PS QI
(a) Van Dynelsmarchingmle $\operatorname{lnti})(n t 0)=(n+0)(m t i)$
$\rightarrow n$ terms at the outer solution, written in the innervanable and then expanded to m terns, is the same as m terms of The sher solution, untten in temp of the outer ranable and then expanded to u terms.
(6)

$$
f(x ; \varepsilon)=\left[1+(x+\varepsilon)^{1 / 2}\right]^{1 / 2}
$$

$$
\begin{aligned}
& \varepsilon \rightarrow 0^{+} \text {with } x=0(1) \Rightarrow f(x ; \varepsilon)=\left[1+x^{\frac{1}{2}}(1+\varepsilon / x)^{1 / 2}\right]^{1 / 2} \\
& \sim\left[1+x^{\frac{1}{2}}\left(1+\frac{\varepsilon}{2 x}+\cdots\right)\right]^{\frac{1}{2}} \\
&=\left[\left(1+x^{\frac{1}{2}}\right)+\frac{\varepsilon}{2 x^{1 / 2}}+\cdots\right]^{\frac{1}{2}} \\
&=\left(1+x^{\frac{1}{2}}\right)^{\frac{1}{2}}\left[1+\frac{\varepsilon}{2 x^{1 / 2}\left(1+x^{1 / 2}\right)^{1 / 2}}+\cdots\right]^{\frac{1}{2}} \\
& \sim\left(1+x^{\frac{1}{2}}\right)^{\frac{1}{2}}\left[1+\frac{\varepsilon}{4 x^{1 / 2}\left(1+x^{1 / 2}\right)}+\cdots\right] \\
&=\left(1+x^{1 / 2}\right)^{1 / 2}+\frac{1}{4 x^{1 / 2}\left(1+x^{1 / 2}\right)^{1 / 2}} \\
& \therefore(1+0)=\left(1+x^{1 / 2}\right)^{1 / 2} \\
&(2 \text { to }=\left(1+x^{1 / 2}\right)^{1 / 2}+\frac{\Sigma}{4 x^{1 / 2}\left(1+x^{1 / 2}\right)^{1 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
\varepsilon \rightarrow 0^{+} \text {with } X=\frac{x}{\varepsilon} \text { and } X=0(1) \Rightarrow f(\varepsilon X ; \varepsilon) & =\left[1+(\varepsilon X+\varepsilon)^{1 / 2}\right]^{1 / 2} \\
& =\left[1+\varepsilon^{1 / 2}(X+1)^{1 / 2}\right]^{1 / 2} \\
& \sim 1+\frac{1}{2} \varepsilon^{1 / 2}(X+1)^{1 / 2}+\ldots
\end{aligned}
$$

$$
|2 t i|=1+\varepsilon^{1 / 2}(X+1)^{1 / 2}
$$

$$
(m, n)=(1,1)
$$

$$
\begin{aligned}
(1 t o) & =\left(1+X^{1 / 2}\right)^{1 / 2} \\
& =\left(1+(\varepsilon X)^{1 / 2}\right)^{1 / 2} \\
& \sim 1+\frac{1}{2} \Sigma^{1 / 2} X^{1 / 2}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& (m, n)=(1,1) \\
& (1 \text { to })=\left(1+x^{1 / 2}\right)^{1 / 2} \\
& ||t i|=1 \\
& =\left(1+(\Sigma X)^{1 / 2}\right)^{1 / 2} \\
& (1 t 0)\left(1 t_{i}\right)=1 \\
& \sim 1+\frac{1}{2} \varepsilon^{1 / 2} X^{1 / 2}+\text {. } \\
& (1 \text { ti) })\left(1 t_{0}\right)=1 \\
& \text { hence (1tolllti)=(1ti)(1to) } \\
& (m, n)=(1,2) \\
& \left(2 t_{0}\right)=\left(1+x^{1 / 2}\right)^{1 / 2}+\frac{1}{4 x^{1 / 2}\left(1+x^{1 / 2}\right)^{1 / 2}} \\
& (1 t i)=1 \\
& \Rightarrow\left(2 t_{0}\right)(1 t i)=1 \\
& =\left(1+(\varepsilon X)^{1 / 2}\right)^{1 / 2}+\frac{1}{4(\varepsilon X)^{1 / 2}\left(1+(\varepsilon X)^{1 / 2}\right)^{1 / 2}} \\
& \sim 1+\varepsilon^{1 / 2} X^{1 / 2}+\frac{\varepsilon^{1 / 2}}{4 X^{1 / 2}} \\
& \text { hence, }(1 t i)(2 t o)=(2 t o)(1 t i) \\
& \checkmark \\
& \left(1 t_{i}\right)\left(2 t_{0}\right)=1 \\
& (m, n)=(2,1) \\
& (1+0)=\left(1+x^{1 / 2}\right)^{1 / 2} \quad(2 t i)=1+\frac{1}{2} \varepsilon^{1 / 2}(X+1)^{1 / 2} \\
& =\left(1+(\varepsilon X)^{1 / 2}\right)^{1 / 2} \quad=1+\frac{1}{2} \varepsilon^{1 / 2}(x / \varepsilon+1)^{1 / 2} \\
& \sim 1+\frac{1}{2} \Sigma^{1 / 2} X^{1 / 2}+\cdots \\
& (2 t i)(1 t 0)=1+\frac{1}{2} \Sigma^{1 / 2} X^{1 / 2} \\
& =1+\frac{1}{2} x^{1 / 2}(1+\varepsilon / x)^{1 / 2} \\
& \sim 1+\frac{1}{2} x^{1 / 2}+\cdots \\
& (1+\circ)(2+i)=1+\frac{1}{2} x^{1 / 2} \\
& \text { Hence }(2 t i)\left(1 t_{0}\right)=\left(1 t_{0}\right)(2 t i) \\
& (m, n)=(2,2) \\
& \left(2 t_{0}\right)=\left(1+x^{1 / 2}\right)^{1 / 2}+\frac{1}{4 x^{1 / 2}\left(1+x^{1 / 2}\right)^{1 / 2}} \\
& (2 t i)(2 t o) \\
& =\left(1+(\varepsilon X)^{1 / 2}\right)^{1 / 2}+\frac{1}{4(\varepsilon X)^{1 / 2}\left(1+(\varepsilon X)^{1 / 2}\right)^{1 / 2}} \\
& \sim 1+\frac{1}{2} \varepsilon^{1 / 2} X^{1 / 2}+\frac{\varepsilon^{1 / 2}}{4 X^{1 / 2}}+\cdots \\
& =1+\Sigma^{1 / 2}\left(\frac{1}{2} X^{1 / 2}+\frac{1}{4 X^{1 / 2}}\right)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
(2 t i) & =1+\frac{1}{2} \varepsilon^{1 / 2}(X+1)^{1 / 2} \\
& =1+\frac{1}{2} \varepsilon^{1 / 2}(x / \varepsilon+1)^{1 / 2} \\
& \sim 1+\frac{1}{2} x^{1 / 2}+\frac{\varepsilon}{4 x^{1 / 2}}+\cdots \\
\left(2 t_{0}\right) & 1(2 t i)=1+\frac{1}{2} x^{1 / 2}+\frac{\varepsilon}{4 x^{1 / 2}}
\end{aligned}
$$

$$
\text { Hence }\left(2 t_{i}\right)\left(2 t_{0}\right)=\left(2 t_{0}\right)\left(2 t_{i}\right)
$$

(c) $g(x)=1+\frac{\log x}{\log \varepsilon}$ with $\varepsilon \rightarrow 0^{+}, x=0(1)$ and $x=\frac{x}{\varepsilon}$ with $x-0(1)$.

$$
g(x ; \varepsilon) \sim \begin{cases}1+\frac{\log x}{\log \varepsilon} & \text { as } \varepsilon \rightarrow 0^{+} \text {moth } x=0(1) \\ 2+\frac{\log x}{\log \varepsilon} & \text { as } \varepsilon \rightarrow 0^{+} \text {with } X=0(1) \text { and } x=\frac{x}{\varepsilon}\end{cases}
$$

Then, $\left(1 t_{0}\right)=1$ and $\left(1 t_{i}\right)=2 \Rightarrow\left(1 t_{i}\right)\left(1 t_{0}\right)=1 \neq 2=\left(1 t_{0}\right)\left(1 t_{i}\right)$.
We Can res olve the situation by treating $\log \varepsilon$ as $O(1)$ in the matching procedure:

$$
\begin{aligned}
& (1+0)=1+\frac{\log x}{\log \varepsilon}=1+\frac{\log (\varepsilon x)}{\log \varepsilon}=2+\frac{\log x}{\log \varepsilon}=(1+i)(1 \text { to }) \\
& (1+i)=2+\frac{\log x}{\log \varepsilon}=2+\frac{\log (x / \varepsilon)}{\log \varepsilon}=1+\frac{\log x}{\log \varepsilon}=(1 \text { to })(1+i)
\end{aligned}
$$

PS QL
(a) $\Sigma y^{\prime}+y=x$ fer $x>0$ with $y(0)=1$.

OUTER: $y \sim y_{0}+\varepsilon y_{1}+\ldots$ gives $O\left(\varepsilon_{0}\right): y_{0}=x$

$$
O\left(\varepsilon^{\prime}\right): y_{0}^{\prime}+y_{1}=0 \Rightarrow y_{1}=-1
$$

$$
\therefore y(x) \sim x-\varepsilon+\ldots
$$

INNER: $y(x)=Y(x), x=x / \varepsilon \sim O(1)$, and let $y=y_{0}+\varepsilon Y_{1}+\ldots$
Then $\frac{d Y}{d X}+Y=\varepsilon X$ for $X>0$ moth $Y(0)=1$

$$
\begin{aligned}
O\left(\varepsilon^{0}\right): \quad & \frac{d y_{0}}{d x}+y_{0}=0, y_{0}(0)=1 \Rightarrow y_{0}=e^{-x} \\
& \frac{d y_{1}}{d x}+y_{1}=x, \quad y_{1}(0)=0 \Rightarrow y_{1}=e^{-x}+x-1 \\
\therefore y(x) & \sim e^{-x}+\varepsilon\left(e^{-x}+x-1\right)+\cdots
\end{aligned}
$$

$$
\begin{aligned}
(2+0) & =x-\varepsilon \\
& =\Sigma X-\varepsilon \\
& =\varepsilon(X-1)
\end{aligned}
$$

$$
(2 t i)=e^{-x}+\varepsilon\left(e^{-x}+x-1\right)
$$

$$
=e^{-x / \varepsilon}+\varepsilon\left(e^{-x / \varepsilon}+\frac{x}{\varepsilon}-1\right)
$$

$\sim x-\varepsilon+$ exponentially small terms
Hence $(2 t i)(2 t o)=(2 t o)(2 t i) . J$
[Note that the problem can be solved exactly to give $y(x)=(1+\varepsilon) e^{-x / \varepsilon}+x-\varepsilon$]
6) $(x+\varepsilon) y^{\prime}+y=0$ fer $x>0$ moth $y(0)=1$.

OUTER: $y \sim y_{0}+\Sigma y_{1}+\cdots$ as $\varepsilon \rightarrow 0^{+} \operatorname{mon} x=0(1)$

$$
\begin{aligned}
& O\left(\varepsilon^{0}\right): x y_{0}^{\prime}+y_{0}=0 \Rightarrow y_{0}=\frac{A_{1}}{x} \quad A_{1} \in \mathbb{R} . \\
& O\left(\varepsilon^{\prime}\right): \quad x y_{1}^{\prime}+y_{1}=-y_{0}^{\prime} \Rightarrow y_{1}=-\frac{A_{1}}{x^{2}}+\frac{A_{2}}{x} \quad\left(A_{2} \in \mathbb{R}\right)
\end{aligned}
$$

INNER: $y(x)=Y(x)$ for $x>0$ with $X=\frac{x}{\varepsilon}$ and $Y(0)=1$

$$
y(x) \sim y_{0}(x)+\varepsilon y_{1}(x)+\ldots \text { as } \varepsilon \rightarrow 0^{+} \quad m(t)=x \quad 0(1)
$$

$O\left(\varepsilon^{0}\right): \quad(1+X) \frac{d y_{0}}{d X}+Y_{0}=0, \quad y_{0}(0)=1 \Rightarrow \quad Y_{0}=\frac{1}{1+X}$

$$
O\left(\varepsilon^{\prime}\right): \quad(1+X) \frac{d y_{1}}{d x}+y_{1}=0, \quad y_{1}(0)=0 \Rightarrow \quad y_{1}=0
$$

matcurng

$$
\begin{aligned}
& (2 t i)=\frac{1}{1+x}=\frac{1}{1+x / \varepsilon} \sim \frac{\varepsilon}{x} \Rightarrow(2 t 0)(2 t i)=\frac{2}{x} \\
& \left(2 t_{0}\right)=\frac{A_{1}}{x}+\varepsilon\left(-\frac{A_{1}}{x^{2}}+\frac{A_{2}}{x}\right) \\
& =\frac{A_{1}}{\varepsilon X}+\varepsilon\left(\frac{-A_{1}}{\varepsilon^{2} X^{2}}+\frac{A_{2}}{\varepsilon X}\right) \\
& \sim \frac{1}{\Sigma}\left(\frac{A_{1}}{X}-\frac{A_{1}}{X^{2}}\right)+\frac{A_{2}}{X} \underset{(2 t i)\left(2 t_{0}\right)}{\Rightarrow} \Rightarrow(2 t i)\left(2 t_{0}\right)=\frac{A_{1}}{X}+\Sigma\left(-\frac{A_{1}}{X^{2}}+\frac{A_{2}}{X}\right) \\
& (2 t i)(2 t o)=(2 t o)(2 t i) \Rightarrow A_{1}=0 \\
& A_{2}=1 \\
& \left.\begin{array}{rl}
\therefore y & \sim \frac{\varepsilon}{x} \text { fer } x=0(1) \\
& \sim \frac{1}{1+x} \text { fer } x=0(1)
\end{array}\right\} \text { as } \varepsilon \rightarrow 0^{+}
\end{aligned}
$$

PS3 Q3

$$
\varepsilon y^{\prime \prime}+x^{\frac{1}{2}} y^{\prime}+y=0 \text { as } \varepsilon \rightarrow 0^{+} \text {fer } 0<x<1 \text { moth } y(0)=0, y(1)=1 \text {. }
$$

(a) Let $X=1+\delta(\varepsilon) X, y=Y(X)$ mith $X=O(1)$ and $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$

$$
\Rightarrow \frac{\varepsilon}{\delta^{2}} y^{\prime \prime}+\frac{(1+\delta X)^{\frac{1}{2}}}{\delta} y^{\prime}+y=0
$$

(1)
barance by setting $\frac{\varepsilon}{\delta^{2}} \sim \frac{1}{\delta} \Rightarrow \varepsilon=\delta$

$$
\therefore \quad y^{\prime \prime}+(1+\Sigma x)^{\frac{1}{2}} y^{\prime}+\varepsilon y=0 \quad \text { fer } x<0 \text { min } y(0)=1
$$

Expand: $Y \sim Y_{0}+\varepsilon Y_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$mon $X=O(1)$.

$$
O\left(\varepsilon^{0}\right): \quad \frac{d^{2} y_{0}}{d x^{2}}+\frac{d y_{0}}{d x}=0, y_{0}(0)=1 \Rightarrow y_{0}=A+(1-A) e^{-x} \quad(A \in \mathbb{R})
$$

Then, matcuing as we more towards the onter solution mon requere $Y_{0}(-\infty)$ to be finute - but this can anly be achered fer $A=1$
$\Rightarrow y_{0} \equiv 1$ le there is no boundany layer.
(b) Let $y \sim y_{0}+\varepsilon y_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$(OUTER) min $x=0(1)$.

$$
\begin{aligned}
O\left(\varepsilon_{0}\right): x^{\frac{1}{2}} y_{0}^{\prime}+y_{0}=0, y_{0}(1)=1 \\
\Rightarrow \frac{y_{0}^{\prime}}{y_{0}}=-\frac{1}{x^{\frac{1}{2}} \Rightarrow \ln \left|y_{0}\right|}=\begin{aligned}
& 2 x^{\frac{1}{2}}+c \\
y_{0} & =e^{-2 x^{1 / 2}+c} \\
y_{0}(1) & =1 \Rightarrow 1=e^{-2+c} \Rightarrow c=e^{2} \quad \therefore y_{0}=e^{2\left(1-x^{\prime / 2}\right)}
\end{aligned}
\end{aligned}
$$

(c) Let $x=\delta(\varepsilon) X, y=Y(X)$ men $X=0(1), \delta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$.

$$
\begin{equation*}
\Rightarrow \quad \frac{\varepsilon}{\delta^{2}} \frac{d^{2} V}{d X^{2}}+\frac{(\delta X)^{1 / 2}}{\delta} \frac{d Y}{d X}+Y=0 \tag{1}
\end{equation*}
$$

(2)

Hence dominant balance is (2) ~ (3)
NB (3) << (2)

Set $\frac{\Sigma}{\delta^{2}}=\frac{1}{\delta^{1 / 2}} \Rightarrow \delta=\varepsilon^{2 / 3} \Rightarrow$ BL of thickness $O\left(\Sigma^{2 / 3}\right)$.
(d) $\therefore \quad \frac{d^{2} Y}{d x^{2}}+x^{\frac{1}{2}} \frac{d Y}{d x}+\varepsilon^{\frac{1}{3}} Y=0$ fer $X>0$ meh $Y(0)=0$.

NB scaling of the $B L \Rightarrow$ we should have expanded as $y \sim y_{0}+\varepsilon^{\frac{1}{3}} y_{1}+\ldots$ in the outer region.

Expand: $Y \sim Y_{0}+\varepsilon^{\frac{1}{3}} y_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$men $X=O(1)$.

$$
\begin{gathered}
O\left(\varepsilon^{0}\right): \frac{d^{2} Y_{0}}{d X^{2}}+X^{\frac{1}{2}} \frac{d Y_{0}}{d X}=0, Y_{0}(0)=0 \\
\Rightarrow \frac{d Y_{0}}{d X}=C e^{-\frac{2}{3} x^{3 / 2}} \quad(c \in \mathbb{R}) \\
\therefore Y_{0}=C \int_{0}^{X} e^{-\frac{2}{3} t^{3 / 2}} d t
\end{gathered}
$$

Matching:

Hence, by VDMR $e^{2}=C_{0} \int_{0}^{\infty} e^{-\frac{2}{3} t^{3 / 2}} d t$

$$
=C_{0}\left(\frac{2}{3}\right)^{1 / 3} \int_{0}^{\infty} s^{2 / 3-1} e^{-s} d s
$$

$$
\begin{aligned}
& S=\frac{2}{3} t^{3 / 2} \\
& \Rightarrow \frac{d s}{d t}=t^{1 / 2}
\end{aligned}
$$

$$
=C_{0}\left(\frac{2}{3}\right)^{1 / 3} \Gamma\left(\frac{2}{3}\right)
$$

$$
\therefore c_{0}=\frac{e^{2}}{\left(\frac{2}{3}\right)^{1 / 3} \Gamma\left(\frac{2}{3}\right)}
$$

$$
\begin{aligned}
& |1 t 0|=e^{2\left(1-x^{1 / 2}\right)} \quad(1 t i)=c_{0} \int_{0}^{x} e^{-\frac{2}{3} t^{3 / 2}} d t \\
& =e^{2\left(1-\left(\varepsilon^{2 / 3} X\right)^{1 / 2}\right)} \quad=c_{0} \int_{0}^{x / \varepsilon^{2 / 3}} e^{-\frac{2}{3} t^{3 / 2}} d t \\
& =e^{2} e^{-\varepsilon^{1 / 3} X^{1 / 2}} \\
& \sim C_{0} \int_{0}^{\infty} e^{-\frac{2}{3} t^{3 / 2}} d t \\
& \sim e^{2} \\
& \therefore(\mid t i)\left(|t 0|=e^{2}\right. \\
& \therefore(1 t 0)(1 t i)=C_{0} \int_{0}^{\infty} e^{-\frac{2}{3} t^{3 / 2}} d t
\end{aligned}
$$

PS QU
(a) $\varepsilon y^{\prime \prime}+y y^{\prime}-y=0 \quad 0<x<1$ math $y(0)=1, y(1)=3$ as $\varepsilon \rightarrow 0^{+}$

OUTER: $y \sim y_{0}+\varepsilon y_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$meth $x=0(1)$.
$O\left(\varepsilon^{0}\right): \quad y_{0}^{\prime} y_{0}-y_{0}=0 \quad 0<x<1$ and $y_{0}(1)=3$ (sinceno BL@ RH

$$
\therefore y_{0}=x+2
$$

INNER: $X=\delta(\varepsilon) X, \quad y=Y(X)$ meth $\delta(\varepsilon) \rightarrow 0^{+}, X=0(1)$ as $\varepsilon \rightarrow 0^{+}$.

$$
\begin{equation*}
\Rightarrow \quad \frac{\varepsilon}{\delta^{2}} \frac{d^{2} Y}{d X^{2}}+\frac{1}{\delta} y \frac{d Y}{d X}-Y=0 \tag{1}
\end{equation*}
$$

(2)
(3) $<$ (2)
dommant balance (1)~ (2)

$$
\text { ie } \frac{\varepsilon}{\delta^{2}}=\frac{1}{\delta} \Rightarrow \delta=\varepsilon
$$

Expand $Y_{\sim} \sim Y_{0}+\varepsilon Y_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$moth $X=O(1)$

$$
O\left(\varepsilon^{0}\right): \quad \frac{d^{2} Y_{0}}{d X^{2}}+Y_{0} \frac{d Y_{0}}{d X}=0 \Rightarrow \frac{d Y_{0}}{d X}+\frac{1}{2} Y_{0}^{2}=\frac{1}{2} B_{1} \quad\left(B_{1} \in \mathbb{R}\right)
$$

with $Y_{0}(0)=1$.
Let $B_{1}=-w^{2} \quad(w>0)$. Then $y_{0}=w \tan \left(\frac{w}{2}\left(x_{0}-x\right)\right)$
and $y_{0}(0)=1 \Rightarrow 1=\omega \tan \left(\frac{\omega}{2} x_{0}\right)$ fer $x_{0} \in \mathbb{R} \leqslant$ Cannot match since mill get a
singulanty in $y_{0}(x)$.
let $B_{1}=0 \Rightarrow Y_{0}=\frac{1}{1+X / 2} \Rightarrow$ cannot match as $Y_{0}(\infty)=1 \neq 2=y_{0}\left(0^{+}\right)$
Let $B_{1}=w^{2} \quad(w>0)$. Then $y_{0}=w \tanh \left(\frac{w}{2}\left(x-x_{0}\right)\right)$ and $Y_{0}(0)=1 \Rightarrow 1=w \tanh \left(-\frac{\omega}{2} x_{0}\right)$ ter $x_{0} \in \mathbb{R}$.
and $y_{0}(\infty)=\omega \Rightarrow$ can match moth the outer. we need $B_{1}=\omega^{2}>0$.
matching

$$
\begin{array}{rlrl}
(1 t 0) & =x+2 & (1 t i) & =w \tanh \left(\frac{w}{2}\left(X-x_{0}\right)\right) \\
& =\varepsilon X+2 & & =w \tanh \left(\frac{w}{2}\left(\frac{x}{\varepsilon}-x_{0}\right)\right) \\
(1 t i)(1 t 0)=2 & & \sim w \text { as } \varepsilon \rightarrow 0^{+} w>0, x>0 \\
& \Rightarrow(1 t 0)(1 t i)=w \text { and } x_{0}=-\tanh ^{-1}\left(\frac{1}{2}\right)
\end{array}
$$

(b)

$$
\varepsilon y^{\prime \prime}+y y^{\prime}-y=0 \quad 0<x<1 \text { with } y(0)=\frac{-3}{4} \text { and } y(1)=\frac{5}{4} \text { as } \varepsilon \rightarrow 0^{+}
$$

LH OUTER: $\quad y \sim y_{L 0}+\varepsilon y_{L 1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$moth $0<x<x_{0}$

$$
O\left(\varepsilon^{0}\right): y_{L 0}^{\prime} y_{L O}-y_{L O}=0 \text { min } y_{L O}(0)=-\frac{3}{4} \Rightarrow y_{L 0}=x-\frac{3}{4}
$$

$$
0<x<x_{0}
$$

RH OUTER: $y \sim y_{R O}+\sum y_{R 1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$mit $x_{0}<x<1$

$$
\begin{aligned}
o\left(\varepsilon^{0}\right): \quad y_{R 0}^{\prime} y_{R 0}-y_{R 0}=0 \mathrm{~m} t h & y_{R 0}(0)=\frac{5}{4} \Rightarrow y_{R 0}
\end{aligned}=x+\frac{1}{4} .
$$

INNER: $\quad x=x_{0}+\Sigma X, \quad y=Y(x) \sim Y_{0}(x)$ as $\varepsilon \rightarrow 0^{+}$men $X \sim O(1)$

$$
\begin{array}{r}
O\left(\varepsilon^{0}\right): \frac{d^{2} Y_{0}}{d X^{2}}+Y_{0} \frac{d Y_{0}}{d X}=0 \text { fer }-\infty<X<\infty \\
\Rightarrow \frac{d Y_{0}}{d X}+\frac{1}{2} Y_{0}^{2}=\frac{1}{2} w^{2}>0 \quad \text { Ho avoid singmanity } \\
\text { at finite } X_{1} \text { as per }
\end{array}
$$

$$
\text { at finite } \left.X_{1} \text { as per }(a)\right)
$$

$$
\begin{gathered}
x_{0}-\frac{3}{4}=-w \\
\Rightarrow w=\frac{1}{2} \text { and } x_{0}=\frac{1}{4}
\end{gathered}
$$

Note that the constant B is still undetermmed. This will be the case $\forall n \in \mathbb{N}_{0}$! we would need a WKB analysis to pin it down.

PS 3 45
$y^{\prime \prime}+\varepsilon y^{\prime}=0$ as $\varepsilon \rightarrow 0^{+}$with $0<x<L$ and $y(0)=0, y(L)=1$.
(a) suppose $L=O(1)$ as $\varepsilon \rightarrow 0^{+}$. Let $y=y_{0}+\Sigma y_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}, y_{0}(L)=1$ $O(\varepsilon 0): y_{0}{ }^{\prime \prime}=0$ math $y_{0}(0)=0, y_{0}(L)=1 \Rightarrow y_{0}=\frac{x}{L}$.
$O\left(\varepsilon^{\prime}\right): \quad y_{1}^{\prime \prime}+y_{0}^{\prime}=0$ fer $0<x<1$ meh $y_{1}(0)=0, y_{1}(L)=0$

$$
\begin{aligned}
& \Rightarrow y_{1}^{\prime \prime}=-\frac{1}{L} \quad \therefore \quad y_{1}=\frac{1}{2 L} x(L-x) \\
& \therefore y(x) \sim \frac{x}{L}+\varepsilon \cdot \frac{1}{2 L} x(L-x)+\ldots \quad \text { as } \varepsilon \rightarrow 0^{+} \min L=0(1) .
\end{aligned}
$$

(b) Note that the expansion is not vaud for $L \gg \frac{1}{\Sigma}$ lananence in the large $L(L \rightarrow \infty)$ limit).

Ditterentiaing gives $y^{\prime}(X) \sim \frac{1}{L}+\frac{\varepsilon}{2 L}(L-2 x)+\cdots \quad$ as $\varepsilon \rightarrow 0^{+}$ meth $L=O(1)$

$$
\Rightarrow \quad y^{\prime}(0) \sim \frac{1}{L}+\frac{\varepsilon}{2}+\cdots \text { as } \varepsilon \rightarrow 0^{+}
$$

So this expansion is not valid when $\frac{\varepsilon}{L}=O(1)$ as $\varepsilon \rightarrow 0^{+}$. This corresponds to a distinghished limit in which we have

$$
L=\frac{e}{\varepsilon} \text { min } e=o(1) \text { as } \varepsilon \rightarrow 0^{+}
$$

scaling $x=\frac{x}{\varepsilon}$ and $y=y(x) \Rightarrow y^{\prime \prime}+y=0$ fer $0<x<e$ with $Y(0)=0, Y(e)=1$. Hence $Y(X)=\frac{1-e^{-x}}{1+e^{-x}}$.
In this case (we have scaled properly) we have $y^{\prime}(0)=\frac{1}{1-e^{-e}} \rightarrow 1$ as $\ell \rightarrow \infty$. This agrees min what is obtained from the exact soln $y=\frac{1-e^{-\Sigma x}}{1-e^{-\Sigma L}} \Rightarrow y^{\prime}(0)=\Sigma$ as $L \rightarrow \infty$.

Ps3 Q6
(a) $\varepsilon \nabla^{2} u=u$ in $r^{2}=x^{2}+y^{2}<1$ mth $u=1$ on $r=1$ as $\varepsilon \rightarrow 0^{+}$ OUTER: $u \sim u_{0}+\varepsilon u_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$moth $1-r \sim O(1)$

$$
\left.\begin{array}{ll}
O\left(\varepsilon^{0}\right): & u_{0}=0 \\
O\left(\varepsilon^{\prime}\right): & u_{1}=\nabla^{2} u_{0} \Rightarrow u_{1}=0
\end{array}\right\} \quad \begin{array}{r}
u=0\left(\varepsilon^{n}\right) \forall n \in \mathbb{N} \\
\text { as } \varepsilon \rightarrow 0^{+}
\end{array}
$$

INNER: $u(r, \theta)=U(R, \theta)$ wth $r=1-\delta(\varepsilon) R$ mith $\delta(\varepsilon) \rightarrow 0$ and $R=O(1)$ as $\varepsilon \rightarrow 0^{+}$

$$
\begin{equation*}
\Rightarrow \quad \frac{\varepsilon}{\delta^{2}} u_{R R}-\frac{\varepsilon}{\delta(1-\delta R)} u_{R}+\frac{\varepsilon}{(1-\delta R)^{2}} u_{\theta \theta}-u=0 \tag{1}
\end{equation*}
$$

balance by setting $\delta=\sum^{\frac{1}{2}}$

$$
\Rightarrow \quad u_{R R}-\frac{1}{\varepsilon^{\frac{1}{2}}\left(1-\varepsilon^{\frac{1}{2}} R\right)} u_{R}+\frac{\varepsilon}{\left(1-\varepsilon^{1 / 2 R}\right)^{2}} u_{\theta \theta}-u=0
$$

Expand: $U \sim U_{0}(R, \theta)+\varepsilon^{\frac{1}{2}} U_{1}(R, \theta)+\ldots$ as $\varepsilon \rightarrow 0^{+}$men $R=0(1)$. $O\left(\varepsilon^{0}\right): \quad U_{0_{R R}}-U_{0}=0$ in $R>0$ math $U_{0}=1$ on $R=0$

$$
\Rightarrow u_{0}=A e^{R}+(1-A) e^{-R} \quad(A \in \mathbb{R})
$$

Matching: $(1+0)=0 \Rightarrow(1 t i)(1 t 0)=0$

$$
\begin{aligned}
& \Rightarrow(1 t 0)(1 t i)=0 \quad \text { by VDMR) } \\
& \Rightarrow u_{0} \rightarrow 0 \text { as } R \rightarrow \infty \\
& =A=0
\end{aligned}
$$

$\therefore u=e^{-R}+O\left(\varepsilon^{1 / 2}\right)$ as $\varepsilon \rightarrow 0^{+}$with $\varepsilon^{1 / 2}(1-r)=R=O(1)$.

Exact solution: $u=\frac{I_{0}(r / \sqrt{\varepsilon})}{I_{0}(1 / \sqrt{\varepsilon})}$

$$
\begin{aligned}
I_{0}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \cos (i x \sin \theta) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}\left(e^{-i(i x \sin \theta)}+e^{+i(i x \sin \theta)}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}\left(e^{x \sin \theta}+e^{-x \sin \dot{\theta}}\right) d \theta
\end{aligned}
$$

$\sim \frac{1}{2 \pi} \int_{0}^{\pi} e^{x \sin \theta} d \theta$ as $x \rightarrow \infty$ (istterm dominates because $\sin \theta>0$ on $(0, \pi)$)
$\sim \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{x\left[1-\frac{1}{2}(\theta-\pi / 2)^{2}+\ldots\right]} d \theta$ luse Laplace's method because $\varphi(\theta)=\sin \dot{\theta}$ has a maximum at $\theta=\frac{\pi}{2}$)

$$
\begin{aligned}
& \quad \sim \frac{e^{x}}{2 \pi} \int_{-\infty}^{\infty} e^{-x s^{2} / 2} d s \in(\theta-\pi / 2=s) \\
& \quad=\frac{e^{x}}{\sqrt{2 \pi}} \sqrt{\frac{2}{x}} \int_{-\infty}^{\int_{-\infty}^{\infty} e^{-t^{2}} d t} \leftarrow\left(s=\sqrt{\frac{2}{x} t}\right) \\
& \therefore \quad I_{0}(x) \sim \frac{e^{x}}{\sqrt{2 \pi x}} \text { as } x \rightarrow \infty .
\end{aligned}
$$

Hence $u \sim \frac{1}{\sqrt{r}} e^{-(1-r) / \sqrt{\varepsilon}}$ as $\varepsilon \rightarrow 0^{+}$moth $r=0(1), 1-r=0(1)$

$$
\begin{aligned}
& u \sim \frac{\sqrt{2 \pi} e^{-1 / \sqrt{\varepsilon}}}{\varepsilon^{1 / 4}} I_{0}(\rho) \text { as } \varepsilon \rightarrow 0^{+} \text {with } \rho=\varepsilon^{-\frac{1}{2} r}=O(1) \\
& r=1-\varepsilon^{1 / 2} R \Rightarrow 1-r=\varepsilon^{1 / 2} R \\
& u \sim \frac{1}{\sqrt{1-\Sigma^{1 / 2} R}} e^{-R}=e^{-R}+O\left(\Sigma^{\frac{1}{2}}\right) \text { as } \varepsilon \rightarrow 0^{+} \\
& \text {th } R=\varepsilon^{-\frac{1}{2}}(1-r) \\
& =O(1)
\end{aligned}
$$

\Rightarrow Consistent mon the result from BL expansion.
(b) $\quad \varepsilon \nabla^{2} u=u_{x}$ in $y>0$ meth $u=1$ an $y=0, x>0$

$$
\begin{aligned}
& u_{y}=0 \text { an } y=0, x<0 \\
& u \rightarrow 0 \text { as } x^{2}+y^{2} \rightarrow \infty, y>0
\end{aligned}
$$

OUTER: $u \sim u_{0}+\varepsilon u_{1}+\ldots$ as $\varepsilon \rightarrow 0^{+}$moth $x, y=0(1)$.
$\left.\begin{array}{ll}O\left(\Sigma^{0}\right): & u_{0 x}=0 \text { men } u_{0}=0 \text { at } \infty \Rightarrow u_{0} \equiv 0 . \\ O\left(\Sigma^{\prime}\right): & u_{1 x}=0 \text { meh } u_{1}=0 \text { at } \infty \Rightarrow u_{1} \equiv 0\end{array}\right\} \begin{aligned} & u=0\left(\varepsilon^{n}\right) \forall n \in \mathbb{N} \\ & \text { as } \varepsilon \rightarrow 0^{+}\end{aligned}$ meth $x, y=O(1)$.
INNER: $u(x, y)=u(x, y)$ moth $y=\delta(\varepsilon) Y$ and $\delta \rightarrow 0, y=0(1) a s \varepsilon \rightarrow 0^{+}$.

$$
\begin{aligned}
& \Rightarrow \varepsilon U_{x x}+\frac{\varepsilon}{\delta^{2}} \underbrace{U_{y y}-U_{x}}_{\text {Balance }}=0 \\
& \left.u \sim \delta=\varepsilon^{\frac{1}{2}} \Rightarrow u_{0}+\varepsilon U_{1}+\cdots \text { as } \varepsilon \rightarrow 0^{+}+u_{y}+\tan y=0 u\right) .
\end{aligned}
$$

$O\left(\varepsilon^{0}\right): U_{0 y y}-u_{0 x}=0$ in $y>0, x>0$ math $u_{0}(x, 0)=1$ fer $x>0$
Matching: $(1$ to $)=0 \Rightarrow(1 t i)(1 t o)=0 \quad \& V D M R$

$$
\begin{aligned}
& \Rightarrow(1 t o)(1 t i)=0 \\
& \Rightarrow u_{0} \rightarrow 0 \text { as } Y \rightarrow \infty \text { fer } x>0
\end{aligned}
$$

seek a similarity solution $u_{0}=f(y)$ moth $y=y / \sqrt{x}$.
substituting: $\quad \eta_{x}=-\frac{\eta}{2 x}, \quad n_{y}=\frac{1}{x^{1 / 2}}$

$$
\left.\begin{array}{rl}
\therefore u_{0 x} & =f^{\prime}(\eta) \eta_{x}=\frac{-\eta f^{\prime}(\eta)}{2 x} \\
u_{0 y y} & =f^{\prime \prime}(\eta) \eta_{y}^{2}=\frac{f^{\prime \prime}(\eta)}{x}
\end{array}\right\} \Rightarrow f^{\prime \prime}+\frac{1}{2} \eta f^{\prime}=0 \quad(\eta>0)
$$

$B C s \quad u_{0}=1$ an $y=0, x>0 \quad \Rightarrow f(0)=1$

$$
u_{0} \rightarrow 0 \text { as } y \rightarrow \infty, x>0 \quad \Rightarrow f(\infty)=0
$$

$$
\begin{aligned}
& \therefore \frac{f^{\prime \prime}(\eta)}{f^{\prime}(\eta)}=-\frac{1}{2} \eta \Rightarrow \ln \left|f^{\prime}(\eta)\right|=c_{1}-\frac{1}{4} \eta^{2} \quad(q \in \mathbb{R}) \\
& \therefore f^{\prime}(\eta)=e^{c-\frac{1}{4} y^{2}} \\
& f(y)=c_{2}-c_{1} \int_{y}^{\infty} e^{-\frac{1}{4} s^{2}} d s \\
& =c_{2}-2 c_{1} \int_{y_{12}}^{\infty} e^{-t^{2}} d t \quad \downarrow^{s=2 t} \\
& =c_{2}-2 c_{1} \operatorname{ertc}(4 / 2) \\
& \left.\begin{array}{l}
f(\infty)=0 \Rightarrow c_{2}=0 \\
f(0)=1 \Rightarrow 1=-2 c_{1} \operatorname{erfc}(0)=-2 c_{2}
\end{array}\right\} \Rightarrow f(\eta)=\operatorname{erfc}(\eta / 2) \\
& \therefore u=\operatorname{ertc}\left(\frac{y}{2 \sqrt{x}}\right)+0(\varepsilon) \text { as } \varepsilon \rightarrow 0^{+} \text {men } y=\varepsilon^{-\frac{1}{2}} y=0(1) \\
& \text { and } x=O(1)
\end{aligned}
$$

Neither approximation holds fer $X=\frac{x}{\varepsilon}=O(1), Y=\frac{y}{\varepsilon}=O(1)$

$$
\Rightarrow u_{x x}+u_{y y}=u_{x} \text { in } y>0 .
$$

