PS HQ
(a) $\ddot{x}+\Sigma \dot{x}+x=0$ as $\varepsilon \rightarrow 0^{+}$

Let $x=x(t, T)$ men $T=\Sigma t \Rightarrow \frac{d}{d t} \mapsto \frac{\partial}{\partial t}+\Sigma \frac{\partial}{\partial T}$
subshinting: $x_{t t}+2 \varepsilon x_{t T}+\varepsilon^{2} x_{T T}+\Sigma\left(x_{t}+\Sigma x_{T}\right)+x=0$
Expand: $x \sim x_{0}(t, \tau)+\sum x_{1}(t, \tau)+\cdots$ and whect terms

$$
\begin{aligned}
& O(\varepsilon 0): x_{0}{ }_{t t}+x_{0}=0 \Rightarrow x_{0}=\frac{1}{2}\left(A(T) e^{i t}+\bar{A}(T) e^{-i t}\right) \\
& \therefore \quad x \sim \frac{1}{2}\left(A(T) e^{i t}+\bar{A}(t) e^{-i t}\right) \text { as } \varepsilon \rightarrow 0^{+} \text {meh } T=\Sigma t=O(1)
\end{aligned}
$$

$$
\begin{aligned}
O\left(\varepsilon^{\prime}\right): \quad x_{1 t}+x_{1} & =-2 x_{o_{t+}}-x_{o_{t}} \\
& =-\left(i A_{T} e^{i t}-i \bar{A}_{T} e^{-i t}\right)-\frac{1}{2}\left(i A e^{i t}-i \bar{A} e^{-i t}\right) \\
& =-i\left(A_{T}+\frac{1}{2} A\right) e^{i t}+\text { c.c. }
\end{aligned}
$$

suppress secularterms $\left(e^{ \pm i t}\right) \Leftrightarrow A_{T}+\frac{1}{2} A=0$
Let $A=\operatorname{Re}^{i \theta}$ so that $R_{T} e^{i \theta}+R_{i} \theta_{T} e^{i \theta}+\frac{1}{2} R e^{i \theta}=0$

$$
\begin{array}{ll}
\therefore \quad & \theta_{T}=0 \Rightarrow \theta=\text { constant }=\theta_{0} \quad\left(\theta_{0}, R_{0} \in \mathbb{R}\right) \\
& R_{T}=-\frac{1}{2} R \Rightarrow R=R_{0} e^{-\frac{1}{2} T} \\
\therefore \quad & x_{0}=R_{0} e^{-\frac{1}{2} T} \cos \left(t+\theta_{0}\right)
\end{array}
$$

Exact solution: $x=r_{0} e^{-\frac{1}{2} \varepsilon t} \cos \left(\left(1-\frac{\varepsilon^{2}}{4}\right)^{1 / 2} t+\theta_{0}\right) \quad\left(r_{0}, \theta_{0} \in \mathbb{R}\right)$

$$
\sim r_{0} e^{-\frac{1}{2} T} \cos \left(t+\theta_{0}-\frac{1}{8} \varepsilon^{2}\right)
$$

$\therefore x-x_{0} \sim O(\varepsilon)$ ter $t=O\left(\frac{1}{\Sigma}\right)$.
(b)

$$
\ddot{x}+x=\sum x^{3} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

Let $x=x(t, T)$ mith $T=\Sigma t$, and unie $x \sim x_{0}(t, T)+\Sigma x_{1}(t, T)+\ldots$

$$
\begin{aligned}
& x_{t t}+2 \Sigma x_{t+}+\Sigma^{2} x_{T+}+x=\Sigma x^{3} \longleftarrow \text { subshitute and conect } \\
& \text { terms } \\
& O\left(\varepsilon^{0}\right): \quad X_{0 t t}+X_{0}=0 \Rightarrow X_{0}(t, T)=\frac{1}{2}\left(A(T) e^{i t}+\bar{A}(t) e^{-i t}\right) \\
& O\left(\varepsilon^{\prime}\right): \quad x_{1 t t}+x_{1_{t}}=-2 x_{0_{t T}}-x_{0}{ }^{3} \\
& =-\left(i A_{T} e^{i t}-i \bar{A}_{T} e^{-i t}\right)-\frac{1}{8}\left(A e^{i t}+\bar{A} e^{-i t}\right)^{3} \\
& =\left[-i A_{T}+\frac{3}{8} A^{2} \bar{A}\right] e^{i t}+C . C .+ \text { non-sechlar } \\
& \text { terms. }
\end{aligned}
$$

Hence to suppress seenlar terms we need $i A_{T}=\frac{3}{8} A^{2} \bar{A}$
let $A=R e^{i \theta} \Rightarrow i\left(R_{T}+i R \theta_{T}\right)=\frac{3}{8} R^{3}$

$$
\begin{aligned}
\therefore \quad R_{T} & =0 \Rightarrow R(T)=R_{0} \\
R \theta_{T} & =-\frac{3}{8} R^{3} \Rightarrow \theta_{T}=-\frac{3}{8} R_{0}^{2} \Rightarrow \theta=-\frac{3}{8} R_{0}^{2} T+\theta_{0} \\
\Rightarrow \quad A(T) & =R_{0} e^{i\left(\theta_{0}-\frac{3}{8} R_{0}^{2} T\right)} \\
& =A_{0} e^{-\frac{3}{8}\left|A_{0}\right|^{2} T}
\end{aligned}
$$

(c) $\ddot{x}+\varepsilon\left(x^{2}-\mu\right) \dot{x}+x=0$ as $\varepsilon \rightarrow 0^{+}$
let $x=x(t, T)$ min $T=\Sigma t$ and unite $x=x_{0}(t, T)+\Sigma x_{1}(t, T)+\ldots$

$$
\begin{aligned}
& x_{t t}+2 \varepsilon x_{t T}+\varepsilon^{2} x_{T T}+\Sigma\left(x^{2}-\mu\right)\left(x_{t}+\varepsilon x_{+}\right)+x=0 \\
& O\left(\Sigma^{0}\right): \quad x_{0}+x_{0}=0 \Rightarrow x_{0}(t, T)=\frac{1}{2}\left(A(T) e^{i t}+\bar{A}(T) e^{-i t}\right) \\
& O\left(\Sigma^{\prime}\right): x_{1_{t t}}+x_{1}=-2 x_{0_{t T}}-\left(x_{0}^{2}-\mu\right) x_{0_{t}} \\
& \left.=-l i A_{T} e^{i t}-\mid \bar{A}_{T} e^{-i t}\right) \\
& -\left[\frac{1}{4}\left(A e^{i t}+\bar{A} e^{-i t}\right)^{2}-\mu\right]\left(i A_{T} e^{i t}-i \bar{A}_{T} e^{-i t}\right) \\
& =\left[-i A_{T}-\frac{1}{4} A^{2}\left(-\frac{i}{2} \bar{A}\right)-\left(\frac{2}{4} A \bar{A}-\mu\right) \frac{i A}{2}\right] e^{i t}+c . C \text {. }
\end{aligned}
$$

+ non-secularterms
suppress non-secularterms by taking

$$
-2 i A_{T}+\frac{i}{4} A^{2} \bar{A}-i\left(\frac{1}{2} A \bar{A}-\mu\right) A=0
$$

le $\quad 2 A_{T}=\left(\mu-\frac{|A|^{2}}{4}\right) A$
let $A=R^{i \theta} \Rightarrow 2\left(R_{T}+i \theta_{T} R\right)=\left(\mu-\frac{1}{4} R^{2}\right) R$

$$
\begin{aligned}
\therefore \quad & \theta_{T}=0 \Rightarrow \theta=\theta_{0} \\
& 2 R_{T}=\left(\mu-\frac{1}{4} R^{2}\right) R
\end{aligned}
$$

\therefore Fer $\mu<0$ - system tends to a bleary state m th $R=0$, whilst for $\mu>0$, solution

 $\mu>0$ \Rightarrow $R(t) \rightarrow 2 \sqrt{\mu}$ as $T \rightarrow \infty$ tends to a penodre cubit with penod 2π and amphinde $2 \sqrt{\mu}$ (at leading order).

PS 4 QL

$$
\ddot{x}+(1+\varepsilon) x=\omega \text { os t as } \varepsilon \rightarrow 0^{+}
$$

Let $x=x(t, T)$ moth $T=\Sigma t$ and expand as $\left.x \sim x_{0} L t, T\right)+\varepsilon(t, T)+-$

$$
\begin{aligned}
& \Rightarrow \quad x_{t t}+2 \Sigma x_{t+}+\Sigma^{2} x_{T T}+(1+\varepsilon) x=\cos t \\
& O\left(\varepsilon^{0}\right): x_{0 t t}+x_{0}=\frac{1}{2}\left(e^{i t}+e^{-i t}\right) \leftarrow \text { camus suppress } \\
& \text { secular terms! }
\end{aligned}
$$

suggests we have the scaling wrong!
\rightarrow Try instead $x(t, T) \sim \frac{1}{\varepsilon} x_{0}(t, T)+x_{1}(t, T)+\ldots$

$$
O\left(\Sigma^{-1}\right): \quad x_{0} t_{t}+x_{0}=0 \Rightarrow x_{0}=\frac{1}{2}\left(A(T) e^{i t}+\bar{A}(T) e^{-i t}\right)
$$

$$
O(\Sigma 0): x_{1_{t t}}+x_{1}=-2 x_{0 t+}-x_{0}+\frac{1}{2}\left(e^{i t}+e^{-i t}\right)
$$

$$
\begin{aligned}
= & \left.-i A_{+} e^{i t}-i \bar{A}_{T} e^{-i t}\right)-\frac{1}{2}\left(A e^{i t}+\bar{A} e^{-i t}\right) \\
& +\frac{1}{2}\left(e^{i t}+e^{-i t}\right) \\
= & {\left[-i A_{T}-\frac{1}{2} A+\frac{1}{2}\right] e^{i t}+C \cdot C . }
\end{aligned}
$$

suppress secular terms: $-i A_{T}=\frac{1}{2}(A-1)$
Let $A=1+R e^{i \theta} \quad \Rightarrow \quad i\left(R_{T}+i R \theta_{T}\right)=\frac{1}{2} R$

$$
\therefore \quad R_{T}=0 \Rightarrow R=R_{0} \quad R \theta_{T}=\frac{1}{2} R \Rightarrow \theta=\frac{1}{2} T+\theta_{0}
$$

Hence $A(T)=1+R_{0} e^{\frac{1}{2} T+\theta_{0}}$

$$
\Rightarrow \quad x(t, T|\sim| A(T) \mid \omega s(t+\arg (A(T)))
$$

$x_{0}(t, T)$ is periodic min period $2 \pi \Leftrightarrow A(0)=1$
(b) $\ddot{x}+(1+\varepsilon) x+k \Sigma x^{3}=\cos t$ as $\varepsilon \rightarrow 0^{+}$

Proceed as in (a): let $x=x(t, T)$ meh $T=\Sigma t$ and expand as

$$
\begin{aligned}
& x(t, T) \sim \frac{1}{\Sigma} x_{0}(t, T)+x_{1}(t, T)+\ldots \\
& O\left(\Sigma^{-1}\right): x_{0_{t t}}+x_{0}=0 \Rightarrow x_{0}=\frac{1}{2}\left(A(T) e^{i t}+\bar{A}(T) e^{-i t}\right) \\
& O\left(\Sigma^{0}\right): x_{1_{t t}}+x_{1}=-2 x_{0 t t}-x_{0}+\frac{1}{2}\left(e^{i t}+e^{-i t}\right)-k x_{0}^{3} \\
&=\left[-i A_{T}-\frac{1}{2} A+\frac{1}{2}-\frac{3}{8} k A^{2} \bar{A}\right] e^{i t}+c \cdot C .
\end{aligned}
$$

+ non-secular terms
suppress secular terms: $-i A_{+}-\frac{1}{2} A+\frac{1}{2}-\frac{3}{8} k A^{2} \bar{A}=0$
Let $A(T)=\alpha(T)+i \beta(T)$ so that $x_{0}(t, T)=\alpha(T) \cos t-\beta(T) \sin t$

$$
\begin{gather*}
\Rightarrow-i\left(\alpha_{T}+i \beta_{T}\right)-\frac{1}{2}(\alpha+i \beta)+\frac{1}{2}-\frac{3}{8} k(\alpha+i \beta)^{2}(\alpha-i \beta)=0 \\
\therefore \quad \beta_{T}+\frac{1}{2}(1-\alpha)-\frac{3}{8} k\left(\alpha^{2}+\beta^{2}\right) \alpha=0 \tag{1}\\
-\alpha_{T}-\frac{1}{2} \beta-\frac{3}{8} k\left(\alpha^{2}+\beta^{2}\right) \beta=0 \tag{2}
\end{gather*}
$$

Then the solution is penodic mon penodt $\Leftrightarrow \alpha_{1} \beta$ constant I leading adder multiple scales)

From (2), win $k>0$, then $\alpha_{T}=0 \Rightarrow-\frac{1}{2} \beta-\frac{3}{8} k\left(\alpha^{2}+\beta^{2}\right) \beta=0$
So $\beta=0$ or $\quad k\left(\alpha^{2}+\beta^{2}\right)=-\frac{4}{3}$
From (1) and $\beta=0$ he have

$$
\frac{1}{2}(1-\alpha)-\frac{3}{8} k \alpha^{2}=0
$$

Hence we need $A(0) \in \mathbb{R}$ min $A(0)+\frac{3}{4} k A(0)^{3}=1$.

PS4Q3

$$
\frac{d}{d x}\left(D\left(x, \frac{x}{\varepsilon}\right) \frac{d u}{d x}\right)=F\left(x, \frac{x}{\Sigma}\right)
$$

as $\varepsilon \rightarrow 0^{+}$
woth $D(X, X)>0$ and $f(x, X)$ smoon and penodic in $X=\frac{x}{\Sigma}$ mith penod ane.
(a) Let $u=u(x, X), x=\varepsilon X \Rightarrow \frac{d}{d x}=\frac{\partial}{\partial x}+\frac{1}{\varepsilon} \frac{\partial}{\partial X}$

$$
\Rightarrow\left(\frac{\partial}{\partial x}+\frac{1}{\varepsilon} \frac{\partial}{\partial x}\right)\left(D(x, x)\left(\frac{\partial u}{\partial x}+\frac{1}{\varepsilon} \frac{\partial u}{\partial x}\right)\right)=f(x, x)
$$

Expand: $u(x, x)=u_{0}(x, x)+\varepsilon u_{1}(x, x)+\cdots$ and conect tems

$$
\begin{array}{ll}
O\left(\Sigma^{0}\right): & \left(D u_{0 x}\right)_{x}=0 \\
O\left(\varepsilon^{\prime}\right): & \left(D\left(u_{1 x}+u_{0 x}\right)\right)_{x}+\left(D u_{0 x}\right)_{x}=0 \\
O\left(\varepsilon^{2}\right): & \left(D\left(u_{2 x}+u_{1 x}\right)_{x}+\left(D\left(u_{1 x}+u_{0_{x}}\right)\right)_{x}=f\right.
\end{array}
$$

(b)

$$
\begin{aligned}
\left(D u_{0 x}\right)_{x}=0 \Rightarrow D u_{0 x} & =a_{1}(x) \\
u_{0} & =a_{0}(x)+a_{1}(x) \int_{0}^{x} \frac{d s}{D(x, s)}
\end{aligned}
$$

Gren $u_{0}(x, x)$ is penodic in x mith penod one, then we have

$$
a_{0}(x)=u_{0}(x, 0)=u_{0}(x, 1)=a_{0}(x)+a_{1}(x) \int_{0}^{1} \frac{d s}{D(x, s)}
$$

Then, since $D(x, s)>0, \int_{0}^{1} \frac{d s}{D(x, s)}>0$ and so $a_{1}(x) \equiv 0$.

$$
\therefore u_{0}\left(x_{1} x\right)=a_{0}(x) \text { le a tn of } x \text { anly. }
$$

From the $O\left(\varepsilon^{\prime}\right)$ eqn, $\quad D\left(u_{1 x}+u_{0 x}\right)=b_{1}(x)$

$$
u_{1}=b_{0}(x)-u_{0} x+b_{1}(x) \int_{0}^{x} \frac{d s}{D(x, s)}
$$

Gren $u_{1}(x, x)$ is penodicm x mith penodon, then we have

$$
\begin{gather*}
b_{0}(x)=u_{1}(x, 0)=u_{1}(x, 1)=b_{0}(x)-a_{0}^{\prime}(x)+b_{1}(x) \int_{0}^{1} \frac{d s}{D(x, s)} \\
\therefore \quad b_{1}(x)=a_{0}^{\prime}(x)\left[\int_{0}^{1} \frac{d s}{D(x, s)}\right]^{-1}=\hat{D}(x) a_{0}^{\prime}(x)
\end{gather*}
$$

At $O\left(\varepsilon^{2}\right): \quad\left(D\left(u_{2 x}+u_{1 x}\right)\right)_{x}=f-b_{1 x}$

$$
\Rightarrow D\left(u^{\left.u_{2} x+u_{1 x}\right)}=c_{1}(x)+\int_{0}^{x} f(x, s) d s-b_{1 x} X\right.
$$

Both U_{1} and u_{2} penodic in X with penodare
Then

$$
\left.\begin{array}{l}
u_{2}=\lim _{h \rightarrow 0} \frac{u_{2}(x, x+h)-u_{2}(x, x)}{h} \\
u_{1 x}=\lim _{h \rightarrow 0} \frac{u_{1}\left(x+h_{1} x \mid-u_{1}(x, x)\right.}{h}
\end{array}\right\} \begin{array}{r}
\text { penodic in } x \text { meth } \\
\text { penod are }
\end{array}
$$

$$
\left.\begin{array}{rl}
\therefore \quad c_{1}(x) & =\left.D\left(u_{2 x}+u_{1 x}\right)\right|_{x=0} \\
& =\left.D\left(u_{2 x}+u_{1 x}\right)\right|_{x=1} \\
& =c_{1}(x)+\int_{0}^{1} f(x, s) d s-b_{1 x}
\end{array}\right] \Rightarrow b_{1 x}=\int_{0}^{1} f(x, s) d s
$$

Hence, the homogenised equation fer $u_{0}(x)$ is (using *)

$$
\begin{aligned}
\frac{d}{d x}\left(\hat{D}(x) \frac{d u_{0}}{d x}\right)=\hat{f}(x) \text { with } \hat{D}(x) & =\left(\int_{0}^{1} \frac{d s}{D(x, s)}\right)^{-1} \\
\hat{f}(x) & =\int_{0}^{1} f(x, s) d s
\end{aligned}
$$

harmonic average of D over are penod
$\xlongequal{7}$ note the different averages fer the diffusivity and the net production term.

PS 4 Q4
WKB expansici:

$$
\begin{aligned}
& y(x)=A(x) e^{i \mu(x) / \varepsilon} \\
& y^{\prime}(x)=e^{i \mu(x) / \varepsilon}\left[A^{\prime}+\frac{i A \mu^{\prime}}{\varepsilon}\right] \\
& y^{\prime \prime}(x)=e^{i \mu(x) / \varepsilon}\left[A^{\prime \prime}+\frac{i A \mu^{\prime \prime}}{\varepsilon}+\frac{2 i A^{\prime} \mu^{\prime}}{\varepsilon}-\frac{A\left(\mu^{\prime}\right)^{2}}{\varepsilon^{2}}\right]
\end{aligned}
$$

(a) $\varepsilon^{2} y^{\prime \prime}+x y=0$ as $\varepsilon \rightarrow 0^{+}$meth $x>0$.

$$
\varepsilon^{2} A^{\prime \prime}+i A \mu^{\prime \prime} \varepsilon+2 i A^{\prime} \mu^{\prime} \varepsilon-A\left(\mu^{\prime}\right)^{2}+x A=0
$$

Expand: $A(x) \sim A_{0}(x)+\sum A_{1}(x)+\ldots$ and wrect terms:

$$
O\left(\varepsilon^{0}\right):-A_{0}\left(\mu^{\prime}\right)^{2}+x A_{0}=0 \Rightarrow \mu^{\prime}= \pm x^{1 / 2} \Rightarrow \mu= \pm \frac{2}{3} x^{3 / 2}
$$

$$
\left(\operatorname{ter} A_{0} \neq 0\right)
$$

$$
0\left(\varepsilon^{\prime}\right):-A_{1}\left(\mu^{\prime}\right)^{2}+2 i A_{0}^{\prime} \mu^{\prime}+i A_{0} \mu^{\prime \prime}+x A_{1}=0
$$

Imaginary pout :

$$
\begin{aligned}
& 2 A_{0}^{\prime} x^{\frac{1}{2}}+A_{0} \cdot \frac{1}{2} x^{-\frac{1}{2}}=0 \\
& \Rightarrow \quad \frac{A_{0}^{\prime}}{A_{0}}=-\frac{1}{4 x} \\
& \ln \left|A_{0}\right|=c_{1}-\frac{1}{4} \ln x \quad\left(c_{1} \in \mathbb{R}\right) \\
& \therefore A_{0}=\frac{c_{2}}{x^{1 / 4}}
\end{aligned}
$$

Hence, $y+(x)=\frac{c_{2}^{+}}{x^{1 / 4}} e^{2 i x^{3 / 2} / 3 \varepsilon}, \quad y-(x)=\frac{c_{2}^{-}}{x^{1 / 4}} e^{-2 i x^{3 / 2} / 3 \varepsilon}$ as $\varepsilon \rightarrow 0^{+}$
(b) $\varepsilon^{2} y^{\prime \prime}-x y=0$ for $x>0$

$$
\Rightarrow u= \pm \frac{2 i x^{3 / 2}}{3} \text { and } A_{0}=\frac{c_{2} \pm}{x^{1 / 4}}
$$

Hence $y_{+}(x)=\frac{c_{2}{ }^{+}}{x^{1 / 4}} e^{-2 x^{3 / 2} / 3 \varepsilon}, \quad y-(x)=\frac{c_{2}^{-}}{x^{1 / 4}} e^{+2 x^{3 / 2} / 3 \varepsilon}$ as $\varepsilon \rightarrow 0^{+}$
Vand fer $u=O(1)$ as $\varepsilon \rightarrow 0^{+} \Rightarrow$ loses vandity when $x=O\left(\varepsilon^{2 / 3}\right)$.

PS 4 Q5

$$
\Sigma y^{\prime \prime}+y^{\prime}+x y=0 \text { as } \varepsilon \rightarrow 0^{+} \text {min } 0<x<1 \text { and } y(0)=0, y(1)=1 \text {. }
$$

(a) WKB expansion: $y(x)=e^{s(x) / \varepsilon} \quad$ mb h $s(x)=s_{0}+\varepsilon s_{1}+\ldots$

$$
\begin{aligned}
& y^{\prime}(x)=\frac{s^{\prime}(x)}{\varepsilon} e^{s(x) / \varepsilon} \text { and } y^{\prime \prime}(x)=\left[\frac{\left(s^{\prime}\right)^{2}}{\varepsilon^{2}}+\frac{s^{\prime \prime}}{\varepsilon}\right] e^{s(x) / \varepsilon} \\
& \Rightarrow \quad\left(s^{\prime}\right)^{2}+s^{\prime}+\varepsilon\left(s^{\prime \prime}+x\right)=0
\end{aligned}
$$

Expanding and wrecting terms:

$$
\begin{aligned}
& O\left(\Sigma^{0}\right): \quad\left(S_{0}^{\prime}\right)^{2}+S_{0}^{\prime}=0 \Rightarrow S_{0}^{\prime}=0 \text { or } S_{0}^{\prime}=-1 \\
& \therefore \quad S_{0}(x)=A_{1}, \quad S_{0}(x)=B_{1}-x \\
& O\left(\Sigma^{\prime}\right): \quad 2 S_{0}^{\prime} S_{1}^{\prime}+S_{1}^{\prime}+S_{0}^{\prime \prime}+x=0 \\
&\left(A_{1}, B_{1} \in \mathbb{R}\right) \\
& S_{0}(x)=A_{1} \Rightarrow S_{1}^{\prime}=-x \Rightarrow S_{1}(x)=A_{2}-\frac{1}{2} x^{2} \quad\left(A_{2} \in \mathbb{R}\right) \\
& S_{0}(x)=B_{1}-x \Rightarrow \quad S_{1}^{\prime}=x \Rightarrow S_{1}(x)=B_{2}+\frac{1}{2} x^{2} \quad\left(B_{2} \in \mathbb{R}\right)
\end{aligned}
$$

\therefore General solution is $y \sim A_{3} e^{-\frac{1}{2} x^{2}}+B_{3} e^{-\frac{x}{2}+\frac{1}{2} x^{2}} \quad\left(A_{3}, B_{3} \in \mathbb{R}\right)$
Boundary conditions: $y(0)=0 \Rightarrow A_{3} \sim B_{3}$

$$
\begin{aligned}
& y(1)=1 \Rightarrow A_{3} e^{-\frac{1}{2}}+B_{3} e^{-\frac{1}{2}+\frac{1}{2}} \sim 1 \\
& \therefore \quad A_{3} \sim-B_{3} \sim \frac{1}{e^{-1 / 2}-e^{-1 / \Sigma+1 / 2}}=\frac{e^{\frac{1}{2}}}{1-e^{1-1 / \varepsilon}}
\end{aligned}
$$

Hence $\quad y \sim \frac{e^{\left(1-x^{2}\right) / 2}-e^{-x / \varepsilon+\left(1+x^{2}\right) / 2}}{1-e^{1-1 / \varepsilon}}$ as $\varepsilon \rightarrow 0^{+}$
(b) $\varepsilon y^{\prime \prime}+y^{\prime}+x y=0$ for $0<x<1$ math $y(0)=0$ and $y(1)=1$

- seen a BL at $x=1: \quad x=1+\varepsilon X, y(x)=Y(x)$ with $x<0, x=\operatorname{ord}(1)$

$$
\Rightarrow y^{\prime \prime}+y^{\prime}+\Sigma(1+\varepsilon x) y=0 \Rightarrow y_{0}(x)=c_{1}+c_{2} e^{-x} \quad\left(c_{1}, c_{2} \in \mathbb{R}\right)
$$

Then, matching mon the outer solution moth require $Y_{0}(-\infty)$ finite and hence $c_{2}=0$ so that $y_{0}(x)=c_{1}=1$ and there is no $B L$ at $x=1$.

- seen a BL at $x=0: X=\varepsilon X, y(x)=Y(x) \min X>0, X=\operatorname{ord}(1)$

$$
\Rightarrow y^{\prime \prime}+y^{\prime}+z^{2} x y=0 \quad m \text { th } y(0)=0
$$

Expand as $y_{\sim} Y_{0}+\Sigma y_{1}+\cdots$ and correct terms:
$O\left(\Sigma^{0}\right) \quad Y_{0}{ }^{\prime \prime}+Y_{0}{ }^{\prime}=0$ moth $Y_{0}(0)=0 \Rightarrow y_{0}(x)=E_{1}\left(1-e^{-x}\right)$

- Solution in cuter region:

Expand as $y \sim y_{0}+\varepsilon y_{1}+\ldots$ and collect terms:

$$
\begin{aligned}
& o\left(\varepsilon^{0}\right): y_{0}^{\prime}+x y_{0}=0 \quad \operatorname{lnth} y_{0}(1)=1 \\
& \Rightarrow \frac{y_{0}^{\prime}}{y_{0}}=-x \Rightarrow \ln \left|y_{0}\right|=D_{1}-\frac{1}{2} x^{2} \\
& \therefore \quad y_{0}(x)=e^{\left(1-x^{2}\right) / 2}
\end{aligned}
$$

Matching: (Ito) $=e^{\left(1-x^{2}\right) / 2} \quad,(1 t i)=E_{1}\left(1-e^{-x}\right)$

$$
\begin{array}{ll}
=e^{\left(1-\varepsilon^{2} x^{2}\right) / 2} & =E_{1}\left(1-e^{-x / \varepsilon}\right) \\
\sim e^{\frac{1}{2}} & \Rightarrow E_{1}=e^{\frac{1}{2}}
\end{array}
$$

composite expansion: $y \sim y_{0}(x)+y_{0}(x / \varepsilon)-(1 t i)(1+0)$

$$
=e^{\left(1-x^{2}\right) / 2}-e^{\frac{1}{2}-\frac{x}{\varepsilon}} \text { as } \varepsilon \rightarrow 0^{+}
$$

PS4 Q6
(a) $\varepsilon^{2} y^{\prime \prime}+(1-x) y=0$ as $\varepsilon \rightarrow 0^{+}$fer $x>0$ mth $y(0)=1, y(\infty)=0$

Let $x=1+\varepsilon^{2 / 3} X$ and $y(x)=Y(x) \Rightarrow y^{\prime \prime}-x y=0$
fer $x>-\varepsilon^{-2 / 3}$

$$
\therefore Y(x)=a A_{i}(X)+b B_{i}(x) \quad\left(a_{1} b \in \mathbb{R}\right)
$$

mith $Y\left(-\Sigma^{-2 / 3}\right)=1, \quad Y(\infty)=0$

$$
\begin{aligned}
& y(\infty)=0 \Rightarrow b=0, \quad y\left(-\varepsilon^{-2 / 3}\right)=1 \Rightarrow a A_{i}\left(-\varepsilon^{-2 / 3}\right)=1 \\
& \therefore y(x)=y(x)=\frac{A_{i}(x)}{A_{i}\left(-\varepsilon^{-2 / 3}\right)}=\frac{A_{i}\left(\varepsilon^{-\frac{2}{3}}(x-1)\right)}{A_{i}\left(-\varepsilon^{-\frac{2}{3}}\right)}
\end{aligned}
$$

(b) WKB expansian: $y(x)=A(x) e^{i \varphi(x) / \varepsilon}$

$$
\begin{aligned}
& \Rightarrow y^{\prime}(x)=\left(\frac{i A \varphi^{\prime}}{\varepsilon}+A^{\prime}\right) e^{i \varphi / \varepsilon}, \quad y^{\prime \prime}(x)=\left(-\frac{A\left(\varphi^{\prime}\right)^{2}}{\varepsilon^{2}}+\frac{2 i A^{\prime} \varphi^{\prime}}{\varepsilon}+\frac{i A \varphi^{\prime \prime}}{\varepsilon}+A^{\prime \prime}\right) e^{i \varphi / \varepsilon} \\
& \therefore-A\left(\varphi^{\prime}\right)^{2}+\Sigma\left(2 i A^{\prime} \varphi^{\prime}+i A \varphi^{\prime \prime}\right)+\varepsilon^{2} A^{\prime \prime}+(1-x) A=0
\end{aligned}
$$

Expand as $A \sim A_{0}+\varepsilon A_{1}+\ldots$ and conect ferms:

$$
\begin{aligned}
& O\left(\Sigma^{0}\right):-A_{0}\left(\varphi^{\prime}\right)^{2}+\left(1-x \left\lvert\, A_{0}=0 \Rightarrow \quad \varphi^{\prime}= \pm(1-x)^{\frac{1}{2}} \quad\left(A_{0} \neq 0\right)\right.\right. \\
& \varphi= \pm \frac{2}{3}(1-x)^{\frac{3}{2}}+c_{1} \\
& O\left(\Sigma^{\prime}\right):-A_{1}\left(\varphi^{\prime}\right)^{2}+2 i A_{0}^{\prime} \varphi^{\prime}+i A_{0} \varphi^{\prime \prime}+(1-x) A_{1}=0 \\
& \left.\Rightarrow A_{0}^{2} \varphi^{\prime}\right)^{\prime}=0 \quad \text { (collechng imaginany parts) } \\
& \Rightarrow \quad A_{0}^{2}=\frac{\tilde{c}_{2}}{\varphi^{\prime}} \\
& \Rightarrow A_{0}=\frac{c_{2}}{(1-x)^{1 / 4}} \quad \begin{array}{l}
\text { characterct solution depends } \\
\text { an unether } x>100
\end{array} \quad \begin{array}{l}
\text { a }<1 .
\end{array}
\end{aligned}
$$

RH outer solution $(x>1)$
$y(\infty)=0 \Rightarrow$ need to eliminate the growing solution and so

$$
\begin{aligned}
& y(x) \sim \frac{c_{1}}{(x-1)^{1 / 4}} e^{-\frac{2}{3 \varepsilon}(x-1)^{3 / 2}} \text { as } \varepsilon \rightarrow 0^{+} \min x>1, x-1=\operatorname{ord}(1) \\
& c_{G} \in \mathbb{R} \text {) }
\end{aligned}
$$

LHonter solution ($0<x<1$)

- Both roves $\left(\varphi= \pm \frac{2}{3}(1-x)^{3 / 2}\right)$ admissible. Ante solution as $y \sim \frac{c_{2}}{(1-x)^{1 / 4}} \sin \left(\frac{2}{3 \varepsilon}(1-x)^{3 / 2}+\alpha_{2}\right)$ as $\varepsilon \rightarrow 0^{+} \operatorname{mth} 0<x<1$ and $x=\operatorname{ard}(1)$. $\left.C_{2}, \alpha_{2} \in \mathbb{R}\right)$
$B C: y(0)=1 \Rightarrow C_{2} \sin \left(\frac{2}{3 \varepsilon}+\alpha_{2}\right)=1$

$$
\therefore y(x) \sim \frac{\operatorname{cosec}\left(\frac{2}{3 \varepsilon}+\alpha_{2}\right)}{(1-x)^{1 / 4}} \sin \left(\frac{2}{3 \varepsilon}(1-x)^{3 / 2}+\alpha_{2}\right)
$$

Inner region (near $x=1$)
Note that, due to facters $(1-x)^{-114}$, both outer solutions are unbounded as $x \rightarrow 1 \pm$. So seek an inner solution of the farm $y=\delta(\varepsilon)^{-1 / 4} Y(X)$ with $x=1+\delta(\varepsilon) X$

$$
\begin{aligned}
& \Rightarrow y^{\prime \prime}-x y=0 \text { pronged } \delta(\varepsilon)=\varepsilon^{2 / 3} \\
& \therefore y(x)=c_{3} A_{i}(x)+c_{4} B_{i}(x) \quad\left(c_{3}, c_{4} \in \mathbb{R}\right)
\end{aligned}
$$

NB $\quad A_{i}(X) \sim \frac{1}{2 \sqrt{\pi} x^{1 / 4}} e^{-2 / 3 x^{3 / 2}} \quad$ and $B_{i}(X) \sim \frac{1}{\sqrt{\pi} x^{1 / 4}} e^{2 / 3 x^{3 / 2}}$ as $x \rightarrow \infty$

Matching inner solution meth RHonter solution

$$
(X \rightarrow \infty)
$$

$$
\left(x \rightarrow 1^{+}\right)
$$

use an intermediate vanable: $x-1=\varepsilon^{\alpha} \hat{x}=\varepsilon^{2 / 3} X \quad\left(0<\alpha<\frac{2}{3}\right)$ $(x>0)$

$$
\begin{aligned}
&\left.X=\frac{\hat{x}}{\varepsilon^{2 / 3-\alpha}} \rightarrow \infty \text { as } \sum \rightarrow 0^{+} \text {with } \hat{X}>0, \hat{X}=\operatorname{ardC}\right) \\
& \delta^{-\frac{1}{4}} y\left(\frac{\hat{x}}{\varepsilon^{2 / 3-\alpha}}\right)= \frac{c_{3}}{\varepsilon^{1 / 6}} A_{i}\left(\frac{\hat{x}}{\varepsilon^{2 / 3-\alpha}}\right)+\frac{c_{4}}{\varepsilon^{1 / 6}} B_{i}\left(\frac{\hat{x}}{\varepsilon^{2 / 3-\alpha}}\right) \\
& \sim \frac{c_{3}}{\varepsilon^{1 / 6}} \frac{1}{2 \sqrt{\pi}\left(\hat{x} / \varepsilon^{2 / 3-\alpha}\right)^{1 / 4}} e^{-2 / 3\left(\hat{x} / \varepsilon^{2 / 3-\alpha}\right)^{3 / 2}} \\
&+\frac{C_{4}}{\varepsilon^{1 / 6}} \frac{1}{\sqrt{\pi}\left(\hat{x} / \Sigma^{2 / 3-\alpha}\right)^{1 / 4}} e^{2 / 3\left(\hat{x} / \varepsilon^{2 / 3-\alpha}\right)^{3 / 2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { nd } y(x) \sim \frac{c_{1}}{(x-1)^{1 / 4}} e^{-2 / 3 \varepsilon(x-1)^{3 / 2}} \quad x= \\
& \therefore \quad y\left(1+\varepsilon^{\alpha} \hat{x}\right) \sim \frac{c_{1}}{\left(\varepsilon^{\alpha} \hat{x}\right)^{1 / 4}} e^{-2 / 3 \varepsilon\left(\varepsilon^{\alpha} \hat{x}\right)^{3 / 2}}
\end{aligned}
$$

$$
x=1+\varepsilon^{\alpha} \hat{x} \rightarrow 1^{+} \text {as } \varepsilon \rightarrow 0^{+}
$$

with $\hat{x}>0, \hat{x}=\operatorname{ard}(1)$
matching $\Rightarrow c_{4}=0$ and $c_{1}=\frac{c_{3}}{2 \sqrt{\pi}}$
matching inner soluh an win LHarter solution

Matching $\Rightarrow \alpha_{2}=\frac{\pi}{4}($ LOG $)$ and $\frac{c_{3}}{\sqrt{\pi}}=\operatorname{cosec}\left(\frac{2}{3 \Sigma}+\frac{\pi}{4}\right)$

$$
\begin{aligned}
& (X \rightarrow-\infty) \\
& \left(x \rightarrow 1^{-}\right) \\
& X=\frac{\hat{x}}{\varepsilon^{2 / 3-\alpha}} \rightarrow-\infty \text { as } \varepsilon \rightarrow 0+\min \hat{x}<0, \hat{x}=\operatorname{crd}(1) \text {. } \\
& \delta^{-\frac{1}{4}} y\left(\frac{\hat{x}}{\varepsilon^{2 / 3}-\alpha}\right) \sim \frac{c_{3}}{\varepsilon^{1 / 6}} A i\left(\frac{\hat{x}}{\varepsilon^{2 / 3}-\alpha}\right) \\
& \sim \frac{c_{3}}{\varepsilon^{1 / 6}} \frac{1}{\sqrt{\pi}\left(-\hat{x} / \varepsilon^{2 / 3-\alpha}\right)} \sin \left(\frac{2}{3}\left(\frac{-\hat{x}}{\varepsilon^{2 / 3-\alpha}}\right)^{3 / 2}+\frac{\pi}{4}\right) \\
& x=1+\varepsilon^{\alpha} \hat{x} \rightarrow 1^{+} \text {as } \varepsilon \rightarrow 0+\operatorname{mon} \hat{x}<0, \hat{x}=\operatorname{ardn}() \\
& y(1+\varepsilon \alpha \hat{x}) \sim \frac{\operatorname{cosec}\left(\frac{2}{3 \Sigma}+\alpha_{2}\right)}{(-\varepsilon \alpha \hat{x})^{1 / 4}} \sin \left(\frac{2}{3 \varepsilon}\left(-\varepsilon^{\alpha} \hat{x}\right)^{3 / 2}+\alpha_{2}\right)
\end{aligned}
$$

