C6.1 Numerical Linear Algebra

SVD and its properties, applications
Direct methods for linear systems and least-squares problems

Iterative (Krylov subspace) methods for linear systems
Iterative (Krylov subspace) methods for eigenvalue problems

>

>

» Direct methods for eigenvalue problems

>

>

» Randomised algorithms for SVD and least-squares



References
» Trefethen-Bau (97): Numerical Linear Algebra

P covers essentials, beautiful exposition
» Golub-Van Loan (12): Matrix Computations
» classic, encyclopedic
» Horn and Johnson (12): Matrix Analysis (& topics (86))
> excellent theoretical treatise, little numerical treatment
» J. Demmel (97): Applied Numerical Linear Algebra
» impressive content, some niche
» N. J. Higham (02): Accuracy and Stability of Algorithms
» bible for stability, conditioning

» H. C. Elman, D. J. Silvester, A. J. Wathen (14): Finite elements and fast iterative
solvers

» PDE applications of linear systems, preconditioning



What is numerical linear algebra?

The study of numerical algorithms for problems involving matrices

Two main (only!?) problems:
Ar =50
Ar = \x

A: eigenvalue (eigval), z: eigenvector (eigvec)

1. Linear system

2. Eigenvalue problem



What is numerical linear algebra?

The study of numerical algorithms for problems involving matrices

Two main (only!?) problems:
Ar =50
Ar = \x

A: eigenvalue (eigval), z: eigenvector (eigvec)
3. SVD (singular value decomposition)

A=UxV’

U,V orthonormal/orthogonal, ¥ diagonal

1. Linear system

2. Eigenvalue problem



Why numerical linear algebra?

» Many (in fact most) problems in scientific computing (and even machine learning)
boil down to a linear problem
» Because that's often the only way to deal with the scale of problems we face today!
(and in future)
» For linear problems, so much is understood and reliable algorithms available
» Az =b: e.g. Newton's method for F'(z) =0, F' : R — R" nonlinear
1. start with initial guess z(°) € R™
2. find Jacobian matrix J € R™*", Jj; = 25| _ )
3. update z(M) := () — J=1F(2(9)), repeat

» Az = Ax: e.g. Principal component analysis (PCA), data compression,

Schrédinger eqn., Google pagerank,

» Other sources: differential equations, optimisation, regression, data analysis, ...



Basic linear algebra review

For A € R™*™, (or C™*™; hardly makes difference)
The following are equivalent (how many can you name?):

1. A is nonsingular.



Basic linear algebra review

For A € R™*™, (or C™*™; hardly makes difference)
The following are equivalent (how many can you name?):

1. A is nonsingular.
2. Ais invertible: A7! exists.

3. The map A : R"™ — R" is a bijection.

4. all n eigenvalues of A are nonzero.

5. all n singular values of A are positive.

6. rank(A) = n.

7. the rows of A are linearly independent.

8. the columns of A are linearly independent.

9. Ax = b has a solution for every b € C™.
10. A has no nonzero null vector. Neither does AT
11. A*Ais positive definite (not just semidefinite).
12. det(A) # 0.
13. A~ ! exists such that A=A = AA~! =1,,.
14. ...



Structured matrices

For square matrices,

>

v

vvyyvyy

Symmetric: A = AT, ie. Ajj = Aj; (Hermitian: A;; = ffﬂ) has eigenvalue
decomposition A = VAV, V orthogonal, A = diag(\1,..., \n).

> symmetric positive (semi)definite A = (>)0: symmetric and positive eigenvalues
Orthogonal: AAT = ATA =T (Unitary: AA* = A*A=1) — note ATA=1
implies AAT =T
Skew-symmetric: A;; = —Aj; (skew-Hermitian: A;; = —A_ﬂ)
Normal: ATA = AAT
Tridiagonal: A;; =0 if [i — j| > 1
Triangular: A;; =0ifi>j

For (possibly nonsquare) matrices A € C™*™, m > n

>
>
>

Hessenberg: A;; =0ifi > j+1
“orthonormal™: A*A = I,
sparse: most elements are zero

other structures: Hankel, Toeplitz, circulant, symplectic, ...



Vector norms
For vectors z = [21,...,2,]T € C"
> pnorm [[allp = (Jor]? + [zafP + - + |za )17
> Euclidean norm=2-norm ||z|l2 = \/|z1[2 + |z2]2 + - - + [2,[?
> Lnorm [zf|y =[] + |w2] + - + [zn]
> oo-norm ||z||s = max; ||

Norm axioms
» ||az|| = |al||z|| for any a € C
> ||z >0and [[z]| =0 2=0
>z +yll < =l + [yl

Inequalities: For x € C™,
> a2 < ol < llll2
> ﬁHle < lzll2 < [lz]lx
> Lzl < [[@lloo < [l

|| - ||2 is unitarily invariant as ||[Uzx||2 = ||z||2 for any unitary U and any z € C™.



Cauchy-Schwarz inequality
For any z,y € R",
Tyl < Jlz)l2]lyll2

Proof:
» For any scalar ¢, ||z — cy||? = ||z]|? — 2cxTy + 2||y|?.
> This is minimised w.r.t. ¢ at ¢ = % with minimiser lz]|? — (z”y)®
s  l? Tyll”

» Since the minimal value must be > 0, the CS inequality follows.



Matrix norms

For matrices A ¢ C™*",

A
> p-norm ||A||, = max, ””;‘J‘Uf’

> 2-norm=spectral norm (=operator norm) ||All2 = omax(A) (largest singular value)
> Lnorm [|Afly = max; 37" |Aji
> oco-norm [[Alloe = max; >0, Ayl

» Frobenius norm ||A|lF = />, > | A |2

(2-norm of vectorization)
» trace norm=nuclear norm || A|. = Z;n:lrll(m’n) ai(A)

Red: unitarily invariant norms ||A|| = [[UAV|| for any unitary (or orthogonal) U,V

Norm axioms hold for each. Inequalities: For A € C™*", (exercise)
> =l Al < [[A]lz < vimll Al
> =4l < (1Al < vall Al

> [[Allz < [[Allr < min(m, n)[All2



Subspaces and orthonormal matrices
Subspace S of R™: vectors of form zgl:l cvi, ¢ €R
> v1,...,vq are basis vectors, linearly independent
> resSe Zgzl CiV;
» d is the dimension of S

Representation: S =span(V) (i.e., z € S & o = V¢), or just V; often convenient if
V(= @) is orthonormal



Subspaces and orthonormal matrices
Subspace S of R™: vectors of form Zle cvi, ¢ €R
> v1,...,vq are basis vectors, linearly independent
> resSe Zgzl CiV;
» d is the dimension of S

Representation: S =span(V) (i.e., z € S & o = V¢), or just V; often convenient if
V(= @) is orthonormal

Lemma

S1 = span(Vy) and Sy = span(Vs) where V; € R™*% and V, € R™"¥%, with
di+do >mn. Thendz #0in S1 NSy, i.e., x = Vicy = Vace for some vectors ¢y, cs.

Proof: Let M := [V1, V5], of size n x (d1 + d2). Since di + da > n by assumption, M

has a right null vector. Mc = 0. Write ¢ = l “ ]



Some useful results
» (AB)T = BT AT
» If A, B invertible, (AB)™! = B~1A~!
» If A, B square and AB =1, then BA=1
I, x|7" [, -Xx
lo L |0 I
» Neumann series: if || X| < 1 in any norm,

I-X)'"=I+X+X*+X°+--

» Trace Trace(A) = X1, A;; (sum of diagonals, A € R™*™). For any X,Y s.t.
Trace(XY') = Trace(Y X). For B € R™*", we have
IBI3 = ¥ %, |Byj|2 = Trace(B” B).

» Triangular structure is invariant under addition, multiplication, and inversion

» Symmetry is invariant under addition and inversion, but not multiplication; AB
usually not symmetric even if A, B are



SVD: the most important matrix decomposition

> Symmetric eigenvalue decomposition: A = VAV
for symmetric A € R™*", where VIV = I,,, A = diag(\1, ..., \n).

» Singular Value Decomposition (SVD): A = UXVT

for any A € R™*" m >n. Here UTU = VTV = I,,, ¥ = diag(oy, . ..

o1 >092> >0, 2>0.



SVD: the most important matrix decomposition

» Symmetric eigenvalue decomposition: A = VAV’
for symmetric A € R"*", where VTV = I,,, A = diag(\1, ..., \n).

> Singular Value Decomposition (SVD): A = UXV7T
for any A € R™*" m >n. Here UTU = VTV = I, © = diag(o1,...,0n),
01202220, 20.

Terminologies:
» o, singular values of A.
> rank(A): number of positive singular values.
» The columns of U: the left singular vectors, columns of V': right singular vectors



SVD: the most important matrix decomposition

> Symmetric eigenvalue decomposition: A = VAV
for symmetric A € R™*", where VIV = I,,, A = diag(\1, ..., \n).

» Singular Value Decomposition (SVD): A = UXVT
for any A € R™*" m >n. Here UTU = VTV = I, ¥ = diag(o1,...,04),
o1 >092> >0, 2>0.

SVD proof: Take Gram matrix AT A and its eigendecomposition ATA = VAVT. Ais
nonnegative, and (AV)T(AV) is diagonal, so AV = UY. for some orthonormal U.
Right-multiply V7'



SVD: the most important matrix decomposition

> Symmetric eigenvalue decomposition: A = VAV
for symmetric A € R™*", where VIV = I,,, A = diag(\1, ..., \n).

» Singular Value Decomposition (SVD): A = UXVT
for any A € R™*" m >n. Here UTU = VTV = I, ¥ = diag(o1,...,04),
o1 >092> >0, 2>0.

SVD proof: Take Gram matrix AT A and its eigendecomposition ATA = VAVT. Ais
nonnegative, and (AV)T(AV) is diagonal, so AV = UY. for some orthonormal U.
Right-multiply V7'

)
Full SVD: A=U M VT where U € R™*™ orthogonal



Example: computation

-1 =2
2 1

Let A = ) ol To compute the SVD,
0 1

4 6
2. M(ATA) = {10,2} (e.g. via characteristic polynomial). The eigvec matrix is

1. Compute the Gram matrix AT A = [6 4}.

V=L [1 _11} (e.g. via the null vectors of A —\I). So ATA = V¥2VT where

v2 |1
Y= V10
— vl
-3/v/20 —1/2
3. Let U = AVY ! = S/m —1/2 , which is orthonormal. Thus A = UXVT.
1/vV20 —1/2

1/v/20  1/2



rank, column /row space, etc
From the SVD one gets

» rank r of A € R™*™: number of nonzero singular values o;(A) (=# linearly
indep. columns, rows)

» We can always write A = ZgiTk(A) aiuiviT.

» column space (linear subspace spanned by vectors Ax): span of U = [ug, ..., u,]

T

» row space: row span of v{ , ..., v]

» null space: vyy1,...,0p



SVD and eigenvalue decomposition
» V eigvecs of AT A

» U eigvecs (for nonzero eigvals) of AAT (up to sign)
> g, = /(AT A)

» Think of eigenvalues vs. SVD of symmetric matrices, unitary, skew-symmetric,
normal matrices, triangular,...

» Jordan-Wieldant matrix [f?T ’5‘]: eigvals +0;(A), and m — n copies of 0. Eigvec

matrix is [g 7UV UOL], ATU, =0



Uniqueness etc

» U,V (clearly) not unique: £1 multiplication possible (but be careful—not
arbitarily)

» When multiple singvals exist 0; = g;41, more degrees of freedom

» Extreme example: what is the SVD(s) of an orthogonal matrix?



Recap: spectral norm of matrix

A
1Azl _ o | Az 2= o1 (A)

Alls = max =
FAll = max T = max,

Proof: Use SVD



Recap: spectral norm of matrix

| Az
ol e, l4allz= o1 (4)

Al = max
Proof: Use SVD

[Az]|2 = |USV |2
= |=VTz|]y by unitary invariance

= [IZyll2 - with [ly[l2 =1
n

=\ 2_ oty
i=1

n
> oty? = oillyll3 = o1
=1

IN




Recap: spectral norm of matrix

|| ||2
A AZL‘ =0 A

Proof: Use SVD

[Az]|2 = |USV |2
= |=VTz|]y by unitary invariance

= [[Zylla with [ly]2 =1

n
_ 2,2
= Z"z’yi
i=1

n
<\ [D oty =aillyls = o1
=1

Frobenius norm: || Allr = />0 > [Ai|? = /2oin1(0i(A))? (exercise)




Low-rank approximation of a matrix
Given A € R™*" find A, such that

» Storage savings (data compression)




Optimal low-rank approximation by SVD
Truncated SVD: A, = U, %, V.I', ¥, = diag(o1, ..., 0/)

A=Az =0rsi= min  [A— Bl

rank(B)=r
o1U1V1 a2U2V2
A’l‘ = [* * * *} + . + [* * * *]

o1ulv1 OTpUrUp

OnUnUn



Optimal low-rank approximation by SVD
Truncated SVD: A, = U, %, VI, ¥, = diag(o,...,0,)

JA~Allz=0r1= min [|A— Bl
rank(B)=r

» Good approximation if 0,41 < o7:

» Optimality holds for any unitarily invariant norm
» Prominent application: PCA
» Many matrices have explicit or hidden low-rank structure (nonexaminable)



SVD optimality proof in spectral norm
Truncated SVD: A, = U,.%, VI, &, = diag(oy,...,0,)

|4 = A,ll2 = 0741 = min |4 - Bl

rank(B)=r



SVD optimality proof in spectral norm
Truncated SVD: A, = U, %, VI, ¥, = diag(oy,...,0,)

|4 = A,ll2 = 0741 = min |4 - Bl

rank(B)=r

» Since rank(B) < 7, we can write B = By B3 where By, By have r columns.



SVD optimality proof in spectral norm
Truncated SVD: A, = U, %, V.I', ¥, = diag(o1, ..., 0/)

|4 = A,ll2 = 0741 = min |4 - Bl

rank(B)=r

» Since rank(B) < 7, we can write B = By B3 where By, By have r columns.
» There exists orthonormal W € C™*("~") st. BW = 0. Then
|A=Blls > [[(A = B)W|2 = [AW||s = [US(VTW)]2.



SVD optimality proof in spectral norm
Truncated SVD: A, = U, %, VI, ¥, = diag(oy,...,0,)

|A = Arlls = 0741 = mingy e, 14 - Bz

» Since rank(B) < 7, we can write B = By B3 where By, By have r columns.

> There exists orthonormal W € C**("=") st. BW = 0. Then
|4~ Bl > [I(A— BYWlis = [AW |2 = [US(VTW)s.

» Now since W is (n — r)-dimensional, there is an intersection between W and
[v1,...,0r4+1], the (r + 1)-dimensional subspace spanned by the leading r + 1 left
singular vectors ([W, v1,...,v41][%4 ] = 0 has a solution; then Wz is such a

vector).



SVD optimality proof in spectral norm
Truncated SVD: A, = U, %, V.I', ¥, = diag(o1, ..., 0/)

|4 = A,ll2 = 0741 = min |4 - Bl

rank(B)=r

» Since rank(B) < 7, we can write B = By B3 where By, By have r columns.
> There exists orthonormal W € C**("=") st. BW = 0. Then

|A = Blls > (A= BYWIls = [|AW 2 = [US(VTW)]l.
» Now since W is (n — r)-dimensional, there is an intersection between W and

[v1,...,0r4+1], the (r + 1)-dimensional subspace spanned by the leading r + 1 left
singular vectors ([W, v1,...,v41][%4 ] = 0 has a solution; then Wz is such a
vector).

» Then scale 1, 22 to have unit norm, and [|[USVIWa1|ls = ||Uprs1 X4 122]|2,
Where U,41,X,41 are leading r + 1 parts of U, X. Then ||Up11X, 11912 > 0741
can be verified directly.



Low-rank approximation: image compression

grayscale image=matrix

UNIVERSITY OF

OXFORD

original

PRI

THIMEARITY OF

OXTEORD

rank 10

UMIMERSBITY OF

OXEFORD

rank 20

| IEE

AETEANITE AF

OXTOKD

UNIVERSITY OF

OXFORD

rank 50




Courant-Fischer minmax theorem
ith largest eigval A; of symmetric/Hermitian A is (below z # 0)

. 2l Az . xT Az
Ai(A) = max min — = min  max—
dimS=i ze€S x*x dim S=n—i+1 z€S T T

Analogously, for any rectangular A € C"*"(m > n), we have

| Az||2 (_ W m HAH?!z)'

 dimS=n—i+l 2€8 |72

0i(A) = max min
dim S=i z€S$S HVLHQ
> minges ||z),=1 [[A2]l2 = mingro_y, |yl.=1 [AQY[l2 = omin(AQ) = 0i(AQ),
where span(Q) = S.
» C-F says 0;(A) is maximum possible value over all subspaces S of dimension i.



Courant-Fischer minmax theorem
ith largest eigval \; of symmetric/Hermitian A is (below x # 0)

T T A
Ai(A) = max min — Az <— min  max - x)

dimS=i zeS 2Tz \ dimS=n—it+1 zeS8 zTx

Analogously, for any rectangular A € C™*"(m > n), we have

a dim S=n—i+1 z€S Hx||2

0i(A) = max min
dim S=i z€8S H‘LHZ

Proof for (2):

|AJZ|2< . m ||Ax|2>.

(1)



Courant-Fischer minmax theorem
ith largest eigval \; of symmetric/Hermitian A is (below x # 0)

2T Ax . T Az
Ai(A) = max min — = min  max —=
dimS=i z€S ' X dimS=n—i+1 z€S§ T X

Analogously, for any rectangular A € C™*"(m > n), we have

0i(A) = max min =
dim S=n—i+1 z€S Hx||2

dimS=i z€S ||z||2

Proof for (2):
1. Fix S and let V; = [v;,...,v,]. We have

|Azz|2< . m ||Ax|2>.

(1)

dim(S) + dim(span(V;)) =i+ (n — i+ 1) = n + 1, so Jintersection w € SN V;,

[wll2 = 1.



Courant-Fischer minmax theorem
ith largest eigval \; of symmetric/Hermitian A is (below x # 0)

2T Ax . T Az
Ai(A) = max min — = min  max —= (1)
dimS=i z€S ' X dimS=n—i+1 z€S§ T X

Analogously, for any rectangular A € C™*"(m > n), we have

0i;(A) = max min | A, (— min  max ||A:1:|2> . (2)

dim S=i €S HLHz N dim S=n—i+1 z€S HJ?HQ

Proof for (2):

1. Fix S and let V; = [v;,...,v,]. We have
dim(S) + dim(span(V;)) =i+ (n — i+ 1) = n+ 1, so Jintersection w € SNV},
[w]l2 = 1.

2. For this w, ||Aw||2 = |diag(ci, . .., 0n)(ViIw)|l2 < o;
[ Az|2
llzll2 -

thus o;(A) > minges



Courant-Fischer minmax theorem
ith largest eigval \; of symmetric/Hermitian A is (below x # 0)

2T Ax . T Az
Ai(A) = max min — = min  max —= (1)
dimS=i z€S ' X dimS=n—i+1 z€S§ T X

Analogously, for any rectangular A € C™*"(m > n), we have

0i;(A) = max min | A, (— min  max ||A:1:|2> . (2)

dim S=i €S HLHz N dim S=n—i+1 z€S HJZHQ

Proof for (2):

1. Fix S and let V; = [v;,...,v,]. We have
dim(S) + dim(span(V;)) =i+ (n — i+ 1) = n+ 1, so Jintersection w € SNV},

[wll2 = 1.
2. For this w, ||Aw||2 = |diag(ci, . .., 0n)(ViIw)|l2 < o;
thus 0;(A) > mingegs ”ﬁfﬂ!?

3. For the reverse inequaltiy, take S = [v1, ..., v;], for which w = v;.



Weyl's inequality
ith largest eigval \; of symmetric/Hermitian A is (below = # 0)

T T
Ai(A) = max min © Az (— min  max Ax)

dimS=izes a2Tx \ dimS=n—it1 zeS xzTx

Analogously, for any rectangular A € C™*™(m > n), we have

i) = g mig A (= iy g I,
dimS=i z€S ||z|2 dimS=n—i+1 z€S ||z||2
Corollary: Weyl's inequality (Proof: exercise)
» for singular values
> 0i(A+ E) € 0i(A) + [=| Ell2, || E]2]
> Special case: [[All2 = [|Ell2 < [[A+ Ell2 < [|All2 + [ E]2
> for symmetric eigenvalues \;(A + E) € X\i(A) + [—||E||2, || E||2]
Singvals and symmetric eigvals are insensitive to perturbation (well conditioned).
Nonsymmetric eigvals are different!



Eigenvalues of nonsymmetric matrices are sensitive

Consider eigenvalues of a Jordan block and its perturbation

1 1 1 1

1 . 1
J = eER™", J+E=

A(J) =1 (n copies), but [A\(J 4+ E) — 1| ~ €'/



More applications of C-F

> o; ([j; ) > max(ai(Al),Ui(A2))




More applications of C-F

> o; ([j; > > max(ai(Al),Ui(Ag))

Proof (sketch): LHS = maxqim s=i Mminges |z(],=1

%)

, and for any =,
2

)

> max (|| Ay z]|2, || A2z |2).
2




More applications of C-F

> o; ([j; > > max(ai(Al),Ui(Ag))

Proof (sketch): LHS = maxgim s—; MiNges ||z)l,=1
> max(||Aiz|)2, || A2z]]2).

Ay .
Az,

> ai([Al AQ}) > max(0;(A1), 0i(A2))

, and for any =,
2

)




More applications of C-F

> o; ([j; > > max(ai(Al),Ui(Ag))

Proof (sketch): LHS = maxgim s—; MiNges ||z)l,=1
> max(||Aiz|)2, || A2z]]2).

Ay .
Az,

> ai([Al Ag}) > max(0;(A1), 0i(A2))

, and for any =,
2

)

, B . 1 :
Proof: LHS = maxgim s—; mm[%]e& [g] L: [Al A2i| LUJ 2, while
oi(A1) =

. €1
max min A1 Ao l ]
dim S=i,range(S)crange( 61 ) [23]es)| [7:] ‘2:1 [ } 2]y

Since the latter maximises over a smaller S, the former is at least as big.



Matrix decompositions

» SVD A=UxVT
» Eigenvalue decomposition A = XAX !
» Normal: X unitary X*X =1

» Symmetric: X unitary and A real
PR

» Jordan decomposition: A = XJX !, J = diag( Moo )

1

Ai
» Schur decomposition A = QT Q*: @ orthogonal, T upper triangular
» QR: @ orthonormal, U upper triangular
» LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available



Solving Az = b via LU decomposition
If A= LU is available

* ox ok k% * * % * %

* % ok k% * % * EE
A=+ * *x x x| = [« * = x x| = LU

*  ox ok k% * % ok ok * %

* ok ok k% * % ok kX *

solving Ax = b can be done as follows:

1. Solve Ly = b for y,

2. solve Uz = y for x.
Each is a triangular system, which is easy to solve via forward (or backward)
substitution for Ly = b (Uz = y).



LU decomposition

Let A € R™*™, Suppose we can decompose (or factorise)

A:

* ¥ X x %
R

L: lower triangular, U:

*

*

E I R N
S O

* %
* % *
* x| = [* x
* % *
* % * ok ok Xk

upper triangular. How to find L,U?

* ¥ ¥ %

I

=LU



LU decomposition

Let A € R™*™, Suppose we can decompose (or factorise)

k ok ok k% * *
k% ok k% * %
A= |x x x *x x| = |x x =
ko ok ok kX EE
ko ok ok kX ko ko ok ko

L: lower triangular, U: upper triangular. How to find L,U?

Fa] -
* I
A = = [* * ok % *] -+ * ok ox %
* * ok ® %
L L = % * x
7] [0
* *
* *
L L*

* ¥ ¥ %

I

LU



LU decomposition cont'd

First step:
: * ok ox %
A:*[*****]—I—****
N % x %
" % x %
LUy
algorithm:
A1n Az Az A Ags [L11 [Uin Uiz Uiz Uwis Uss
Az Loy
As1 = | Ls:1
A41 L41
A51 L51 L
M1 T MA1r Az Az Aia Ass
A21/a
= A31/a
Asr/a
LAs1/a J

=L1U1 (a=An)

* % % ¥

* % % ¥

EE

EE

EE

L

* % % ¥

X % % ¥



LU decomposition cont'd 2

A—[][*****]+ ][000**]4-

= LUy + LoUs + LsUs + LUy + LsUs

[0****]+

[0000+]

¥ ¥ O OO
¥ O O OO

(0}
*
*
*
*

¥ Ok X * ¥

U * %k ok ok %
U, ¥ ok * ok ok %
=[L1,Lo,...,Ls] | . | = |* = = %k %
: * * * * * *
Us * ok k% ok ok *

(note: nonzero structure crucial in final equality)



Solving Az = b via LU

A=LU € R"™"

L: lower triangular, U: upper triangular
» Cost %n?’ flops (floating-point operations)
» For Ax =0,
» first solve Ly = b, then Ux =y. Then b= Ly = LUx = Ax.
» triangular solve is always backward stable: e.g. (L + AL)j = b (see Higham's book)

> Pivoting crucial for numerical stability: PA = LU, where P: permutation matrix.
Then stability means LU = PA + AA
» Even with pivoting, unstable examples exist, but still always stable in practice and
used everywhere!
» Special case where A > 0 positive definite: A = RT R, Cholesky factorization,
ALWAYS stable, %n3 flops



LU decomposition with pivots

Ajn Az Az Ay Ags 1 Ajn Az Az Ay Ags

A2 Azi/a ok ok %
Azt = | Asi/a —+ * ok ok %
Aq Aqn/a * ok ok ok
As1 A51/a * ok ok ok

0 1
Trouble if a = A1; = 0! e.g. no LU for 1 O] solution: pivot, permute rows s.t.

largest entry of first (active) column is at top. = PA = LU, P: permutation matrix
» PA = LU exists for any nonsingular A (exercise)
» for Az = b, solve LUx = PTh
» the nonzero structure of L;,U; is preserved under P
> cost still Zn® + O(n?)



Cholesky factorisation for A > 0
If A > 0 (symmetric positive definite (S)PD<A;(A4) > 0), two simplifications:

» We can take U; = LT =: R; by symmetry = %n3 flops
> No pivot needed

* Ok Kk ¥
| IS

LR
L
LR

Ri1RT also PD

Notes:
» diag(R) no longer 1's
» A can be written as A = RTR for some R € R™*" iff A = 0 (\i(A) > 0)
» Indefinite case: when A = A* but A not PD, 3 A = LDL* where D diagonal
(when A € R™ "™, D can have 2 x 2 diagonal blocks), L has 1's on diagonal



QR factorisation
For any A € C™*™, 3 factorisation

Q € R™*™: orthonormal, R € R™*™: upper triangular

» Many algorithms available: Gram-Schmidt, Householder, CholeskyQR, ...

» various applications: least-squares, orthogonalisation, computing SVD, manifold
retraction...

» With Householder, pivoting A = QRP not needed for numerical stability

> but pivoting gives rank-revealing QR (nonexaminable)



QR via Gram-Schmidt

Gram-Schmidt: Given A = [a1,a2,...,a,] € R™*™ (assume full rank rank(A) = n),
find orthonormal [q1, ..., qy] s.t. span(qi,...,q,) =span(ai,...,a,)
G-S process: g1 = paly, then G = as — qigf @z, &2 = 2y,
. - i1 G
repeat for j = 3,...,n: §; = a; — Y11 Giql aj, ¢j = ||qj—||'



QR via Gram-Schmidt

Gram-Schmidt: Given A = [a1,a2,...,a,] € R™*™ (assume full rank rank(A) = n),
find orthonormal [q1, ..., qy] s.t. span(qi,...,q,) =span(ai,...,a,)
G-S process: q; = ||31H' then Go = as — Ch‘]?a% q2 = ||§2‘|v
. - i1 G
repeat for j =3,...,n: ¢ =a; — >)_; qiqiTaj, qj = ”gﬁ.

This gives QR! Let Tij = q?aj (’L 7'5 ]) and rij = ||aj — Eg;ll Tijqu,

a1
q = 7'7
. air = Triiqi
g = 2720 o o lalzlo
’ 722 a2 = T12q1 + 12242
i—1
g = %~ Dim1 T a; = r1jq1 + Tojge + -+ 74505
;=

Tjj

» But this isn't the recommended way to do QR; numerically unstable



Householder reflectors
H=1-2w",

» H orthogonal and
symmetric: H'H=H?=1,
eigvals 1 (n — 1 copies) and
—1 (1 copy)

» For any given u,w € R" s.t.
Jull = [lw[| and w # v,
H =TI —2vvT with
v = 2=t gives Hu = w
flw—ul]
(& u = Huw, thus 'reflector’)

» We'll use this mostly for
w = [,0,0,...,0T

o]} =1

U

w



Householder reflectors
H=1-2w",

» H orthogonal and
symmetric: H'H=H?=1,
eigvals 1 (n — 1 copies) and
—1 (1 copy)

» For any given u,w € R" s.t.
Jull = [lw[| and w # v,
H =TI —2vvT with
v = 2=t gives Hu = w
flw—ul]
(& u = Huw, thus 'reflector’)

» We'll use this mostly for
w = [,0,0,...,0T

o]} =1

—v(

v T u

’

w



Householder reflectors for QR

Householder reflectors:

H=1-2w",

satisfies Hx = [||z|],0,...,0]"

z — ||zl2e

 lz = llzllzell2”

e=[1,0,...



Householder reflectors for QR

Householder reflectors:

z — ||zl2e

H=1-2w", V= ———— e=[1,0,...

Al = [lwllzell2’

satisfies Hx = [||z|],0,...,0]"

lax]l2

0
= To do QR, find H; s.t. Hia1 =

0
repeat to get H,, --- HoH1A = R upper triangular, then
A=(H;---H,1H,)R=QR



Householder QR factorisation, diagram

* ok k%
* ok k%
A= |+ x x =x
* ok k%
* ok k%

Apply sequence of Householder reflectors

* ok ok %

HlA = (I—2U1’U{)A = koook o k) H2H1A = (I—2U2’L)§)H1A =
* ok ok

* ok ok * ok

HsHyH1 A = I H, --HsHyH A= *
*

~

Note v, = [0,0,...,0,%,%,...,%]
——
k—10's

* ¥ * %

* X X X ¥

* ¥ ¥ X ¥



Householder QR factorisation, example

[0.302 —0.629
0.400 —1.204
—0.930 —0.254
—0.177 —1.429
2132 —0.021
1.145 —0.561

2.178
1.138
—2.497
0.441
—1.398
—0.255

0.164 |
0.748
—0.273
1.576
—0.481
0.328 |




Householder QR factorisation, example

H A

0

o O O O

[2.647

—0.295
—1.261
—0.121
—1.403
0.283
—0.724

2.284
1.120
—2.455
0.449
—1.301
—0.307

0.652 |
0.665
—0.080
1.613
—0.038
0.090 |




Householder QR factorisation, example

[2.647 —0.295 2.284  0.652 |
0 2.044 —-0.925 —-1.550

—2. —0.161

HyH A = 0 0 530 —0.16
0 0 —-0.419 0.673

0 0 —1.126  0.152
0 0 —0.755  —0.395]



Householder QR factorisation, example

[2.647 —0.295 2.284  0.652 |
0 2.044 —-0.925 —-1.550

2.901 .
HyHyHy A = 0 0 90 0.087
0 0 0 0.692
0 0 0 0.203
0 0 0 —0.361]



Householder QR factorisation, example

HyH3HyH A =

[2.647
0

o O O O

—0.295
2.044
0

0
0
0

2.284
—0.925
2.901
0
0
0

0.652 |
—1.550
0.087
0.806
0
0




Householder QR factorisation

H,---HyH A =

*
* ¥ ¥ %
I
1
©
| S

‘g =:Qp []ﬂ (full QR; QF is square orthogonal)

Writing Qr = [Q Q1] where Q € R™*" orthonormal, A = QR ("thin’ QR or just QR)

@A:(HITMH,?_IH,?)[

Properties

» Cost %n:" flops with Householder-QR (twice that of LU)
» Unconditionally backward stable: QR = A+ AA, |QTQ — I||s = € (next lec)
» Constructive proof for A = QR existence
» To solve Az = b, solve Rz = Q7'b via triangle solve.
— Excellent method, but twice slower than LU (so rarely used)



Givens rotation
G:[c S], A+s2=1
—S C

Designed to 'zero’ one element at a time. E.g. QR for upper Hessenberg matrix

* k k k% ko ok ok k% * ok ok kX
* ok ko ok ok * ok ok ok ko ok o ok ok
A= xook ok k| GIA: kox ok ok ,GQGIA: k ok %
* k% * k% kook ok
* ok L * ok * ok

* ok ok %k x] k  ok ok ok Xk

* ok ok ok * ok ok ok

G3GoG1 A = x x|, G4G3GoG1A = x x| = R
* ok * ok
* % *

& A=GTGTGTGT R is the QR factorisation.

» G acts locally on two rows (two columns if right-multiplied)
» Non-neighboring rows/cols allowed



| east-squares problem
Given A e R™*" m >n and b € R™, find x € R" s.t.

min A —
X

» More data than degrees of freedom

» 'Overdetermined’ linear system; Ax = b usually impossible

» Thus minimise ||Az — b||; usually ||Axz — b||2 but sometimes e.g. || Az — b||; of
interest (we focus on || Az — b]|2)

» Assume full rank rank(A) = n; this makes solution unique



| east-squares problem via QR

min, ||Az — b||2, AeR™ " m>n



| east-squares problem via QR
ming ||Azx — b2, AeR™" m>n
Let A=[Q Q.][E] =Qr[E] be 'full' QR factorization. Then

QTb]

R
|4z ~ blls = | QF(Az — D)2 = H M = [be

2

so x = R7'QTb is the solution. This also gives algorithm:



| east-squares problem via QR
ming ||Azx — b2, AeR™" m>n
Let A=[Q Q.][E] =Qr[E] be 'full' QR factorization. Then

QTb]

R
|4z ~ blls = | QF(Az — D)2 = H M = [be

2

so x = R7'QTb is the solution. This also gives algorithm:

1. Compute thin QR factorization A = QR
2. Solve linear system Rx = Q7'b.



| east-squares problem via QR

ming ||Azx — b2, AeR™" m>n
Let A=[Q Q.][E] =Qr[E] be 'full' QR factorization. Then

Q"b
QTb

4z b2 = |@F(Az - B)]2 = H m v [
2

so x = R7'QTb is the solution. This also gives algorithm:

1. Compute thin QR factorization A = QR
2. Solve linear system Rx = Q7'b.

» This is backward stable: computed # solution for min, [|[(A + AA)x + (b+ Ab)||2

(see Higham's book Ch.20)
» Unlike square system Ax = b, one really needs QR: LU won't do the job



Normal equation: Cholesky-based least-squares solver
min, ||Az — b||2, AeR™ " m>n

z = R7'Q7b is the solution < x solution for n x n normal equation

(AT A)z = ATb

> AT A = 0 (always) and AT A = 0 if rank(A) = n; then PD linear system; use
Cholesky to solve.

» Fast! but NOT backward stable; ka(AT A) = (k2(A))? where ko(A) = Z:?:((ﬁ))
condition number (next lecture)



Application: regression /function approximation
Given function f:[—1,1] — R,
Consider approximating via polynomial f(z) ~ p(z) = >, ciz'.
Very common technique: Regression

1. Sample f at points {z;}I";, and
2. Find coefficients ¢ defined by Vandermonde system Ac =~ f,

I W f(z1)
1 zZ9 s Zg ) f(Zz)
1 Zm e Z;’Ln Cn f(Zm)

» Numerous applications, e.g. in statistics, numerical analysis, approximation

theory, data analysis!



Numerical stability

Question: Can a computed result trusted?
e.g. is Ax = b always solved correctly via the LU algorithm?



Numerical stability

Question: Can a computed result trusted?
e.g. is Ax = b always solved correctly via the LU algorithm?

» The situation is complicated. For example, let

1 1 1
_ T _ 1 _ _
A=UXV ,whereU—\@[1 _1],2— [ 10_15], V =1, and let

- al{ oo [



Numerical stability

Question: Can a computed result trusted?
e.g. is Ax = b always solved correctly via the LU algorithm?

» The situation is complicated. For example, let

1 1 1
_ T _ 1 _ _
A=UXV ,whereU—\@[1 _1],2— [ 10_15], V =1, and let

- al{ oo [

1.
In MATLAB, x = A\b outputs [ 0000]

0.94206



Numerical stability

Question: Can a computed result trusted?
e.g. is Ax = b always solved correctly via the LU algorithm?

» The situation is complicated. For example, let

1 1 1
_ T _ 1 _ _
A=UXV ,whereU—\@[1 _1],2— [ 10_15], V =1, and let

- al{ oo [

In MATLAB, x = A\b outputs [

1.0000
0.94206

» Did something go wrong?
NO—this is a ramification of ill-conditioning, not instability
> In fact, ||[Ax — bl|ja(= || A% — b||2) =~ 10716

(After this section, make sure you can explain what happened above!)



Floating-point arithmetic

» Computers store number in base 2 with finite/fixed memory (bits)

» Irrational numbers are stored inexactly, e.g. 1/3 ~ 0.333...

» Calculations are rounded to nearest floating-point number (rounding error)
» Thus the accuracy of the final error is nontrivial

Two examples with MATLAB

> ((sqrt(2))? — 2) x 1e15 = 0.4441 (should be 0..)
> > L~ 30 (should be co..)

An important (but not main) part of numerical analysis/NLA is to study the effect of
rounding errors
Best reference: Higham's book (2002)



Conditioning and stability

» Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given z) to
perturbation in inputs, i.e., how large x := sups,, | f(z + dx) — f(z)||/||0=]| is in
the limit =z — 0.

(this is absolute condition number; equally important is relative condition number

T |f(z+62)— f ()] /o]
for 1= Ty 50 suPs, LFOST /)

» (Backward) Stability is a property of an algorithm, which describes if the
computed solution ¢ is a 'good’ solution, in that it is an exact solution of a nearby
input, that is, § = f(x + Ax) for a small Az.



Conditioning and stability

» Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given z) to
perturbation in inputs, i.e., how large x := sups,, | f(z + dx) — f(z)||/||0=]| is in
the limit =z — 0.

(this is absolute condition number; equally important is relative condition number

T |f(z+62)— f ()] /o]
for 1= Ty 50 suPs, LFOST /)

» (Backward) Stability is a property of an algorithm, which describes if the
computed solution ¢ is a 'good’ solution, in that it is an exact solution of a nearby
input, that is, § = f(x + Ax) for a small Az.

If problem is ill-conditioned x >> 1, then blame the problem not the algorithm

Notation/convention: # denotes a computed approximation to = (e.g. of x = A~1b)
€ denotes a small term O(u), on the order of unit roundoff/working precision; so we

write e.g. u, 10u, (m + n)u, mnu all as €

» Consequently (in this lecture/discussion) norm choice does not matter today



Numerical stability: backward stability
For computational task ¥ = f(X) and computed approximant Y,
> Ideally, error [|[Y — Y]||/||Y] = e seldom true

(w: unit roundoff, ~ 1076 in standard double precision)
[AX]|

> Good alg. has Backward stability ¥ = f(X +AX), X € “exact solution of

slightly wrong input "



Numerical stability: backward stability
For computational task Y = f(X) and computed approximant Y,
> Ideally, error [|[Y — Y]||/||Y] = e seldom true

(w: unit roundoff, ~ 1076 in standard double precision)

> Good alg. has Backward stability ¥ = f(X +AX), % = € “exact solution of

slightly wrong input "

» Justification: Input (matrix) is usually inexact anyway! f(X + AX) is just as
good at f(X) at approximating f(X.) where |[AX| = O(]| X — X.||)
We shall 'settle with’ such solution, though it may not mean ¥ — Y is small

> Forward stability |Y — Y||/||Y]| = O(x(f)u) “error is as small as backward stable
alg.” (sometimes used to mean small error; we follow Higham's book [2002])



Backward stable+well conditioned=accurate solution
Suppose

» Y = f(X) computed backward stably i.e., ¥ = f(X + AX), |AX]| = .

If(X)—f(X+AX)]]
AX] '

Then with conditioning x = lim 54,0 SuPs,

1Y =Y S ke

(relative version possible)
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Suppose
» Y = f(X) computed backward stably i.e., ¥ = f(X + AX), |AX]| = .

If(X)—f(X+AX)]]
AX] '

Then with conditioning x = lim 54,0 SuPs,

1Y =Y S ke

(relative version possible) 'proof’:

1Y =Y = /(X +AX) = fXOI S sl AX|| F(X)] = we



Backward stable+well conditioned=accurate solution
Suppose

» Y = f(X) computed backward stably i.e., ¥ = f(X + AX), |AX]| = .

5 —F(X+AX|
AX] ’

Then with conditioning x = lim 54,0 SuPs,

1Y =Y S ke

(relative version possible) 'proof’:
1Y =Y = /(X +AX) = fXOI S sl AX|| F(X)] = we

If well-conditioned x = O(1), good accuracy! Important examples:

» Well-conditioned linear system Az = b, ko(A) ~ 1
» Eigenvalues of symmetric matrices (via Weyl's bound
N(A+ E) € M(A) + [~ B2, | Ell)] )
» Singular values of any matrix 0;(A + E) € 0;(A4) + [—|| E|l2, | E||2]

Note: eigvecs/singvecs can be highly ill-conditioned



Matrix condition number
(4)

Umax
(A =
hZ( ) Urnin(A)
e.g. for linear systems. (when A is m x n(m > n), ka(4) = 22‘33) A backward stable
soln for Az = b, s.t. (A+ AA)Z = b satisfies, assuming backward stability

|AA| < e||A|l and k2(A) < et (so ||[ATIAA| < 1),

(=1)

12 — =]

< eka(A
o]~ )



Matrix condition number
(4)

Umax
i0(A) = ———=
hZ( ) Urnin(A)

e.g. for linear systems. (when A is m x n(m > n), ka(4) = 22‘33) A backward stable
soln for Az = b, s.t. (A+ AA)Z = b satisfies, assuming backward stability
|AA| < €]|A|| and ro(A) < et (so [[ATIAA| < 1),

(=1)

12 — =]

< era(A)

]
'proof’: By Neumann series
(A4+AA) T = (AT 4+ A7TAA) P =T - ATAA+O(|ATAA|?) AL

Sod = (A+AA)h=A"1b— ATTAAA T + O(| AT AA|2) =
r— AT1AAxr + O(]|A"1AA|%), Hence

lz — 2| < [IA7 AAz]| < AT IAAN ] < el ANIAT |z ]| = era(A)l|x]



Backward stability of triangular systems

Recall Az = b via Ly = b, Uz = y (triangular systems).
The computed solution & for a (upper/lower) triangular linear system Rx = b solved
via back/forward substitution is backward stable, i.e., it satisfies

(R+AR)E=b,  |AR| = O(e| R|)-

Proof: Trefethen-Bau or Higham (nonexaminable but interesting)

» backward error can be bounded componentwise

» this means || — z||/||z|| < er2(R)
» (unavoidably) poor worst-case (and attainable) bound when ill-conditioned
> often better with triangular systems



(In)stability of Az = b via LU with pivots

Fact (proof nonexaminable): Computed LU satisfies ”‘fL[ﬁ”_lj‘”” =e
: ILU-A|l _
(note: not s = €)

> If || L]|||U]| = O(||A]|), then (L +AL)(U + AU)z =b
= & backward stable solution (exercise)



(In)stability of Az = b via LU with pivots

Fact (proof nonexaminable): Computed LU satisfies ”‘fL[ﬁlj‘”” =e
: ILU-A|l _
(note: not s = €)

> If || L]|||U]| = O(||A]|), then (L +AL)(U + AU)z =b
= & backward stable solution (exercise)

Question: Does LU = A+ AA or LU = PA + AA with ||AA|| = ¢||A|| hold?
Without pivot (P =I): ||L||||U]| > ||A]| unboundedly (e.g. [§1]) unstable



(In)stability of Az = b via LU with pivots

ILU—A]

Fact (proof nonexaminable): Computed LU satisfies el = €
: ILU-A|l _
(note: not s = €)

> If |L||||U]| = O(||A]|), then (L + AL)(U + AU)z =
= & backward stable solution (exercise)
Question: Does LU = A+ AA or LU = PA + AA with ||AA|| = ¢||A|| hold?

Without pivot (P =I): ||L||||U]| > ||A]| unboundedly (e.g. [§1]) unstable

With pivots:
» Worst-case: ||L||||U|| > ||Al|| grows exponentially with n, unstable
> growth governed by that of || L|||U||/| Al = [[U]|/||All
» In practice (average case): perfectly stable
» Hence this is how Az = b is solved, despite alternatives with guaranteed stability
exist (but slower; e.g. via SVD, or QR (next))

Resolution /explanation: among biggest open problems in numerical linear algebra!



Examples of stability and instability

Forthcoming examples: nonexaminable



Stability of Cholesky for A = 0
Cholesky A = RTR for A =0

» succeeds without pivot (active matrix is always positive definite)
» R never contains entries > /|| Al|2

LN
IS

* ¥ ¥ %
* ¥ ¥ x
* K ¥ %

R1RT also PSD

(exercise: show ||Ri|l2 < /|| A]l2)

= backward stable! Hence positive definite linear system Ax = b stable via Cholesky



(In)stability of Gram-Schmidt

» Gram-Schmidt is subtle
> plain (classical) version: [|QTQ — I|| < e(kz(A))?

> modified Gram-Schmidt (orthogonalise 'one vector at a time'): |QTQ —I|| < era(A)

> Gram-Schmidt twice (G-S again on computed Q): [|QTQ — I|| < e



Matrix multiplication is not backward stable
Shock! It is not always true that fI(AB) equal to (A + AA)(B + AB) for small
AAAB
» Vec-vec mult. backward stable: fi(y’z) = (y + Ay)(z + Ax); in fact

filyTz) = (y + Ay)a.
» Hence mat-vec also backward stable: fi(Az) = (A+ AA)x.
» Still mat-mat is not backward stable.



Matrix multiplication is not backward stable
Shock! It is not always true that fI(AB) equal to (A + AA)(B + AB) for small

AA,AB

» Vec-vec mult. backward stable: fi(y’z) = (y + Ay)(z + Ax); in fact

filyTz) = (y + Ay)a.
» Hence mat-vec also backward stable: fi(Az) = (A+ AA)x.

» Still mat-mat is not backward stable.

AB =

FUAB) = AB + ¢ =

N

oo

77

with A = A+ ¢€||A|, B = B+ €||B||? No—e.g., fl(AB) is usually not low rank



Matrix multiplication is not backward stable
Shock! It is not always true that fI(AB) equal to (A + AA)(B + AB) for small
AAAB
» Vec-vec mult. backward stable: fi(y’z) = (y + Ay)(z + Ax); in fact

filyTz) = (y + Ay)a.
» Hence mat-vec also backward stable: fi(Az) = (A+ AA)x.
» Still mat-mat is not backward stable.

What is true: ||fI(AB) — AB|| < €||A||||B]|, so
IfI(AB) — AB||/[|AB|| < emin(r2(A), k2(B)).

» Great when A or B orthogonal (or square well-conditioned): say if A =@
orthogonal,

IFUQB) — QB < €| B,
so fI(QB) = QB + €||B||, hence fl(QB) = Q(B + AB) where AB = Q" ¢||B||

orthogonal multiplication is backward stable



Stability of Householder QR
With Householder QR, the computed Q, R satisfy

IQTQ — 1]l = 0(e), || A~ QRIl=O(e|Al,

and (of course) R upper triangular.
Rough proof

» Each reflector orthogonal, so satisfies fI(H;A) = H; A + €| A]|
» Hence (R =)fl(H,---HiA) = H,--- Hi A+ ¢||A|
> fl(H,-Hy) = Q" = H,---Hy +e,

> Thus QR = A+ €| A]



Stability of Householder QR
With Householder QR, the computed Q, R satisfy

IQTQ — 1]l = 0(e), || A~ QRIl=O(e|Al,

and (of course) R upper triangular.
Rough proof

» Each reflector orthogonal, so satisfies fI(H;A) = H; A + €| A]|
» Hence (R =)fl(H,---HiA) = H,--- Hi A+ ¢||A|
> fl(H,-Hy) = Q" = H,---Hy +e,
> Thus QR = A+ €| A]
Notes:

> This doesn’t mean ||Q — Q||, | R — R|| are small at all! Indeed Q, R are as
ill-conditioned as A
» QR for Az = b, least-squares are stable (NB normal eqn A7 Az = is NOT)



Orthogonal Linear Algebra
With orthogonal matrices @,
171QA) — Q4] _ I71(AQ) — AQ| _
QA - IAQ]] B
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QA - IAQ]] B

whereas in general, || fI(AB) — AB|| < €||A]|||B]|, so
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Orthogonal Linear Algebra
With orthogonal matrices @,
171QA) — Q4] _ I71(AQ) — AQ| _
QA - 1AQ] B

whereas in general, || fI(AB) — AB|| < €||A]|||B]|, so
IfI(AB) — AB||/|AB|| < emin(rz(A), #2(B))

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue
decomposition of non-normal matrices, Jordan form, etc), whereas those based on
orthogonal matrices are stable, e.g.

» Householder QR factorisation

> QR algorithm for Az = Az

» Golub-Kahan algorithm for A = UXV7T
» QZ algorithm for Ax = \Bx

We next turn to the algorithms in boldface



Key points on stability

» Definition: (backward) stability vs. conditioning
» Orthogonal linear algebra is backward stable

> Significance of ra(A) = || All2[| A7l
» Stable operations: triangular systems, Cholesky,...



Eigenvalue problem Ax = \x
First of all, Az = Az no explicit solution (neither A nor z); huge difference from
Ax = b for which z = A~1b

> Eigenvalues are roots of characteristic polynomial
» For any polynomial p, 3 (infinitely many) matrices whose eigvals are roots of p



Eigenvalue problem Ax = \x
First of all, Az = Az no explicit solution (neither A nor z); huge difference from
Ax = b for which z = A~ '
> Eigenvalues are roots of characteristic polynomial
» For any polynomial p, 3 (infinitely many) matrices whose eigvals are roots of p
> Let p(z) = 2" + ap_12" ' + -+ ayx + ag, a; € C. Then
p(A) = 0 < X eigenvalue of

—Ap—-1 —Ap—2 ... —aip —ao
1
C = 1 e Cnxn




Eigenvalue problem Ax = \x
First of all, Az = Az no explicit solution (neither A nor z); huge difference from
Ax = b for which z = A~ '
> Eigenvalues are roots of characteristic polynomial
» For any polynomial p, 3 (infinitely many) matrices whose eigvals are roots of p
» So no finite-step algorithm exists for Ax = A\x

Eigenvalue algorithms are necessarily iterative and approximate
» Same for SVD, as 0;(A) = /N (AT A)
» But this doesn't mean they're inaccurate!

Usual goal: compute the Schur decomposition A = UTU*: U unitary, T upper
triangular

» For normal matrices A*A = AA*, automatically diagonalised (7" diagonal)
» For nonnormal A, if diagonalisation A = XAX ! really necessary, done via
Sylvester equations but nonorthogonal /unstable (nonexaminable)



Schur decomposition
Let A € C™*™ (square arbitrary matrix). Then 3 unitary U € C"*" s.t.

A=UTU~"

with T upper triangular.

> eig(A) = eig(T) = diag(T)

» T diagonal iff A normal A*A = AA*
Proof:



Schur decomposition

Let A € C™*™ (square arbitrary matrix). Then 3 unitary U € C"*" s.t.

A=UTU~"

with T upper triangular.

> eig(A) = eig(T) = diag(T)

» T diagonal iff A normal A*A = AA*
Proof: Let Av = A\jv and find U; = [v1, V] unitary.

* *

AU, = U,y

* X ¥ * %

*
*
*

-O*%***

(n—1)x (n—1)

*

*

*

*

*

& U AU, =

*

* * ¥ %

*

*

I S

*
*
*
*
*

*

EE

. Then

. Repeat on the lower-right

arttoget Uy _U)_o.. UfAU Uy ... Uy =T.



Recap: Matrix decompositions

» SVD A=UxVT

» Eigenvalue decomposition A = XAX !
» Normal: X unitary X*X =1
» Symmetric: X unitary and A real

> Jordan decomposition: A = XJX!, J=diag(| > ~ |)
o
A

» Schur decomposition A = QT'Q*: Q orthogonal, T upper trilangular
» QR: @ orthonormal, U upper triangular
» LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available



Recap

v

vVvyyvyy

: Matrix decompositions

SVD A=UxVvT

Eigenvalue decomposition A = XA X!
» Normal: X unitary X*X =1
» Symmetric: X unitary and A real

Jordan decomposition: A = XJX !, J = diag( A )
N
A

Schur decomposition A = QT'Q*: @ orthogonal, T upper trilangular
QR: @ orthonormal, U upper triangular

LU: L lower triangular, U upper triangular

QZ for Ax = ABux: (genearlised eigenvalue problem) @, Z orthogonal s.t.
QAZ,QQBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available



Power method for Az = \x

x € R" :=random vector, z = Ax, x = ”i—” A= 2T Az, repeat



Power method for Ax = \x
x € R" :=random vector, z = Ax, x = ”ﬁ—” A= 2T Az, repeat

» Convergence analysis: suppose A is diagonalisable (generic assumption). We can
write o = Y i ¢v;, Av; = \jv; with [A1] > |A2| > ---. Then after k iterations,

n )\z k
:B:CZ()\I> cv; — Ccqvy as k — o
i=1

» Converges geometrically (A, z) — (A1, v1) with linear rate %

» What does this imply about A* = QR as k — oco? First vector of Q — vy



Power method for Ax = \x
x € R" :=random vector, z = Ax, x = ”ﬁ—” A= 2T Az, repeat

» Convergence analysis: suppose A is diagonalisable (generic assumption). We can
write o = Y i ¢v;, Av; = \jv; with [A1] > |A2| > ---. Then after k iterations,

x:C’Z()\l> cv; — Ccqvy as k — o
i=1

» Converges geometrically (A, z) — (A1, v1) with linear rate %

» What does this imply about A* = QR as k — oco? First vector of Q — vy

Notes:

» Google pagerank & Markov chain linked to power method
> As we'll see, power method is basis for refined algs (QR algorithm, Krylov
methods (Lanczos, Arnoldi,...))



Why compute eigenvalues? Google PageRank

'Importance’ of websites via
dominant eigenvector of
column-stochastic matrix

1 .- 1

A=aP+(1—-a)

r -1 image from wikipedia
P: adjacency matrix, a € (0,1)

Google does (did) a few steps of Power method: with initial guess xg, k =0,1,...

1. Lh+1 = Aack
2. g1 = Trt1/||Tps1ll2, k< k+ 1, repeat.

» 1z, — PageRank vector vy : Avy = Ajvy



Inverse power method

Inverse (shift-and-invert) power method: z := (A — ul) 'z, 2 = x/||z||

Ao (2)—Hl

P to eigval closest to p (o

» Converges with improved linear rate
permutation)



Inverse power method

Inverse (shift-and-invert) power method: z := (A — ul) 'z, 2 = x/||z||

Ao (2)—Hl

» Converges with improved linear rate X (1) —H]

to eigval closest to p (o
permutation)

» /i can change adaptively with the iterations. The choice u := 27 Az gives
Rayleigh quotient iteration, with quadratic convergence
| Azt — NEHD (4] = O(]| Az®) — AXF) 2(R)|12) (cubic if A symmetric)



Solving an eigenvalue problem
Given A € R™*™ or C™*7,
Ax = Mz
Goal: find all eigenvalues (and eigenvectors) of a matrix
» Look for Schur foom A =UTU*

We'll describe an algorithm called the QR algorithm that is used universally, e.g. by
MATLAB's eig. It

> finds all eigenvalues (approximately but reliably) in O(n?) flops,
P is backward stable.

Sister problem: Given A € R™*" or C"*", compute SVD A =UXV*

» ok’ algorithm: eig(AT A) to find V, then normalise AV
> there's a better algorithm: Golub-Kahan bidiagonalisation



QR algorithm for eigenproblems
Set A; = A, and

Al =Q1R1, Ay =RiQ1, Ay =Q2Ry, A3= Ry(Qo,

> Ay are all similar: Apyq = QkAka
» We shall 'show’ that A — triangular (diagonal if A normal)
» Basically: QR(factorise)— RQ(swap)— QR — RQ — ---



QR algorithm for eigenproblems
Set A; = A, and

Al =Q1R1, Ay=RiQi, Ax=Q2Ry, Az= RyQ2,

> Ay are all similar: Apyq = Q{Aka
» We shall 'show’ that A — triangular (diagonal if A normal)
» Basically: QR(factorise)— RQ(swap)— QR — RQ — ---

» Fundamental work by Francis (61,62) and Kublanovskaya (63)

» Truly Magical algorithm!
» backward stable, as based on orthogonal transforms
> always converges (with shifts), but global proof unavailable(!)
> uses 'shifted inverse power method’ (rational functions) without inversions



QR algorithm and power method
QR algorithm: Ay = Qi Rg, Ax+1 = RipQk, repeat. Claims: for k > 1,

AF = (Q1---Qx)(Ry--- R1) = QBRE) | Apy; = (QW)TAQW).
Proof : recall Apyq1 = Q;{Aka, repeat.

Proof by induction: k =1 trivial.
Suppose AF~1 = Q*-D R(E=1) We have

Ay, = (QFNTAQH*Y = Qi Ry.
Then AQ*—1 = Q=D Q. Ry, and so

AF = AQUF-DRE-D = =D, R, R* 1) = W) r(F) O



QR algorithm and power method
QR algorithm: Ap = Qi Rk, Ak—i—l = RpQ}, repeat.

AR = (Q1-+ Qp)(Rg -+ R1) = QWRW | Apyr = (@W)TAQMP.

QR factorisation of A*: 'dominated by leading eigenvector’ z1,
where Azy = Ajz (recall power method)

In particular, consider A*[1,0,...,0]T = AFe,:

> AFe, = R¥)(1,1)Q™(:,1), parallel to 1st column of Q¥
» By power method, this implies Q) (:,1) — z;
» Hence by Api1 = (QMNTAQWM | Au(:,1) — [A1,0,...,0]7

Progress! But there is much better news



QR algorithm and inverse power method
QR algorithm: Ap = Qi Rk, Ak—i—l = RpQ}, repeat.

AR = (Q1-+ Qp)(Rg -+ R1) = QWRW | Apy1 = (QW)TAQW.

Now take inverse: A% = (R*%))=1(QWNT,
transpose: (A~ F)T = QW) (RF))~-T
= QR factorization of matrix (A~*)T with eigvals r(\;) = A; "
= Connection also with (unshifted) inverse power method
NB no matrix inverse performed

» This means final column of Q) converges to minimum left eigenvector x,, with
factor \/\|/\i‘1|' hence Ag(n,:) = [0,...,0,\,]
» (Very) fast convergence if |A\,| < [An—1]

» Can we force this situation? Yes by shifts




QR algorithm with shifts and shifted inverse power method

1. Ap — sl = QrRE (QR factorization)
2. Api1 = RpQr + sk, k<« k+1, repeat.

* k * * *
* * * * *

Roughly, if sy &~ Ay, then Agy1 ~ [+ * * * = | by argument just made.
* ok ok % *



QR algorithm with shifts and shifted inverse power method

1. Ap — sl = QrRE (QR factorization)
2. Api1 = RpQr + sk, k<« k+1, repeat.
k

[TA=s0)=QWR™ (= Q1+ Qr)(Ri -+ Ry))

i=1
Proof: Suppose true for £k — 1. Then QR alg. computes

(QFNT(A — s, 1N)Q*~Y = QRy, so (A — s, 1)QFV) = Q*=VQ, Ry, hence
k
[T4-sI) = (A-sD)QHVRFD = QW QR R = QW R®.

i=1
Inverse transpose: [[_ (A — s;1)~ T = QW (RM))-T
> QR factorization of matrix with eigvals r(\;) = e, by _57,

> Converges like ratio of [TF_;(\; — si); very fast if s; ~ \;. Ideally, choose s;, ~ A,
» Connection with shifted inverse power method, hence rational approximation



QR algorithm preprocessing

We've seen the QR iterations drives colored entries to O (esp. red ones)

b

I
EE
* X X X X
EE
* Kk X X X
* ¥ X X ¥

» Hence A, , = Ay, so choosing s, = A, ,, is sensible

» This reduces #QR iterations to O(n) (empirical but reliable estimate)
» But each iteration is O(n?) for QR, overall O(n?)

» We next discuss a preprocessing technique to reduce to O(n?)



QR algorithm preprocessing: Hessenberg reduction

To improve cost of QR factorisation, first reduce via orthogonal Householder
transformations

* ok ok k% ¥k ok k% 0
* ok ok k% * ok ok x ok *
A: * ok ok ok x|, HlA: koK ok k| H1:]721}11},{,’01: *
* ok ok k% * ok k% *
* ok ok k% * ok k% *
* % % ok sk
* % %k sk
Then H1AH| = %+ % x x|. Repeat with Hy =1 — 2v2v2T,v2 = [0,0,*,*,*]T,
* % % %
* % % %
* ook ckox ok ¥k ok ok ok
* ook ckox ok ¥k ok ok ok
HyH\AH\Hy = ok kx|, HsHoH\AH{HoH3 = ok % ox|,
* ok k * ok ok
* ok k -



Hessenberg reduction continued

%k % % % % k% % % % k% % % %k % % %

% ok % % % %k % % % * k% % % * ok % % %

A=]x % x x =* Hy ¥ % ok % Hy ¥ % ok % Hj Hy, o * % % %
— — — —

%k ¥ % % * k% % * k% % %

» QR iterations preserve structure: if Ay = QR Hessenberg, then so is Ay = RQ)
> using Givens rotations, each QR iter is O(n?) (not O(n?))
» overall shifted QR algorithm cost is O(n3), ~ 25n3 flops

» Remaining task (done by shifted QR): drive subdiagonal * to 0
» bottom-right * — \,,, can be used for shift s



Deflation
Once bottom-right |x| < €,

* ok ok k% * % ok k%
¥ ok ok k% ¥k ok k%
¥ % % x| R %% ok ok
¥ x k %k ok

* % *

and continue with shifted QR on (n — 1) x (n — 1) block, repeat



QR algorithm in action

loglp(\)]

No shift (plain QR)

Convergence of |A;41 ]
QR with shifts

10"L 100
10° 10°
10710 10710
108 10718
0 100 200 300 400 500 600 700 800 0 2 4 6 8 10 12
Iterations Iterations
underlying functions (red dots: eigvals)
1000
25
20
0
__ 15
z
% 10
-1000 k-
5
0
-2000 -5
-10
-4 -2 0 2 4 -4 2 0 2 4



QR algorithm: other improvements/simplifications (nonexaminable)

» Double-shift strategy for A € R"*"
» (A —sI)(A—5sI)= QR using only real arithmetic if A real
> Aggressive early deflation [Braman-Byers-Mathias 2002]

> Examine lower-right (say 100 x 100) block instead of (n,n — 1) element
» dramatic speedup (& x10)

» Balancing A + DAD!, D: diagonal

> reduce ||[DAD™!||: better-conditioned eigenvalues

» For nonsymmetric A, global convergence is NOT established
(except [Banks-Garza-Vargas-Srivastava 2021] for possible argument)
P of course it always converges in practice.. another big open problem in numerical
linear algebra



QR algorithm for symmetric A

» Initial reduction to Hessenberg form — tridiagonal

%k k x % * ok * %k * %
x ok ok ok % * ok ok ok % * % % * %
= Q1 Q> Q3
A ook ok ok x| 2] I e P i
x % ok k% % x k% * %k *
* * * * * * * * * * * *

» QR steps for tridiagonal: O(n) instead of O(n?) per step

» Powerful alternatives available for tridiagonal eigenproblem (divide-conquer
[Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
» Cost: %n?’ flops for eigvals, = 10n> for eigvecs (store Givens rotations)



Golub-Kahan for SVD

Apply Householder reflectors from left and right (different ones) to bidiagonalize

A—B=Hp, - -H1AHR 1HRo - Hryp o

* ok * ok * ok

* ok

H . H; ,
*|42L.3 * i'JB7

—

H
AL

*

* ok ok ok o
L S
b S
* ok ok o
X ok ot

* ok ok b
* o %

*

> 0i(A) = 0i(B)
» Once bidiagonalized,

> Mathematically, do QR alg on BT B (symmetric tridiagonal)
> More elegant: divide-and-conquer [Gu-Eisenstat 1995] or dqds algorithm
[Fernando-Parlett 1994]; nonexaminable

» Cost: ~ 4mn? flops for singvals ¥, ~ 20mn? flops for singvecs U, V/



QZ algorithm for generalised eigenvalue problems

Generalised eigenvalue problem

Ax = \Bz, A, B e Cmm

> A, B given, find eigenvalues A\ and eigenvector x
> n eigenvalues, roots of det(A — AB)
» Important case: A, B symmetric, B positive definite: A all real

QZ algorithm: look for unitary Q, Z s.t. QAZ,QBZ both upper triangular

» then diag(QAZ)/diag(QBZ) are eigenvalues

Algorithm: first reduce A, B to Hessenberg-triangular form
then implicitly do QR to B~'A (without inverting B)
Cost: ~ 50n3

>
>
>
» See [Golub-Van Loan] for details



Tractable eigenvalue problems

» Standard eigenvalue problems Az = Az

> symmetric (4/3n> flops for eigvals, +9n3 for eigvecs)
> nonsymmetric (10n> flops for eigvals, +15n? for eigvecs)

> SVD A=UXVT for A € C™*": (£mn? flops for singvals, +20mn? for
singvecs)

» Generalized eigenvalue problems Ax = ABxz , A,B € C"*"

» Polynomial eigenvalue problems, e.g. (degree k = 2)
PNz =(NA+AB+C)x =0, A, B,C € C"":= 20(nk)?

» Nonlinear problems, e.g. N(\)z = (Aexp(A) + B)z =0
> often solved via approximating by polynomial N(\) = P()\)
> more difficult: A(z)x = Az: eigenvector nonlinearity

Further speedup when structure present (e.g. sparse, low-rank)



[terative methods

We've covered direct methods (LU for Az = b, QR for min ||Az — b|

2, QRalg for

Az = Az). These are

» Incredibly reliable, backward stable
» Works like magic if n < 10000
» But not if n larger!

A ’'big’ matrix problem is one for which direct methods aren't feasible. Historically,

vVvvyyVvyy

>

1950:
1965:
1980:
1995:
2010:
2020:

n > 20

n > 200

n > 2000

n > 20000

n > 100000

n > 1000000 (n > 50000 on a standard desktop)

was considered 'very large’. For such problems, we need to turn to alternative

algorithms: we'll cover iterative and randomised methods.



Direct

vs. iterative methods

Idea of iterative methods:

>

vvyyy

gradually refine solution iteratively

each iteration should be (a lot) cheaper than direct methods, usually O(n?) or less
can be (but not always) much faster than direct methods

tends to be (slightly) less robust, nontrivial /problem-dependent analysis

often, after O(n?) work it still gets the exact solution (ignoring roundoff errors)

o(1) direct
Norm of
residual . .
(log scale) iterative
O(emachine) _— work —
Oo(m?)

image from [Trefethen-Baul]

We'll focus on Krylov subspace methods.



Basic idea of Krylov: polynomial approximation

In Krylov subspace methods, we look for an (approximate) solution & (for Az = b or
Az = Az) of the form (after kth iteration)

b= pk_l(A)U 5

where pi_1 is a polynomial of degree k — 1, and v € R"™ arbitrary (usually v = b for
linsys, for eigenproblems v usually random)

Natural questions:
» Why would this be a good idea?

» Clearly, 'easy’ to compute
» One example: recall power method & = A*~1y = p,_(A)v
Krylov finds a “better/optimal” polynomial pg_1(A)
> We'll see more cases where Krylov is powerful
» How to turn into an algorithm?

> Arnoldi (next), Lanczos



Orthonormal basis for C;.(A, b)

Find approximate solution & = py_1(A)b, i.e. in Krylov subspace
K1(A,b) := span([b, Ab, A%,..., A*=1p])

First step: form an orthonormal basis (), s.t. solution can be written as z = Qy
» Naive idea: Form matrix [b, Ab, A%, ..., A*=11], then QR
> [b, Ab, A%b, ..., A¥=1b] is usually terribly conditioned! Dominated by leading eigvec
» () is therefore extremely ill-conditioned, inaccurately computed



Orthonormal basis for C;.(A, b)

Find approximate solution & = py_1(A)b, i.e. in Krylov subspace
K1(A,b) := span([b, Ab, A%,..., A*=1p])

First step: form an orthonormal basis (), s.t. solution can be written as z = Qy
» Naive idea: Form matrix [b, Ab, A%, ..., A*=11], then QR
> [b, Ab, A%b, ..., A¥=1b] is usually terribly conditioned! Dominated by leading eigvec
» () is therefore extremely ill-conditioned, inaccurately computed

» Much better solution: Arnoldi process
» Multiply A once at a time to the latest orthonormal vector ¢;
» Then orthogonalise Ag; against previous ¢;'s (j =1,...,7—1) (as in Gram-Schmidt)
» Even better news: Arnoldi decomposition makes subsequent computation very

convenient



Arnoldi iteration and Arnoldi decomposition

Set q1 = b/|[bl]>
Fork=1,2,...,
set v = Agy

forj=1,2,...,k
hj = q]Tv, v = v — hjrq; % orthogonalise against ¢; via modified G-S
end for
Ptk = [[vll2, Gk = v/ Ttk
End for

Theorem
Suppose that hy15 #0 fork=1,...,0. Then fork =1,...,4,

5pan(Q17 200 7Qk:) = K:k(Av b)

Proof: Induction on £. Suppose true for £ = ¢ with q; = pe—1(A)b. Then

Qi1 = m(Aqé — Z§=1 h‘jjqj)' which is of exact degree £.



Arnoldi iteration and Arnoldi decomposition

Set ¢1 = b/HbHQ
Fork=1,2,...,
set v = Agy,

forj=1,2,....k
hjr = quv, v = v — h;rg; % orthogonalise against g; via modified G-S
end for
hi1e = vll2) Qo1 = v/Pis1 e
End for
> After k steps, AQy = Quy1Hy = QrHy + qui1]0,...,0, hyy1 ], with
Qr = l11,q2, - - @), Qrs1 = [Qk> @+1), span(Qy) = span([b, Ab, ..., A*1p])

]’L1,1 h1,2 cee hl,k
ha,1 hag . ha,k

A Qk |=| Qr+1 7 Hy = Lol Qi Qe = Ti

k=1 hik
Rt 1,k

R(k+1)xE ypper Hessenberg

» Cost k A-multiplications+O(k?) inner products (O(nk?))



GMRES for Az =0

Idea (very simple!): minimise residual in Krylov subspace: [Saad-Schulz 86]

T, = argminge i, (ap) Az — b2



GMRES for Az =b

Idea (very simple!): minimise residual in Krylov subspace: [Saad-Schulz 86]
T, = argminge i, (ap) Az — b2
Algorithm: Given AQy = Qk+1ﬁk and writing x, = Qpry, rewrite as

min | AQyy — bll2 = min Qi1 Ay — bl

oy, QF
o-lat ]

= min
v 2
H
= rnyin l Ok] y—|bllze1]| , e =[1,0,...,0]F € R"
2

( where [Q, Qr, ] orthogonal; same trick as in least-squares)

> Minimised when ||Hyy — Q¥'b|| — min; Hessenberg least-squares problem
» Solve via QR (k Givens rotations)-+triangular solve, O(k?) in addition to Arnoldi



GMRES convergence: polynomial approximation
Recall that =), € Ki(A,b) = xp = px—1(A)b. Hence GMRES solution is

il 147~ =, i Apa (A0 =l

- ] 5(A) — )b
ﬁepg}x%):ou(p( ) )bll2

= mi A)b
periin Ip(A)5ll:

If A diagonalizable A = XAX !,

Ip(A)]l2 = | Xp(A)X 2 < [ X2l X |2llp(A)]]2
= Kka(X) max Ip(2)]

Interpretation: find polynomial s.t. p(0) =1 and |p();)| small for all 4



GMRES example

A=21+G/n,
p(z) =27"(z - 2)*

15

G: Gaussian random matrix (G;; ~ N(0,1), i.i.d.) G//n: eigvals in unit disk
cig(A)

eig(A) € [1, 3]
eig(A)
10! \\

20
GMRES iterations

Y
\
\
\
w1

2

500

____C) NETIEI
Cheb bound (\/M)“)
1010
0

5

10
GMRES iterations




When does GMRES converge fast?

Recall GMRES solution satisfies (assuming A diagonalisable+nonsingular)

i Axy — bll2 = i A)bll2 < k(X bl|2-
pocpin, Az —bllz = min  [Ip(A)b]> < r2(X) max p(2)]b]2
max,ey(4) [P(2)] is small when

» M\(A) are clustered away from 0

» a good p can be found quite easily
P> e.g. example 2 slides ago

» When A\(A) takes k(< n) distinct values
» Then convergence in k GMRES iterations (why?)



Preconditioning for GMRES

We've seen that GMRES is great if spectrum clustered away from 0. If not true with
Ax =0,
then precondition: find M € R™ "™ and solve
MAx = Mb

Desiderata of M:

» M simple enough s.t. applying M to vector is easy (note that each GMRES
iteration requires M A-multiplication), and one of
1. M A has clustered eigenvalues away from 0
2. M A has a small number of distinct eigenvalues
3. MA is well-conditioned k(M A) = O(1); then solve normal equation
(MA)TMAz = (MA)TMb



Preconditioners: examples

» ILU (Incomplete LU) preconditioner: A~ LU, M = (LU) ' =U"'L~!, L,U 'as
sparse as A" = M A ~ I (hopefully; 'cluster away from 0")

~ A ~
> For A = [ . Then if M nonsingular, M A

Afl
C [ (C’AIB)1]
has eigvalse {1, %(1 +/5)} = 3-step convergence [Murphy-Golub-Wathen 2000]
» Multigrid-based, operator preconditioning, ...

B
],setM:
0

Finding effective preconditioners is never-ending research topic
Prof. Andy Wathen is our Oxford expert!



Restarted GMRES

For k iterations, GMRES costs k matrix multiplications+O(nk?) for orthogonalization
— Arnoldi eventually becomes expensive.

Practical solution: restart by solving 'iterative refinement’:

1. Stop GMRES after kpax (prescribed) steps to get approx. solution &
2. Solve Az = b — Az via GMRES
3. Obtain solution 1 + &

Sometimes multiple restarts needed



Lanczos iteration

Recall Arnoldi decomposition AQy, = Qi1 Hy, = QpHy, + @k+1[0, ..., 0, gy k).
When A symmetric, Arnoldi decomposition simplifies to

AQr = QT + qr1[0, ..., 0, L1 4],

where T}, is symmetric tridiagonal (proof: just note Hj = Q{AQk in Arnoldi)

A Qr|=|Qr+1||Tx|, Tr= s Q1 Q1 = I

th—1,k

tik—1 [

tht+1,k

R(*+1)xk symmetric tridiagonal

» 3-term recurrence tj41 kqk+1 = (A — g k)qk — th—1,kqk—1; orthogonalisation
necessary only against last two vecs qg, i1
» Significant speedup over Arnoldi; cost k& A-mult.+O(k) inner products (O(nk))



CG: Conjugate Gradient method for Az =b, A >0
When A symmetric, Lanczos gives AQy = QkTk + qr+1]0, ..., 0,1], Ty: tridiagonal

CG: when A = 0 PD, solve QI (AQry — b) = Tiy — QLb =10, and z = Qry
—"Galerkin orthogonality”: residual Az — b orthogonal to ()



CG: Conjugate Gradient method for Az =b, A >0
When A symmetric, Lanczos gives AQy = QkTk + qr+1]0, ..., 0,1], Ty: tridiagonal
CG: when A = 0 PD, solve QF (AQry — b) =Ty — QLb =0, and = Qry
—"Galerkin orthogonality”: residual Az — b orthogonal to ()

> TLy = QZb is tridiagonal linear system, O(k) operations to solve
» three-term recurrence reduces cost to O(k) A-multiplications
> minimises A-norm of error xy = argmin,cq, [|2 — T4l[a (Azs = b):

(z — 2)TA(z — 2:) = (Quy — 2.) T A(Qry — )
=y (QFAQy)y — 2b" Qpy + bz,

minimiser is y = (QL AQk) 'QLb, so QL (AQry —b) =0

> Note ||z||la = VaT Az defines a norm (exercise)

> More generally, for inner-product norm ||z||pr = /< 7,2 >ar, Ming—qy ||z« — x| M
attained when < ¢;, z. — x >3= 0, Vg; (cf. Part A NA)



CG algorithm for Az =b, A >0
Set x9g =0, ro = —b, po =19 and do for k =1,2,3,...

o = (T, k) /(Pk> APk)
Th+1 = Tk + QDK

Try1 = Tk — o Apy,

Br = Tkt Tht1)/ (P> Th)
Pk+1 = Tk+1 + BkPr

where 7, = Axy, — b (residual) and py (search direction).
One can show among others (exercise/sheet)
» [Cr(A,b) =span(ro,r1,...,76—1) = span(xy, za,...,x;) (also equal to
span(po, p1, - - -, Pk—1))
>l =0,j=0,1,2,... k-1
Thus zy is kth CG solution, satisfying orthogonality Q% (Azy —b) =0



CG convergence

Let ef := x, — x. We have eg = z, (x9 = 0), and

lexlla
Heo”A xEICk(Ab

= min |pe_1(A)b— A7'b]|a/| €0l a
Pr—1€PK_1

— min  ||(pe_1(A)A = Deolla/|leo]la
Pr—1€Pr_1

[k = @l /[l 4

- i A
pepir%)zlllp( Jeolla/lleolla
p(A1)

= min |4 VT@O /lleolla
p(An) "

Now (blue)*=32; Aip(Ai)* (VT e0)? < max; p(X;)* 325 Mi(V7Teo); = max; p(A;)?[leol %



CG convergence cont'd

We've shown

lex][a : .
min  max |[p(\;)] < min max .
leolla ~ pePrp(0)=1 J Ip(35)] < PEPE,P(0)=1 E[Amin(A), Amax (A)] (@)l
Now )
' ra(A) —1
min max )| <2 Y—/—"L —
PEPL,P(0)=1 £E€[Amin (A), Amax (A)] Ip(@)] < (\/W + 1>

> note ka(A) = Z:?:((ﬁ)) = /)\\r;?:((ﬁ))(: by

» above bound obtained by Chebyshev polynomials on [Amin(A), Amax(A4)]



Chebyshev polynomials
For z = exp(if), x = 3(z + 2z7') = cosf € [—1,1], 6 = acos(z),
Ti(x) = (2% + 27 %) = cos(k0). Ty(z) is a polynomial in z:

1 1 1
§(z+z’1)(zk+z’k) = 5(z’€+1+z*<’€+1>)+§(z’@*hr:f(’“l)) & 22Ty (x) = Thor (@) + Tp—q ()

3-term recurrence;
2 cos 6 cos(k6)=cos((k+1)6)+cos((k—1)0)

1 To(z) ‘ \ Ts‘(z) |

1 08 06 04 -02 0 02 04 06 08 1 1 08 06 04 02 0 02 04 06 08 1
1 1 !
Ty(x)
of Ti(z) 4 of
- -
4 08 06 04 02 0 02 04 06 08 1 4 08 06 04 02 0 02 04 06 08 1
1 ! ! ! 1 ! ! ! ! . ! !
Ty(z) 5(x)
0 g of

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 T -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1



Chebyshev polynomials
For z = exp(if), x = 3(z + 2z7') = cosf € [—1,1], 6 = acos(z),
Ti(x) = (2% + 27 %) = cos(k0). Ty(z) is a polynomial in z:

1 1 1
§(z+z’1)(zk+z’k) = 5(z’€+1+z*<’€+1>)+§(z’@*hrz*(’“l)) & 22Ty (x) = Thor (@) + Tp—q ()

3-term recurrence;
2 cos 6 cos(k6)=cos((k+1)6)+cos((k—1)0)




Chebyshev polynomials
For z = exp(if), x = 3(z + 2z7') = cosf € [—1,1], 6 = acos(z),
Ti(x) = (2% + 27 %) = cos(k0). Ty(z) is a polynomial in z:

1 1 1
§(z+z’1)(zk+z’k) = 5(z’€+1+z*<’€+1>)+§(z’@*hrz*(’“l)) & 22Ty (x) = Thor (@) + Tp—q ()

3-term recurrence;

2 cos 0 cos(kf)=cos((k+1)0)+cos((k—1)6)

oF T ; I3t

ok

20}

-2 -1.5 -1 -0.5 0 0.5 1
100 T T T

SO\ Lpbet—

o | Tolas)

-2 -1.5 -1 -0.5 0 05 1
0 w Ftw)
200/

-2 -1.5 -1 -0.5 0 0.5 1



Chebyshev polynomials cont'd
For z = exp(if), x = (2 + 27!) = cosf € [—1,1], 6 = acos(z),
Tis(x) = 5(zF + 27%) = cos(k#).

» Inside [—1,1], |Tx(z)| <1
» OQutside [—1,1], |Tx(z)| > 1 grows rapidly with |z|, k(fastest growth among P)
Shift-+scale s.t. p(z) = cxTp(252=2) where ¢y = 1/T}, (= (b+a)) so p(0) = 1. Then
(b+a) a
> [p(z)] < 1/|Te(522)| = 1/|Tk(32)] on @ € [a, 1]

> Ti(z) = 3(zF +z‘k) with 2(z+27 1) =22 = » = batl _ V()]

Vbja—1  \/ka(A)-1

k
bl < 1750 <2 (V)

For much more about T}, see C6.3 Approximation of Functions




MINRES: symmetric (indefinite) version of GMRES (nonexaminable)
Recall GMRES

x = argminger, (ap)l|Az — bl
Algorithm: Given AQy = QkHI:Ik and writing x = Qy, rewrite as

myin |AQry — bl|2 = Hlyin |Qk+1Hiy — b2

Hy, QF
- la ]

= min
v 2
H
= m;n [ Okl y— ||Ibllze1| , e =[1,0,...,0]T e R"
2

( where [Qr, Qr, ] orthogonal; same trick as in least-squares)

> Minimised when || Ty — Q¥'b|| — min; Hessenberg least-squares problem
» Solve via QR (k Givens rotations)+triangular solve, O(k?) in addition to Arnoldi



MINRES: symmetric (indefinite) version of GMRES (nonexaminable)
MINRES (minimum-residual method) for A = A" (but not necessarily A = 0)

T = argmingcx, (ap)llAz — bl
Algorithm: Given AQy = Qk+1fk and writing x = Qpy, rewrite as

min |AQLy — bll2 = min 1Qk4+1T%y — b2

T QF
o lat ]!

= min
v 2
T
= rnyin loﬂ y—|bll2e1| , e =[1,0,...,0]F e R"
2

( where [Q#, Qr, ] orthogonal; same trick as in least-squares)

> Minimised when || Ty — Q¥'b|| — min; tridiagonal least-squares problem
» Solve via QR (k Givens rotations)+tridiagonal solve, O(k) in addition to Lanczos



MINRES convergence (nonexaminable)

As in GMRES,
in ||[Az — bljo = i Ap_1(A)b — bl|s = i 5(A) — I)b
e Az — bl ,, min | Apk—1(A)b — bl|2 ﬁepg%):oll(p( ) — Dbl
= min_ |[[p(A)bl2

- PEP,p(0)=1

Since A = AT, A is diagonalisable A = QAQT with Q orthogonal, so

Ip(A)ll2 = 1QP(A)Q" (|2 < 1QII21Q |2llp(A) 2

= e Ip(2)]

Interpretation: (again) find polynomial s.t. p(0) =1 and |p(A;)| small



MINRES convergence cont'd (nonexaminable)

1Az — bl .
— Ai
Bl = periin max|p(h)]

One can prove (nonexaminable)

;@Q(A)—1)’f/2

. N <
min  max |[p(\;)] < 2 </{2(A) 1

» obtained by Chebyshev+Mobbius change of variables [Greenbaum's book 97]
P> minimisation needed on positive and negative sides, hence slower convergence
when A indefinite



CG and MINRES, optimal polynomials

CG, iteration k=1




CG and MINRES, optimal polynomials

CG, iteration k=2
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CG and MINRES, optimal polynomials

CG, iteration k=5
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CG and MINRES, optimal polynomials
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CG and MINRES, optimal polynomials

510

AN A AN
WYYV YV

. . .4 . .6 0. X . 1
T




CG and MINRES, optimal polynomials

<10 CG, iteration k=50




CG and MINRES, optimal polynomials

x10™ CG, iteration k=50
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CG and MINRES, optimal polynomials

MINR

L107* CG, iteration k=50 ; MINRES, |teratlon k=2
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CG and MINRES, optimal polynomials

<10 CG, iteration k=50
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CG and MINRES, optimal polynomials

MINRE

L1071 CG, iteration k=50 MINRES, iteration k=10
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CG and MINRES, optimal polynomials

CG MINRE
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CG and MINRES, optimal polynomials

MINRES

MINRES, iteration k=50

<10 CG, iteration k=50

2 .
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! 15
0.8
i
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» CG employs Chebyshev polynomials
» MINRES is more complicated+slower convergence




Preconditioned CG/MINRES

Ar=b, A>0

Find preconditioner M s.t. “MTM ~ A~'" and solve
MTAMy = MTbh, My==z

As before, desiderata of M:

» MTAM simple to apply
» MTAM has clustered eigenvalues

Note that reducing koM™ AM) directly implies rapid convergence
» Possible to implement with just M7 M (no need to find M)



The Lanczos algorithm for symmetric eigenproblem (nonexaminable)
Rayleigh-Ritz: given symmetric A and orthonormal @, find approximate eigenpairs

1. Compute QT AQ
2. Eigenvalue decomposition QT AQ = VAVT

3. Approximate eigenvalues diag(A) (Ritz values) and eigenvectors QV (Ritz vectors)

This is a projection method (similar alg. available for SVD)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz

» In this case Q = Qy, so simply Q{AQk = T}, (tridiagonal eigenproblem)
P> Very good convergence to extremal eigenpairs

T
» Recall from Courant-Fisher A\ ax(A4) = max, f”m;}f

T T
zt Ax _ vt Av
> Hence Amax(4) > S VAU 1y as v e KAl
€NCE A, ( )_ IGglkaz}j,b) Tr = oTo v v k( )
N——
Lanczos output Kk — 1 power method

» Same for Apin, similar for e.g. Ao



Experiments with Lanczos (nonexaminable)

Symmetric A € R™*™ n = 100, Lanczos/power method with random initial vector b

10° 15 Convergence of Ritz values with Lanczos
« o o e o e e
.
10° 10 Ritz values o . v T
. .
. « o
= . . . .
. .
= 5 5f .
S 10 . . .
. . . . « . ¢
of . eigenyalues
10710 . N
.
.
.
. L
x : :
Lanczos Sy . H
o » ...jpower . L
0 20 40 60 80 100 . .
lterations o P
. 0 2 4 6 8 10 12
Convergence tO d0m|nant Lanczos iterations

eigenvalue Convergence of all eigenvalues



Arnoldi for nonsymmetric eigenvalue problems (nonexaminable)
Arnoldi for eigenvalue problems: Arnoldi iteration+Rayleigh-Ritz (just like Lanczos alg)

1. Compute QT AQ
2. Eigenvalue decomposition QT AQ = XAX!
3. Approximate eigenvalues diag(f&) (Ritz values) and eigenvectors QX (Ritz
vectors)
As in Lanczos, Q = Qi = Ki(A,b), so simply QF AQy = Hy, (Hessenberg

eigenproblem, ideal for QRalg)

Which eigenvalues are found by Arnoldi?
» Krylov subspace is invariant under shift: Ky (A,b) = Kr(A — sI,b)
» Thus any eigenvector that power method applied to A — sl converges to should
be contained in ICx(A,b)
» To find other (e.g. interior) eigvals, shift-invert Arnoldi: Q = Kx((A — sI)~1,b)



Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

» Direct methods (LU for Az = b, QRalg for Az = Az or A =UXVT):

» Incredibly reliable, backward stable

» Works like magic if n < 10000

> But not beyond; cubic complexity O(n?) or O(mn?)
> lterative methods (GMRES, CG, Arnoldi, Lanczos)

» Very fast when it works (nice spectrum etc)

» Otherwise, not so much; need for preconditioning



Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

» Direct methods (LU for Az = b, QRalg for Az = Az or A =UXVT):

» Incredibly reliable, backward stable
» Works like magic if n < 10000
> But not beyond; cubic complexity O(n?) or O(mn?)
> lterative methods (GMRES, CG, Arnoldi, Lanczos)
» Very fast when it works (nice spectrum etc)
» Otherwise, not so much; need for preconditioning
» Randomised algorithms
» OQutput differs at every run
> |deally succeed with enormous probability, e.g. 1 — exp(—cn)
» Often by far the fastest&only feasible approach
» Not for all problems—active field of research
We'll cover two NLA topics where randomisation very successful: low-rank
approximation (randomised SVD), and overdetermined least-squares problems



Gaussian random matrices

Gaussian G € R™*™: Takes iid (independent identically distributed) entries drawn
from the standard normal (Gaussian) distribution G;; ~ N(0,1).

Key properties of Gaussian matrices:



Gaussian random matrices

Gaussian G € R™*™: Takes iid (independent identically distributed) entries drawn
from the standard normal (Gaussian) distribution G;; ~ N(0,1).

Key properties of Gaussian matrices:

» Orthogonal invariance: If G Gaussian, Q1 G(Q)2 is also Gaussian for any fixed Q)
(independent of G).



Gaussian random matrices

Gaussian G € R™*™: Takes iid (independent identically distributed) entries drawn
from the standard normal (Gaussian) distribution G;; ~ N(0,1).

Key properties of Gaussian matrices:

» Orthogonal invariance: If G Gaussian, Q1 G(Q)2 is also Gaussian for any fixed Q)
(independent of G).
1. Linear combination of Gaussian random variables is Gaussian.
2. The distribution of a Gaussian r.v. is determined by its mean and variance.
3. E[(Qg:)] = QE[g;] = 0 (g;: ith column of G), and
E[(Qg:)T(Qg:)] = QE[g¥ g;]QT = I, so each Qg; is multivariate Gaussian with the
same distribution as g;. Independence of Qg;, Qg; is immediate.



Gaussian random matrices

Gaussian G € R™*™: Takes iid (independent identically distributed) entries drawn
from the standard normal (Gaussian) distribution G;; ~ N(0,1).

Key properties of Gaussian matrices:

» Orthogonal invariance: If G Gaussian, Q1 G(Q)2 is also Gaussian for any fixed Q)
(independent of G).
1. Linear combination of Gaussian random variables is Gaussian.
2. The distribution of a Gaussian r.v. is determined by its mean and variance.
3. E[(Qg:)] = QE[g;] = 0 (g;: ith column of G), and
E[(Qg:)T(Qg:)] = QE[g¥ g;]QT = I, so each Qg; is multivariate Gaussian with the
same distribution as g;. Independence of Qg;, Qg; is immediate.
Alternatively: joint pdf of g; = [g11, ..., gn1]" is W exp(—%(g%l + 4+ g2),
and that of Qg; = [g11,-..,Jn1]" is (change of variables, note det Q = 1) is
W exp(—5(gt + -+ Gn1))
» Marchenko-Pastur rule: “Rectangular random matrices are well conditioned”



Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix X € R™*™ (m > n) with iid X;; (mean 0, variance 1)
follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)

50 aspect=1 aspect=2 . aspect=5 0 aspect=10

50

40 40 40 40

30 30 30 30

20 20 20

10 10 10

0 0

0 1 2 0 1 2 0 1 2 0 1 2

0

density ~ 1, /(1+ \/Z) — 2)(z — (1 — /), support [y/im — v/, v/ + V7

Omax(X) &~ /m + /1, omin(X) = /m — /n, hence ra(X) ~ iﬁ =0(1),

Key fact in many breakthroughs in computational maths!

» Randomised SVD, Blendenpik (randomised least-squares)

> (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix
concentration inequalities [Tropp 11], Function approx. by least-squares
[Cohen-Davenport-Leviatan 13]



'Fast’ (but fragile) alg for min, ||Az — b||2
mxinHAx—ng, AleER™™ m>n

Consider 'row-subselection’ algorithm: select s(> n) rows Ay, b;, and solve
Z = argmin, || A1z — b1]|2

> 7 exact solution if Az, = b (consistent LS) and A; full rank

Ay by
As by

> If Az, # b, & can be terrible: eg. A= | |, b= | .| where A; = el (e < 1),
Ay, by,

and A; = I, for i > 2, and b; = b; if 3,5 > 2. Then z, = by, but
& = argmin, || A1z — by||2 has & = 1b1.



'Fast’ (but fragile) alg for min, ||Az — b||2
mxinHAx—ng, AleER™™ m>n

Consider 'row-subselection’ algorithm: select s(> n) rows Ay, b;, and solve

Z = argmin, || A1z — b1]|2
> 7 exact solution if Az, = b (consistent LS) and A; full rank
Ay by
As by
> If Az, # b, & can be terrible: eg. A= | |, b= | .| where A; = el (e < 1),
Ak b

and A; = I, for i > 2, and b; = b; if 3,5 > 2. Then z, = by, but
& = argming, || A1z — by||2 has & = %bl.
How to avoid such choices? Randomisation



Sketch and solve for min, || Az — b||2
A simple randomised algorithm for min, ||Az — b||2,: sketch and solve; draw Gaussian
G € R**™ (s > n) and
minimize |G(Az —b)]|2.

Suppose G € C™*™(n < 7 < m) Gaussian and let [A b] = QR € C™*(+1),

GQ

» Note . is s x n Gaussian (by orth. invariance); so
0i(GQ) € Vs —vVn+1,y/s+vn+1]

> [|G(Av =)z = [|G[A, D] { } 2 < (Vs+vn+ )IIR[ } ll2 =
(Vs ++vn+1)[|Av — b||2,
Yo, and similarly ||G(Av — b)||2 > (v/s — vn + 1)||Av — b||2.

> Since by definition ||G(AZ — b)||2 < ||G(Azx — b)||2, it follows that

1 f+\/ﬁ
Az = b2 € ———F——=||G(Az = b)||2 <

_ NNzt
If s =4(n+ 1), we have e = 3 %0

Az, —bllz = 10710 = ||A% — b2 < 3-1071°

HA — bf2.



Randomised least-squares: Blendenpik
[Avron-Maymounkov-Toledo 2010]

min ||Az — bl|2, AlER™™ m>n
€T

» Traditional method: normal eqn = = (AT A)~tATh or A = QR,z = R71(Q'),
both O(mn?) cost

» Randomised: generate random G € R**™ and G I

(QR factorisation), then solve min, ||(AR~")y — b||2’s normal eqn via Krylov

> O(mnlogm + n?) cost using fast FFT-type transforms for G
> Successful because AR is well-conditioned



Explaining Blendenpik via Marchenko-Pastur

Claim: AR is well-conditioned with G Al= (QR)

Show this for G € R**™ Gaussian:

Proof: Let A= QR. Then GA = (GQ)R =: GR

> is 4n x n rectangular Gaussian, hence well-cond

> So by M-P, ra(R™") = O(1) where G = QR is QR

» Thus GR = (QR)R = Q(RR) = QR, so R~' = R"'R™!
» Hence AR™! = QR™!, ko(AR™) = kp(R™1) = O(1)



Blendenpik: solving min, |[Az — b||; using R
We have kp(AR™) =: ko(B) = O(1);
defining Rz = y, min, | Az — b||2 = min,, |[(AR™1)y — b||s = min,, | By — b||2

» B well-conditioned=-in normal equation
BBy = B"b (1)

B well-conditioned xo(B) = O(1);

» solve (1) via CG (or a tailor-made method LSQR; nonexaminable)
> exponential convergence, O(1) iterations! (or O(log 1) iterations for € accuracy)
» each iteration requires w < Bw, consisting of w < Rlw (n x n triangular solve)
and w + Aw (m x nmat-vec multiplication); O(mn) cost overall



Blendenpik experiments

CG convergence, r2(A) = 10,10%

plain CG ky(A) = 10*

__10% b i ]
= %
~
|
i plain CG ky(A) =10
R
by . __sketch+solve ™~ . __:
10°

Blendenpik QR

1 6 2‘0 C;O 46 56 6;0 7‘0 8‘0 96 100
CG iterations
Solving min, || Az — b||2 via CG for AT Az = ATb vs. Blendenpik (AR )T (AR ")z = (AR™H)Tb,
m = 10000, n = 100

In practice, Blendenpik gets ~ x5 speedup over classical (Householder-QR based)
method when m > n



SVD: the most important matrix decomposition

» Symmetric eigenvalue decomposition: A = VAVT
for symmetric A € R™*", where VIV = I,,, A = diag(\1, ..., \n).

> Singular Value Decomposition (SVD): A = UXVT
for any A € R™*" m >n. Here UTU = VTV = I, ¥ = diag(o1,...,04),
o1 2>092> >0, 2>0.

SVD proof: Take Gram matrix AT A and its eigendecomposition ATA = VAVT. A'is
nonnegative, and (AV)T(AV) is diagonal, so AV = U, for some orthonormal U.
Right-multiply V7.

SVD useful for

» Finding column space, row space, null space, rank, ...
P> Matrix analysis, polar decomposition, ...
> Low-rank approximation



(Most) important result in Numerical Linear Algebra

Given A € R™*™ (m > n), find low-rank (rank r) approximation

Q

A o] _vr | Ser~

» Optimal solution A, = UTE,«VTT via truncated SVD
U =U(1:7),5 =%1:r1:7),V, =V(;,1:r), giving

A = Ar|| = [|diag(ort1, - - - om)|

in any unitarily invariant norm [Horn-Johnson 1985]
» But that costs O(mn?) (bidiagonalisation+QR); look for cheaper approximation



Randomised SVD by HMT

[Halko-Martinsson-Tropp, SIAM Review 2011]

1. Form a random (Gaussian) matrix X € R™*", usually r < n.
2. Compute AX.
3. QR factorisation AX = QR.

4. A ~ I( (QU0)XoV{{') is rank-r approximation.

v

O(mnr) cost for dense A

v

Near-optimal approximation guarantee: for any 7 < r,

E|A - A|lp < (1 P
r—7f—1

)14 45
where A; is the rank 7-truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why E||A — A|| = O(1)||A — As||



Pseudoinverse and projectors
Given M € R™*" with economical SVD M = UTZTWT
(U €e R %, € RV, € R"™" where r = rank(M) so that X, > 0), the
pseudoinverse M is
Mt =V, 271UT € R™™

> satisfies MMM = M, MTMMT = MT, MMT = (MMNT, MTM = (MTM)T
(which are often taken to be the definition—above is much simpler IMO)

> MT = M~Yif M nonsingular, MTM = I, (MM = I,,) if m > n(m >n) and M
full rank

A square matrix P € R™ " is called a projector if P? = P

» P diagonalisable and all eigenvalues 1 or 0
» ||P|l2 > 1 and || P||2 = 1 iff P = PT; in this case P is called orthogonal projector
» [ — P is another projector, and unless P =0or P =1, || — P||2 = || P||2:

Schur form QPQ* = [ 8], Q(I — P)Q* =[5 /F; see [Szyld 2006]



HMT approximant: analysis (down from 70 pages!)
A=QQTA, where AX = QR. Goal: |A— Al = |(I, — QQT)A| = O(|| A — 4:]).

1. QQTAX = AX (QQT is orthogonal projector onto span(AX)). Hence
(Im —QQTYAX = 0,50 A— A = (I, - QQT)A(I,, — X M) for any M € R™ ",
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HMT approximant: analysis (down from 70 pages!)
A=QQTA, where AX = QR. Goal: ||A— A|| = ||(In — QRT)A| = O(||A — A7

).

1. QQTAX = AX (QQT is orthogonal projector onto span(AX)). Hence
(Im—QQTYAX = 0,50 A— A = (I,, — QQTYA(I,, — X M) for any M € R"*".

2. Set MT = (VT X)TVT where V = [vy,...,v;] € R"*" top sing vecs of A (7 < r).

3. VVT(I = XMT)=vVT(I - X(VTX)'VT) =0 if VTX full row-rank (generic
assumption), so A — A = (I, — QQTYA(I —VVT) (I, — XMT).

4. Taking norms, ||A — leg =||(Im — QQT)A(I — VVT)(In - XMT)H2 =
(I, — QQTYU25 VI (I, — X MT)||2 where [V, V3] is orthogonal, so
|A = Al < [|S2lloll(Zn — XMz = Do) I XMT|;
——

optimal rank-7

To see why | X MT||y = O(1) (with high probability), we need random matrix theory



| XMz = O(1)
Recall we've shown for M7 = (VT X)IVT X € R**7

1A = Allz < [|IZall2l| (1o = XMT) 2= |[Zofl2 XMz
——
optimal rank-7
Now [|X M7 |ly = [ X(VTX)TVT||g = | X (VTX) 2 < [ X2l (VT X)T]2.
Assume X is random Gaussian X;; ~ N(0,1). Then

» V71X is a Gaussian matrix (orthogonal x Gaussian=Gaussian (in distribution);
exercise), hence ||(VTX)|| = 1/0min(VTX) < 1/(\/F — V7) by M-P
> [ Xll2 S vVm + r by M-P
Together we get | X M7y < ‘?Jrf 70(1)”

» When X non-Gaussian random matrix, perform similarly, harder to analyze



Precise analysis for HMT (nonexaminable)
Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any # < r, E||Eamvr|lr < \/EllBamrl|% = /1 + — 14 — As | F.

PROOF. First ineq: Cauchy-Schwarz. ||Emyrl% is

AU = VVI)I = Px )l = AT = VVD)[E + AT - VV)PxvE
= ||ZalF + [1Z2PxvllF = IZallF + [S2(VEX)(VEX) VT3

Now if X is Gaussian then VEX e R(=x7 and VT X € R™" are independent
Gaussian. Hence by [HMT Prop. 10.1] E[|S2(VEX)(VIX)T||% = —5—|2]/%, so

,
E|| Eamr |7 = (1 + r—f—l) 152/



Generalized Nystrom (nonexaminable)
X € R™ " as before; set Y € R"*("+0 and [N. 2020]

A= (AX(YTAX)'YT)A = PaxyA

Then A— A= (I —Paxy)A= (I —Paxy)AI — XMT); choose M s.t.
XMT =x(VTxX) VT = Px,v. Then Paxy,Px,v projections, and

|A— Al = |(I = Paxy)AI — Pxv)|
< (I = Paxy)AI = VVII - Pxy)|
<[ AT = VVD)YI = Pxv)| + |Paxy AT = VVT)(I = Pxy)l.

> Note ||A(I — VVT)(I — Pxy)| exact same as HMT error
» Extra term ||Pax y||2 = O(1) as before if ¢ > 1in Y € R™*°"

» Overall, about (1+ ||Pax,y|l2) = (1 + \\/fi T\J}) times bigger expected error than

HMT, still near-optimal and much faster O(mnlogn + r3)



Experiments: dense matrix
Dense 30,00

0 x 30,000 matrix w/ geometrically decaying o;

100 === _ SVD
108} A
»
.,,o’.
= 100 - o
TC R EE,’ e
N 20 ! o
< & =10 o
100 N - o
~> GN . o f
—+HMT \ - s
----SVD \ al o
1078 \ 1006t
108 10* 10° 10*
rank rank

HMT: Halko-Martinsson-Tropp 11, GN: generalized Nystrém , SVD: full svd

» Randomised algorithms are very competitive until » =~ n
> error ||[A— A.|| = O(|A — A;||), as theory predicts



MATLAB codes
Setup:

n
A
r

1000; % size

200; Y% rank

Then
HMT:

X = randn(n,r);

AX = AxX;

[Q,R] = gr(AX,0); % QR fact.
At = Qx(Q’*A);

norm(At-A,’fro’) /norm(A,’fro?)
ans = 1.2832e-15

gallery(’randsvd’,n,1e100); % geometrically decaying singvals

Generalized Nystrom :

X = randn(n,r); Y = randn(n,1.5%r);
AX = AxX; YA = Y’xA; YAX = YAxX;
[Q,R] = qr(YAX,0); 7% stable p-inv
At = (AX/R)*(Q’*YA);

norm(At-A,’fro’)/norm(A,’fro’)
ans = 2.8138e-15



Important (N)LA topics not treated

v
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tensors [Kolda-Bader 2009]
FFT (values<>coefficients map for polynomials) [e.g. Golub and Van Loan 2012]
sparse direct solvers [Duff, Erisman, Reid 2017]
multigrid [e.g. Elman-Silvester-Wathen 2014]
functions of matrices [Higham 2008]
generalised, polynomial eigenvalue problems [Guttel-Tisseur 2017]
perturbation theory (Davis-Kahan etc) [Stewart-Sun 1990]
compressed sensing [Foucart-Rauhut 2013]
model order reduction [Benner-Gugercin-Willcox 2015]

communication-avoiding algorithms [e.g. Ballard-Demmel-Holtz-Schwartz 2011]



C6.1 Numerical Linear Algebra, summary
1st half

» SVD and its properties (Courant-Fisher etc), applications (low-rank)
» Direct methods (LU) for linear systems and least-squares problems (QR)
> Stability of algorithms

2nd half

» Direct method (QR algorithm) for eigenvalue problems, SVD

» Krylov subspace methods for linear systems (GMRES, CG) and eigenvalue
problems (Arnoldi, Lanczos)

» Randomised algorithms for SVD and least-squares



Where does this course lead to?
Courses with significant intersection
» (6.3 Approximation of Functions (Prof. Nick Trefethen, MT): Chebyshev
polynomials/approximation theory
» C7.7 Random Matrix Theory (Prof. Jon Keating): for theoretical underpinnings of
Randomised NLA
» C6.4 Finite Element Method for PDEs (Prof. Patrick Farrell): NLA arising in
solutions of PDEs
» (6.2 Continuous Optimisation (Prof. Cora Cartis): NLA in optimisation problems
and many more: differential equations, data science, optimisation, machine learning,...
NLA is everywhere in computational maths

Thank you for your interest in NLA!



