
C6.1 Numerical Linear Algebra
I SVD and its properties, applications
I Direct methods for linear systems and least-squares problems
I Direct methods for eigenvalue problems
I Iterative (Krylov subspace) methods for linear systems
I Iterative (Krylov subspace) methods for eigenvalue problems
I Randomised algorithms for SVD and least-squares



References
I Trefethen-Bau (97): Numerical Linear Algebra

I covers essentials, beautiful exposition
I Golub-Van Loan (12): Matrix Computations

I classic, encyclopedic
I Horn and Johnson (12): Matrix Analysis (& topics (86))

I excellent theoretical treatise, little numerical treatment
I J. Demmel (97): Applied Numerical Linear Algebra

I impressive content, some niche
I N. J. Higham (02): Accuracy and Stability of Algorithms

I bible for stability, conditioning
I H. C. Elman, D. J. Silvester, A. J. Wathen (14): Finite elements and fast iterative

solvers
I PDE applications of linear systems, preconditioning



What is numerical linear algebra?
The study of numerical algorithms for problems involving matrices
Two main (only!?) problems:

1. Linear system

Ax = b
2. Eigenvalue problem

Ax = λx
λ: eigenvalue (eigval), x: eigenvector (eigvec)

3. SVD (singular value decomposition)

A = UΣV T

U, V : orthonormal/orthogonal, Σ diagonal
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Why numerical linear algebra?
I Many (in fact most) problems in scientific computing (and even machine learning)

boil down to a linear problem
I Because that’s often the only way to deal with the scale of problems we face today!

(and in future)
I For linear problems, so much is understood and reliable algorithms available

I Ax = b: e.g. Newton’s method for F (x) = 0, F : Rn → Rn nonlinear
1. start with initial guess x(0) ∈ Rn

2. find Jacobian matrix J ∈ Rn×n, Jij = ∂Fi(x)
∂xj
|x=x(0)

3. update x(1) := x(0) − J−1F (x(0)), repeat
I Ax = λx: e.g. Principal component analysis (PCA), data compression,

Schrödinger eqn., Google pagerank,

I Other sources: differential equations, optimisation, regression, data analysis, ...



Basic linear algebra review
For A ∈ Rn×n, (or Cn×n; hardly makes difference)
The following are equivalent (how many can you name?):

1. A is nonsingular.

2. A is invertible: A−1 exists.
3. The map A : Rn → Rn is a bijection.
4. all n eigenvalues of A are nonzero.
5. all n singular values of A are positive.
6. rank(A) = n.
7. the rows of A are linearly independent.
8. the columns of A are linearly independent.
9. Ax = b has a solution for every b ∈ Cn.

10. A has no nonzero null vector. Neither does AT .
11. A∗A is positive definite (not just semidefinite).
12. det(A) 6= 0.
13. A−1 exists such that A−1A = AA−1 = In.
14. . . .
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Structured matrices
For square matrices,
I Symmetric: A = AT , i.e. Aij = Aji (Hermitian: Aij = Āji) has eigenvalue

decomposition A = V ΛV T , V orthogonal, Λ = diag(λ1, . . . , λn).
I symmetric positive (semi)definite A � (�)0: symmetric and positive eigenvalues

I Orthogonal: AAT = ATA = I (Unitary: AA∗ = A∗A = I) → note ATA = I

implies AAT = I

I Skew-symmetric: Aij = −Aji (skew-Hermitian: Aij = −Āji)
I Normal: ATA = AAT

I Tridiagonal: Aij = 0 if |i− j| > 1
I Triangular: Aij = 0 if i > j

For (possibly nonsquare) matrices A ∈ Cm×n, m ≥ n
I Hessenberg: Aij = 0 if i > j + 1
I “orthonormal”: A∗A = In,
I sparse: most elements are zero

other structures: Hankel, Toeplitz, circulant, symplectic, ...



Vector norms
For vectors x = [x1, . . . , xn]T ∈ Cn

I p-norm ‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p

I Euclidean norm=2-norm ‖x‖2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2

I 1-norm ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
I ∞-norm ‖x‖∞ = maxi |xi|

Norm axioms
I ‖αx‖ = |α|‖x‖ for any α ∈ C
I ‖x‖ ≥ 0 and ‖x‖ = 0⇔ x = 0
I ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Inequalities: For x ∈ Cn,
I 1√

n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2

I 1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1

I 1
n‖x‖1 ≤ ‖x‖∞ ≤ ‖x‖1

‖ · ‖2 is unitarily invariant as ‖Ux‖2 = ‖x‖2 for any unitary U and any x ∈ Cn.



Cauchy-Schwarz inequality
For any x, y ∈ Rn,

|xT y| ≤ ‖x‖2‖y‖2

Proof:
I For any scalar c, ‖x− cy‖2 = ‖x‖2 − 2cxT y + c2‖y‖2.
I This is minimised w.r.t. c at c = xT y

‖y‖2 with minimiser ‖x‖2 − (xT y)2

‖y‖2 .
I Since the minimal value must be ≥ 0, the CS inequality follows.



Matrix norms
For matrices A ∈ Cm×n,
I p-norm ‖A‖p = maxx

‖Ax‖p

‖x‖p

I 2-norm=spectral norm (=operator norm) ‖A‖2 = σmax(A) (largest singular value)
I 1-norm ‖A‖1 = maxi

∑m
j=1 |Aji|

I ∞-norm ‖A‖∞ = maxi

∑n
j=1 |Aij |

I Frobenius norm ‖A‖F =
√∑

i

∑
j |Aij |2

(2-norm of vectorization)
I trace norm=nuclear norm ‖A‖∗ =

∑min(m,n)
i=1 σi(A)

Red: unitarily invariant norms ‖A‖ = ‖UAV ‖ for any unitary (or orthogonal) U, V

Norm axioms hold for each. Inequalities: For A ∈ Cm×n, (exercise)
I 1√

n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞

I 1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1

I ‖A‖2 ≤ ‖A‖F ≤
√

min(m,n)‖A‖2



Subspaces and orthonormal matrices
Subspace S of Rn: vectors of form

∑d
i=1 civi, ci ∈ R

I v1, . . . , vd are basis vectors, linearly independent
I x ∈ S ⇔

∑d
i=1 civi

I d is the dimension of S
Representation: S = span(V ) (i.e., x ∈ S ⇔ x = V c), or just V ; often convenient if
V (= Q) is orthonormal

Lemma
S1 = span(V1) and S2 = span(V2) where V1 ∈ Rn×d1 and V2 ∈ Rn×d2 , with
d1 + d2 > n. Then ∃x 6= 0 in S1 ∩ S2, i.e., x = V1c1 = V2c2 for some vectors c1, c2.

Proof: Let M := [V1, V2], of size n× (d1 + d2). Since d1 + d2 > n by assumption, M

has a right null vector. Mc = 0. Write c =
[
c1
−c2

]
.
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Some useful results
I (AB)T = BTAT

I If A,B invertible, (AB)−1 = B−1A−1

I If A,B square and AB = I, then BA = I

I

[
Im X

0 In

]−1

=
[
Im −X
0 In

]
I Neumann series: if ‖X‖ < 1 in any norm,

(I −X)−1 = I +X +X2 +X3 + · · ·

I Trace Trace(A) =
∑n

i=1Ai,i (sum of diagonals, A ∈ Rm×n). For any X,Y s.t.
Trace(XY ) = Trace(Y X). For B ∈ Rm×n, we have
‖B‖2F =

∑
i

∑
j |Bij |2 = Trace(BTB).

I Triangular structure is invariant under addition, multiplication, and inversion
I Symmetry is invariant under addition and inversion, but not multiplication; AB

usually not symmetric even if A,B are



SVD: the most important matrix decomposition
I Symmetric eigenvalue decomposition: A = V ΛV T

for symmetric A ∈ Rn×n, where V TV = In, Λ = diag(λ1, . . . , λn).

I Singular Value Decomposition (SVD): A = UΣV T

for any A ∈ Rm×n, m ≥ n. Here UTU = V TV = In, Σ = diag(σ1, . . . , σn),
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

SVD proof: Take Gram matrix ATA and its eigendecomposition ATA = V ΛV T . Λ is
nonnegative, and (AV )T (AV ) is diagonal, so AV = UΣ for some orthonormal U .
Right-multiply V T .

Full SVD: A = U

[
Σ
0

]
V T where U ∈ Rm×m orthogonal
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Example: computation

Let A =


−1 −2
2 1
1 0
0 1

 . To compute the SVD,

1. Compute the Gram matrix ATA =
[
6 4
4 6

]
.

2. λ(ATA) = {10, 2} (e.g. via characteristic polynomial). The eigvec matrix is

V = 1√
2

[
1 −1
1 1

]
(e.g. via the null vectors of A− λI). So ATA = V Σ2V T where

Σ =
[√

10 √
2

]
.

3. Let U = AV Σ−1 =


−3/
√

20 −1/2
3/
√

20 −1/2
1/
√

20 −1/2
1/
√

20 1/2

, which is orthonormal. Thus A = UΣV T .



rank, column/row space, etc
From the SVD one gets
I rank r of A ∈ Rm×n: number of nonzero singular values σi(A) (=# linearly

indep. columns, rows)
I We can always write A =

∑rank(A)
i=1 σiuiv

T
i .

I column space (linear subspace spanned by vectors Ax): span of U = [u1, . . . , ur]

I row space: row span of vT
1 , . . . , v

T
r

I null space: vr+1, . . . , vn



SVD and eigenvalue decomposition
I V eigvecs of ATA

I U eigvecs (for nonzero eigvals) of AAT (up to sign)

I σi =
√
λi(ATA)

I Think of eigenvalues vs. SVD of symmetric matrices, unitary, skew-symmetric,
normal matrices, triangular,...

I Jordan-Wieldant matrix
[ 0 A

AT 0
]
: eigvals ±σi(A), and m− n copies of 0. Eigvec

matrix is
[ U U U⊥

V −V 0
]
, ATU⊥ = 0



Uniqueness etc
I U, V (clearly) not unique: ±1 multiplication possible (but be careful—not

arbitarily)

I When multiple singvals exist σi = σi+1, more degrees of freedom

I Extreme example: what is the SVD(s) of an orthogonal matrix?



Recap: spectral norm of matrix

‖A‖2 = max
x

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2= σ1(A)

Proof: Use SVD

‖Ax‖2 = ‖UΣV Tx‖2
= ‖ΣV Tx‖2 by unitary invariance
= ‖Σy‖2 with ‖y‖2 = 1

=

√√√√ n∑
i=1

σ2
i y

2
i

≤

√√√√ n∑
i=1

σ2
1y

2
i = σ1‖y‖22 = σ1.

Frobenius norm: ‖A‖F =
√∑

i

∑
j |Aij |2 =

√∑n
i=1(σi(A))2 (exercise)
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Low-rank approximation of a matrix
Given A ∈ Rm×n, find Ar such that

A ≈ Ar = Ur Σr V T
r

I Storage savings (data compression)



Optimal low-rank approximation by SVD
Truncated SVD: Ar = UrΣrV

T
r , Σr = diag(σ1, . . . , σr)

‖A−Ar‖2 = σr+1 = min
rank(B)=r

‖A−B‖2

A =


∗
∗
...

∗
∗

[∗ ∗ · · · ∗ ∗
]

︸ ︷︷ ︸
σ1u1v1

+


∗
∗
...

∗
∗

[∗ ∗ · · · ∗ ∗
]

︸ ︷︷ ︸
σ2u2v2

+ · · ·+


∗
∗
...

∗
∗

[∗ ∗ · · · ∗ ∗
]

︸ ︷︷ ︸
σnunvn

,

Ar =


∗
∗
...

∗
∗

[∗ ∗ · · · ∗ ∗
]

︸ ︷︷ ︸
σ1u1v1

+ · · ·+


∗
∗
...

∗
∗

[∗ ∗ · · · ∗ ∗
]

︸ ︷︷ ︸
σnurvr

.



Optimal low-rank approximation by SVD
Truncated SVD: Ar = UrΣrV

T
r , Σr = diag(σ1, . . . , σr)

‖A−Ar‖2 = σr+1 = min
rank(B)=r

‖A−B‖2

I Good approximation if σr+1 � σ1:

A ≈ Ar = Ur Σr V T
r

I Optimality holds for any unitarily invariant norm
I Prominent application: PCA
I Many matrices have explicit or hidden low-rank structure (nonexaminable)



SVD optimality proof in spectral norm
Truncated SVD: Ar = UrΣrV

T
r , Σr = diag(σ1, . . . , σr)

‖A−Ar‖2 = σr+1 = minrank(B)=r ‖A−B‖2

I Since rank(B) ≤ r, we can write B = B1B
T
2 where B1, B2 have r columns.

I There exists orthonormal W ∈ Cn×(n−r) s.t. BW = 0. Then
‖A−B‖2 ≥ ‖(A−B)W‖2 = ‖AW‖2 = ‖UΣ(V TW )‖2.

I Now since W is (n− r)-dimensional, there is an intersection between W and
[v1, . . . , vr+1], the (r + 1)-dimensional subspace spanned by the leading r + 1 left
singular vectors ([W, v1, . . . , vr+1]

[ x1
x2

]
= 0 has a solution; then Wx1 is such a

vector).
I Then scale x1, x2 to have unit norm, and ‖UΣV TWx1‖2 = ‖Ur+1Σr+1x2‖2,

Where Ur+1,Σr+1 are leading r + 1 parts of U,Σ. Then ‖Ur+1Σr+1y1‖2 ≥ σr+1
can be verified directly.
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Low-rank approximation: image compression
grayscale image=matrix

original rank 1 rank 5

rank 10 rank 20 rank 50



Courant-Fischer minmax theorem
ith largest eigval λi of symmetric/Hermitian A is (below x 6= 0)

λi(A) = max
dimS=i

min
x∈S

xTAx

xTx

(
= min

dimS=n−i+1
max
x∈S

xTAx

xTx

)

Analogously, for any rectangular A ∈ Cm×n(m ≥ n), we have

σi(A) = max
dimS=i

min
x∈S

‖Ax‖2
‖x‖2

(
= min

dimS=n−i+1
max
x∈S

‖Ax‖2
‖x‖2

)
.

I minx∈S,‖x‖2=1 ‖Ax‖2 = minQTQ=Ii,‖y‖2=1 ‖AQy‖2 = σmin(AQ) = σi(AQ),
where span(Q) = S.

I C-F says σi(A) is maximum possible value over all subspaces S of dimension i.



Courant-Fischer minmax theorem
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Proof for (2):

1. Fix S and let Vi = [vi, . . . , vn]. We have
dim(S) + dim(span(Vi)) = i+ (n− i+ 1) = n+ 1, so ∃intersection w ∈ S ∩ Vi,
‖w‖2 = 1.

2. For this w, ‖Aw‖2 = ‖diag(σi, . . . , σn)(V T
i w)‖2 ≤ σi;

thus σi(A) ≥ minx∈S
‖Ax‖2
‖x‖2

.
3. For the reverse inequaltiy, take S = [v1, . . . , vi], for which w = vi.
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Weyl’s inequality
ith largest eigval λi of symmetric/Hermitian A is (below x 6= 0)

λi(A) = max
dimS=i

min
x∈S

xTAx

xTx

(
= min

dimS=n−i+1
max
x∈S

xTAx

xTx

)

Analogously, for any rectangular A ∈ Cm×n(m ≥ n), we have

σi(A) = max
dimS=i

min
x∈S

‖Ax‖2
‖x‖2

(
= min

dimS=n−i+1
max
x∈S

‖Ax‖2
‖x‖2

)
.

Corollary: Weyl’s inequality (Proof: exercise)
I for singular values

I σi(A+ E) ∈ σi(A) + [−‖E‖2, ‖E‖2]
I Special case: ‖A‖2 − ‖E‖2 ≤ ‖A+ E‖2 ≤ ‖A‖2 + ‖E‖2

I for symmetric eigenvalues λi(A+ E) ∈ λi(A) + [−‖E‖2, ‖E‖2]
Singvals and symmetric eigvals are insensitive to perturbation (well conditioned).
Nonsymmetric eigvals are different!



Eigenvalues of nonsymmetric matrices are sensitive
Consider eigenvalues of a Jordan block and its perturbation

J =


1 1

1
. . .

. . . 1
1

 ∈ Rn×n, J + E =


1 1

1
. . .

. . . 1
ε 1


λ(J) = 1 (n copies), but |λ(J + E)− 1| ≈ ε1/n



More applications of C-F
I σi

([
A1
A2

])
≥ max(σi(A1), σi(A2))

Proof (sketch): LHS = maxdimS=i minx∈S,‖x‖2=1

∥∥∥∥∥
[
A1
A2

]
x

∥∥∥∥∥
2
, and for any x,∥∥∥∥∥

[
A1
A2

]
x

∥∥∥∥∥
2
≥ max(‖A1x‖2, ‖A2x‖2).

I σi(
[
A1 A2

]
) ≥ max(σi(A1), σi(A2))

Proof: LHS = maxdimS=i min[x1
x2

]
∈S,

∥∥∥[x1
x2

]∥∥∥
2
=1

∥∥∥∥∥[A1 A2
] [x1
x2

]∥∥∥∥∥
2
, while

σi(A1) =

max
dimS=i,range(S)∈range(

[
In

0

]
)
min[x1

x2

]
∈S,

∥∥∥[x1
x2

]∥∥∥
2
=1

∥∥∥∥∥[A1 A2
] [x1
x2

]∥∥∥∥∥
2
.

Since the latter maximises over a smaller S, the former is at least as big.
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Matrix decompositions
I SVD A = UΣV T

I Eigenvalue decomposition A = XΛX−1

I Normal: X unitary X∗X = I
I Symmetric: X unitary and Λ real

I Jordan decomposition: A = XJX−1, J = diag(


λi 1

λi

. . .

. . . 1
λi

)

I Schur decomposition A = QTQ∗: Q orthogonal, T upper triangular
I QR: Q orthonormal, U upper triangular
I LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available



Solving Ax = b via LU decomposition
If A = LU is available

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗

 = LU

solving Ax = b can be done as follows:
1. Solve Ly = b for y,
2. solve Ux = y for x.

Each is a triangular system, which is easy to solve via forward (or backward)
substitution for Ly = b (Ux = y).



LU decomposition
Let A ∈ Rn×n. Suppose we can decompose (or factorise)

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗

 = LU

L: lower triangular, U : upper triangular. How to find L, U?

A =

∗
∗
∗
∗
∗

 [∗ ∗ ∗ ∗ ∗] +

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


=

∗
∗
∗
∗
∗

[
∗ ∗ ∗ ∗ ∗

]
︸ ︷︷ ︸

L1U1

+

0
∗
∗
∗
∗

[
0 ∗ ∗ ∗ ∗

]
︸ ︷︷ ︸

L2U2

+

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 = · · ·



LU decomposition
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∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗

 = LU

L: lower triangular, U : upper triangular. How to find L, U?
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∗
∗
∗
∗
∗

 [∗ ∗ ∗ ∗ ∗] +

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


=

∗
∗
∗
∗
∗

[
∗ ∗ ∗ ∗ ∗

]
︸ ︷︷ ︸

L1U1

+

0
∗
∗
∗
∗

[
0 ∗ ∗ ∗ ∗

]
︸ ︷︷ ︸

L2U2

+

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 = · · ·



LU decomposition cont’d
First step:

A =

∗
∗
∗
∗
∗

[
∗ ∗ ∗ ∗ ∗

]
︸ ︷︷ ︸

L1U1

+

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



algorithm:
A11 A12 A13 A14 A15
A21
A31
A41
A51

 =


L11
L21
L31
L41
L51




U11 U12 U13 U14 U15
 +

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



=


1

A21/a

A31/a

A41/a

A51/a




A11 A12 A13 A14 A15


︸ ︷︷ ︸
=L1U1 (a=A11)

+

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗





LU decomposition cont’d 2

A =

∗
∗
∗
∗
∗

 [∗ ∗ ∗ ∗ ∗] +

0
∗
∗
∗
∗

 [0 ∗ ∗ ∗ ∗] +

0
0
∗
∗
∗

 [0 0 ∗ ∗ ∗] +

0
0
0
∗
∗

 [0 0 0 ∗ ∗] +

0
0
0
0
∗

 [0 0 0 0 ∗]

= L1U1 + L2U2 + L3U3 + L4U4 + L5U5

= [L1, L2, . . . , L5]


U1

U2
...

U5

 =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗


(note: nonzero structure crucial in final equality)



Solving Ax = b via LU

A = LU ∈ Rn×n

L: lower triangular, U : upper triangular
▶ Cost 2

3n3 flops (floating-point operations)
▶ For Ax = b,

▶ first solve Ly = b, then Ux = y. Then b = Ly = LUx = Ax.
▶ triangular solve is always backward stable: e.g. (L + ∆L)ŷ = b (see Higham’s book)

▶ Pivoting crucial for numerical stability: PA = LU , where P : permutation matrix.
Then stability means L̂Û = PA + ∆A

▶ Even with pivoting, unstable examples exist, but still always stable in practice and
used everywhere!

▶ Special case where A ≻ 0 positive definite: A = RT R, Cholesky factorization,
ALWAYS stable, 1

3n3 flops



LU decomposition with pivots


A11 A12 A13 A14 A15
A21
A31
A41
A51

 =


1

A21/a

A31/a

A41/a

A51/a




A11 A12 A13 A14 A15
 +

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



Trouble if a = A11 = 0! e.g. no LU for
[
0 1
1 0

]
solution: pivot, permute rows s.t.

largest entry of first (active) column is at top. ⇒ PA = LU , P : permutation matrix
▶ PA = LU exists for any nonsingular A (exercise)
▶ for Ax = b, solve LUx = P T b

▶ the nonzero structure of Li, Ui is preserved under P

▶ cost still 2
3n3 + O(n2)



Cholesky factorisation for A ≻ 0
If A ≻ 0 (symmetric positive definite (S)PD⇔λi(A) > 0), two simplifications:
▶ We can take Ui = LT

i =: Ri by symmetry ⇒ 1
3n3 flops

▶ No pivot needed

A =

∗
∗
∗
∗
∗

[
∗ ∗ ∗ ∗ ∗

]
︸ ︷︷ ︸

R1RT
1

+

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


︸ ︷︷ ︸

also PD

Notes:
▶ diag(R) no longer 1’s
▶ A can be written as A = RT R for some R ∈ Rn×n iff A ⪰ 0 (λi(A) ≥ 0)
▶ Indefinite case: when A = A∗ but A not PD, ∃ A = LDL∗ where D diagonal

(when A ∈ Rn×n, D can have 2 × 2 diagonal blocks), L has 1’s on diagonal



QR factorisation
For any A ∈ Cm×n, ∃ factorisation

A = Q R

Q ∈ Rm×n: orthonormal, R ∈ Rn×n: upper triangular

I Many algorithms available: Gram-Schmidt, Householder, CholeskyQR, ...

I various applications: least-squares, orthogonalisation, computing SVD, manifold
retraction...

I With Householder, pivoting A = QRP not needed for numerical stability
I but pivoting gives rank-revealing QR (nonexaminable)



QR via Gram-Schmidt
Gram-Schmidt: Given A = [a1, a2, . . . , an] ∈ Rm×n (assume full rank rank(A) = n),
find orthonormal [q1, . . . , qn] s.t. span(q1, . . . , qn) = span(a1, . . . , an)

G-S process: q1 = a1
‖a1‖ , then q̃2 = a2 − q1q

T
1 a2, q2 = q̃2

‖q̃2‖ ,
repeat for j = 3, . . . , n: q̃j = aj −

∑j−1
i=1 qiq

T
i aj , qj = q̃j

‖q̃j‖ .

This gives QR! Let rij = qTi aj (i 6= j) and rjj = ‖aj −
∑j−1
i=1 rijqi‖,

q1 = a1
r11

q2 = a2 − r12q1
r22

qj = aj −
∑j−1
i=1 rijqi
rjj

⇔
a1 = r11q1

a2 = r12q1 + r22q2

aj = r1jq1 + r2jq2 + · · ·+ rjjqj

⇔ A = Q R

I But this isn’t the recommended way to do QR; numerically unstable
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Householder reflectors
H = I − 2vvT , ‖v‖ = 1

I H orthogonal and
symmetric: HTH = H2 = I,
eigvals 1 (n− 1 copies) and
−1 (1 copy)

I For any given u,w ∈ Rn s.t.
‖u‖ = ‖w‖ and u 6= v,
H = I − 2vvT with
v = w−u

‖w−u‖ gives Hu = w

(⇔ u = Hw, thus ’reflector’)

I We’ll use this mostly for
w = [∗, 0, 0, . . . , 0]T

v

−v(vTu)

w

u

(u− w)Tx = 0 = vTx
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Householder reflectors for QR
Householder reflectors:

H = I − 2vvT , v = x− ‖x‖2e
‖x− ‖x‖2e‖2

, e = [1, 0, . . . , 0]T

satisfies Hx = [‖x‖, 0, . . . , 0]T

⇒ To do QR, find H1 s.t. H1a1 =


‖a1‖2

0
...

0

,

repeat to get Hn · · ·H2H1A = R upper triangular, then
A = (H1 · · ·Hn−1Hn)R = QR



Householder reflectors for QR
Householder reflectors:

H = I − 2vvT , v = x− ‖x‖2e
‖x− ‖x‖2e‖2

, e = [1, 0, . . . , 0]T

satisfies Hx = [‖x‖, 0, . . . , 0]T

⇒ To do QR, find H1 s.t. H1a1 =


‖a1‖2

0
...

0

,

repeat to get Hn · · ·H2H1A = R upper triangular, then
A = (H1 · · ·Hn−1Hn)R = QR



Householder QR factorisation, diagram

A =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


Apply sequence of Householder reflectors

H1A = (I−2v1v
T
1 )A =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 , H2H1A = (I−2v2v
T
2 )H1A =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

 ,

H3H2H1A =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗
∗

 , Hn · · ·H3H2H1A =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

 ,
Note vk = [0, 0, . . . , 0︸ ︷︷ ︸

k − 1 0’s
, ∗, ∗, . . . , ∗]T



Householder QR factorisation, example

A =



0.302 −0.629 2.178 0.164
0.400 −1.204 1.138 0.748
−0.930 −0.254 −2.497 −0.273
−0.177 −1.429 0.441 1.576
−2.132 −0.021 −1.398 −0.481
1.145 −0.561 −0.255 0.328





Householder QR factorisation, example

H1A =



2.647 −0.295 2.284 0.652
0 −1.261 1.120 0.665
0 −0.121 −2.455 −0.080
0 −1.403 0.449 1.613
0 0.283 −1.301 −0.038
0 −0.724 −0.307 0.090





Householder QR factorisation, example

H2H1A =



2.647 −0.295 2.284 0.652
0 2.044 −0.925 −1.550
0 0 −2.530 −0.161
0 0 −0.419 0.673
0 0 −1.126 0.152
0 0 −0.755 −0.395





Householder QR factorisation, example

H3H2H1A =



2.647 −0.295 2.284 0.652
0 2.044 −0.925 −1.550
0 0 2.901 0.087
0 0 0 0.692
0 0 0 0.203
0 0 0 −0.361





Householder QR factorisation, example

H4H3H2H1A =



2.647 −0.295 2.284 0.652
0 2.044 −0.925 −1.550
0 0 2.901 0.087
0 0 0 0.806
0 0 0 0
0 0 0 0


=

R0




Householder QR factorisation

Hn · · ·H2H1A =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

 =
[
R

0

]

⇔ A = (HT
1 · · ·HT

n−1H
T
n )
[
R

0

]
=: QF

[
R

0

]
(full QR; QF is square orthogonal)

Writing QF = [Q Q⊥] where Q ∈ Rm×n orthonormal, A = QR (’thin’ QR or just QR)

Properties
I Cost 4

3n
3 flops with Householder-QR (twice that of LU)

I Unconditionally backward stable: Q̂R̂ = A+ ∆A, ‖Q̂T Q̂− I‖2 = ε (next lec)
I Constructive proof for A = QR existence
I To solve Ax = b, solve Rx = QT b via triangle solve.
→ Excellent method, but twice slower than LU (so rarely used)



Givens rotation

G =
[
c s

−s c

]
, c2 + s2 = 1

Designed to ’zero’ one element at a time. E.g. QR for upper Hessenberg matrix

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 , G1A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 , G2G1A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 ,

G3G2G1A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

 , G4G3G2G1A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

 =: R

⇔ A = GT1 G
T
2 G

T
3 G

T
4 R is the QR factorisation.

I G acts locally on two rows (two columns if right-multiplied)
I Non-neighboring rows/cols allowed



Least-squares problem
Given A ∈ Rm×n,m ≥ n and b ∈ Rm, find x ∈ Rn s.t.

min
x

∥∥∥∥∥∥∥∥∥∥∥∥
A x − b

∥∥∥∥∥∥∥∥∥∥∥∥
2

I More data than degrees of freedom
I ’Overdetermined’ linear system; Ax = b usually impossible
I Thus minimise ‖Ax− b‖; usually ‖Ax− b‖2 but sometimes e.g. ‖Ax− b‖1 of

interest (we focus on ‖Ax− b‖2)
I Assume full rank rank(A) = n; this makes solution unique



Least-squares problem via QR
minx ‖Ax− b‖2, A ∈ Rm×n,m ≥ n

Let A = [Q Q⊥]
[
R
0
]

= QF
[
R
0
]

be ’full’ QR factorization. Then

‖Ax− b‖2 = ‖QTF (Ax− b)‖2 =
∥∥∥∥∥
[
R

0

]
x−

[
QT b

QT⊥b

]∥∥∥∥∥
2

so x = R−1QT b is the solution. This also gives algorithm:
1. Compute thin QR factorization A = QR

2. Solve linear system Rx = QT b.

I This is backward stable: computed x̂ solution for minx ‖(A+ ∆A)x+ (b+ ∆b)‖2
(see Higham’s book Ch.20)

I Unlike square system Ax = b, one really needs QR: LU won’t do the job
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Normal equation: Cholesky-based least-squares solver
minx ‖Ax− b‖2, A ∈ Rm×n,m ≥ n

x = R−1QT b is the solution ⇔ x solution for n× n normal equation

(ATA)x = AT b

I ATA � 0 (always) and ATA � 0 if rank(A) = n; then PD linear system; use
Cholesky to solve.

I Fast! but NOT backward stable; κ2(ATA) = (κ2(A))2 where κ2(A) = σmax(A)
σmin(A)

condition number (next lecture)



Application: regression/function approximation
Given function f : [−1, 1]→ R,
Consider approximating via polynomial f(x) ≈ p(x) =

∑
i=0 cix

i.
Very common technique: Regression

1. Sample f at points {zi}mi=1, and
2. Find coefficients c defined by Vandermonde system Ac ≈ f ,

1 z1 · · · zn1
1 z2 · · · zn2
...

...
...

1 zm · · · znm



c0
...

cn

 ≈

f(z1)
f(z2)
...

f(zm)

 .

I Numerous applications, e.g. in statistics, numerical analysis, approximation
theory, data analysis!



Numerical stability
Question: Can a computed result trusted?
e.g. is Ax = b always solved correctly via the LU algorithm?

▶ The situation is complicated. For example, let

A = UΣV T , where U = 1√
2

[
1 1
1 −1

]
, Σ =

[
1

10−15

]
, V = I, and let

b = A

[
1
1

]
(i.e., x =

[
1
1

]
).

In MATLAB, x = A\b outputs
[

1.0000
0.94206

]
▶ Did something go wrong?

NO—this is a ramification of ill-conditioning, not instability
▶ In fact, ∥Ax − b∥2(= ∥Ax̂ − b∥2) ≈ 10−16

(After this section, make sure you can explain what happened above!)
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Floating-point arithmetic
▶ Computers store number in base 2 with finite/fixed memory (bits)
▶ Irrational numbers are stored inexactly, e.g. 1/3 ≈ 0.333...

▶ Calculations are rounded to nearest floating-point number (rounding error)
▶ Thus the accuracy of the final error is nontrivial

Two examples with MATLAB
▶ ((sqrt(2))2 − 2) ∗ 1e15 = 0.4441 (should be 0..)
▶

∑∞
n=1

1
n ≈ 30 (should be ∞..)

An important (but not main) part of numerical analysis/NLA is to study the effect of
rounding errors
Best reference: Higham’s book (2002)



Conditioning and stability
▶ Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to

perturbation in inputs, i.e., how large κ := supδx ∥f(x + δx) − f(x)∥/∥δx∥ is in
the limit δx → 0.
(this is absolute condition number; equally important is relative condition number
κr := lim∥δx∥2→0 supδx

∥f(x+δx)−f(x)∥
∥f(x)∥

/∥δx∥
∥x∥ )

▶ (Backward) Stability is a property of an algorithm, which describes if the
computed solution ŷ is a ’good’ solution, in that it is an exact solution of a nearby
input, that is, ŷ = f(x + ∆x) for a small ∆x.

If problem is ill-conditioned κ ≫ 1, then blame the problem not the algorithm

Notation/convention: x̂ denotes a computed approximation to x (e.g. of x = A−1b)
ϵ denotes a small term O(u), on the order of unit roundoff/working precision; so we
write e.g. u, 10u, (m + n)u, mnu all as ϵ

▶ Consequently (in this lecture/discussion) norm choice does not matter today
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Numerical stability: backward stability
For computational task Y = f(X) and computed approximant Ŷ ,
▶ Ideally, error ∥Y − Ŷ ∥/∥Y ∥ = ϵ: seldom true

(u: unit roundoff, ≈ 10−16 in standard double precision)
▶ Good alg. has Backward stability Ŷ = f(X + ∆X), ∥∆X∥

∥X∥ = ϵ “exact solution of
slightly wrong input ”

▶ Justification: Input (matrix) is usually inexact anyway! f(X + ∆X) is just as
good at f(X) at approximating f(X∗) where ∥∆X∥ = O(∥X − X∗∥)
We shall ’settle with’ such solution, though it may not mean Ŷ − Y is small

▶ Forward stability ∥Y − Ŷ ∥/∥Y ∥ = O(κ(f)u) “error is as small as backward stable
alg.” (sometimes used to mean small error; we follow Higham’s book [2002])
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Backward stable+well conditioned=accurate solution
Suppose
▶ Y = f(X) computed backward stably i.e., Ŷ = f(X + ∆X), ∥∆X∥ = ϵ.

Then with conditioning κ = lim∥δx∥2→0 supδx
∥f(X)−f(X+∆X)∥

∥∆X∥ ,

∥Ŷ − Y ∥ ≲ κϵ

(relative version possible)

’proof’:

∥Ŷ − Y ∥ = ∥f(X + ∆X) − f(X)∥ ≲ κ∥∆X∥∥f(X)∥ = κϵ

If well-conditioned κ = O(1), good accuracy! Important examples:
▶ Well-conditioned linear system Ax = b, κ2(A) ≈ 1
▶ Eigenvalues of symmetric matrices (via Weyl’s bound

λi(A + E) ∈ λi(A) + [−∥E∥2, ∥E∥2] )
▶ Singular values of any matrix σi(A + E) ∈ σi(A) + [−∥E∥2, ∥E∥2]

Note: eigvecs/singvecs can be highly ill-conditioned
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Matrix condition number
κ2(A) = σmax(A)

σmin(A) (≥ 1)

e.g. for linear systems. (when A is m × n(m > n), κ2(A) = σ1(A)
σn(A)) A backward stable

soln for Ax = b, s.t. (A + ∆A)x̂ = b satisfies, assuming backward stability
∥∆A∥ ≤ ϵ∥A∥ and κ2(A) ≪ ϵ−1 (so ∥A−1∆A∥ ≪ 1),

∥x̂ − x∥
∥x∥

≲ ϵκ2(A)

’proof’: By Neumann series

(A + ∆A)−1 = (A(I + A−1∆A))−1 = (I − A−1∆A + O(∥A−1∆A∥2))A−1

So x̂ = (A + ∆A)−1b = A−1b − A−1∆AA−1b + O(∥A−1∆A∥2) =
x − A−1∆Ax + O(∥A−1∆A∥2), Hence

∥x − x̂∥ ≲ ∥A−1∆Ax∥ ≤ ∥A−1∥∥∆A∥∥x∥ ≤ ϵ∥A∥∥A−1∥∥x∥ = ϵκ2(A)∥x∥
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Backward stability of triangular systems
Recall Ax = b via Ly = b, Ux = y (triangular systems).
The computed solution x̂ for a (upper/lower) triangular linear system Rx = b solved
via back/forward substitution is backward stable, i.e., it satisfies

(R + ∆R)x̂ = b, ∥∆R∥ = O(ϵ∥R∥).

Proof: Trefethen-Bau or Higham (nonexaminable but interesting)
▶ backward error can be bounded componentwise
▶ this means ∥x̂ − x∥/∥x∥ ≤ ϵκ2(R)

▶ (unavoidably) poor worst-case (and attainable) bound when ill-conditioned
▶ often better with triangular systems



(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies ∥L̂Û−A∥

∥L∥∥U∥ = ϵ

(note: not ∥L̂Û−A∥
∥A∥ = ϵ)

▶ If ∥L∥∥U∥ = O(∥A∥), then (L + ∆L)(U + ∆U)x̂ = b

⇒ x̂ backward stable solution (exercise)

Question: Does LU = A + ∆A or LU = PA + ∆A with ∥∆A∥ = ϵ∥A∥ hold?

Without pivot (P = I): ∥L∥∥U∥ ≫ ∥A∥ unboundedly (e.g.
[

ϵ 1
1 1

]
) unstable

With pivots:
▶ Worst-case: ∥L∥∥U∥ ≫ ∥A∥ grows exponentially with n, unstable

▶ growth governed by that of ∥L∥∥U∥/∥A∥ ⇒ ∥U∥/∥A∥
▶ In practice (average case): perfectly stable

▶ Hence this is how Ax = b is solved, despite alternatives with guaranteed stability
exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!
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(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies ∥L̂Û−A∥

∥L∥∥U∥ = ϵ

(note: not ∥L̂Û−A∥
∥A∥ = ϵ)

▶ If ∥L∥∥U∥ = O(∥A∥), then (L + ∆L)(U + ∆U)x̂ = b

⇒ x̂ backward stable solution (exercise)
Question: Does LU = A + ∆A or LU = PA + ∆A with ∥∆A∥ = ϵ∥A∥ hold?

Without pivot (P = I): ∥L∥∥U∥ ≫ ∥A∥ unboundedly (e.g.
[

ϵ 1
1 1

]
) unstable

With pivots:
▶ Worst-case: ∥L∥∥U∥ ≫ ∥A∥ grows exponentially with n, unstable

▶ growth governed by that of ∥L∥∥U∥/∥A∥ ⇒ ∥U∥/∥A∥
▶ In practice (average case): perfectly stable

▶ Hence this is how Ax = b is solved, despite alternatives with guaranteed stability
exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!



Examples of stability and instability
Forthcoming examples: nonexaminable



Stability of Cholesky for A ≻ 0
Cholesky A = RT R for A ≻ 0
▶ succeeds without pivot (active matrix is always positive definite)
▶ R never contains entries >

√
∥A∥2

A =

∗
∗
∗
∗
∗

[
∗ ∗ ∗ ∗ ∗

]
︸ ︷︷ ︸

R1RT
1

+

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


︸ ︷︷ ︸

also PSD

(exercise: show ∥R1∥2 ≤
√

∥A∥2)
⇒ backward stable! Hence positive definite linear system Ax = b stable via Cholesky



(In)stability of Gram-Schmidt
▶ Gram-Schmidt is subtle

▶ plain (classical) version: ∥Q̂T Q̂ − I∥ ≤ ϵ(κ2(A))2

▶ modified Gram-Schmidt (orthogonalise ’one vector at a time’): ∥Q̂T Q̂ − I∥ ≤ ϵκ2(A)

▶ Gram-Schmidt twice (G-S again on computed Q̂): ∥Q̂T Q̂ − I∥ ≤ ϵ



Matrix multiplication is not backward stable
Shock! It is not always true that fl(AB) equal to (A + ∆A)(B + ∆B) for small
∆A, ∆B

▶ Vec-vec mult. backward stable: fl(yT x) = (y + ∆y)(x + ∆x); in fact
fl(yT x) = (y + ∆y)x.

▶ Hence mat-vec also backward stable: fl(Ax) = (A + ∆A)x.
▶ Still mat-mat is not backward stable.
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Shock! It is not always true that fl(AB) equal to (A + ∆A)(B + ∆B) for small
∆A, ∆B

▶ Vec-vec mult. backward stable: fl(yT x) = (y + ∆y)(x + ∆x); in fact
fl(yT x) = (y + ∆y)x.

▶ Hence mat-vec also backward stable: fl(Ax) = (A + ∆A)x.
▶ Still mat-mat is not backward stable.

AB = A B . fl(AB) = AB + ϵ = Ã B̃ ??

with Ã = A + ϵ∥A∥, B̃ = B + ϵ∥B∥? No—e.g., fl(AB) is usually not low rank



Matrix multiplication is not backward stable
Shock! It is not always true that fl(AB) equal to (A + ∆A)(B + ∆B) for small
∆A, ∆B

▶ Vec-vec mult. backward stable: fl(yT x) = (y + ∆y)(x + ∆x); in fact
fl(yT x) = (y + ∆y)x.

▶ Hence mat-vec also backward stable: fl(Ax) = (A + ∆A)x.
▶ Still mat-mat is not backward stable.

What is true: ∥fl(AB) − AB∥ ≤ ϵ∥A∥∥B∥, so
∥fl(AB) − AB∥/∥AB∥ ≤ ϵ min(κ2(A), κ2(B)).
▶ Great when A or B orthogonal (or square well-conditioned): say if A = Q

orthogonal,
∥fl(QB) − QB∥ ≤ ϵ∥B∥,

so fl(QB) = QB + ϵ∥B∥, hence fl(QB) = Q(B + ∆B) where ∆B = QT ϵ∥B∥
orthogonal multiplication is backward stable



Stability of Householder QR
With Householder QR, the computed Q̂, R̂ satisfy

∥Q̂T Q̂ − I∥ = O(ϵ), ∥A − Q̂R̂∥ = O(ϵ∥A∥),

and (of course) R upper triangular.
Rough proof
▶ Each reflector orthogonal, so satisfies fl(HiA) = HiA + ϵi∥A∥
▶ Hence (R̂ =)fl(Hn · · · H1A) = Hn · · · H1A + ϵ∥A∥
▶ fl(Hn · · · H1) =: Q̂T = Hn · · · H1 + ϵ,
▶ Thus Q̂R̂ = A + ϵ∥A∥

Notes:
▶ This doesn’t mean ∥Q̂ − Q∥, ∥R̂ − R∥ are small at all! Indeed Q, R are as

ill-conditioned as A

▶ QR for Ax = b, least-squares are stable (NB normal eqn AT Ax = is NOT)
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Orthogonal Linear Algebra
With orthogonal matrices Q,

∥fl(QA) − QA∥
∥QA∥

≤ ϵ,
∥fl(AQ) − AQ∥

∥AQ∥
≤ ϵ

whereas in general, ∥fl(AB) − AB∥ ≤ ϵ∥A∥∥B∥, so
∥fl(AB) − AB∥/∥AB∥ ≤ ϵ min(κ2(A), κ2(B))

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue
decomposition of non-normal matrices, Jordan form, etc), whereas those based on
orthogonal matrices are stable, e.g.
▶ Householder QR factorisation
▶ QR algorithm for Ax = λx

▶ Golub-Kahan algorithm for A = UΣV T

▶ QZ algorithm for Ax = λBx

We next turn to the algorithms in boldface
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Key points on stability
▶ Definition: (backward) stability vs. conditioning
▶ Orthogonal linear algebra is backward stable

▶ Significance of κ2(A) = ∥A∥2∥A−1∥
▶ Stable operations: triangular systems, Cholesky,...



Eigenvalue problem Ax = λx
First of all, Ax = λx no explicit solution (neither λ nor x); huge difference from
Ax = b for which x = A−1b

▶ Eigenvalues are roots of characteristic polynomial
▶ For any polynomial p, ∃ (infinitely many) matrices whose eigvals are roots of p

▶ So no finite-step algorithm exists for Ax = λx



Eigenvalue problem Ax = λx
First of all, Ax = λx no explicit solution (neither λ nor x); huge difference from
Ax = b for which x = A−1b

▶ Eigenvalues are roots of characteristic polynomial
▶ For any polynomial p, ∃ (infinitely many) matrices whose eigvals are roots of p

▶ Let p(x) = xn + an−1xn−1 + · · ·+ a1x + a0, ai ∈ C. Then
p(λ) = 0⇔ λ eigenvalue of

C =



−an−1 −an−2 . . . −a1 −a0
1

1
. . .

1 0


∈ Cn×n

▶ So no finite-step algorithm exists for Ax = λx



Eigenvalue problem Ax = λx
First of all, Ax = λx no explicit solution (neither λ nor x); huge difference from
Ax = b for which x = A−1b

▶ Eigenvalues are roots of characteristic polynomial
▶ For any polynomial p, ∃ (infinitely many) matrices whose eigvals are roots of p

▶ So no finite-step algorithm exists for Ax = λx

Eigenvalue algorithms are necessarily iterative and approximate
▶ Same for SVD, as σi(A) =

√
λi(AT A)

▶ But this doesn’t mean they’re inaccurate!
Usual goal: compute the Schur decomposition A = UTU∗: U unitary, T upper
triangular
▶ For normal matrices A∗A = AA∗, automatically diagonalised (T diagonal)
▶ For nonnormal A, if diagonalisation A = XΛX−1 really necessary, done via

Sylvester equations but nonorthogonal/unstable (nonexaminable)



Schur decomposition
Let A ∈ Cn×n (square arbitrary matrix). Then ∃ unitary U ∈ Cn×n s.t.

A = UTU∗
,

with T upper triangular.
▶ eig(A) = eig(T ) = diag(T )
▶ T diagonal iff A normal A∗A = AA∗

Proof:

Let Av = λ1v and find U1 = [v1, V⊥] unitary. Then

AU1 = U1


∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⇔ U∗
1 AU1 =


∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. Repeat on the lower-right

(n− 1)× (n− 1) part to get U∗
n−1U∗

n−2 . . . U∗
1 AU1U2 . . . Un−1 = T .
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Recap: Matrix decompositions
▶ SVD A = UΣV T

▶ Eigenvalue decomposition A = XΛX−1

▶ Normal: X unitary X∗X = I
▶ Symmetric: X unitary and Λ real

▶ Jordan decomposition: A = XJX−1, J = diag(


λi 1

λi

. . .

. . . 1
λi

)

▶ Schur decomposition A = QTQ∗: Q orthogonal, T upper triangular
▶ QR: Q orthonormal, U upper triangular
▶ LU: L lower triangular, U upper triangular

▶ QZ for Ax = λBx: (genearlised eigenvalue problem) Q, Z orthogonal s.t.
QAZ, QBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available



Recap: Matrix decompositions
▶ SVD A = UΣV T

▶ Eigenvalue decomposition A = XΛX−1

▶ Normal: X unitary X∗X = I
▶ Symmetric: X unitary and Λ real

▶ Jordan decomposition: A = XJX−1, J = diag(


λi 1

λi

. . .

. . . 1
λi

)

▶ Schur decomposition A = QTQ∗: Q orthogonal, T upper triangular
▶ QR: Q orthonormal, U upper triangular
▶ LU: L lower triangular, U upper triangular
▶ QZ for Ax = λBx: (genearlised eigenvalue problem) Q, Z orthogonal s.t.

QAZ, QBZ are both upper triangular
Red: Orthogonal decompositions, stable computation available



Power method for Ax = λx
x ∈ Rn :=random vector, x = Ax, x = x

∥x∥ , λ̂ = xT Ax, repeat

▶ Convergence analysis: suppose A is diagonalisable (generic assumption). We can
write x0 =

∑n
i=1 civi, Avi = λivi with |λ1| > |λ2| > · · · . Then after k iterations,

x = C
n∑

i=1

(
λi

λ1

)k

civi → Cc1v1 as k →∞

▶ Converges geometrically (λ, x)→ (λ1, v1) with linear rate |λ2|
|λ1|

▶ What does this imply about Ak = QR as k →∞? First vector of Q→ v1

Notes:
▶ Google pagerank & Markov chain linked to power method
▶ As we’ll see, power method is basis for refined algs (QR algorithm, Krylov

methods (Lanczos, Arnoldi,...))
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Why compute eigenvalues? Google PageRank
’Importance’ of websites via
dominant eigenvector of
column-stochastic matrix

A = αP + (1− α)


1 · · · 1
...

. . .
...

1 · · · 1


P : adjacency matrix, α ∈ (0, 1)

image from wikipedia

Google does (did) a few steps of Power method: with initial guess x0, k = 0, 1, . . .

1. xk+1 = Axk

2. xk+1 = xk+1/∥xk+1∥2, k ← k + 1, repeat.

▶ xk → PageRank vector v1 : Av1 = λ1v1



Inverse power method
Inverse (shift-and-invert) power method: x := (A− µI)−1x, x = x/∥x∥
▶ Converges with improved linear rate |λσ(2)−µ|

|λσ(1)−µ| to eigval closest to µ (σ:
permutation)

▶ µ can change adaptively with the iterations. The choice µ := xT Ax gives
Rayleigh quotient iteration, with quadratic convergence
∥Ax(k+1) − λ(k+1)x(k+1)∥ = O(∥Ax(k) − λ(k)x(k)∥2) (cubic if A symmetric)
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Solving an eigenvalue problem
Given A ∈ Rn×n or Cn×n,

Ax = λx

Goal: find all eigenvalues (and eigenvectors) of a matrix
▶ Look for Schur form A = UTU∗

We’ll describe an algorithm called the QR algorithm that is used universally, e.g. by
MATLAB’s eig. It
▶ finds all eigenvalues (approximately but reliably) in O(n3) flops,
▶ is backward stable.

Sister problem: Given A ∈ Rm×n or Cm×n, compute SVD A = UΣV ∗

▶ ’ok’ algorithm: eig(AT A) to find V , then normalise AV

▶ there’s a better algorithm: Golub-Kahan bidiagonalisation



QR algorithm for eigenproblems
Set A1 = A, and

A1 = Q1R1, A2 = R1Q1, A2 = Q2R2, A3 = R2Q2, . . .

▶ Ak are all similar: Ak+1 = QT
k AkQk

▶ We shall ’show’ that A→ triangular (diagonal if A normal)
▶ Basically: QR(factorise)→ RQ(swap)→ QR→ RQ→ · · ·

▶ Fundamental work by Francis (61,62) and Kublanovskaya (63)

▶ Truly Magical algorithm!
▶ backward stable, as based on orthogonal transforms
▶ always converges (with shifts), but global proof unavailable(!)
▶ uses ’shifted inverse power method’ (rational functions) without inversions
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QR algorithm and power method
QR algorithm: Ak = QkRk, Ak+1 = RkQk, repeat. Claims: for k ≥ 1,

Ak = (Q1 · · ·Qk)(Rk · · ·R1) =: Q(k)R(k) , Ak+1 = (Q(k))T AQ(k).

Proof : recall Ak+1 = QT
k AkQk, repeat.

Proof by induction: k = 1 trivial.
Suppose Ak−1 = Q(k−1)R(k−1). We have

Ak = (Q(k−1))T AQ(k−1) = QkRk.

Then AQ(k−1) = Q(k−1)QkRk, and so

Ak = AQ(k−1)R(k−1) = Q(k−1)QkRkR(k−1) = Q(k)R(k)□



QR algorithm and power method
QR algorithm: Ak = QkRk, Ak+1 = RkQk, repeat.

Ak = (Q1 · · ·Qk)(Rk · · ·R1) =: Q(k)R(k) , Ak+1 = (Q(k))T AQ(k).

QR factorisation of Ak: ’dominated by leading eigenvector’ x1,
where Ax1 = λ1x1 (recall power method)

In particular, consider Ak[1, 0, . . . , 0]T = Aken:
▶ Aken = R(k)(1, 1)Q(k)(:, 1), parallel to 1st column of Q(k)

▶ By power method, this implies Q(k)(:, 1)→ x1

▶ Hence by Ak+1 = (Q(k))T AQ(k) , Ak(:, 1)→ [λ1, 0, . . . , 0]T

Progress! But there is much better news



QR algorithm and inverse power method
QR algorithm: Ak = QkRk, Ak+1 = RkQk, repeat.

Ak = (Q1 · · ·Qk)(Rk · · ·R1) =: Q(k)R(k) , Ak+1 = (Q(k))T AQ(k).

Now take inverse: A−k = (R(k))−1(Q(k))T ,

transpose: (A−k)T = Q(k)(R(k))−T

⇒ QR factorization of matrix (A−k)T with eigvals r(λi) = λ−k
i

⇒ Connection also with (unshifted) inverse power method
NB no matrix inverse performed

▶ This means final column of Q(k) converges to minimum left eigenvector xn with
factor |λn|

|λn−1| , hence Ak(n, :)→ [0, . . . , 0, λn]
▶ (Very) fast convergence if |λn| ≪ |λn−1|
▶ Can we force this situation? Yes by shifts



QR algorithm with shifts and shifted inverse power method
1. Ak − skI = QkRk (QR factorization)
2. Ak+1 = RkQk + skI, k ← k + 1, repeat.

Roughly, if sk ≈ λn, then Ak+1 ≈


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

λn

 by argument just made.



QR algorithm with shifts and shifted inverse power method
1. Ak − skI = QkRk (QR factorization)
2. Ak+1 = RkQk + skI, k ← k + 1, repeat.

k∏
i=1

(A− siI) = Q(k)R(k) (= (Q1 · · ·Qk)(Rk · · ·R1))

Proof: Suppose true for k − 1. Then QR alg. computes
(Q(k−1))T (A− skI)Q(k−1) = QkRk, so (A− skI)Q(k−1) = Q(k−1)QkRk, hence

k∏
i=1

(A− siI) = (A− skI)Q(k−1)R(k−1) = Q(k−1)QkRkR(k−1) = Q(k)R(k).

Inverse transpose:
∏k

i=1(A− siI)−T = Q(k)(R(k))−T

▶ QR factorization of matrix with eigvals r(λj) =
∏k

i=1
1

λj−si

▶ Converges like ratio of
∏k

i=1(λ̄j − si); very fast if si ≈ λj . Ideally, choose sk ≈ λn

▶ Connection with shifted inverse power method, hence rational approximation



QR algorithm preprocessing
We’ve seen the QR iterations drives colored entries to 0 (esp. red ones)

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



▶ Hence An,n → λn, so choosing sk = An,n is sensible
▶ This reduces #QR iterations to O(n) (empirical but reliable estimate)
▶ But each iteration is O(n3) for QR, overall O(n4)
▶ We next discuss a preprocessing technique to reduce to O(n3)



QR algorithm preprocessing: Hessenberg reduction
To improve cost of QR factorisation, first reduce via orthogonal Householder
transformations

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

, H1A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

, H1 = I − 2v1vT
1 , v1 =


0
∗
∗
∗
∗



Then H1AH1 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. Repeat with H2 = I − 2v2vT
2 , v2 = [0, 0, ∗, ∗, ∗]T , ...:

H2H1AH1H2 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

, H3H2H1AH1H2H3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

,



Hessenberg reduction continued

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


H1
→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


H2
→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


H3
→ ···

Hn−2
→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

.

▶ QR iterations preserve structure: if A1 = QR Hessenberg, then so is A2 = RQ

▶ using Givens rotations, each QR iter is O(n2) (not O(n3))
▶ overall shifted QR algorithm cost is O(n3),≈ 25n3 flops

▶ Remaining task (done by shifted QR): drive subdiagonal ∗ to 0
▶ bottom-right ∗ → λn, can be used for shift sk



Deflation
Once bottom-right |∗| < ϵ,

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 ≈

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗


and continue with shifted QR on (n− 1)× (n− 1) block, repeat



QR algorithm in action
Convergence of |Ai+1,i|
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QR algorithm: other improvements/simplifications (nonexaminable)
▶ Double-shift strategy for A ∈ Rn×n

▶ (A− sI)(A− s̄I) = QR using only real arithmetic if A real
▶ Aggressive early deflation [Braman-Byers-Mathias 2002]

▶ Examine lower-right (say 100× 100) block instead of (n, n− 1) element
▶ dramatic speedup (≈ ×10)

▶ Balancing A← DAD−1, D: diagonal
▶ reduce ∥DAD−1∥: better-conditioned eigenvalues

▶ For nonsymmetric A, global convergence is NOT established
(except [Banks-Garza-Vargas-Srivastava 2021] for possible argument)

▶ of course it always converges in practice.. another big open problem in numerical
linear algebra



QR algorithm for symmetric A
▶ Initial reduction to Hessenberg form → tridiagonal

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q1
→


∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 Q2
→


∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 Q3
→


∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗


▶ QR steps for tridiagonal: O(n) instead of O(n2) per step
▶ Powerful alternatives available for tridiagonal eigenproblem (divide-conquer

[Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
▶ Cost: 4

3n3 flops for eigvals, ≈ 10n3 for eigvecs (store Givens rotations)



Golub-Kahan for SVD
Apply Householder reflectors from left and right (different ones) to bidiagonalize

A→ B = HL,n · · ·HL,1AHR,1HR,2 · · ·HR,n−2

A HL, 1
→


⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

HR, 1
→


⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

HL, 2
→


⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

HR, 2
→


⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

HL, 3
→


⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆

⋆

HL, 4
→ B,

▶ σi(A) = σi(B)
▶ Once bidiagonalized,

▶ Mathematically, do QR alg on BT B (symmetric tridiagonal)
▶ More elegant: divide-and-conquer [Gu-Eisenstat 1995] or dqds algorithm

[Fernando-Parlett 1994]; nonexaminable
▶ Cost: ≈ 4mn2 flops for singvals Σ, ≈ 20mn2 flops for singvecs U, V



QZ algorithm for generalised eigenvalue problems
Generalised eigenvalue problem

Ax = λBx, A, B ∈ Cn×n

▶ A, B given, find eigenvalues λ and eigenvector x

▶ n eigenvalues, roots of det(A− λB)
▶ Important case: A, B symmetric, B positive definite: λ all real

QZ algorithm: look for unitary Q, Z s.t. QAZ, QBZ both upper triangular
▶ then diag(QAZ)/diag(QBZ) are eigenvalues
▶ Algorithm: first reduce A, B to Hessenberg-triangular form
▶ then implicitly do QR to B−1A (without inverting B)
▶ Cost: ≈ 50n3

▶ See [Golub-Van Loan] for details



Tractable eigenvalue problems
▶ Standard eigenvalue problems Ax = λx

▶ symmetric (4/3n3 flops for eigvals, +9n3 for eigvecs)
▶ nonsymmetric (10n3 flops for eigvals, +15n3 for eigvecs)

▶ SVD A = UΣV T for A ∈ Cm×n: (8
3mn2 flops for singvals, +20mn2 for

singvecs)

▶ Generalized eigenvalue problems Ax = λBx , A, B ∈ Cn×n

▶ Polynomial eigenvalue problems, e.g. (degree k = 2)
P (λ)x = (λ2A + λB + C)x = 0 , A, B, C ∈ Cn×n:≈ 20(nk)3

▶ Nonlinear problems, e.g. N(λ)x = (A exp(λ) + B)x = 0
▶ often solved via approximating by polynomial N(λ) ≈ P (λ)
▶ more difficult: A(x)x = λx: eigenvector nonlinearity

Further speedup when structure present (e.g. sparse, low-rank)



Iterative methods
We’ve covered direct methods (LU for Ax = b, QR for min ∥Ax − b∥2, QRalg for
Ax = λx). These are
▶ Incredibly reliable, backward stable
▶ Works like magic if n ≲ 10000
▶ But not if n larger!

A ’big’ matrix problem is one for which direct methods aren’t feasible. Historically,
▶ 1950: n ≥ 20
▶ 1965: n ≥ 200
▶ 1980: n ≥ 2000
▶ 1995: n ≥ 20000
▶ 2010: n ≥ 100000
▶ 2020: n ≥ 1000000 (n ≥ 50000 on a standard desktop)

was considered ’very large’. For such problems, we need to turn to alternative
algorithms: we’ll cover iterative and randomised methods.



Direct vs. iterative methods
Idea of iterative methods:
▶ gradually refine solution iteratively
▶ each iteration should be (a lot) cheaper than direct methods, usually O(n2) or less
▶ can be (but not always) much faster than direct methods
▶ tends to be (slightly) less robust, nontrivial/problem-dependent analysis
▶ often, after O(n3) work it still gets the exact solution (ignoring roundoff errors)

image from [Trefethen-Bau]

We’ll focus on Krylov subspace methods.



Basic idea of Krylov: polynomial approximation
In Krylov subspace methods, we look for an (approximate) solution x̂ (for Ax = b or
Ax = λx) of the form (after kth iteration)

x̂ = pk−1(A)v ,

where pk−1 is a polynomial of degree k − 1, and v ∈ Rn arbitrary (usually v = b for
linsys, for eigenproblems v usually random)

Natural questions:
▶ Why would this be a good idea?

▶ Clearly, ’easy’ to compute
▶ One example: recall power method x̂ = Ak−1v = pk−1(A)v

Krylov finds a “better/optimal” polynomial pk−1(A)
▶ We’ll see more cases where Krylov is powerful

▶ How to turn into an algorithm?
▶ Arnoldi (next), Lanczos



Orthonormal basis for Kk(A, b)
Find approximate solution x̂ = pk−1(A)b, i.e. in Krylov subspace

Kk(A, b) := span([b, Ab, A2b, . . . , Ak−1b])

First step: form an orthonormal basis Q, s.t. solution can be written as x = Qy

▶ Naive idea: Form matrix [b, Ab, A2b, . . . , Ak−1b], then QR
▶ [b, Ab, A2b, . . . , Ak−1b] is usually terribly conditioned! Dominated by leading eigvec
▶ Q is therefore extremely ill-conditioned, inaccurately computed

▶ Much better solution: Arnoldi process
▶ Multiply A once at a time to the latest orthonormal vector qi

▶ Then orthogonalise Aqi against previous qj ’s (j = 1, . . . , i − 1) (as in Gram-Schmidt)
▶ Even better news: Arnoldi decomposition makes subsequent computation very

convenient
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Arnoldi iteration and Arnoldi decomposition
Set q1 = b/∥b∥2
For k = 1, 2, . . . ,

set v = Aqk

for j = 1, 2, . . . , k

hjk = qT
j v, v = v − hjkqj % orthogonalise against qj via modified G-S

end for
hk+1,k = ∥v∥2, qk+1 = v/hk+1,k

End for
Theorem
Suppose that hk+1,k ̸= 0 for k = 1, . . . , ℓ. Then for k = 1, . . . , ℓ,

Span(q1, . . . , qk) = Kk(A, b).

Proof: Induction on ℓ. Suppose true for ℓ = ℓ̂ with qℓ̂ = pℓ−1(A)b. Then
qℓ̂+1 = 1

hℓ̂+1,ℓ̂
(Aqℓ̂ −

∑ℓ̂
j=1 hj,ℓ̂qj), which is of exact degree ℓ̂.



Arnoldi iteration and Arnoldi decomposition
Set q1 = b/∥b∥2
For k = 1, 2, . . . ,

set v = Aqk

for j = 1, 2, . . . , k

hjk = qT
j v, v = v − hjkqj % orthogonalise against qj via modified G-S

end for
hk+1,k = ∥v∥2, qk+1 = v/hk+1,k

End for
▶ After k steps, AQk = Qk+1H̃k = QkHk + qk+1[0, . . . , 0, hk+1,k], with

Qk = [q1, q2, . . . , qk], Qk+1 = [Qk, qk+1], span(Qk) = span([b, Ab, . . . , Ak−1b])

A Qk = Qk+1 H̃k , H̃k =


h1,1 h1,2 . . . h1,k

h2,1 h2,2 . . . h2,k

. . .
...

hk,k−1 hk,k

hk+1,k


︸ ︷︷ ︸

R(k+1)×k upper Hessenberg

, QT
k+1Qk+1 = Ik+1

▶ Cost k A-multiplications+O(k2) inner products (O(nk2))



GMRES for Ax = b
Idea (very simple!): minimise residual in Krylov subspace: [Saad-Schulz 86]

xk = argminx∈Kk(A,b)‖Ax− b‖2

Algorithm: Given AQk = Qk+1H̃k and writing xk = Qky, rewrite as

min
y
‖AQky − b‖2 = min

y
‖Qk+1H̃ky − b‖2

= min
y

∥∥∥∥∥
[
H̃k

0

]
y −

[
QTk
QTk,⊥

]
b

∥∥∥∥∥
2

= min
y

∥∥∥∥∥
[
H̃k

0

]
y − ‖b‖2e1

∥∥∥∥∥
2
, e1 = [1, 0, . . . , 0]T ∈ Rn

( where [Qk, Qk,⊥ ] orthogonal; same trick as in least-squares)

I Minimised when ‖H̃ky − Q̃Tk b‖ → min; Hessenberg least-squares problem
I Solve via QR (k Givens rotations)+triangular solve, O(k2) in addition to Arnoldi
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
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I Solve via QR (k Givens rotations)+triangular solve, O(k2) in addition to Arnoldi



GMRES convergence: polynomial approximation
Recall that xk ∈ Kk(A, b)⇒ xk = pk−1(A)b. Hence GMRES solution is

min
xk∈Kk(A,b)

‖Axk − b‖2 = min
pk−1∈Pk−1

‖Apk−1(A)b− b‖2

= min
p̃∈Pk,p̃(0)=0

‖(p̃(A)− I)b‖2

= min
p∈Pk,p(0)=1

‖p(A)b‖2

If A diagonalizable A = XΛX−1,

‖p(A)‖2 = ‖Xp(Λ)X−1‖2 ≤ ‖X‖2‖X−1‖2‖p(Λ)‖2
= κ2(X) max

z∈λ(A)
|p(z)|

Interpretation: find polynomial s.t. p(0) = 1 and |p(λi)| small for all i



GMRES example
G: Gaussian random matrix (Gij ∼ N(0, 1), i.i.d.) G/

√
n: eigvals in unit disk

A = 2I + G/
√

n,
p(z) = 2−k(z − 2)k
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When does GMRES converge fast?
Recall GMRES solution satisfies (assuming A diagonalisable+nonsingular)

min
xk∈Kk(A,b)

‖Axk − b‖2 = min
p∈Pk,p(0)=1

‖p(A)b‖2 ≤ κ2(X) max
z∈λ(A)

|p(z)|‖b‖2.

maxz∈λ(A) |p(z)| is small when
I λ(A) are clustered away from 0

I a good p can be found quite easily
I e.g. example 2 slides ago

I When λ(A) takes k(� n) distinct values
I Then convergence in k GMRES iterations (why?)



Preconditioning for GMRES
We’ve seen that GMRES is great if spectrum clustered away from 0. If not true with

Ax = b,

then precondition: find M ∈ Rn×n and solve

MAx = Mb

Desiderata of M :
I M simple enough s.t. applying M to vector is easy (note that each GMRES

iteration requires MA-multiplication), and one of
1. MA has clustered eigenvalues away from 0
2. MA has a small number of distinct eigenvalues
3. MA is well-conditioned κ2(MA) = O(1); then solve normal equation

(MA)TMAx = (MA)TMb



Preconditioners: examples
I ILU (Incomplete LU) preconditioner: A ≈ LU,M = (LU)−1 = U−1L−1, L,U ’as

sparse as A’ ⇒MA ≈ I (hopefully; ’cluster away from 0’)

I For Ã =
[
A B

C 0

]
, set M =

[
A−1

(CA−1B)−1

]
. Then if M nonsingular, MÃ

has eigvals∈ {1, 1
2(1±

√
5)} ⇒ 3-step convergence [Murphy-Golub-Wathen 2000]

I Multigrid-based, operator preconditioning, ...

Finding effective preconditioners is never-ending research topic
Prof. Andy Wathen is our Oxford expert!



Restarted GMRES
For k iterations, GMRES costs k matrix multiplications+O(nk2) for orthogonalization
→ Arnoldi eventually becomes expensive.

Practical solution: restart by solving ’iterative refinement’:
1. Stop GMRES after kmax (prescribed) steps to get approx. solution x̂1
2. Solve Ax̃ = b−Ax̂1 via GMRES
3. Obtain solution x̂1 + x̃

Sometimes multiple restarts needed



Lanczos iteration
Recall Arnoldi decomposition AQk = Qk+1H̃k = QkHk + qk+1[0, . . . , 0, hk+1,k].
When A symmetric, Arnoldi decomposition simplifies to

AQk = QkTk + qk+1[0, . . . , 0, tk+1,k],

where Tk is symmetric tridiagonal (proof: just note Hk = QTkAQk in Arnoldi)

A Qk = Qk+1 T̃k , T̃k =


t1,1 t1,2

t2,1 t2,2
. . .

. . . tk−1,k

tk,k−1 tk,k

tk+1,k


︸ ︷︷ ︸
R(k+1)×k symmetric tridiagonal

, QTk+1Qk+1 = Ik+1

I 3-term recurrence tk+1,kqk+1 = (A− tk,k)qk − tk−1,kqk−1; orthogonalisation
necessary only against last two vecs qk, qk−1

I Significant speedup over Arnoldi; cost k A-mult.+O(k) inner products (O(nk))



CG: Conjugate Gradient method for Ax = b, A ≻ 0
When A symmetric, Lanczos gives AQk = QkTk + qk+1[0, . . . , 0, 1], Tk: tridiagonal

CG: when A ≻ 0 PD, solve QT
k (AQky − b) = Tky − QT

k b = 0, and x = Qky

→“Galerkin orthogonality”: residual Ax − b orthogonal to Qk

▶ Tky = QT
k b is tridiagonal linear system, O(k) operations to solve

▶ three-term recurrence reduces cost to O(k) A-multiplications
▶ minimises A-norm of error xk = argminx∈Qk

∥x − x∗∥A (Ax∗ = b):

(x − x∗)T A(x − x∗) = (Qky − x∗)T A(Qky − x∗)
= yT (QT

k AQk)y − 2bT Qky + bT x∗,

minimiser is y = (QT
k AQk)−1QT

k b, so QT
k (AQky − b) = 0

▶ Note ∥x∥A =
√

xT Ax defines a norm (exercise)
▶ More generally, for inner-product norm ∥z∥M = √

< z, z >M , minx=Qy ∥x∗ − x∥M

attained when < qi, x∗ − x >M = 0, ∀qi (cf. Part A NA)
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CG algorithm for Ax = b, A ≻ 0
Set x0 = 0, r0 = −b, p0 = r0 and do for k = 1, 2, 3, . . .

αk = ⟨rk, rk⟩/⟨pk, Apk⟩
xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = ⟨rk+1, rk+1⟩/⟨rk, rk⟩
pk+1 = rk+1 + βkpk

where rk = Axk − b (residual) and pk (search direction).
One can show among others (exercise/sheet)
▶ Kk(A, b) = span(r0, r1, . . . , rk−1) = span(x1, x2, . . . , xk) (also equal to

span(p0, p1, . . . , pk−1))
▶ rT

j rk = 0, j = 0, 1, 2, . . . , k − 1
Thus xk is kth CG solution, satisfying orthogonality QT

k (Axk − b) = 0



CG convergence
Let ek := x∗ − xk. We have e0 = x∗ (x0 = 0), and

∥ek∥A

∥e0∥A
= min

x∈Kk(A,b)
∥xk − x∗∥A/∥x∗∥A

= min
pk−1∈Pk−1

∥pk−1(A)b − A−1b∥A/∥e0∥A

= min
pk−1∈Pk−1

∥(pk−1(A)A − I)e0∥A/∥e0∥A

= min
p∈Pk,p(0)=1

∥p(A)e0∥A/∥e0∥A

= min
p∈Pk,p(0)=1

∥∥∥∥∥∥∥∥V


p(λ1)
. . .

p(λn)

V T e0

∥∥∥∥∥∥∥∥
A

/∥e0∥A

Now (blue)2=
∑

i λip(λi)2(V T e0)2
i ≤ maxj p(λj)2∑

i λi(V T e0)2
i = maxj p(λj)2∥e0∥2

A



CG convergence cont’d
We’ve shown

∥ek∥A

∥e0∥A
≤ min

p∈Pk,p(0)=1
max

j
|p(λj)| ≤ min

p∈Pk,p(0)=1
max

x∈[λmin(A),λmax(A)]
|p(x)|

Now

min
p∈Pk,p(0)=1

max
x∈[λmin(A),λmax(A)]

|p(x)| ≤ 2
(√

κ2(A) − 1√
κ2(A) + 1

)k

▶ note κ2(A) = σmax(A)
σmin(A) = λmax(A)

λmin(A) (=: b
a)

▶ above bound obtained by Chebyshev polynomials on [λmin(A), λmax(A)]



Chebyshev polynomials
For z = exp(iθ), x = 1

2(z + z−1) = cos θ ∈ [−1, 1], θ = acos(x),
Tk(x) = 1

2(zk + z−k) = cos(kθ). Tk(x) is a polynomial in x:

1
2(z+z−1)(zk+z−k) = 1

2(zk+1+z−(k+1))+1
2(zk−1+z−(k−1)) ⇔ 2xTk(x) = Tk+1(x) + Tk−1(x)︸ ︷︷ ︸

3-term recurrence;
2 cos θ cos(kθ)=cos((k+1)θ)+cos((k−1)θ)
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Chebyshev polynomials
For z = exp(iθ), x = 1

2(z + z−1) = cos θ ∈ [−1, 1], θ = acos(x),
Tk(x) = 1

2(zk + z−k) = cos(kθ). Tk(x) is a polynomial in x:

1
2(z+z−1)(zk+z−k) = 1

2(zk+1+z−(k+1))+1
2(zk−1+z−(k−1)) ⇔ 2xTk(x) = Tk+1(x) + Tk−1(x)︸ ︷︷ ︸

3-term recurrence;
2 cos θ cos(kθ)=cos((k+1)θ)+cos((k−1)θ)
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Chebyshev polynomials cont’d
For z = exp(iθ), x = 1

2(z + z−1) = cos θ ∈ [−1, 1], θ = acos(x),
Tk(x) = 1

2(zk + z−k) = cos(kθ).

▶ Inside [−1, 1], |Tk(x)| ≤ 1
▶ Outside [−1, 1], |Tk(x)| ≫ 1 grows rapidly with |x|, k(fastest growth among Pk)

Shift+scale s.t. p(x) = ckTk(2x−b−a
b−a ) where ck = 1/Tk(−(b+a)

b−a ) so p(0) = 1. Then
▶ |p(x)| ≤ 1/|Tk(−(b+a)

b−a )| = 1/|Tk( b+a
b−a)| on x ∈ [a, b]

▶ Tk(z) = 1
2(zk + z−k) with 1

2(z + z−1) = b+a
b−a ⇒ z =

√
b/a+1√
b/a−1

=
√

κ2(A)+1√
κ2(A)−1

, so

|p(x)| ≤ 1/Tk(b + a

b − a
) ≤ 2

(√
κ − 1√
κ + 1

)k

For much more about Tk, see C6.3 Approximation of Functions



MINRES: symmetric (indefinite) version of GMRES (nonexaminable)
Recall GMRES

x = argminx∈Kk(A,b)∥Ax − b∥2

Algorithm: Given AQk = Qk+1H̃k and writing x = Qky, rewrite as

min
y

∥AQky − b∥2 = min
y

∥Qk+1H̃ky − b∥2

= min
y

∥∥∥∥∥
[
H̃k

0

]
y −

[
QT

k

QT
k,⊥

]
b

∥∥∥∥∥
2

= min
y

∥∥∥∥∥
[
H̃k

0

]
y − ∥b∥2e1

∥∥∥∥∥
2

, e1 = [1, 0, . . . , 0]T ∈ Rn

( where [Qk, Qk,⊥ ] orthogonal; same trick as in least-squares)

▶ Minimised when ∥T̃ky − Q̃T
k b∥ → min; Hessenberg least-squares problem

▶ Solve via QR (k Givens rotations)+triangular solve, O(k2) in addition to Arnoldi



MINRES: symmetric (indefinite) version of GMRES (nonexaminable)
MINRES (minimum-residual method) for A = AT (but not necessarily A ≻ 0)

x = argminx∈Kk(A,b)∥Ax − b∥2

Algorithm: Given AQk = Qk+1T̃k and writing x = Qky, rewrite as

min
y

∥AQky − b∥2 = min
y

∥Qk+1T̃ky − b∥2

= min
y

∥∥∥∥∥
[
T̃k

0

]
y −

[
QT

k

QT
k,⊥

]
b

∥∥∥∥∥
2

= min
y

∥∥∥∥∥
[
T̃k

0

]
y − ∥b∥2e1

∥∥∥∥∥
2

, e1 = [1, 0, . . . , 0]T ∈ Rn

( where [Qk, Qk,⊥ ] orthogonal; same trick as in least-squares)

▶ Minimised when ∥T̃ky − Q̃T
k b∥ → min; tridiagonal least-squares problem

▶ Solve via QR (k Givens rotations)+tridiagonal solve, O(k) in addition to Lanczos



MINRES convergence (nonexaminable)
As in GMRES,

min
x∈Kk(A,b)

∥Ax − b∥2 = min
pk−1∈Pk−1

∥Apk−1(A)b − b∥2 = min
p̃∈Pk,p̃(0)=0

∥(p̃(A) − I)b∥2

= min
p∈Pk,p(0)=1

∥p(A)b∥2

Since A = AT , A is diagonalisable A = QΛQT with Q orthogonal, so

∥p(A)∥2 = ∥Qp(Λ)QT ∥2 ≤ ∥Q∥2∥QT ∥2∥p(Λ)∥2

= max
z∈λ(A)

|p(z)|

Interpretation: (again) find polynomial s.t. p(0) = 1 and |p(λi)| small



MINRES convergence cont’d (nonexaminable)

∥Ax − b∥2
∥b∥2

≤ min
p∈Pk,p(0)=1

max |p(λi)|

One can prove (nonexaminable)

min
p∈Pk,p(0)=1

max |p(λi)| ≤ 2
(

κ2(A) − 1
κ2(A) + 1

)k/2

▶ obtained by Chebyshev+Möbius change of variables [Greenbaum’s book 97]
▶ minimisation needed on positive and negative sides, hence slower convergence

when A indefinite



CG and MINRES, optimal polynomials
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▶ CG employs Chebyshev polynomials
▶ MINRES is more complicated+slower convergence
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CG and MINRES, optimal polynomials
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CG and MINRES, optimal polynomials
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▶ MINRES is more complicated+slower convergence



CG and MINRES, optimal polynomials
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CG and MINRES, optimal polynomials

CG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

-1

0

1

10
-14 CG, iteration k=50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

MINRES

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

MINRES, iteration k=10

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

▶ CG employs Chebyshev polynomials
▶ MINRES is more complicated+slower convergence



CG and MINRES, optimal polynomials
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CG and MINRES, optimal polynomials
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Preconditioned CG/MINRES

Ax = b, A ≻ 0

Find preconditioner M s.t. “MT M ≈ A−1” and solve

MT AMy = MT b, My = x

As before, desiderata of M :
▶ MT AM simple to apply
▶ MT AM has clustered eigenvalues

Note that reducing κ2(MT AM) directly implies rapid convergence
▶ Possible to implement with just MT M (no need to find M)



The Lanczos algorithm for symmetric eigenproblem (nonexaminable)
Rayleigh-Ritz: given symmetric A and orthonormal Q, find approximate eigenpairs

1. Compute QT AQ

2. Eigenvalue decomposition QT AQ = V Λ̂V T

3. Approximate eigenvalues diag(Λ̂) (Ritz values) and eigenvectors QV (Ritz vectors)
This is a projection method (similar alg. available for SVD)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz
▶ In this case Q = Qk, so simply QT

k AQk = Tk (tridiagonal eigenproblem)
▶ Very good convergence to extremal eigenpairs

▶ Recall from Courant-Fisher λmax(A) = maxx
xT Ax
xT x

▶ Hence λmax(A) ≥ max
x∈Kk(A,b)

xT Ax

xT x︸ ︷︷ ︸
Lanczos output

≥ vT Av

vT v
, v = Ak−1b︸ ︷︷ ︸

k − 1 power method

, as v ∈ Kk(A, b)

▶ Same for λmin, similar for e.g. λ2



Experiments with Lanczos (nonexaminable)
Symmetric A ∈ Rn×n, n = 100, Lanczos/power method with random initial vector b
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Arnoldi for nonsymmetric eigenvalue problems (nonexaminable)
Arnoldi for eigenvalue problems: Arnoldi iteration+Rayleigh-Ritz (just like Lanczos alg)

1. Compute QT AQ

2. Eigenvalue decomposition QT AQ = XΛ̂X−1

3. Approximate eigenvalues diag(Λ̂) (Ritz values) and eigenvectors QX (Ritz
vectors)

As in Lanczos, Q = Qk = Kk(A, b), so simply QT
k AQk = Hk (Hessenberg

eigenproblem, ideal for QRalg)

Which eigenvalues are found by Arnoldi?
▶ Krylov subspace is invariant under shift: Kk(A, b) = Kk(A − sI, b)
▶ Thus any eigenvector that power method applied to A − sI converges to should

be contained in Kk(A, b)
▶ To find other (e.g. interior) eigvals, shift-invert Arnoldi: Q = Kk((A − sI)−1, b)



Randomised algorithms in NLA
So far, all algorithms have been deterministic (always same output)
I Direct methods (LU for Ax = b, QRalg for Ax = λx or A = UΣV T ):

I Incredibly reliable, backward stable
I Works like magic if n . 10000
I But not beyond; cubic complexity O(n3) or O(mn2)

I Iterative methods (GMRES, CG, Arnoldi, Lanczos)
I Very fast when it works (nice spectrum etc)
I Otherwise, not so much; need for preconditioning

I Randomised algorithms
I Output differs at every run
I Ideally succeed with enormous probability, e.g. 1− exp(−cn)
I Often by far the fastest&only feasible approach
I Not for all problems—active field of research

We’ll cover two NLA topics where randomisation very successful: low-rank
approximation (randomised SVD), and overdetermined least-squares problems
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Gaussian random matrices
Gaussian G ∈ Rm×n: Takes iid (independent identically distributed) entries drawn
from the standard normal (Gaussian) distribution Gij ∼ N(0, 1).

Key properties of Gaussian matrices:

I Orthogonal invariance: If G Gaussian, Q1GQ2 is also Gaussian for any fixed Q
(independent of G).

1. Linear combination of Gaussian random variables is Gaussian.
2. The distribution of a Gaussian r.v. is determined by its mean and variance.
3. E[(Qgi)] = QE[gi] = 0 (gi: ith column of G), and

E[(Qgi)T (Qgi)] = QE[gTi gi]QT = I, so each Qgi is multivariate Gaussian with the
same distribution as gi. Independence of Qgi, Qgj is immediate.

Alternatively: joint pdf of gi = [g11, . . . , gn1]T is 1
(2π)n/2 exp(−1

2(g2
11 + · · ·+ g2

n1)),
and that of Qgi = [g̃11, . . . , g̃n1]T is (change of variables, note detQ = 1) is

1
(2π)n/2 exp(−1

2(g̃2
11 + · · ·+ g̃2

n1))
I Marchenko-Pastur rule: “Rectangular random matrices are well conditioned”
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Tool from RMT: Rectangular random matrices are well conditioned
Singvals of random matrix X ∈ Rm×n (m ≥ n) with iid Xij (mean 0, variance 1)
follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)
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density ∼ 1
x

√
((1 +

√
m
n )− x)(x− (1−

√
m
n )), support [

√
m−

√
n,
√
m+

√
n]

σmax(X) ≈
√
m+

√
n, σmin(X) ≈

√
m−

√
n, hence κ2(X) ≈ 1+

√
m/n

1−
√
m/n

= O(1),

Key fact in many breakthroughs in computational maths!
I Randomised SVD, Blendenpik (randomised least-squares)
I (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix

concentration inequalities [Tropp 11], Function approx. by least-squares
[Cohen-Davenport-Leviatan 13]



’Fast’ (but fragile) alg for minx ‖Ax− b‖2

min
x
‖Ax− b‖2, A ∈ Rm×n, m� n

Consider ’row-subselection’ algorithm: select s(> n) rows A1, b1, and solve
x̂ := argminx ‖A1x− b1‖2
I x̂ exact solution if Ax∗ = b (consistent LS) and A1 full rank

I If Ax∗ 6= b, x̂ can be terrible: e.g. A =


A1
A2
...

Ak

, b =


b1
b2
...

bk

 where A1 = εIn(ε� 1),

and Ai = In for i ≥ 2, and bi = bj if i, j ≥ 2. Then x∗ ≈ b2, but
x̂ = argminx ‖A1x− b1‖2 has x̂ = 1

ε b1.

How to avoid such choices? Randomisation



’Fast’ (but fragile) alg for minx ‖Ax− b‖2

min
x
‖Ax− b‖2, A ∈ Rm×n, m� n

Consider ’row-subselection’ algorithm: select s(> n) rows A1, b1, and solve
x̂ := argminx ‖A1x− b1‖2
I x̂ exact solution if Ax∗ = b (consistent LS) and A1 full rank

I If Ax∗ 6= b, x̂ can be terrible: e.g. A =


A1
A2
...

Ak

, b =


b1
b2
...

bk

 where A1 = εIn(ε� 1),

and Ai = In for i ≥ 2, and bi = bj if i, j ≥ 2. Then x∗ ≈ b2, but
x̂ = argminx ‖A1x− b1‖2 has x̂ = 1

ε b1.
How to avoid such choices? Randomisation



Sketch and solve for minx ‖Ax− b‖2
A simple randomised algorithm for minx ‖Ax− b‖2,: sketch and solve; draw Gaussian
G ∈ Rs×m (s > n) and

minimize
x

‖G(Ax− b)‖2.

Suppose G ∈ Cr̃×n(n < r̃ � m) Gaussian and let [A b] = QR ∈ Cm×(n+1).

I Note
GQ

is s× n Gaussian (by orth. invariance); so
σi(GQ) ∈ [

√
s−
√
n+ 1,

√
s+
√
n+ 1]

I ‖G(Av − b)‖2 = ‖G[A, b]
[
v

−1

]
‖2 ≤ (

√
s+
√
n+ 1)‖R

[
v

−1

]
‖2 =

(
√
s+
√
n+ 1)‖Av − b‖2,

∀v, and similarly ‖G(Av − b)‖2 ≥ (
√
s−
√
n+ 1)‖Av − b‖2.

I Since by definition ‖G(Ax̂− b)‖2 ≤ ‖G(Ax− b)‖2, it follows that

‖Ax̂− b‖2 ≤
1

√
s−
√
n+ 1

‖G(Ax− b)‖2 ≤
√
s+
√
n+ 1

√
s−
√
n+ 1

‖Ax− b‖2.

If s = 4(n+ 1), we have
√
s+
√
n+1√

s−
√
n+1 = 3, so

‖Ax∗ − b‖2 = 10−10 ⇒ ‖Ax̂− b‖2 ≤ 3 · 10−10



Randomised least-squares: Blendenpik
[Avron-Maymounkov-Toledo 2010]

min
x
‖Ax− b‖2, A ∈ Rm×n, m� n

I Traditional method: normal eqn x = (ATA)−1AT b or A = QR, x = R−1(QT b),
both O(mn2) cost

I Randomised: generate random G ∈ R4n×m, and G A = Q̂ R̂

(QR factorisation), then solve miny ‖(AR̂−1)y − b‖2’s normal eqn via Krylov
I O(mn logm+ n3) cost using fast FFT-type transforms for G
I Successful because AR̂−1 is well-conditioned



Explaining Blendenpik via Marchenko-Pastur

Claim: AR̂−1 is well-conditioned with G A = Q̂ R̂ (QR)

Show this for G ∈ R4n×m Gaussian:

Proof: Let A = QR. Then GA = (GQ)R =: G̃R

I G̃ is 4n× n rectangular Gaussian, hence well-cond

I So by M-P, κ2(R̃−1) = O(1) where G̃ = Q̃R̃ is QR
I Thus G̃R = (Q̃R̃)R = Q̃(R̃R) = Q̃R̂, so R̂−1 = R−1R̃−1

I Hence AR̂−1 = QR̃−1, κ2(AR̂−1) = κ2(R̃−1) = O(1)



Blendenpik: solving minx ‖Ax− b‖2 using R̂
We have κ2(AR̂−1) =: κ2(B) = O(1);
defining R̂x = y, minx ‖Ax− b‖2 = miny ‖(AR̂−1)y − b‖2 = miny ‖By − b‖2
I B well-conditioned⇒in normal equation

BTBy = BT b (1)

B well-conditioned κ2(B) = O(1);
I solve (1) via CG (or a tailor-made method LSQR; nonexaminable)

I exponential convergence, O(1) iterations! (or O(log 1
ε ) iterations for ε accuracy)

I each iteration requires w ← Bw, consisting of w ← R̂−1w (n× n triangular solve)
and w ← Aw (m× nmat-vec multiplication); O(mn) cost overall



Blendenpik experiments

10 20 30 40 50 60 70 80 90 100

CG iterations

10
-6

10
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10
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10
0

Blendenpik

sketch+solve

QR

Solving minx ‖Ax− b‖2 via CG for AT Ax = AT b vs. Blendenpik (AR−1)T (AR−1)x = (AR−1)T b,
m = 10000, n = 100

In practice, Blendenpik gets ≈ ×5 speedup over classical (Householder-QR based)
method when m� n



SVD: the most important matrix decomposition
I Symmetric eigenvalue decomposition: A = V ΛV T

for symmetric A ∈ Rn×n, where V TV = In, Λ = diag(λ1, . . . , λn).

I Singular Value Decomposition (SVD): A = UΣV T

for any A ∈ Rm×n, m ≥ n. Here UTU = V TV = In, Σ = diag(σ1, . . . , σn),
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

SVD proof: Take Gram matrix ATA and its eigendecomposition ATA = V ΛV T . Λ is
nonnegative, and (AV )T (AV ) is diagonal, so AV = UΣ for some orthonormal U .
Right-multiply V T .

SVD useful for
I Finding column space, row space, null space, rank, ...
I Matrix analysis, polar decomposition, ...
I Low-rank approximation



(Most) important result in Numerical Linear Algebra
Given A ∈ Rm×n (m ≥ n), find low-rank (rank r) approximation

A ≈ Û Σ̂ V̂ T , Σ̂ ∈ Rr×r

I Optimal solution Ar = UrΣrV
T
r via truncated SVD

Ur = U(:, 1 : r),Σr = Σ(1 : r, 1 : r), Vr = V (:, 1 : r), giving

‖A−Ar‖ = ‖diag(σr+1, . . . , σn)‖

in any unitarily invariant norm [Horn-Johnson 1985]
I But that costs O(mn2) (bidiagonalisation+QR); look for cheaper approximation



Randomised SVD by HMT
[Halko-Martinsson-Tropp, SIAM Review 2011]

1. Form a random (Gaussian) matrix X ∈ Rn×r, usually r � n.
2. Compute AX.
3. QR factorisation AX = QR.

4. A ≈ Q QTA (= (QU0)Σ0V
T

0 ) is rank-r approximation.

I O(mnr) cost for dense A
I Near-optimal approximation guarantee: for any r̂ < r,

E‖A− Â‖F ≤
(

1 + r

r − r̂ − 1

)
‖A−Ar̂‖F

where Ar̂ is the rank r̂-truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why E‖A− Â‖ = O(1)‖A−Ar̂‖



Pseudoinverse and projectors
Given M ∈ Rm×n with economical SVD M = UrΣrV

T
r

(Ur ∈ Rm×r,Σr ∈ Rr×r, Vr ∈ Rn×r where r = rank(M) so that Σr � 0), the
pseudoinverse M † is

M † = VrΣ−1
r UTr ∈ Rn×m

I satisfies MM †M = M , M †MM † = M †, MM † = (MM †)T , M †M = (M †M)T

(which are often taken to be the definition—above is much simpler IMO)
I M † = M−1 if M nonsingular, M †M = In(MM † = Im) if m ≥ n(m ≥ n) and M

full rank

A square matrix P ∈ Rn×n is called a projector if P 2 = P

I P diagonalisable and all eigenvalues 1 or 0
I ‖P‖2 ≥ 1 and ‖P‖2 = 1 iff P = P T ; in this case P is called orthogonal projector
I I − P is another projector, and unless P = 0 or P = I, ‖I − P‖2 = ‖P‖2:

Schur form QPQ∗ =
[
I B
0 0

]
, Q(I − P )Q∗ =

[ 0 −B
0 I

]
; see [Szyld 2006]



HMT approximant: analysis (down from 70 pages!)
Â = QQTA, where AX = QR. Goal: ‖A− Â‖ = ‖(Im −QQT )A‖ = O(‖A−Ar̂‖).

1. QQTAX = AX (QQT is orthogonal projector onto span(AX)). Hence
(Im−QQT )AX = 0, so A− Â = (Im−QQT )A(In−XMT ) for any M ∈ Rn×r.

2. Set MT = (V TX)†V T where V = [v1, . . . , vr̂] ∈ Rn×r̂ top sing vecs of A (r̂ ≤ r).

3. V V T (I −XMT ) = V V T (I −X(V TX)†V T ) = 0 if V TX full row-rank (generic
assumption), so A− Â = (Im −QQT )A(I − V V T )(In −XMT ).

4. Taking norms, ‖A− Â‖2 = ‖(Im −QQT )A(I − V V T )(In −XMT )‖2 =
‖(Im −QQT )U2Σ2V

T
2 (In −XMT )‖2 where [V, V2] is orthogonal, so

‖A− Â‖2 ≤ ‖Σ2‖2‖(In −XMT )‖2 = ‖Σ2‖2︸ ︷︷ ︸
optimal rank-r̂

‖XMT ‖2

To see why ‖XMT ‖2 = O(1) (with high probability), we need random matrix theory
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‖A− Â‖2 ≤ ‖Σ2‖2‖(In −XMT )‖2 = ‖Σ2‖2︸ ︷︷ ︸
optimal rank-r̂

‖XMT ‖2

To see why ‖XMT ‖2 = O(1) (with high probability), we need random matrix theory



‖XMT‖2 = O(1)
Recall we’ve shown for MT = (V TX)†V T X ∈ Rn×r

‖A− Â‖2 ≤ ‖Σ2‖2‖(In −XMT )‖2 = ‖Σ2‖2︸ ︷︷ ︸
optimal rank-r̂

‖XMT ‖2

Now ‖XMT ‖2 = ‖X(V TX)†V T ‖2 = ‖X(V TX)†‖2 ≤ ‖X‖2‖(V TX)†‖2.
Assume X is random Gaussian Xij ∼ N (0, 1). Then
I V TX is a Gaussian matrix (orthogonal×Gaussian=Gaussian (in distribution);

exercise), hence ‖(V TX)†‖ = 1/σmin(V TX) . 1/(
√
r −
√
r̂) by M-P

I ‖X‖2 .
√
m+

√
r by M-P

Together we get ‖XMT ‖2 .
√
m+
√
r√

r−
√
r̂

= ”O(1)”

I When X non-Gaussian random matrix, perform similarly, harder to analyze



Precise analysis for HMT (nonexaminable)
Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any r̂ < r, E‖EHMT‖F ≤
√
E‖EHMT‖2F =

√
1 + r

r−r̂−1‖A−Ar̂‖F .

proof. First ineq: Cauchy-Schwarz. ‖EHMT‖2F is

‖A(I − V V T )(I − PX,V )‖2
F = ‖A(I − V V T )‖2

F + ‖A(I − V V T )PX,V ‖2
F

= ‖Σ2‖2
F + ‖Σ2PX,V ‖2

F = ‖Σ2‖2
F + ‖Σ2(V T⊥X)(V TX)†V T ‖2

F .

Now if X is Gaussian then V T
⊥X ∈ R(n−r̂)×r and V TX ∈ Rr̂×r are independent

Gaussian. Hence by [HMT Prop. 10.1] E‖Σ2(V T
⊥X)(V TX)†‖2F = r

r−r̂−1‖Σ2‖2F , so

E‖EHMT‖2F =
(

1 + r

r − r̂ − 1

)
‖Σ2‖2F .



Generalized Nyström (nonexaminable)
X ∈ Rn×r as before; set Y ∈ Rn×(r+`), and [N. 2020]

Â = (AX(Y TAX)†Y T )A = PAX,YA

Then A− Â = (I − PAX,Y )A = (I − PAX,Y )A(I −XMT ); choose M s.t.
XMT = X(V TX)†V T = PX,V . Then PAX,Y ,PX,V projections, and

‖A− Â‖ = ‖(I − PAX,Y )A(I − PX,V )‖
≤ ‖(I − PAX,Y )A(I − V V T )(I − PX,V )‖
≤ ‖A(I − V V T )(I − PX,V )‖+ ‖PAX,YA(I − V V T )(I − PX,V )‖.

I Note ‖A(I − V V T )(I − PX,V )‖ exact same as HMT error
I Extra term ‖PAX,Y ‖2 = O(1) as before if c > 1 in Y ∈ Rm×cr

I Overall, about (1 + ‖PAX,Y ‖2) ≈ (1 +
√
n+
√
r+`√

r+`−
√
r
) times bigger expected error than

HMT, still near-optimal and much faster O(mn logn+ r3)



Experiments: dense matrix
Dense 30, 000× 30, 000 matrix w/ geometrically decaying σi
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HMT: Halko-Martinsson-Tropp 11, GN: generalized Nyström , SVD: full svd

I Randomised algorithms are very competitive until r ≈ n
I error ‖A− Âr‖ = O(‖A−Ar̂‖), as theory predicts



MATLAB codes
Setup:
n = 1000; % size
A = gallery(’randsvd’,n,1e100); % geometrically decaying singvals
r = 200; % rank

Then
HMT:

X = randn(n,r);
AX = A*X;
[Q,R] = qr(AX,0); % QR fact.
At = Q*(Q’*A);

norm(At-A,’fro’)/norm(A,’fro’)
ans = 1.2832e-15

Generalized Nyström :

X = randn(n,r); Y = randn(n,1.5*r);
AX = A*X; YA = Y’*A; YAX = YA*X;
[Q,R] = qr(YAX,0); % stable p-inv
At = (AX/R)*(Q’*YA);

norm(At-A,’fro’)/norm(A,’fro’)
ans = 2.8138e-15



Important (N)LA topics not treated
I tensors [Kolda-Bader 2009]
I FFT (values↔coefficients map for polynomials) [e.g. Golub and Van Loan 2012]
I sparse direct solvers [Duff, Erisman, Reid 2017]
I multigrid [e.g. Elman-Silvester-Wathen 2014]
I functions of matrices [Higham 2008]
I generalised, polynomial eigenvalue problems [Guttel-Tisseur 2017]
I perturbation theory (Davis-Kahan etc) [Stewart-Sun 1990]
I compressed sensing [Foucart-Rauhut 2013]
I model order reduction [Benner-Gugercin-Willcox 2015]
I communication-avoiding algorithms [e.g. Ballard-Demmel-Holtz-Schwartz 2011]



C6.1 Numerical Linear Algebra, summary
1st half
I SVD and its properties (Courant-Fisher etc), applications (low-rank)
I Direct methods (LU) for linear systems and least-squares problems (QR)
I Stability of algorithms

2nd half
I Direct method (QR algorithm) for eigenvalue problems, SVD
I Krylov subspace methods for linear systems (GMRES, CG) and eigenvalue

problems (Arnoldi, Lanczos)
I Randomised algorithms for SVD and least-squares



Where does this course lead to?
Courses with significant intersection
I C6.3 Approximation of Functions (Prof. Nick Trefethen, MT): Chebyshev

polynomials/approximation theory
I C7.7 Random Matrix Theory (Prof. Jon Keating): for theoretical underpinnings of

Randomised NLA
I C6.4 Finite Element Method for PDEs (Prof. Patrick Farrell): NLA arising in

solutions of PDEs
I C6.2 Continuous Optimisation (Prof. Cora Cartis): NLA in optimisation problems

and many more: differential equations, data science, optimisation, machine learning,...
NLA is everywhere in computational maths

Thank you for your interest in NLA!


