{\|\Delta X\|}$,

$$\|\hat{Y} - Y\| \lesssim \kappa \epsilon$$

(relative version possible)

Backward stable+well conditioned=accurate solution Suppose

► Y = f(X) computed backward stably i.e., $\hat{Y} = f(X + \Delta X)$, $||\Delta X|| = \epsilon$. Then with conditioning $\kappa = \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(X) - f(X + \Delta X)\|}{\|\Delta X\|}$,

$$\|\hat{Y} - Y\| \lesssim \kappa \epsilon$$

(relative version possible) 'proof':

$$\|\hat{Y} - Y\| = \|f(X + \Delta X) - f(X)\| \lesssim \kappa \|\Delta X\| \|f(X)\| = \kappa \epsilon$$

Backward stable+well conditioned=accurate solution Suppose

► Y = f(X) computed backward stably i.e., $\hat{Y} = f(X + \Delta X)$, $||\Delta X|| = \epsilon$. Then with conditioning $\kappa = \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(X) - f(X + \Delta X)\|}{\|\Delta X\|}$,

 $\|\hat{Y} - Y\| \lesssim \kappa \epsilon$

(relative version possible) 'proof':

$$\|\hat{Y} - Y\| = \|f(X + \Delta X) - f(X)\| \lesssim \kappa \|\Delta X\| \|f(X)\| = \kappa \epsilon$$

If well-conditioned $\kappa = O(1)$, good accuracy! Important examples:

- ▶ Well-conditioned linear system Ax = b, $\kappa_2(A) \approx 1$
- Eigenvalues of symmetric matrices (via Weyl's bound $\lambda_i(A+E) \in \lambda_i(A) + [-\|E\|_2, \|E\|_2]$)

Singular values of any matrix $\sigma_i(A + E) \in \sigma_i(A) + [-\|E\|_2, \|E\|_2]$

Note: eigvecs/singvecs can be highly ill-conditioned

Matrix condition number

$$\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} (\ge 1)$$

e.g. for linear systems. (when A is $m \times n(m > n)$, $\kappa_2(A) = \frac{\sigma_1(A)}{\sigma_n(A)}$) A backward stable soln for Ax = b, s.t. $(A + \Delta A)\hat{x} = b$ satisfies, assuming backward stability $\|\Delta A\| \le \epsilon \|A\|$ and $\kappa_2(A) \ll \epsilon^{-1}$ (so $\|A^{-1}\Delta A\| \ll 1$),

$$\frac{\|\hat{x} - x\|}{\|x\|} \lesssim \epsilon \kappa_2(A)$$

Matrix condition number

$$\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} (\ge 1)$$

e.g. for linear systems. (when A is $m \times n(m > n)$, $\kappa_2(A) = \frac{\sigma_1(A)}{\sigma_n(A)}$) A backward stable soln for Ax = b, s.t. $(A + \Delta A)\hat{x} = b$ satisfies, assuming backward stability $\|\Delta A\| \le \epsilon \|A\|$ and $\kappa_2(A) \ll \epsilon^{-1}$ (so $\|A^{-1}\Delta A\| \ll 1$),

$$\frac{|\hat{x} - x||}{\|x\|} \lesssim \epsilon \kappa_2(A)$$

'proof': By Neumann series

$$(A + \Delta A)^{-1} = (A(I + A^{-1}\Delta A))^{-1} = (I - A^{-1}\Delta A + O(||A^{-1}\Delta A||^2))A^{-1}$$

So $\hat{x} = (A + \Delta A)^{-1}b = A^{-1}b - A^{-1}\Delta A A^{-1}b + O(\|A^{-1}\Delta A\|^2) = x - A^{-1}\Delta A x + O(\|A^{-1}\Delta A\|^2)$, Hence

 $||x - \hat{x}|| \lesssim ||A^{-1}\Delta Ax|| \le ||A^{-1}|| ||\Delta A|| ||x|| \le \epsilon ||A|| ||A^{-1}|| ||x|| = \epsilon \kappa_2(A) ||x||$

Backward stability of triangular systems

Recall Ax = b via Ly = b, Ux = y (triangular systems).

The computed solution \hat{x} for a (upper/lower) triangular linear system Rx = b solved via back/forward substitution is backward stable, i.e., it satisfies

$$(R + \Delta R)\hat{x} = b, \qquad \|\Delta R\| = O(\epsilon \|R\|).$$

Proof: Trefethen-Bau or Higham (nonexaminable but interesting)

- backward error can be bounded componentwise
- this means $\|\hat{x} x\| / \|x\| \le \epsilon \kappa_2(R)$
 - (unavoidably) poor worst-case (and attainable) bound when ill-conditioned
 - often better with triangular systems

(In)stability of Ax = b via LU with pivots

Fact (proof nonexaminable): Computed $\hat{L}\hat{U}$ satisfies $\frac{\|\hat{L}\hat{U}-A\|}{\|L\|\|U\|} = \epsilon$ (note: not $\frac{\|\hat{L}\hat{U}-A\|}{\|A\|} = \epsilon$)

• If ||L|| ||U|| = O(||A||), then $(L + \Delta L)(U + \Delta U)\hat{x} = b$

 $\Rightarrow \hat{x}$ backward stable solution (exercise)

(In)stability of Ax = b via LU with pivots

Fact (proof nonexaminable): Computed $\hat{L}\hat{U}$ satisfies $\frac{\|\hat{L}\hat{U}-A\|}{\|L\|\|U\|} = \epsilon$ (note: not $\frac{\|\hat{L}\hat{U}-A\|}{\|A\|} = \epsilon$) If $\|L\|\|U\| = O(\|A\|)$, then $(L + \Delta L)(U + \Delta U)\hat{x} = b$ $\Rightarrow \hat{x}$ backward stable solution (exercise)

Question: Does $LU = A + \Delta A$ or $LU = PA + \Delta A$ with $||\Delta A|| = \epsilon ||A||$ hold?

Without pivot (P = I): $||L|| ||U|| \gg ||A||$ unboundedly (e.g. $\begin{bmatrix} \epsilon & 1\\ 1 & 1 \end{bmatrix}$) unstable

(In)stability of Ax = b via LU with pivots

Fact (proof nonexaminable): Computed $\hat{L}\hat{U}$ satisfies $\frac{\|\hat{L}\hat{U}-A\|}{\|L\|\|U\|} = \epsilon$ (note: not $\frac{\|\hat{L}\hat{U}-A\|}{\|A\|} = \epsilon$) If $\|L\|\|U\| = O(\|A\|)$, then $(L + \Delta L)(U + \Delta U)\hat{x} = b$ $\Rightarrow \hat{x}$ backward stable solution (exercise)

Question: Does $LU = A + \Delta A$ or $LU = PA + \Delta A$ with $\|\Delta A\| = \epsilon \|A\|$ hold?

Without pivot (P = I): $||L|| ||U|| \gg ||A||$ unboundedly (e.g. $\begin{bmatrix} \epsilon & 1\\ 1 & 1 \end{bmatrix}$) unstable

With pivots:

- ▶ Worst-case: $||L|| ||U|| \gg ||A||$ grows exponentially with n, unstable
 - ▶ growth governed by that of $\|L\| \|U\| / \|A\| \Rightarrow \|U\| / \|A\|$
- In practice (average case): perfectly stable
 - Hence this is how Ax = b is solved, despite alternatives with guaranteed stability exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!

Examples of stability and instability

Forthcoming examples: nonexaminable

Stability of Cholesky for $A \succ 0$

Cholesky $A = R^T R$ for $A \succ 0$

succeeds without pivot (active matrix is always positive definite)

▶ R never contains entries $> \sqrt{\|A\|_2}$

(exercise: show $\|R_1\|_2 \leq \sqrt{\|A\|_2}$)

 \Rightarrow backward stable! Hence positive definite linear system Ax = b stable via Cholesky

(In)stability of Gram-Schmidt

- Gram-Schmidt is subtle
 - ▶ plain (classical) version: $\|\hat{Q}^T\hat{Q} I\| \le \epsilon(\kappa_2(A))^2$
 - modified Gram-Schmidt (orthogonalise 'one vector at a time'): $\|\hat{Q}^T\hat{Q} I\| \leq \epsilon \kappa_2(A)$
 - Gram-Schmidt twice (G-S again on computed \hat{Q}): $\|\hat{Q}^T\hat{Q} I\| \leq \epsilon$

Matrix multiplication is not backward stable

Shock! It is not always true that fl(AB) equal to $(A+\Delta A)(B+\Delta B)$ for small $\Delta A, \Delta B$

- ► Vec-vec mult. backward stable: $fl(y^Tx) = (y + \Delta y)(x + \Delta x)$; in fact $fl(y^Tx) = (y + \Delta y)x$.
- Hence mat-vec also backward stable: $fl(Ax) = (A + \Delta A)x$.
- Still mat-mat is not backward stable.

Matrix multiplication is not backward stable

Shock! It is not always true that fl(AB) equal to $(A + \Delta A)(B + \Delta B)$ for small $\Delta A, \Delta B$

- ► Vec-vec mult. backward stable: $fl(y^Tx) = (y + \Delta y)(x + \Delta x)$; in fact $fl(y^Tx) = (y + \Delta y)x$.
- Hence mat-vec also backward stable: $fl(Ax) = (A + \Delta A)x$.
- Still mat-mat is not backward stable.

with $\tilde{A} = A + \epsilon \|A\|$, $\tilde{B} = B + \epsilon \|B\|$? No—e.g., fl(AB) is usually not low rank

Matrix multiplication is not backward stable

Shock! It is not always true that fl(AB) equal to $(A + \Delta A)(B + \Delta B)$ for small $\Delta A, \Delta B$

- ► Vec-vec mult. backward stable: $fl(y^Tx) = (y + \Delta y)(x + \Delta x)$; in fact $fl(y^Tx) = (y + \Delta y)x$.
- Hence mat-vec also backward stable: $fl(Ax) = (A + \Delta A)x$.
- Still mat-mat is not backward stable.

What is true: $||fl(AB) - AB|| \le \epsilon ||A|| ||B||$, so $||fl(AB) - AB|| / ||AB|| \le \epsilon \min(\kappa_2(A), \kappa_2(B)).$

• Great when A or B orthogonal (or square well-conditioned): say if A = Q orthogonal,

$$\|fl(QB) - QB\| \le \epsilon \|B\|,$$

so $fl(QB) = QB + \epsilon ||B||$, hence $fl(QB) = Q(B + \Delta B)$ where $\Delta B = Q^T \epsilon ||B||$ orthogonal multiplication is backward stable

Stability of Householder QR

With Householder QR, the computed \hat{Q},\hat{R} satisfy

$$\|\hat{Q}^T\hat{Q} - I\| = O(\epsilon), \quad \|A - \hat{Q}\hat{R}\| = O(\epsilon \|A\|),$$

and (of course) R upper triangular. Rough proof

Each reflector orthogonal, so satisfies fl(H_iA) = H_iA + \epsilon_i ||A||
Hence (\hat{R} =) fl(H_n \cdots H_1A) = H_n \cdots H_1A + \epsilon ||A||
fl(H_n \cdots H_1) =: \hat{Q}^T = H_n \cdots H_1 + \epsilon,
Thus \hat{Q}\hat{R} = A + \epsilon ||A||

Stability of Householder QR

With Householder QR, the computed \hat{Q}, \hat{R} satisfy

$$\|\hat{Q}^T\hat{Q} - I\| = O(\epsilon), \quad \|A - \hat{Q}\hat{R}\| = O(\epsilon \|A\|),$$

and (of course) R upper triangular. Rough proof

► Each reflector orthogonal, so satisfies $fl(H_iA) = H_iA + \epsilon_i ||A||$ ► Hence $(\hat{R} =) fl(H_n \cdots H_1A) = H_n \cdots H_1A + \epsilon ||A||$ ► $fl(H_n \cdots H_1) =: \hat{Q}^T = H_n \cdots H_1 + \epsilon$, ► Thus $\hat{Q}\hat{R} = A + \epsilon ||A||$

Notes:

▶ This doesn't mean $\|\hat{Q} - Q\|, \|\hat{R} - R\|$ are small at all! Indeed Q, R are as ill-conditioned as A

▶ QR for Ax = b, least-squares are stable (NB normal eqn $A^T Ax = is$ NOT)

Orthogonal Linear Algebra

With orthogonal matrices Q,

$$\frac{\|fl(QA) - QA\|}{\|QA\|} \le \epsilon, \qquad \frac{\|fl(AQ) - AQ\|}{\|AQ\|} \le \epsilon$$

Orthogonal Linear Algebra

With orthogonal matrices Q,

$$\frac{\|fl(QA) - QA\|}{\|QA\|} \le \epsilon, \qquad \frac{\|fl(AQ) - AQ\|}{\|AQ\|} \le \epsilon$$

whereas in general, $||fl(AB) - AB|| \le \epsilon ||A|| ||B||$, so $||fl(AB) - AB|| / ||AB|| \le \epsilon \min(\kappa_2(A), \kappa_2(B))$

Orthogonal Linear Algebra

With orthogonal matrices Q,

$$\frac{\|fl(QA) - QA\|}{\|QA\|} \le \epsilon, \qquad \frac{\|fl(AQ) - AQ\|}{\|AQ\|} \le \epsilon$$

whereas in general, $||fl(AB) - AB|| \le \epsilon ||A|| ||B||$, so $||fl(AB) - AB|| / ||AB|| \le \epsilon \min(\kappa_2(A), \kappa_2(B))$

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue decomposition of non-normal matrices, Jordan form, etc), whereas those based on orthogonal matrices are stable, e.g.

- Householder QR factorisation
- **• QR** algorithm for $Ax = \lambda x$
- **Golub-Kahan** algorithm for $A = U\Sigma V^T$
- **QZ** algorithm for $Ax = \lambda Bx$

We next turn to the algorithms in boldface

Key points on stability

- Definition: (backward) stability vs. conditioning
- Orthogonal linear algebra is backward stable
- Significance of $\kappa_2(A) = ||A||_2 ||A^{-1}||$

Stable operations: triangular systems, Cholesky,...

Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- Eigenvalues are roots of characteristic polynomial
- ▶ For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p

Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- Eigenvalues are roots of characteristic polynomial
- For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p

• Let
$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$
, $a_i \in \mathbb{C}$. Then $p(\lambda) = 0 \Leftrightarrow \lambda$ eigenvalue of
Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- Eigenvalues are roots of characteristic polynomial
- ▶ For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p
- So no finite-step algorithm exists for $Ax = \lambda x$

Eigenvalue algorithms are necessarily iterative and approximate

- Same for SVD, as $\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$
- But this doesn't mean they're inaccurate!

Usual goal: compute the Schur decomposition $A = UTU^{\ast} : \ U$ unitary, T upper triangular

- ▶ For normal matrices $A^*A = AA^*$, automatically diagonalised (*T* diagonal)
- ► For nonnormal A, if diagonalisation $A = X\Lambda X^{-1}$ really necessary, done via Sylvester equations but nonorthogonal/unstable (nonexaminable)

Schur decomposition

Let $A \in \mathbb{C}^{n \times n}$ (square arbitrary matrix). Then \exists unitary $U \in \mathbb{C}^{n \times n}$ s.t.

$$A = UTU^*,$$

with T upper triangular.

Proof:

Schur decomposition

Let $A \in \mathbb{C}^{n \times n}$ (square arbitrary matrix). Then \exists unitary $U \in \mathbb{C}^{n \times n}$ s.t.

$$A = UTU^*,$$

with T upper triangular.

Recap: Matrix decompositions

- $\blacktriangleright \text{ SVD } A = U\Sigma V^T$
- Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - Symmetric: X unitary and Λ real
- ► Jordan decomposition: $A = XJX^{-1}$, $J = \text{diag}(\begin{vmatrix} \lambda_i & 1 & \dots & \lambda_i \\ & \lambda_i & \ddots & \ddots \\ & & \ddots & 1 \end{vmatrix}$)
- **Schur decomposition** $A = QTQ^*$: Q orthogonal, T upper triangular
- ▶ QR: Q orthonormal, U upper triangular
- ▶ LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available

Recap: Matrix decompositions

- $\blacktriangleright \text{ SVD } A = U\Sigma V^T$
- Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - Symmetric: X unitary and Λ real

► Jordan decomposition: $A = XJX^{-1}$, $J = \text{diag}(\begin{vmatrix} \lambda_i & 1 & \dots & \lambda_i \\ & \lambda_i & \ddots & \ddots \\ & & \ddots & 1 \end{vmatrix}$)

- Schur decomposition $A = QTQ^*$: Q orthogonal, T upper triangular
- ▶ QR: Q orthonormal, U upper triangular
- ▶ LU: L lower triangular, U upper triangular
- ▶ QZ for $Ax = \lambda Bx$: (genearlised eigenvalue problem) Q, Z orthogonal s.t. QAZ, QBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available

Power method for $Ax = \lambda x$

$$x \in \mathbb{R}^n :=$$
random vector, $x = Ax$, $x = rac{x}{\|x\|}$, $\hat{\lambda} = x^T Ax$, repeat

Power method for $Ax = \lambda x$

- $x\in \mathbb{R}^n:=$ random vector, x=Ax, $x=\frac{x}{\|x\|}$, $\hat{\lambda}=x^TAx$, repeat
 - Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations, $x = C \sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to Cc_1 v_1$ as $k \to \infty$
 - Converges geometrically $(\lambda, x) \to (\lambda_1, v_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
 - What does this imply about $A^k = QR$ as $k \to \infty$? First vector of $Q \to v_1$

Power method for $Ax = \lambda x$

- $x \in \mathbb{R}^n:=$ random vector, x=Ax, $x=\frac{x}{\|x\|}$, $\hat{\lambda}=x^TAx$, repeat
 - Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations, $x = C \sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to Cc_1 v_1$ as $k \to \infty$
 - Converges geometrically $(\lambda, x) \to (\lambda_1, v_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
 - What does this imply about $A^k = QR$ as $k \to \infty$? First vector of $Q \to v_1$

Notes:

- Google pagerank & Markov chain linked to power method
- As we'll see, power method is basis for refined algs (QR algorithm, Krylov methods (Lanczos, Arnoldi,...))

Why compute eigenvalues? Google PageRank

'Importance' of websites via dominant eigenvector of column-stochastic matrix

$$A = \alpha P + (1 - \alpha) \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

P: adjacency matrix, $\alpha \in (0, 1)$

image from wikipedia

Google does (did) a few steps of Power method: with initial guess x_0 , k = 0, 1, ...

1.
$$x_{k+1} = Ax_k$$

2. $x_{k+1} = x_{k+1}/||x_{k+1}||_2$, $k \leftarrow k+1$, repeat.

► $x_k \rightarrow \mathsf{PageRank}$ vector $v_1 : Av_1 = \lambda_1 v_1$

Inverse power method

Inverse (shift-and-invert) power method: $x := (A - \mu I)^{-1}x$, x = x/||x||

• Converges with improved linear rate $\frac{|\lambda_{\sigma(2)}-\mu|}{|\lambda_{\sigma(1)}-\mu|}$ to eigval closest to μ (σ : permutation)

Inverse power method

Inverse (shift-and-invert) power method: $x := (A - \mu I)^{-1}x$, x = x/||x||

- Converges with improved linear rate $\frac{|\lambda_{\sigma(2)} \mu|}{|\lambda_{\sigma(1)} \mu|}$ to eigval closest to μ (σ : permutation)
- μ can change adaptively with the iterations. The choice $\mu := x^T A x$ gives Rayleigh quotient iteration, with **quadratic** convergence $\|Ax^{(k+1)} - \lambda^{(k+1)}x^{(k+1)}\| = O(\|Ax^{(k)} - \lambda^{(k)}x^{(k)}\|^2)$ (cubic if A symmetric)

Solving an eigenvalue problem

Given $A \in \mathbb{R}^{n \times n}$ or $\mathbb{C}^{n \times n}$,

 $Ax = \lambda x$

Goal: find all eigenvalues (and eigenvectors) of a matrix

• Look for Schur form $A = UTU^*$

We'll describe an algorithm called the $\ensuremath{\mathsf{QR}}$ algorithm that is used universally, e.g. by MATLAB's eig. It

- ▶ finds all eigenvalues (approximately but reliably) in $O(n^3)$ flops,
- is backward stable.

Sister problem: Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, compute SVD $A = U\Sigma V^*$

- ▶ 'ok' algorithm: $eig(A^TA)$ to find V, then normalise AV
- there's a better algorithm: Golub-Kahan bidiagonalisation

QR algorithm for eigenproblems

Set $A_1 = A$, and

$$A_1 = Q_1 R_1, \quad A_2 = R_1 Q_1, \quad A_2 = Q_2 R_2, \quad A_3 = R_2 Q_2, \quad \dots$$

•
$$A_k$$
 are all similar: $A_{k+1} = Q_k^T A_k Q_k$

- We shall 'show' that $A \rightarrow$ triangular (diagonal if A normal)
- ▶ Basically: $QR(factorise) \rightarrow RQ(swap) \rightarrow QR \rightarrow RQ \rightarrow \cdots$

QR algorithm for eigenproblems

Set $A_1 = A$, and

$$A_1 = Q_1 R_1, \quad A_2 = R_1 Q_1, \quad A_2 = Q_2 R_2, \quad A_3 = R_2 Q_2, \quad \dots$$

•
$$A_k$$
 are all similar: $A_{k+1} = Q_k^T A_k Q_k$

- We shall 'show' that $A \rightarrow$ triangular (diagonal if A normal)
- ▶ Basically: $QR(factorise) \rightarrow RQ(swap) \rightarrow QR \rightarrow RQ \rightarrow \cdots$
- Fundamental work by Francis (61,62) and Kublanovskaya (63)
- Truly Magical algorithm!
 - backward stable, as based on orthogonal transforms
 - always converges (with shifts), but global proof unavailable(!)
 - uses 'shifted inverse power method' (rational functions) without inversions

QR algorithm and power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat. Claims: for $k \ge 1$,

$$A^{k} = (Q_{1} \cdots Q_{k})(R_{k} \cdots R_{1}) =: Q^{(k)}R^{(k)}, \qquad A_{k+1} = (Q^{(k)})^{T}AQ^{(k)}.$$

Proof : recall
$$A_{k+1} = Q_k^T A_k Q_k$$
, repeat.

Proof by induction: k = 1 trivial. Suppose $A^{k-1} = Q^{(k-1)}R^{(k-1)}$. We have

$$A_k = (Q^{(k-1)})^T A Q^{(k-1)} = Q_k R_k.$$

Then $AQ^{(k-1)} = Q^{(k-1)}Q_kR_k$, and so

$$A^{k} = AQ^{(k-1)}R^{(k-1)} = Q^{(k-1)}Q_{k}R_{k}R^{(k-1)} = Q^{(k)}R^{(k)}\square$$

QR algorithm and power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat.

$$A^{k} = (Q_{1} \cdots Q_{k})(R_{k} \cdots R_{1}) =: Q^{(k)}R^{(k)}, \qquad A_{k+1} = (Q^{(k)})^{T}AQ^{(k)}.$$

QR factorisation of A^k : 'dominated by leading eigenvector' x_1 , where $Ax_1 = \lambda_1 x_1$ (recall power method)

In particular, consider $A^k[1, 0, \dots, 0]^T = A^k e_n$:

- $A^k e_n = R^{(k)}(1,1)Q^{(k)}(:,1)$, parallel to 1st column of $Q^{(k)}$
- By power method, this implies $Q^{(k)}(:,1) \rightarrow x_1$
- Hence by $A_{k+1} = (Q^{(k)})^T A Q^{(k)}$, $A_k(:,1) \to [\lambda_1,0,\ldots,0]^T$

Progress! But there is much better news

QR algorithm and inverse power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat.

$$A^k = (Q_1 \cdots Q_k)(R_k \cdots R_1) =: Q^{(k)}R^{(k)},$$

$$A_{k+1} = (Q^{(k)})^T A Q^{(k)}.$$

Now take inverse: $A^{-k} = (R^{(k)})^{-1} (Q^{(k)})^T$, transpose: $(A^{-k})^T = Q^{(k)} (R^{(k)})^{-T}$

- \Rightarrow QR factorization of matrix $(A^{-k})^T$ with eigvals $r(\lambda_i) = \frac{\lambda_i^{-k}}{\lambda_i}$
- \Rightarrow Connection also with (unshifted) inverse power method NB no matrix inverse performed
 - ► This means final column of $Q^{(k)}$ converges to minimum left eigenvector x_n with factor $\frac{|\lambda_n|}{|\lambda_{n-1}|}$, hence $A_k(n,:) \to [0, \dots, 0, \lambda_n]$
 - (Very) fast convergence if $|\lambda_n| \ll |\lambda_{n-1}|$
 - Can we force this situation? Yes by shifts

QR algorithm with shifts and shifted inverse power method

QR algorithm with shifts and shifted inverse power method

1.
$$A_k - s_k I = Q_k R_k$$
 (QR factorization)
2. $A_{k+1} = R_k Q_k + s_k I$, $k \leftarrow k+1$, repeat.

$$\prod_{i=1}^k (A - s_i I) = Q^{(k)} R^{(k)} (= (Q_1 \cdots Q_k) (R_k \cdots R_1))$$

Proof: Suppose true for
$$k - 1$$
. Then QR alg. computes
 $(Q^{(k-1)})^T (A - s_k I)Q^{(k-1)} = Q_k R_k$, so $(A - s_k I)Q^{(k-1)} = Q^{(k-1)}Q_k R_k$, hence
 $\prod_{i=1}^k (A - s_i I) = (A - s_k I)Q^{(k-1)}R^{(k-1)} = Q^{(k-1)}Q_k R_k R^{(k-1)} = Q^{(k)}R^{(k)}$.

Inverse transpose: $\prod_{i=1}^{k} (A - s_i I)^{-T} = Q^{(k)} (R^{(k)})^{-T}$

- QR factorization of matrix with eigvals $r(\lambda_j) = \prod_{i=1}^k \frac{1}{\lambda_i s_i}$
- Converges like ratio of $\prod_{i=1}^{k} (\bar{\lambda}_j s_i)$; very fast if $s_i \approx \lambda_j$. Ideally, choose $s_k \approx \lambda_n$ • Connection with shifted inverse power method, hence rational approximation

QR algorithm preprocessing

We've seen the QR iterations drives colored entries to 0 (esp. red ones)

	*	*	*	*	*
	*	*	*	*	*
A =	*	*	*	*	*
	*	*	*	*	*
	*	*	*	*	*

- ▶ Hence $A_{n,n} \rightarrow \lambda_n$, so choosing $s_k = A_{n,n}$ is sensible
- ▶ This reduces #QR iterations to O(n) (empirical but reliable estimate)
- ▶ But each iteration is $O(n^3)$ for QR, overall $O(n^4)$
- ▶ We next discuss a preprocessing technique to reduce to $O(n^3)$

QR algorithm preprocessing: Hessenberg reduction

TI

To improve cost of QR factorisation, first reduce via orthogonal Householder transformations

Hessenberg reduction continued

- QR iterations preserve structure: if A₁ = QR Hessenberg, then so is A₂ = RQ
 using Givens rotations, each QR iter is O(n²) (not O(n³))
- ▶ overall shifted QR algorithm cost is $O(n^3)$, $\approx 25n^3$ flops
- Remaining task (done by shifted QR): drive subdiagonal * to 0
- ▶ bottom-right $* \rightarrow \lambda_n$, can be used for shift s_k

Deflation

Once bottom-right $|*| < \epsilon$,

and continue with shifted QR on $(n-1) \times (n-1)$ block, repeat

QR algorithm in action

QR algorithm: other improvements/simplifications (nonexaminable)

- **Double-shift** strategy for $A \in \mathbb{R}^{n \times n}$
 - $(A sI)(A \bar{s}I) = QR$ using only real arithmetic if A real
- Aggressive early deflation

[Braman-Byers-Mathias 2002]

- Examine lower-right (say 100×100) block instead of (n, n-1) element
- dramatic speedup ($\approx \times 10$)
- **Balancing** $A \leftarrow DAD^{-1}$, D: diagonal
 - ▶ reduce $||DAD^{-1}||$: better-conditioned eigenvalues
- For nonsymmetric A, global convergence is NOT established

(except [Banks-Garza-Vargas-Srivastava 2021] for possible argument)

 of course it always converges in practice.. another big open problem in numerical linear algebra

QR algorithm for symmetric \boldsymbol{A}

 \blacktriangleright Initial reduction to Hessenberg form \rightarrow tridiagonal

	*	*	*	*	*		*	*					*	*]		*	*			
	*	*	*	*	*	~	*	*	*	*	*		*	*	*				*	*	*		
A =	*	*	*	*	*	$Q_1 \rightarrow$		*	*	*	*	$Q_2 \rightarrow$		*	*	*	*	$Q_3 \rightarrow$		*	*	*	
	*	*	*	*	*			*	*	*	*	,			*	*	*				*	*	*
	*	*	*	*	*		L	*	*	*	*		L		*	*	*		L			*	*

▶ QR steps for tridiagonal: O(n) instead of $O(n^2)$ per step

- Powerful alternatives available for tridiagonal eigenproblem (divide-conquer [Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
- ▶ Cost: $\frac{4}{3}n^3$ flops for eigvals, $\approx 10n^3$ for eigvecs (store Givens rotations)

Golub-Kahan for SVD

Apply Householder reflectors from left and right (different ones) to bidiagonalize

$$A \to B = H_{L,n} \cdots H_{L,1} A H_{R,1} H_{R,2} \cdots H_{R,n-2}$$

 $\sigma_i(A) = \sigma_i(B)$

Once bidiagonalized,

- Mathematically, do QR alg on $B^T B$ (symmetric tridiagonal)
- More elegant: divide-and-conquer [Gu-Eisenstat 1995] or dqds algorithm [Fernando-Parlett 1994]; nonexaminable

▶ Cost: $\approx 4mn^2$ flops for singvals Σ , $\approx 20mn^2$ flops for singvecs U, V

QZ algorithm for generalised eigenvalue problems

Generalised eigenvalue problem

$$Ax = \lambda Bx, \qquad A, B \in \mathbb{C}^{n \times n}$$

- $\blacktriangleright~A,B$ given, find eigenvalues λ and eigenvector x
- ▶ *n* eigenvalues, roots of $det(A \lambda B)$
- lmportant case: A, B symmetric, B positive definite: λ all real

QZ algorithm: look for unitary Q, Z s.t. QAZ, QBZ both upper triangular

- ▶ then diag(QAZ)/diag(QBZ) are eigenvalues
- Algorithm: first reduce A, B to Hessenberg-triangular form
- then implicitly do QR to $B^{-1}A$ (without inverting B)
- ▶ Cost: $\approx 50n^3$
- See [Golub-Van Loan] for details

Tractable eigenvalue problems

- Standard eigenvalue problems $Ax = \lambda x$
 - symmetric $(4/3n^3$ flops for eigvals, $+9n^3$ for eigvecs)
 - nonsymmetric ($10n^3$ flops for eigvals, $+15n^3$ for eigvecs)
- ► SVD $A = U\Sigma V^T$ for $A \in \mathbb{C}^{m \times n}$: ($\frac{8}{3}mn^2$ flops for singvals, $+20mn^2$ for singvecs)
- ▶ Generalized eigenvalue problems $Ax = \lambda Bx$, $A, B \in \mathbb{C}^{n \times n}$
- Polynomial eigenvalue problems, e.g. (degree k = 2) $P(\lambda)x = (\lambda^2 A + \lambda B + C)x = 0$, $A, B, C \in \mathbb{C}^{n \times n} \approx 20(nk)^3$
- ▶ Nonlinear problems, e.g. $N(\lambda)x = (A \exp(\lambda) + B)x = 0$
 - often solved via approximating by polynomial $N(\lambda) \approx P(\lambda)$
 - more difficult: $A(x)x = \lambda x$: eigenvector nonlinearity

Further speedup when structure present (e.g. sparse, low-rank)

Iterative methods

We've covered direct methods (LU for Ax = b, QR for $\min ||Ax - b||_2$, QRalg for $Ax = \lambda x$). These are

- Incredibly reliable, backward stable
- \blacktriangleright Works like magic if $n \lesssim 10000$
- But not if n larger!

A 'big' matrix problem is one for which direct methods aren't feasible. Historically,

- ▶ 1950: *n* ≥ 20
- ▶ 1965: n ≥ 200
- ▶ 1980: *n* ≥ 2000
- ▶ 1995: *n* ≥ 20000
- ▶ 2010: *n* ≥ 100000
- ▶ 2020: $n \ge 1000000$ ($n \ge 50000$ on a standard desktop)

was considered 'very large'. For such problems, we need to turn to alternative algorithms: we'll cover **iterative** and **randomised** methods.

Direct vs. iterative methods

Idea of iterative methods:

- gradually refine solution iteratively
- \blacktriangleright each iteration should be (a lot) cheaper than direct methods, usually $O(n^2)$ or less
- can be (but not always) much faster than direct methods
- tends to be (slightly) less robust, nontrivial/problem-dependent analysis
- often, after $O(n^3)$ work it still gets the exact solution (ignoring roundoff errors)

image from [Trefethen-Bau]

We'll focus on Krylov subspace methods.

Basic idea of Krylov: polynomial approximation

In Krylov subspace methods, we look for an (approximate) solution \hat{x} (for Ax = b or $Ax = \lambda x$) of the form (after kth iteration)

 $\hat{x} = p_{k-1}(A)v ,$

where p_{k-1} is a polynomial of degree k-1, and $v \in \mathbb{R}^n$ arbitrary (usually v = b for linsys, for eigenproblems v usually random)

Natural questions:

- Why would this be a good idea?
 - Clearly, 'easy' to compute
 - One example: recall power method x̂ = A^{k-1}v = p_{k-1}(A)v Krylov finds a "better/optimal" polynomial p_{k-1}(A)
 - We'll see more cases where Krylov is powerful
- How to turn into an algorithm?
 - Arnoldi (next), Lanczos

Orthonormal basis for $\mathcal{K}_k(A, b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

$$\mathcal{K}_k(A,b) := \mathsf{span}([b, Ab, A^2b, \dots, A^{k-1}b])$$

First step: form an orthonormal basis Q, s.t. solution can be written as x = Qy

- ▶ Naive idea: Form matrix $[b, Ab, A^2b, \dots, A^{k-1}b]$, then QR
 - ▶ $[b, Ab, A^2b, \dots, A^{k-1}b]$ is usually terribly conditioned! Dominated by leading eigvec
 - Q is therefore extremely ill-conditioned, inaccurately computed

Orthonormal basis for $\mathcal{K}_k(A, b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

$$\mathcal{K}_k(A,b) := \mathsf{span}([b, Ab, A^2b, \dots, A^{k-1}b])$$

First step: form an orthonormal basis Q, s.t. solution can be written as x = Qy

- ▶ Naive idea: Form matrix $[b, Ab, A^2b, \dots, A^{k-1}b]$, then QR
 - ▶ $[b, Ab, A^2b, \dots, A^{k-1}b]$ is usually terribly conditioned! Dominated by leading eigvec
 - Q is therefore extremely ill-conditioned, inaccurately computed
- Much better solution: Arnoldi process
 - Multiply A once at a time to the latest orthonormal vector q_i
 - ▶ Then orthogonalise Aq_i against previous q_j 's (j = 1, ..., i 1) (as in Gram-Schmidt)
 - Even better news: Arnoldi decomposition makes subsequent computation very convenient

Arnoldi iteration and Arnoldi decomposition

Set $q_1 = b/||b||_2$ For k = 1, 2, ..., kset $v = Aq_k$ for j = 1, 2, ..., k $h_{jk} = q_j^T v, v = v - h_{jk}q_j \%$ orthogonalise against q_j via modified G-S end for

$$h_{k+1,k} = \|v\|_2, \ q_{k+1} = v/h_{k+1,k}$$

End for

Theorem

Suppose that $h_{k+1,k} \neq 0$ for $k = 1, \ldots, \ell$. Then for $k = 1, \ldots, \ell$,

$$Span(q_1,\ldots,q_k) = \mathcal{K}_k(A,b).$$

Proof: Induction on ℓ . Suppose true for $\ell = \hat{\ell}$ with $q_{\hat{\ell}} = p_{\ell-1}(A)b$. Then $q_{\hat{\ell}+1} = \frac{1}{h_{\hat{\ell}+1,\hat{\ell}}}(Aq_{\hat{\ell}} - \sum_{j=1}^{\hat{\ell}} h_{j,\hat{\ell}}q_j)$, which is of exact degree $\hat{\ell}$.

Arnoldi iteration and Arnoldi decomposition

Set $q_1 = b/\|b\|_2$ For $k = 1, 2, \dots$, set $v = Aq_k$ for $j = 1, 2, \dots, k$ $h_{jk} = q_j^T v, v = v - h_{jk}q_j$ % orthogonalise against q_j via modified G-S end for $h_{k+1,k} = \|v\|_2, q_{k+1} = v/h_{k+1,k}$

End for

• After k steps,
$$AQ_k = Q_{k+1}\tilde{H}_k = Q_kH_k + q_{k+1}[0, \dots, 0, h_{k+1,k}]$$
, with $Q_k = [q_1, q_2, \dots, q_k], Q_{k+1} = [Q_k, q_{k+1}]$, span $(Q_k) =$ span $([b, Ab, \dots, A^{k-1}b])$

$$A \qquad Q_{k} = Q_{k+1} \begin{bmatrix} \tilde{H}_{k} \end{bmatrix}, \quad \tilde{H}_{k} = \begin{bmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,k} \\ h_{2,1} & h_{2,2} & \dots & h_{2,k} \\ \ddots & & \vdots \\ & & & & h_{k,k-1} & h_{k,k} \\ & & & & & h_{k+1,k} \end{bmatrix}, \quad Q_{k+1}^{T}Q_{k+1} = I_{k+1}$$

$$\mathbb{R}^{(k+1)\times k} \text{ upper Hessenberg}$$

• Cost k A-multiplications+ $O(k^2)$ inner products $(O(nk^2))$
$\mathsf{GMRES} \text{ for } Ax = b$

Idea (very simple!): minimise residual in Krylov subspace:

[Saad-Schulz 86]

 $x_k = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} \|Ax - b\|_2$

GMRES for Ax = b

Idea (very simple!): minimise residual in Krylov subspace:

[Saad-Schulz 86]

 $x_k = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} \|Ax - b\|_2$

Algorithm: Given $AQ_k = Q_{k+1}\tilde{H}_k$ and writing $x_k = Q_k y$, rewrite as

$$\begin{split} \min_{y} \|AQ_{k}y - b\|_{2} &= \min_{y} \|Q_{k+1}\tilde{H}_{k}y - b\|_{2} \\ &= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \begin{bmatrix} Q_{k}^{T} \\ Q_{k,\perp}^{T} \end{bmatrix} b \right\|_{2} \\ &= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \in \mathbb{R}^{n} \end{split}$$

(where $[Q_k,Q_{k,\perp}]$ orthogonal; same trick as in least-squares)

▶ Minimised when $\|\tilde{H}_k y - \tilde{Q}_k^T b\| \to \min$; Hessenberg least-squares problem ▶ Solve via QR (k Givens rotations)+triangular solve, $O(k^2)$ in addition to Arnoldi

GMRES convergence: polynomial approximation

Recall that $x_k \in \mathcal{K}_k(A, b) \Rightarrow x_k = p_{k-1}(A)b$. Hence GMRES solution is

$$\min_{x_k \in \mathcal{K}_k(A,b)} \|Ax_k - b\|_2 = \min_{\substack{p_{k-1} \in \mathcal{P}_{k-1}}} \|Ap_{k-1}(A)b - b\|_2$$
$$= \min_{\tilde{p} \in \mathcal{P}_k, \tilde{p}(0) = 0} \|(\tilde{p}(A) - I)b\|_2$$
$$= \min_{p \in \mathcal{P}_k, p(0) = 1} \|p(A)b\|_2$$

If A diagonalizable $A = X\Lambda X^{-1}$,

$$||p(A)||_{2} = ||Xp(\Lambda)X^{-1}||_{2} \le ||X||_{2} ||X^{-1}||_{2} ||p(\Lambda)||_{2}$$
$$= \kappa_{2}(X) \max_{z \in \lambda(A)} |p(z)|$$

Interpretation: find polynomial s.t. p(0) = 1 and $|p(\lambda_i)|$ small for all i

GMRES example

G: Gaussian random matrix ($G_{ij} \sim N(0,1)$, i.i.d.) G/\sqrt{n} : eigvals in unit disk

When does GMRES converge fast?

Recall GMRES solution satisfies (assuming A diagonalisable+nonsingular)

$$\min_{x_k \in \mathcal{K}_k(A,b)} \|Ax_k - b\|_2 = \min_{p \in \mathcal{P}_k, p(0) = 1} \|p(A)b\|_2 \le \kappa_2(X) \max_{z \in \lambda(A)} |p(z)| \|b\|_2.$$

 $\max_{z \in \lambda(A)} |p(z)|$ is small when

- $\lambda(A)$ are clustered away from 0
 - a good p can be found quite easily
 - e.g. example 2 slides ago
- ▶ When $\lambda(A)$ takes $k(\ll n)$ distinct values
 - Then convergence in k GMRES iterations (why?)

Preconditioning for GMRES

We've seen that GMRES is great if spectrum clustered away from 0. If not true with

Ax = b,

then precondition: find $M \in \mathbb{R}^{n \times n}$ and solve

$$MAx = Mb$$

Desiderata of M:

- ▶ *M* simple enough s.t. applying *M* to vector is easy (note that each GMRES iteration requires *MA*-multiplication), and one of
 - 1. MA has clustered eigenvalues away from 0
 - 2. MA has a small number of distinct eigenvalues
 - 3. MA is well-conditioned $\kappa_2(MA) = O(1)$; then solve normal equation $(MA)^T MAx = (MA)^T Mb$

Preconditioners: examples

▶ ILU (Incomplete LU) preconditioner: $A \approx LU, M = (LU)^{-1} = U^{-1}L^{-1}$, L, U 'as sparse as $A' \Rightarrow MA \approx I$ (hopefully; 'cluster away from 0')

Finding effective preconditioners is never-ending research topic Prof. Andy Wathen is our Oxford expert!

Restarted GMRES

For k iterations, GMRES costs k matrix multiplications+ $O(nk^2)$ for orthogonalization \rightarrow Arnoldi eventually becomes expensive.

Practical solution: restart by solving 'iterative refinement':

- 1. Stop GMRES after $k_{
 m max}$ (prescribed) steps to get approx. solution \hat{x}_1
- 2. Solve $A\tilde{x} = b A\hat{x}_1$ via GMRES
- 3. Obtain solution $\hat{x}_1 + \tilde{x}$

Sometimes multiple restarts needed

Lanczos iteration

Recall Arnoldi decomposition $AQ_k = Q_{k+1}\tilde{H}_k = Q_kH_k + q_{k+1}[0, \dots, 0, h_{k+1,k}].$ When A symmetric, Arnoldi decomposition simplifies to

 $AQ_k = Q_k T_k + q_{k+1}[0, \dots, 0, t_{k+1,k}],$

where T_k is symmetric tridiagonal (proof: just note $H_k = Q_k^T A Q_k$ in Arnoldi)

► 3-term recurrence t_{k+1,k}q_{k+1} = (A - t_{k,k})q_k - t_{k-1,k}q_{k-1}; orthogonalisation necessary only against last two vecs q_k, q_{k-1}

Significant speedup over Arnoldi; cost k A-mult.+O(k) inner products (O(nk))

CG: Conjugate Gradient method for Ax = b, $A \succ 0$

When A symmetric, Lanczos gives $AQ_k = Q_kT_k + q_{k+1}[0, \ldots, 0, 1]$, T_k : tridiagonal

CG: when $A \succ 0$ PD, solve $Q_k^T(AQ_ky - b) = T_ky - Q_k^Tb = 0$, and $x = Q_ky \rightarrow$ "Galerkin orthogonality": residual Ax - b orthogonal to Q_k

CG: Conjugate Gradient method for Ax = b, $A \succ 0$

When A symmetric, Lanczos gives $AQ_k = Q_kT_k + q_{k+1}[0, \ldots, 0, 1]$, T_k : tridiagonal

CG: when $A \succ 0$ PD, solve $Q_k^T(AQ_ky - b) = T_ky - Q_k^Tb = 0$, and $x = Q_ky \rightarrow$ "Galerkin orthogonality": residual Ax - b orthogonal to Q_k

- ▶ $T_k y = Q_k^T b$ is tridiagonal linear system, O(k) operations to solve
- three-term recurrence reduces cost to O(k) A-multiplications
- minimises A-norm of error $x_k = \operatorname{argmin}_{x \in Q_k} ||x x_*||_A$ $(Ax_* = b)$:

$$(x - x_*)^T A(x - x_*) = (Q_k y - x_*)^T A(Q_k y - x_*)$$

= $y^T (Q_k^T A Q_k) y - 2b^T Q_k y + b^T x_*,$

minimiser is $y = (Q_k^T A Q_k)^{-1} Q_k^T b$, so $Q_k^T (A Q_k y - b) = 0$

- Note $||x||_A = \sqrt{x^T A x}$ defines a norm (exercise)
- More generally, for inner-product norm $||z||_M = \sqrt{\langle z, z \rangle_M}$, $\min_{x=Qy} ||x_* x||_M$ attained when $\langle q_i, x_* - x \rangle_M = 0$, $\forall q_i$ (cf. Part A NA)

CG algorithm for Ax = b, $A \succ 0$

Set $x_0 = 0$, $r_0 = -b$, $p_0 = r_0$ and do for $k = 1, 2, 3, \ldots$

$$\begin{aligned} \alpha_k &= \langle r_k, r_k \rangle / \langle p_k, Ap_k \rangle \\ x_{k+1} &= x_k + \alpha_k p_k \\ r_{k+1} &= r_k - \alpha_k Ap_k \\ \beta_k &= \langle r_{k+1}, r_{k+1} \rangle / \langle r_k, r_k \\ p_{k+1} &= r_{k+1} + \beta_k p_k \end{aligned}$$

where $r_k = Ax_k - b$ (residual) and p_k (search direction). One can show among others (exercise/sheet)

▶ $\mathcal{K}_k(A, b) = \text{span}(r_0, r_1, ..., r_{k-1}) = \text{span}(x_1, x_2, ..., x_k)$ (also equal to $\text{span}(p_0, p_1, ..., p_{k-1})$) ▶ $r_j^T r_k = 0, \ j = 0, 1, 2, ..., k - 1$

Thus x_k is kth CG solution, satisfying orthogonality $Q_k^T(Ax_k - b) = 0$

CG convergence

Let
$$e_k := x_* - x_k$$
. We have $e_0 = x_* (x_0 = 0)$, and

$$\frac{\|e_k\|_A}{\|e_0\|_A} = \min_{x \in \mathcal{K}_k(A,b)} \|x_k - x_*\|_A / \|x_*\|_A$$

$$= \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|p_{k-1}(A)b - A^{-1}b\|_A / \|e_0\|_A$$

$$= \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|(p_{k-1}(A)A - I)e_0\|_A / \|e_0\|_A$$

$$= \min_{p \in \mathcal{P}_k, p(0) = 1} \|p(A)e_0\|_A / \|e_0\|_A$$

$$= \min_{p \in \mathcal{P}_k, p(0) = 1} \|V \begin{bmatrix} p(\lambda_1) & & \\ & \ddots & \\ & & p(\lambda_n) \end{bmatrix} V^T e_0 \|_A / \|e_0\|_A$$

Now $(\text{blue})^2 = \sum_i \lambda_i p(\lambda_i)^2 (V^T e_0)_i^2 \le \max_j p(\lambda_j)^2 \sum_i \lambda_i (V^T e_0)_i^2 = \max_j p(\lambda_j)^2 ||e_0||_A^2$

CG convergence cont'd

We've shown

$$\frac{\|e_k\|_A}{\|e_0\|_A} \le \min_{p \in \mathcal{P}_k, p(0)=1} \max_j |p(\lambda_j)| \le \min_{p \in \mathcal{P}_k, p(0)=1} \max_{x \in [\lambda_{\min}(A), \lambda_{\max}(A)]} |p(x)|$$

Now

$$\min_{p \in \mathcal{P}_k, p(0)=1} \max_{x \in [\lambda_{\min}(A), \lambda_{\max}(A)]} |p(x)| \le 2 \left(\frac{\sqrt{\kappa_2(A)} - 1}{\sqrt{\kappa_2(A)} + 1}\right)^k$$

Chebyshev polynomials

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos\theta \in [-1, 1]$, $\theta = \operatorname{acos}(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$. $T_k(x)$ is a polynomial in x :

$$\frac{1}{2}(z+z^{-1})(z^k+z^{-k}) = \frac{1}{2}(z^{k+1}+z^{-(k+1)}) + \frac{1}{2}(z^{k-1}+z^{-(k-1)}) \Leftrightarrow \underbrace{2xT_k(x) = T_{k+1}(x) + T_{k-1}(x)}_{(k+1)}$$

3-term recurrence; $2\cos\theta\cos(k\theta)=\cos((k+1)\theta)+\cos((k-1)\theta)$

0.8

0.8

0.8 1

Chebyshev polynomials

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos\theta \in [-1, 1]$, $\theta = \operatorname{acos}(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$. $T_k(x)$ is a polynomial in x :

$$\frac{1}{2}(z+z^{-1})(z^k+z^{-k}) = \frac{1}{2}(z^{k+1}+z^{-(k+1)}) + \frac{1}{2}(z^{k-1}+z^{-(k-1)}) \Leftrightarrow \underbrace{2xT_k(x) = T_{k+1}(x) + T_{k-1}(x)}_{(k+1)}$$

3-term recurrence; $2\cos\theta\cos(k\theta)=\cos((k+1)\theta)+\cos((k-1)\theta)$

Chebyshev polynomials

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos\theta \in [-1, 1]$, $\theta = \operatorname{acos}(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$. $T_k(x)$ is a polynomial in x :

$$\frac{1}{2}(z+z^{-1})(z^{k}+z^{-k}) = \frac{1}{2}(z^{k+1}+z^{-(k+1)}) + \frac{1}{2}(z^{k-1}+z^{-(k-1)}) \Leftrightarrow \underbrace{2xT_{k}(x) = T_{k+1}(x) + T_{k-1}(x)}_{(k+1)} + \underbrace{2xT_{k}(x) = T_{k-1}(x)}_{(k+1)}(x)} + \underbrace{2xT_{k}(x) = T_{k-1}(x)}_{(k+1$$

3-term recurrence; $2\cos\theta\cos(k\theta)=\cos((k+1)\theta)+\cos((k-1)\theta)$

Chebyshev polynomials cont'd

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos \theta \in [-1, 1]$, $\theta = \operatorname{acos}(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$.

▶ Inside
$$[-1,1]$$
, $|T_k(x)| \le 1$

• Outside [-1,1], $|T_k(x)| \gg 1$ grows rapidly with |x|, k (fastest growth among \mathcal{P}_k)

Shift+scale s.t.
$$p(x) = c_k T_k(\frac{2x-b-a}{b-a})$$
 where $c_k = 1/T_k(\frac{-(b+a)}{b-a})$ so $p(0) = 1$. Then
 $|p(x)| \le 1/|T_k(\frac{-(b+a)}{b-a})| = 1/|T_k(\frac{b+a}{b-a})|$ on $x \in [a, b]$
 $T_k(z) = \frac{1}{2}(z^k + z^{-k})$ with $\frac{1}{2}(z + z^{-1}) = \frac{b+a}{b-a} \Rightarrow z = \frac{\sqrt{b/a}+1}{\sqrt{b/a}-1} = \frac{\sqrt{\kappa_2(A)}+1}{\sqrt{\kappa_2(A)}-1}$, so
 $|p(x)| \le 1/T_k(\frac{b+a}{b-a}) \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k$

For much more about T_k , see C6.3 Approximation of Functions

MINRES: symmetric (indefinite) version of GMRES (nonexaminable) Recall GMRES

$$x = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} \|Ax - b\|_2$$

Algorithm: Given $AQ_k = Q_{k+1}\tilde{H}_k$ and writing $x = Q_k y$, rewrite as

$$\begin{split} \min_{y} \|AQ_{k}y - b\|_{2} &= \min_{y} \|Q_{k+1}\tilde{H}_{k}y - b\|_{2} \\ &= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \begin{bmatrix} Q_{k}^{T} \\ Q_{k,\perp}^{T} \end{bmatrix} b \right\|_{2} \\ &= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \in \mathbb{R}^{n} \end{split}$$

(where $[Q_k,Q_{k,\perp}]$ orthogonal; same trick as in least-squares)

▶ Minimised when $\|\tilde{T}_k y - \tilde{Q}_k^T b\| \rightarrow \min$; Hessenberg least-squares problem ▶ Solve via QR (k Givens rotations)+triangular solve, $O(k^2)$ in addition to Arnoldi

MINRES: symmetric (indefinite) version of GMRES (nonexaminable) MINRES (minimum-residual method) for $A = A^T$ (but not necessarily $A \succ 0$) $x = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2$

Algorithm: Given $AQ_k = Q_{k+1}\tilde{T}_k$ and writing $x = Q_k y$, rewrite as

$$\begin{split} \min_{y} \|AQ_{k}y - b\|_{2} &= \min_{y} \|Q_{k+1}\tilde{T}_{k}y - b\|_{2} \\ &= \min_{y} \left\| \begin{bmatrix} \tilde{T}_{k} \\ 0 \end{bmatrix} y - \begin{bmatrix} Q_{k}^{T} \\ Q_{k,\perp}^{T} \end{bmatrix} b \right\|_{2} \\ &= \min_{y} \left\| \begin{bmatrix} \tilde{T}_{k} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \in \mathbb{R}^{n} \end{split}$$

(where $[Q_k,Q_{k,\perp}]$ orthogonal; same trick as in least-squares)

Minimised when ||*T˜_ky* − *Q˜_k^Tb*|| → min; tridiagonal least-squares problem
 Solve via QR (k Givens rotations)+tridiagonal solve, O(k) in addition to Lanczos

MINRES convergence (nonexaminable) As in GMRES,

$$\min_{x \in \mathcal{K}_k(A,b)} \|Ax - b\|_2 = \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|Ap_{k-1}(A)b - b\|_2 = \min_{\tilde{p} \in \mathcal{P}_k, \tilde{p}(0) = 0} \|(\tilde{p}(A) - I)b\|_2$$
$$= \min_{p \in \mathcal{P}_k, p(0) = 1} \|p(A)b\|_2$$

Since $A = A^T$, A is diagonalisable $A = Q\Lambda Q^T$ with Q orthogonal, so

$$||p(A)||_{2} = ||Qp(\Lambda)Q^{T}||_{2} \le ||Q||_{2} ||Q^{T}||_{2} ||p(\Lambda)||_{2}$$
$$= \max_{z \in \lambda(A)} |p(z)|$$

Interpretation: (again) find polynomial s.t. p(0) = 1 and $|p(\lambda_i)|$ small

MINRES convergence cont'd (nonexaminable)

$$\frac{\|Ax - b\|_2}{\|b\|_2} \le \min_{p \in \mathcal{P}_k, p(0) = 1} \max |p(\lambda_i)|$$

One can prove (nonexaminable)

$$\min_{p \in \mathcal{P}_k, p(0)=1} \max |p(\lambda_i)| \le 2 \left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^{k/2}$$

obtained by Chebyshev+Möbius change of variables [Greenbaum's book 97]
 minimisation needed on positive and negative sides, hence slower convergence when A indefinite

- CG employs Chebyshev polynomials
- MINRES is more complicated+slower convergence

Preconditioned CG/MINRES

 $Ax = b, \quad A \succ 0$

Find preconditioner M s.t. $``M^TM \approx A^{-1}"$ and solve

$$M^T A M y = M^T b, \quad M y = x$$

As before, desiderata of M:

- $M^T A M$ simple to apply
- $M^T A M$ has clustered eigenvalues

Note that reducing $\kappa_2(M^TAM)$ directly implies rapid convergence

• Possible to implement with just $M^T M$ (no need to find M)

The Lanczos algorithm for symmetric eigenproblem (nonexaminable)

Rayleigh-Ritz: given symmetric A and orthonormal Q, find approximate eigenpairs

- 1. Compute $Q^T A Q$
- 2. Eigenvalue decomposition $Q^T A Q = V \hat{\Lambda} V^T$
- 3. Approximate eigenvalues diag $(\hat{\Lambda})$ (Ritz values) and eigenvectors QV (Ritz vectors)

This is a **projection** method (similar alg. available for SVD)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz

- ▶ In this case $Q = Q_k$, so simply $Q_k^T A Q_k = T_k$ (tridiagonal eigenproblem)
- Very good convergence to extremal eigenpairs
 - Recall from Courant-Fisher $\lambda_{\max}(A) = \max_x \frac{x^T A x}{x^T x}$

► Hence
$$\lambda_{\max}(A) \ge \max_{\substack{x \in \mathcal{K}_k(A,b) \\ \text{Lanczos output}}} \frac{x^T A x}{x^T x} \ge \underbrace{\frac{v^T A v}{v^T v}, \quad v = A^{k-1}b}_{k-1 \text{ power method}}$$
, as $v \in \mathcal{K}_k(A,b)$
► Same for λ_{\min} , similar for e.g. λ_2
Experiments with Lanczos (nonexaminable)

Symmetric $A \in \mathbb{R}^{n \times n}$, n = 100, Lanczos/power method with random initial vector b

Convergence to dominant eigenvalue

Convergence of all eigenvalues

Arnoldi for nonsymmetric eigenvalue problems (nonexaminable)

Arnoldi for eigenvalue problems: Arnoldi iteration+Rayleigh-Ritz (just like Lanczos alg)

- 1. Compute $Q^T A Q$
- 2. Eigenvalue decomposition $Q^T A Q = X \hat{\Lambda} X^{-1}$
- 3. Approximate eigenvalues diag($\hat{\Lambda}$) (Ritz values) and eigenvectors QX (Ritz vectors)

As in Lanczos, $Q = Q_k = \mathcal{K}_k(A, b)$, so simply $Q_k^T A Q_k = H_k$ (Hessenberg eigenproblem, ideal for QRalg)

Which eigenvalues are found by Arnoldi?

- ► Krylov subspace is invariant under shift: $\mathcal{K}_k(A, b) = \mathcal{K}_k(A sI, b)$
- ► Thus any eigenvector that power method applied to A − sI converges to should be contained in K_k(A, b)
- ▶ To find other (e.g. interior) eigvals, shift-invert Arnoldi: $Q = \mathcal{K}_k((A sI)^{-1}, b)$

Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

• Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):

- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning

Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

• Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):

- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning
- Randomised algorithms
 - Output differs at every run
 - ▶ Ideally succeed with enormous probability, e.g. $1 \exp(-cn)$
 - Often by far the fastest&only feasible approach
 - Not for all problems—active field of research

We'll cover two NLA topics where randomisation very successful: **low-rank** approximation (randomised SVD), and overdetermined least-squares problems

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0, 1)$.

Key properties of Gaussian matrices:

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0, 1)$.

Key properties of Gaussian matrices:

Orthogonal invariance: If G Gaussian, Q₁GQ₂ is also Gaussian for any fixed Q (independent of G).

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0, 1)$.

Key properties of Gaussian matrices:

- Orthogonal invariance: If G Gaussian, Q₁GQ₂ is also Gaussian for any fixed Q (independent of G).
 - 1. Linear combination of Gaussian random variables is Gaussian.
 - 2. The distribution of a Gaussian r.v. is determined by its mean and variance.
 - 3. $\mathbb{E}[(Qg_i)] = Q\mathbb{E}[g_i] = 0$ (g_i : *i*th column of G), and $\mathbb{E}[(Qg_i)^T(Qg_i)] = Q\mathbb{E}[g_i^Tg_i]Q^T = I$, so each Qg_i is multivariate Gaussian with the same distribution as g_i . Independence of Qg_i, Qg_j is immediate.

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0, 1)$.

Key properties of Gaussian matrices:

- Orthogonal invariance: If G Gaussian, Q₁GQ₂ is also Gaussian for any fixed Q (independent of G).
 - 1. Linear combination of Gaussian random variables is Gaussian.
 - 2. The distribution of a Gaussian r.v. is determined by its mean and variance.
 - 3. $\mathbb{E}[(Qg_i)] = Q\mathbb{E}[g_i] = 0$ (g_i : *i*th column of G), and $\mathbb{E}[(Qg_i)^T(Qg_i)] = Q\mathbb{E}[g_i^Tg_i]Q^T = I$, so each Qg_i is multivariate Gaussian with the same distribution as g_i . Independence of Qg_i, Qg_j is immediate.

Alternatively: joint pdf of $g_i = [g_{11}, \ldots, g_{n1}]^T$ is $\frac{1}{(2\pi)^{n/2}} \exp(-\frac{1}{2}(g_{11}^2 + \cdots + g_{n1}^2))$, and that of $Qg_i = [\tilde{g}_{11}, \ldots, \tilde{g}_{n1}]^T$ is (change of variables, note det Q = 1) is $\frac{1}{(2\pi)^{n/2}} \exp(-\frac{1}{2}(\tilde{g}_{11}^2 + \cdots + \tilde{g}_{n1}^2))$

Marchenko-Pastur rule: "Rectangular random matrices are well conditioned"

Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix $X \in \mathbb{R}^{m \times n}$ $(m \ge n)$ with iid X_{ij} (mean 0, variance 1) follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)

Key fact in many breakthroughs in computational maths!

- Randomised SVD, Blendenpik (randomised least-squares)
- (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix concentration inequalities [Tropp 11], Function approx. by least-squares [Cohen-Davenport-Leviatan 13]

'Fast' (but fragile) alg for $\min_{x} ||Ax - b||_{2}$ $\min_{x} ||Ax - b||_{2}, \qquad A \in \mathbb{R}^{m \times n}, \ m \gg n$

Consider 'row-subselection' algorithm: select s(>n) rows A_1,b_1 , and solve $\hat{x}:= \mathrm{argmin}_x \, \|A_1x - b_1\|_2$

▶
$$\hat{x}$$
 exact solution if $Ax_* = b$ (consistent LS) and A_1 full rank
▶ If $Ax_* \neq b$, \hat{x} can be terrible: e.g. $A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$ where $A_1 = \epsilon I_n(\epsilon \ll 1)$
and $A_i = I_n$ for $i \ge 2$, and $b_i = b_j$ if $i, j \ge 2$. Then $x_* \approx b_2$, but
 $\hat{x} = \operatorname{argmin}_x ||A_1x - b_1||_2$ has $\hat{x} = \frac{1}{\epsilon}b_1$.

,

'Fast' (but fragile) alg for $\min_{x} ||Ax - b||_{2}$ $\min_{x} ||Ax - b||_{2}, \qquad A \in \mathbb{R}^{m \times n}, \ m \gg n$

Consider 'row-subselection' algorithm: select s(>n) rows $A_1,b_1,$ and solve $\hat{x}:= \mathrm{argmin}_x\,\|A_1x-b_1\|_2$

• \hat{x} exact solution if $Ax_* = b$ (consistent LS) and A_1 full rank

• If
$$Ax_* \neq b$$
, \hat{x} can be terrible: e.g. $A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$ where $A_1 = \epsilon I_n(\epsilon \ll 1)$,
and $A_i = I_n$ for $i \ge 2$, and $b_i = b_j$ if $i, j \ge 2$. Then $x_* \approx b_2$, but
 $\hat{x} = \operatorname{argmin}_x ||A_1x - b_1||_2$ has $\hat{x} = \frac{1}{\epsilon}b_1$.
How to avoid such choices? **Randomisation**

Sketch and solve for $\min_x ||Ax - b||_2$

A simple randomised algorithm for $\min_x ||Ax - b||_2$; sketch and solve; draw Gaussian $G \in \mathbb{R}^{s \times m}$ (s > n) and $\mininimize ||G(Ax - b)||_2$.

 $\label{eq:suppose} \text{Suppose } G \in \mathbb{C}^{\tilde{r} \times n} (n < \tilde{r} \ll m) \text{ Gaussian and let } [A \ b] = QR \in \mathbb{C}^{m \times (n+1)}.$

▶ Since by definition $\|G(A\hat{x} - b)\|_2 \le \|G(Ax - b)\|_2$, it follows that

$$\|A\hat{x} - b\|_2 \le \frac{1}{\sqrt{s} - \sqrt{n+1}} \|G(Ax - b)\|_2 \le \frac{\sqrt{s} + \sqrt{n+1}}{\sqrt{s} - \sqrt{n+1}} \|Ax - b\|_2.$$

If
$$s = 4(n+1)$$
, we have $\frac{\sqrt{s} + \sqrt{n+1}}{\sqrt{s} - \sqrt{n+1}} = 3$, so $||Ax_* - b||_2 = 10^{-10} \Rightarrow ||A\hat{x} - b||_2 \le 3 \cdot 10^{-10}$

Randomised least-squares: Blendenpik

[Avron-Maymounkov-Toledo 2010]

$$\min_{x} \|Ax - b\|_2, \qquad A \in \mathbb{R}^{m \times n}, \ m \gg n$$

▶ Traditional method: normal eqn $x = (A^T A)^{-1} A^T b$ or $A = QR, x = R^{-1}(Q^T b)$, both $O(mn^2)$ cost

 \blacktriangleright Randomised: generate random $G \in \mathbb{R}^{4n imes m}$, and

$$G \qquad A = \hat{Q} \hat{R}$$

(QR factorisation), then solve $\min_y \|(A\hat{R}^{-1})y - b\|_2$'s normal eqn via Krylov

- ▶ $O(mn\log m + n^3)$ cost using fast FFT-type transforms for G
- Successful because $A\hat{R}^{-1}$ is well-conditioned

Explaining Blendenpik via Marchenko-Pastur

Claim: $A\hat{R}^{-1}$ is well-conditioned with

$$G \qquad A = \hat{Q} \hat{R} (QR)$$

Show this for $G \in \mathbb{R}^{4n \times m}$ Gaussian:

Proof: Let A = QR. Then $GA = (GQ)R =: \tilde{G}R$

$$\begin{array}{c} \tilde{G} \\ \tilde{$$

Blendenpik: solving $\min_x ||Ax - b||_2$ using \hat{R}

We have $\kappa_2(A\hat{R}^{-1}) =: \kappa_2(B) = O(1);$ defining $\hat{R}x = y$, $\min_x ||Ax - b||_2 = \min_y ||(A\hat{R}^{-1})y - b||_2 = \min_y ||By - b||_2$

▶ B well-conditioned \Rightarrow in normal equation

$$B^T B y = B^T b \tag{1}$$

B well-conditioned $\kappa_2(B) = O(1)$;

solve (1) via CG (or a tailor-made method LSQR; nonexaminable)

exponential convergence, O(1) iterations! (or O(log 1/ϵ) iterations for ϵ accuracy)
 each iteration requires w ← Bw, consisting of w ← R⁻¹w (n × n triangular solve) and w ← Aw (m × nmat-vec multiplication); O(mn) cost overall

Blendenpik experiments

In practice, Blendenpik gets $\approx \times 5$ speedup over classical (Householder-QR based) method when $m \gg n$

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

SVD proof: Take Gram matrix $A^T A$ and its eigendecomposition $A^T A = V \Lambda V^T$. Λ is nonnegative, and $(AV)^T (AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

SVD useful for

- Finding column space, row space, null space, rank, ...
- Matrix analysis, polar decomposition, ...
- Low-rank approximation

(Most) important result in Numerical Linear Algebra Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, find low-rank (rank r) approximation

• Optimal solution
$$A_r = U_r \Sigma_r V_r^T$$
 via truncated SVD
 $U_r = U(:, 1:r), \Sigma_r = \Sigma(1:r, 1:r), V_r = V(:, 1:r)$, giving

$$||A - A_r|| = ||\mathsf{diag}(\sigma_{r+1}, \dots, \sigma_n)|$$

in any unitarily invariant norm [Horn-Johnson 1985]

• But that costs $O(mn^2)$ (bidiagonalisation+QR); look for cheaper approximation

Randomised SVD by HMT

[Halko-Martinsson-Tropp, SIAM Review 2011]

- 1. Form a random (Gaussian) matrix $X \in \mathbb{R}^{n \times r}$, usually $r \ll n$.
- 2. Compute AX.
- 3. QR factorisation AX = QR. 4. $A \approx Q = Q^T A = (QU_0)\Sigma_0 V_0^T$ is rank-*r* approximation.
- \blacktriangleright O(mnr) cost for dense A

▶ Near-optimal approximation guarantee: for any $\hat{r} < r$,

$$\mathbb{E} \|A - \hat{A}\|_F \le \left(1 + \frac{r}{r - \hat{r} - 1}\right) \|A - A_{\hat{r}}\|_F$$

where $A_{\hat{r}}$ is the rank \hat{r} -truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why $\mathbb{E}\|A-\hat{A}\|=O(1)\|A-A_{\hat{r}}\|$

Pseudoinverse and projectors

Given $M \in \mathbb{R}^{m \times n}$ with economical SVD $M = U_r \Sigma_r V_r^T$ $(U_r \in \mathbb{R}^{m \times r}, \Sigma_r \in \mathbb{R}^{r \times r}, V_r \in \mathbb{R}^{n \times r}$ where $r = \operatorname{rank}(M)$ so that $\Sigma_r \succ 0$), the **pseudoinverse** M^{\dagger} is

$$M^{\dagger} = V_r \Sigma_r^{-1} U_r^T \in \mathbb{R}^{n \times m}$$

satisfies MM[†]M = M, M[†]MM[†] = M[†], MM[†] = (MM[†])^T, M[†]M = (M[†]M)^T (which are often taken to be the definition—above is much simpler IMO)
M[†] = M⁻¹ if M nonsingular, M[†]M = I_n(MM[†] = I_m) if m ≥ n(m ≥ n) and M full rank

A square matrix $P \in \mathbb{R}^{n \times n}$ is called a **projector** if $P^2 = P$

- \blacktriangleright *P* diagonalisable and all eigenvalues 1 or 0
- ▶ $||P||_2 \ge 1$ and $||P||_2 = 1$ iff $P = P^T$; in this case P is called orthogonal projector

▶ I - P is another projector, and unless P = 0 or P = I, $||I - P||_2 = ||P||_2$: Schur form $QPQ^* = \begin{bmatrix} I & B \\ 0 & 0 \end{bmatrix}$, $Q(I - P)Q^* = \begin{bmatrix} 0 & -B \\ 0 & I \end{bmatrix}$; see [Szyld 2006]

1. $QQ^T AX = AX (QQ^T \text{ is orthogonal projector onto span}(AX))$. Hence $(I_m - QQ^T)AX = 0$, so $A - \hat{A} = (I_m - QQ^T)A(I_n - XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.

1. $QQ^TAX = AX (QQ^T \text{ is orthogonal projector onto span}(AX))$. Hence $(I_m - QQ^T)AX = 0$, so $A - \hat{A} = (I_m - QQ^T)A(I_n - XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.

2. Set $M^T = (V^T X)^{\dagger} V^T$ where $V = [v_1, \dots, v_{\hat{r}}] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of A ($\hat{r} \leq r$).

1. $QQ^T AX = AX (QQ^T \text{ is orthogonal projector onto span}(AX))$. Hence $(I_m - QQ^T)AX = 0$, so $A - \hat{A} = (I_m - QQ^T)A(I_n - XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.

- 2. Set $M^T = (V^T X)^{\dagger} V^T$ where $V = [v_1, \dots, v_{\hat{r}}] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of A ($\hat{r} \leq r$).
- 3. $VV^T(I XM^T) = VV^T(I X(V^TX)^{\dagger}V^T) = 0$ if V^TX full row-rank (generic assumption), so $A \hat{A} = (I_m QQ^T)A(I VV^T)(I_n XM^T)$.

- 1. $QQ^T AX = AX (QQ^T \text{ is orthogonal projector onto span}(AX))$. Hence $(I_m QQ^T)AX = 0$, so $A \hat{A} = (I_m QQ^T)A(I_n XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.
- 2. Set $M^T = (V^T X)^{\dagger} V^T$ where $V = [v_1, \dots, v_{\hat{r}}] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of A ($\hat{r} \leq r$).
- 3. $VV^T(I XM^T) = VV^T(I X(V^TX)^{\dagger}V^T) = 0$ if V^TX full row-rank (generic assumption), so $A \hat{A} = (I_m QQ^T)A(I VV^T)(I_n XM^T)$.
- 4. Taking norms, $||A \hat{A}||_2 = ||(I_m QQ^T)A(I VV^T)(I_n XM^T)||_2 = ||(I_m QQ^T)U_2\Sigma_2V_2^T(I_n XM^T)||_2$ where $[V, V_2]$ is orthogonal, so

$$||A - \hat{A}||_{2} \le ||\Sigma_{2}||_{2} ||(I_{n} - XM^{T})||_{2} = \underbrace{||\Sigma_{2}||_{2}}_{\text{optimal rank-}\hat{r}} ||XM^{T}||_{2}$$

To see why $||XM^T||_2 = O(1)$ (with high probability), we need random matrix theory

$\|XM^T\|_2 = O(1)$

Recall we've shown for $M^T = (V^TX)^\dagger V^T \ X \in \mathbb{R}^{n \times r}$

$$\|A - \hat{A}\|_{2} \le \|\Sigma_{2}\|_{2} \|(I_{n} - XM^{T})\|_{2} = \underbrace{\|\Sigma_{2}\|_{2}}_{\text{optimal rank} \cdot \hat{r}} \|XM^{T}\|_{2}$$

Now $||XM^T||_2 = ||X(V^TX)^{\dagger}V^T||_2 = ||X(V^TX)^{\dagger}||_2 \le ||X||_2 ||(V^TX)^{\dagger}||_2$. Assume X is random Gaussian $X_{ij} \sim \mathcal{N}(0, 1)$. Then

V^TX is a Gaussian matrix (orthogonal×Gaussian=Gaussian (in distribution); exercise), hence ||(V^TX)[†]|| = 1/σ_{min}(V^TX) ≤ 1/(√r - √r̂) by M-P
 ||X||₂ ≤ √m + √r by M-P

Together we get $\|XM^T\|_2 \lesssim \frac{\sqrt{m} + \sqrt{r}}{\sqrt{r} - \sqrt{\hat{r}}} = "O(1)"$

When X non-Gaussian random matrix, perform similarly, harder to analyze

Precise analysis for HMT (nonexaminable)

Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any $\hat{r} < r$, $\mathbb{E} \| E_{\text{HMT}} \|_F \le \sqrt{\mathbb{E} \| E_{\text{HMT}} \|_F^2} = \sqrt{1 + \frac{r}{r - \hat{r} - 1}} \| A - A_{\hat{r}} \|_F.$

PROOF. First ineq: Cauchy-Schwarz. $\|E_{\mathrm{HMT}}\|_F^2$ is

$$\begin{aligned} \|A(I - VV^{T})(I - \mathcal{P}_{X,V})\|_{F}^{2} &= \|A(I - VV^{T})\|_{F}^{2} + \|A(I - VV^{T})\mathcal{P}_{X,V}\|_{F}^{2} \\ &= \|\Sigma_{2}\|_{F}^{2} + \|\Sigma_{2}\mathcal{P}_{X,V}\|_{F}^{2} = \|\Sigma_{2}\|_{F}^{2} + \|\Sigma_{2}(V_{\perp}^{T}X)(V^{T}X)^{\dagger}V^{T}\|_{F}^{2}. \end{aligned}$$

Now if X is Gaussian then $V_{\perp}^T X \in \mathbb{R}^{(n-\hat{r}) \times r}$ and $V^T X \in \mathbb{R}^{\hat{r} \times r}$ are independent Gaussian. Hence by [HMT Prop. 10.1] $\mathbb{E} \|\Sigma_2 (V_{\perp}^T X) (V^T X)^{\dagger}\|_F^2 = \frac{r}{r-\hat{r}-1} \|\Sigma_2\|_F^2$, so

$$\mathbb{E} \|E_{\text{HMT}}\|_{F}^{2} = \left(1 + \frac{r}{r - \hat{r} - 1}\right) \|\Sigma_{2}\|_{F}^{2}.$$

Generalized Nyström (nonexaminable)

$$X \in \mathbb{R}^{n \times r}$$
 as before; set $Y \in \mathbb{R}^{n \times (r+\ell)}$, and [N. 2020]
$$\hat{A} = (AX(Y^TAX)^{\dagger}Y^T)A = \mathcal{P}_{AX,Y}A$$

Then $A - \hat{A} = (I - \mathcal{P}_{AX,Y})A = (I - \mathcal{P}_{AX,Y})A(I - XM^T)$; choose M s.t. $XM^T = X(V^TX)^{\dagger}V^T = \mathcal{P}_{X,V}$. Then $\mathcal{P}_{AX,Y}, \mathcal{P}_{X,V}$ projections, and

$$\begin{aligned} \|A - \hat{A}\| &= \|(I - \mathcal{P}_{AX,Y})A(I - \mathcal{P}_{X,V})\| \\ &\leq \|(I - \mathcal{P}_{AX,Y})A(I - VV^{T})(I - \mathcal{P}_{X,V})\| \\ &\leq \|A(I - VV^{T})(I - \mathcal{P}_{X,V})\| + \|\mathcal{P}_{AX,Y}A(I - VV^{T})(I - \mathcal{P}_{X,V})\|. \end{aligned}$$

- ▶ Note $||A(I VV^T)(I P_{X,V})||$ exact same as HMT error
- Extra term $\|\mathcal{P}_{AX,Y}\|_2 = O(1)$ as before if c > 1 in $Y \in \mathbb{R}^{m \times cr}$
- Overall, about $(1 + \|\mathcal{P}_{AX,Y}\|_2) \approx (1 + \frac{\sqrt{n} + \sqrt{r+\ell}}{\sqrt{r+\ell} \sqrt{r}})$ times bigger expected error than HMT, still near-optimal and much faster $O(mn \log n + r^3)$

Experiments: dense matrix

Dense $30,000 \times 30,000$ matrix w/ geometrically decaying σ_i

HMT: Halko-Martinsson-Tropp 11, GN: generalized Nyström , SVD: full svd

- ▶ Randomised algorithms are very competitive until $r \approx n$
- error $||A \hat{A}_r|| = O(||A A_{\hat{r}}||)$, as theory predicts

MATLAB codes

Setup:

n = 1000; % size
A = gallery('randsvd',n,1e100); % geometrically decaying singvals
r = 200; % rank

Then

HMT:

```
X = randn(n,r);
AX = A*X;
[Q,R] = qr(AX,0); % QR fact.
At = Q*(Q'*A);
```

```
norm(At-A,'fro')/norm(A,'fro')
ans = 1.2832e-15
```

Generalized Nyström :

X = randn(n,r); Y = randn(n,1.5*r); AX = A*X; YA = Y'*A; YAX = YA*X; [Q,R] = qr(YAX,0); % stable p-inv At = (AX/R)*(Q'*YA);

norm(At-A,'fro')/norm(A,'fro')
ans = 2.8138e-15

Important (N)LA topics not treated

tensors

- ► FFT (values↔coefficients map for polynomials)
- sparse direct solvers
- multigrid
- functions of matrices
- generalised, polynomial eigenvalue problems
- perturbation theory (Davis-Kahan etc)
- compressed sensing
- model order reduction
- communication-avoiding algorithms

[Kolda-Bader 2009]

[e.g. Golub and Van Loan 2012]

[Duff, Erisman, Reid 2017]

[e.g. Elman-Silvester-Wathen 2014]

[Higham 2008]

[Guttel-Tisseur 2017]

[Stewart-Sun 1990]

[Foucart-Rauhut 2013]

[Benner-Gugercin-Willcox 2015]

[e.g. Ballard-Demmel-Holtz-Schwartz 2011]

C6.1 Numerical Linear Algebra, summary

1st half

- SVD and its properties (Courant-Fisher etc), applications (low-rank)
- ▶ Direct methods (LU) for linear systems and least-squares problems (QR)
- Stability of algorithms

2nd half

- Direct method (QR algorithm) for eigenvalue problems, SVD
- Krylov subspace methods for linear systems (GMRES, CG) and eigenvalue problems (Arnoldi, Lanczos)
- Randomised algorithms for SVD and least-squares

Where does this course lead to?

Courses with significant intersection

- C6.3 Approximation of Functions (Prof. Nick Trefethen, MT): Chebyshev polynomials/approximation theory
- C7.7 Random Matrix Theory (Prof. Jon Keating): for theoretical underpinnings of Randomised NLA
- C6.4 Finite Element Method for PDEs (Prof. Patrick Farrell): NLA arising in solutions of PDEs
- ► C6.2 Continuous Optimisation (Prof. Cora Cartis): NLA in optimisation problems

and many more: differential equations, data science, optimisation, machine learning,... NLA is everywhere in computational maths

Thank you for your interest in NLA!