2 Asymptotic approximations
2.1 convergence

Series $\sum_{n=0}^{\infty} f_{n}(z)$ is said to converge at fixed z 7 , given arbitrary $\varepsilon>0$, we can find $N_{0}(z, \varepsilon)$ s.t. $\left|\sum_{n=m}^{N} f_{n}(z)\right|<\varepsilon \forall M, N>N_{0}$
sene's $\sum_{n=0}^{\infty} f_{n}(z)$ is said to converge to a function $f(z)$ at a jinxed value of z, if given arbitrary $\varepsilon>0$, we can find $N_{0}(z, \varepsilon)$ s.t.

$$
\left|\sum_{n=0}^{N} f_{n}(z)-f(z)\right|<\varepsilon \forall N>N_{0} .
$$

\therefore Senes converges if terms decay sufficiently rapidly as $n \rightarrow \infty$. NB NOA always all that user, in the sense that we can have senes that don't converge but none timeless puonde very good approximations!
Example $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t \quad(z \in \mathbb{C})$
analytic in entire complex plane
$\Rightarrow \begin{aligned} \Rightarrow & \text { has Taylor sene expansion with } \\ & \text { intriteradius of convergence }\end{aligned} \Rightarrow e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}$
infinite radius of convergence
(converges $\forall t$)
So, integrate term by term (can swap $\Sigma, 1$) to give

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1) n!}=\frac{2}{\sqrt{\pi}}\left(z-\frac{z^{3}}{3}+\frac{z^{5}}{10}-\frac{z^{7}}{42}+\frac{z^{9}}{216}-\frac{z^{11}}{1320}+\cdots\right)
$$

Fer an accuracy of $10^{-5}: \quad z=2-16$ terms

$$
\begin{aligned}
& z=3-31 \text { terms } \\
& z=5-75 \text { terms }!1
\end{aligned}
$$

Also, intermediate terms get very large (lots of cancellation of tre)-ve)
\Rightarrow issues with round off from a computational perspective.

Problem: truncated sums are very different now the converged limit le approximation doesn't get better moth mare terms, unless you havealot!)
Alternative approach: write $\operatorname{erf}(z)=1-\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^{2}} d t$
His gang to give a divergent
sene, but the approximation
will be much better!
integrate by parts:

$$
\begin{gathered}
\int_{z}^{\infty} e^{-t^{2}} d t=\int_{z}^{\infty} \underbrace{\frac{1}{2 t}}_{u} \cdot \underbrace{2 t e^{-t^{2}}}_{d v / d t} d t=\frac{e^{-z^{2}}}{2 z}-\int_{z}^{\infty} \frac{e^{-t^{2}}}{2 t^{2}} d t \\
\left.\Rightarrow d u / d t=\frac{-1}{2 t^{2}}\right)_{v}=-e^{-t^{2}}
\end{gathered}
$$

Continuing the integration by parts:

$$
\operatorname{erf}(z)=1-\frac{e^{-z^{2}}}{z \sqrt{\pi}}\left(1-\frac{1}{2 z^{2}}+\frac{1.3}{\left(2 z^{2}\right)^{2}}-\frac{1.3 .5}{\left(2 z^{2}\right)^{3}}+\cdots\right)
$$

\angle diverges $\forall z$: has radius a convergence equal to zero.

Truncated series very useful: fer $z=2.5$ Then tree terms \Rightarrow accuracy of 10^{-5}. At $z=3$ we andy need two terms (recall 31 fer The one Why does it worm?
(1) The leading term is almost correct sene !!)
(2) Adding subsequent lems gets us closer lbecause the terms are of decreasing size, at least mitially...)
τ and the early ones are usually enough.
This is an asymptotic series (that is nut convergent).
2.2 Asymptrticness

For a sequence: $\left\{f_{n}(\varepsilon)\right\}_{n \in N_{0}}$ is said to be asympiticic it, $\forall n \geqslant 1$,

$$
\frac{f_{n}(\varepsilon)}{f_{n-1}(\varepsilon)} \rightarrow 0 \text { as } \varepsilon \rightarrow 0 . \quad \text { We ratio of successive terms } \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \text {). }
$$

$\sum_{n=0}^{\infty} f_{n}(\varepsilon)$ is said to be an asymptotic approximanan to (or asymptotic
expansionct) a function $f(\varepsilon)$ as $\varepsilon \rightarrow 0$ 旋, $\forall N \geqslant 0$,

$$
\frac{f(\Sigma)-\sum_{n=0}^{N} f_{n}(\varepsilon)}{f_{N}(\varepsilon)} \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

Le remainder smaller than the last term included once ε sulticiently small.
we usually unite $f \sim \sum_{n=0}^{\infty} f_{n}(\varepsilon)$ as $\varepsilon \rightarrow 0$ (and don't generally worry about getting move than the first fen terms...)
Often $f \sim \sum_{n=0}^{\infty} a_{n} \varepsilon^{n}$ le the $f_{n}(\varepsilon)$ are powers of εx coefficient.
asymptotic power sones
2.3 Order notation

Big $0^{\prime} \quad f=O(g)$ if $\exists K>0, \varepsilon_{0}>0$ sit. $|f|<K|g| \forall \varepsilon<\varepsilon_{0}$.
'liHleo' $f=0(g)$ as $\varepsilon \rightarrow 0 \Rightarrow \frac{f}{g} \rightarrow 0$ as $\varepsilon \rightarrow 0 .\left(\begin{array}{l}\text { stronger statement: } \\ \forall \delta>0, \exists \varepsilon_{0} \text { st. } \\ |f| \leq \delta|g| \forall \varepsilon<\varepsilon_{0}\end{array}\right)$
Hence (1) $f_{n}(\varepsilon)$ is an asymptotic sequence it $f_{n}=0\left(f_{n-1}\right)$
(2) $f \sim \sum_{n=0}^{N} f_{n} \nrightarrow \quad f-\sum_{n=0}^{N} f_{n}=0\left(f_{N}\right) \forall N \geqslant 0$.
${ }^{\prime}$ ord' $f(\varepsilon)=\operatorname{ord}(g(\varepsilon))$ as $\varepsilon \rightarrow \varepsilon_{0}$ if $\exists K \in \mathbb{R} \backslash\{0\}$ s.t. $\frac{f(\varepsilon)}{g(\varepsilon)} \rightarrow k$ as
$N B \quad f(\varepsilon)=O(g(\varepsilon)) \nRightarrow f(\varepsilon)=\operatorname{Ord}(g(\varepsilon))$
(but comment to unite O instead of ord when At's clear what the meaning is from the context. Eg. " $X=\delta(\varepsilon) X$ moth $\delta(\varepsilon) \rightarrow 0, X=\operatorname{ord}(1)$ as $\varepsilon \rightarrow 0$ ".

Examples

$$
\begin{array}{r}
\sin x=O(x) \text { as } x \rightarrow 0, \quad \sin x=O(1) \text { as } x \rightarrow \infty, \quad \sin x=0(1) \text { as } x \rightarrow 0 \\
\log x=O(x) \text { as } x \rightarrow \infty, \quad \log x=O(x) \text { as } x \rightarrow \infty, \quad \log x=0\left(x^{-\delta}\right) \text { as } x \rightarrow 0 \\
\operatorname{ter} \text { any } \delta>0 .
\end{array}
$$

2.4 Uniqueness and Manipulation of asymptotic sones

If a function has an asymptotic approximation in terms of an asymptotic sequence, then that approximation is unique for that particular sequence.

If we have $f \sim \sum_{n=0}^{\infty} a_{n} \delta_{n}(\varepsilon)$ fer given $\left\{\delta_{n}(\varepsilon)\right\}_{n \in \mathbb{N}_{0}}$, then

$$
a_{k}=\lim _{\Sigma \rightarrow 0} \frac{f(\varepsilon)-\sum_{n=0}^{k-1} a_{n} \delta_{n}(\varepsilon)}{\delta_{k}(\varepsilon)}
$$

(evaluate inductively)

NB uniquess - fer a given sequence. BUT, a sequence may have many asymptotic approximathairs, each in terms of a dutteent sequence.
Eg. $\tan (\varepsilon) \sim \varepsilon+\frac{\varepsilon^{3}}{3}+\frac{2 \varepsilon^{5}}{15}+\cdots$

$$
\begin{aligned}
& \sim \sin \varepsilon+\frac{1}{2}(\sin \varepsilon)^{3}+\frac{3}{8}(\sin \varepsilon)^{5}+\cdots \\
& \sim \varepsilon \cosh \left(\sqrt{\frac{2}{3}} \varepsilon\right)+\frac{31}{270}\left(\varepsilon \cosh \left(\sqrt{\frac{2}{3}} \varepsilon\right)\right)^{2}+\cdots
\end{aligned}
$$

NB uniqueness - also fer a given function: two functions can share the
same asymptotic approximation because they offer by an amount smaller than the last term included.
Eg.

$$
\begin{aligned}
& e^{\varepsilon} \sim \sum_{n=0}^{\infty} \frac{\varepsilon^{n}}{n!} \text { as } \varepsilon \rightarrow 0 \\
& e^{\varepsilon}+e^{-\frac{1}{\varepsilon^{2}}} \sim \sum_{n=0}^{\infty} \frac{\varepsilon^{n}}{n!} \text { as } \varepsilon \rightarrow 0^{+}
\end{aligned}
$$

7 Two functions that share the same asymptotic power sene canouly outer by a function which is not analytic. T because two analytic functions mithithe same power sene are identical.
NB Asymptotic approximations can be naively added, subtracted, multiphed or divided.

NB we caul substitute one asymptric seines into another.
\rightarrow we need to take care when doing this with exparentials Though!
eg. $f(z)=e^{z^{2}}$ and $z(\varepsilon)=\frac{1}{\Sigma}+\varepsilon$

$$
\Rightarrow f(z(\varepsilon))=e^{\left(\frac{1}{\varepsilon}+\varepsilon\right)^{2}}=e^{\frac{1}{\varepsilon^{2}}} e^{2} e^{\varepsilon^{2}}=e^{\frac{1}{\varepsilon^{2}}} e^{2}(\underbrace{\left.1+\varepsilon^{2}+\frac{\varepsilon^{4}}{4}+\cdots\right)}_{1+0\left(\varepsilon^{2}\right)}
$$

But, it we only take the leading term in z $l e$ let $z \approx \frac{1}{2}$ then we miss the fatter e^{2}

To avoid this issue: need to calculate exponents to $O(1)$, not just leading order. (sin, cos are exponentrals here too..)

NB we can integrate asympotic expansions tenn by term wot. $\Sigma \Rightarrow$ correct asymptotic expansion of the integral.

BUT we cant ingeneral) drferentiate itu satery. eg. $f(\varepsilon)=\Sigma \cos \left(\frac{1}{\Sigma}\right)=0(\varepsilon)$ as $\varepsilon \rightarrow 0$

$$
f^{\prime}(\varepsilon)=\cos \left(\frac{1}{\Sigma}\right)+\frac{1}{\varepsilon} \sin \left(\frac{1}{\varepsilon}\right)=0\left(\frac{1}{\Sigma}\right) \text { as } \varepsilon \rightarrow 0
$$

often higher order terms that we have neglected become important.)

Butwhen we differentiate the asympohc expansion:

$$
\frac{d}{d \varepsilon}\left[\varepsilon\left(1+\frac{\varepsilon^{2}}{2}+\cdots\right)\right]=1 \text { instead of } 0\left(\frac{1}{\Sigma}\right) \text { ! }
$$

2.5 Numerical use of divergent sene

- usually me first few terms in a sequence are enough (fer a desired
\rightarrow and it we need better accuracy we just add accuracy). more terms.
\rightarrow this is problematic it the senès is divergent! Clearly, we should step when the terms start getting larger - known as the optimal truncation.
2.6 Parametric expansions

More generally, we mil want to consider eg $f(x ; \varepsilon)$ le functions that depend also an x.
\rightarrow eg have a difterennal equation in x_{1} which depends on small parameter s (hence parametric expansion..).
we usually write the asymptotic expansion as

$$
\begin{aligned}
f(x ; \varepsilon) \sim \sum_{n=0}^{\infty} \underbrace{a_{n}(x) \delta_{n}(\varepsilon)}_{\begin{array}{l}
\text { coefficients } \\
\text { depend on } x
\end{array}} \quad & \text { as } \varepsilon \rightarrow 0 \\
& \Leftrightarrow \frac{1}{\delta_{N}(\varepsilon)}\left[f(x ; \varepsilon)-\sum_{n=0}^{N} a_{n}(x) \delta_{n}(\varepsilon)\right]
\end{aligned} \rightarrow 0
$$

3 Asymptotic approximation of integrals

- Range of different approaches to approximate integrals meth either very large or very small parameters.
3.1 integration by parts (have already seenthis fer er (z))

Example I If $f(\varepsilon)$ is difteenriab le near $\varepsilon=0$ then we can sind y weal behaviour of $f(\varepsilon)$ near $\varepsilon=0$ using IBPs.

$$
f(\varepsilon)=f(0)+\int_{0}^{2} f^{\prime}(x) d x
$$

\uparrow assuming f^{\prime} ditterenticable near $x=0$.
IBP: Let $\frac{d v}{d x}=1$ and $v=(x-\varepsilon), \quad u=f^{\prime}(x) \Rightarrow \frac{d u}{d x}=f^{\prime}(x)$
Then

$$
\begin{aligned}
& \text { Then } f(\varepsilon)=f(0)+\underbrace{\left[(x-\varepsilon) f^{\prime}(\varepsilon)\right.}_{\varepsilon f^{\prime}(0)}]_{0}^{\varepsilon}+\int_{0}^{\varepsilon}(\varepsilon-x) f^{\prime \prime}(x) d x \\
& \text { repeat } \\
& \text { N-1 } \\
& \text { times... }=\sum_{n=0}^{N} \frac{\varepsilon^{n} f^{(n)}(0)}{n!}+\underbrace{\frac{1}{N!} \int_{0}^{\varepsilon}(\varepsilon-x)^{N} f^{(N+1)}(x) d x}_{\text {remainder, } R_{N}}
\end{aligned}
$$

If R_{N} exists $\forall N$ and sufficiently small $\varepsilon>0$ then

$$
f(\varepsilon) \sim \sum_{n=0}^{\infty} \frac{\varepsilon^{n} f^{(n)}(0)}{n!} \text { as } \varepsilon \rightarrow 0
$$

If the sene converges thenit's just the Taylor expansianct fabout $\varepsilon=0 \ddot{u}$.
Example 2 $I(x)=\int_{x}^{\infty} e^{-t^{4}} d t \leftarrow$ want an expansicin as $x \rightarrow \infty$. (There's no taylor sen es to help!)
write $I(x)=\int_{x}^{\infty} e^{-t^{4}} d t=\int_{x}^{\infty} \frac{-1}{4 t^{3}} \cdot\left(-4 t^{3}\right) e^{-t^{4}} d t$

$$
\frac{d u}{d t}=\frac{3}{4} t^{-4} \quad \frac{d v}{d t} \Rightarrow v=e^{-t^{4}}
$$

Then $I(x)=\left[-\frac{e^{-t^{4}}}{4 t^{3}}\right]_{x}^{\infty}-\frac{3}{4} \int_{x}^{\infty} \frac{1}{t^{4}} e^{-t^{4}} d t$

$$
=\frac{e^{-x^{4}}}{4 x^{3}}-\frac{3}{4} \int_{x}^{\infty} \frac{1}{t^{4}} e^{-t^{4}} d t
$$

This fermis much smaller than the original integrand $\left(e^{-t^{4}}\right)$
more termally:
The first term is the leading order asy mptric approximation because

$$
J=\int_{x}^{\infty} \frac{1}{t^{4}} e^{-t^{4}} d t<\frac{1}{x^{4}} \int e^{-t^{4}} d t=\frac{1}{x^{4}} \Pi(x) \ll I(x) \text { as } x \rightarrow \infty
$$

in fact,

$$
\begin{aligned}
J & <\frac{1}{x^{4}} e^{-x^{4}} \int_{x}^{\infty} e^{-\left(t^{4}-x^{4}\right)} d t \\
& =\frac{1}{x^{4}} e^{-x^{4}} \int_{0}^{\infty} e^{-u(u+2 x)\left((u+x)^{2}+x^{2}\right)} d u \\
& <\frac{1}{x^{4}} e^{-x^{4}} \int_{0}^{\infty} e^{-u^{4}} d u \\
& <\frac{1}{x^{4}} e^{-x^{4}} \underbrace{\int_{0}^{\infty} e^{-u^{2}} d u}_{0(1)}
\end{aligned}
$$

Example ${ }^{3}$ (sometimes IBPstails!)

So,

$$
J=0\left(\frac{e^{-x^{4}}}{x^{4}}\right)
$$

and $I(x) \sim \frac{e^{-x^{4}}}{4 x^{3}}$ as $x \rightarrow \infty$. (ca nget more terms by repeated integration...)

$$
I(x)=\int_{0}^{x} t^{-\frac{1}{2}} e^{-t} d t \quad u=t^{-\frac{1}{2}} \Rightarrow \frac{d u}{d t}=-\frac{1}{2} t^{-\frac{3}{2}}, \frac{d v}{d t}=e^{-t} \Rightarrow v=-e^{-t}
$$

Taking a naive approach gives

$$
I(x)=\left[-t^{-\frac{1}{2}} e^{-t}\right]_{0}^{x}-\frac{1}{2} \int_{0}^{x} t^{-\frac{3}{2}} e^{-t} d t \quad \Rightarrow \text { endupmin }{ }^{\prime} \infty-\infty^{\prime}
$$

But, Al's pretty simple to fix! Let

$$
I(x)=\underbrace{\int^{-\frac{1}{2}} e^{-t} d t-\underbrace{\infty}_{x} t^{-\frac{1}{2}} e^{-t} d t}_{\substack{\text { Can evaluate by } \\ \left.\text { letting } u=t \frac{1}{2} \text {, answer courntegrate } \\ \text { is } \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\right)}}
$$

$$
\begin{aligned}
I(x) & =\sqrt{\pi}-\underbrace{\int_{x}^{\infty} t^{-\frac{1}{2}} e^{-t} d t}_{\text {rewnte as }}+\int_{x}^{\infty} t^{-\frac{1}{2}} \frac{d}{d t}\left(e^{-t}\right) d t \\
& =\sqrt{\pi}-\frac{e^{-x}}{\sqrt{x}}+\frac{1}{2} \int_{x}^{\infty} t^{-\frac{3}{2}} e^{-t} d t \quad \begin{array}{l}
\text { power at ing } \\
\text { we anton } \\
\text { leading } \\
\text { the cone }
\end{array} \\
& <\frac{1}{x^{\frac{3}{2}}} \int_{x}^{\infty} e^{-t} d t=\frac{e^{-x}}{x^{3 / 2}} \ll \frac{e^{-x}}{x^{\frac{1}{2}}} \quad \text { which }
\end{aligned}
$$

$$
\frac{d v}{d t}=e^{-t} \quad u=t^{-\frac{1}{2}}
$$

$$
v=-e^{-t} \quad \frac{d u}{d t}=-\frac{1}{2} t^{-\frac{3}{2}}
$$

power of the integrand is reduced, so we antiopate that e^{-x} / \sqrt{x} is the leadingterm and this term gives the correction Which is indeed the case "̈
General rule integration by parts mil net work if the contribution from are ct the limits of integration is much larger than the size of the integral.
(Fer the example above, $I x$) is finite $\forall x>0$, but in the integral, the endsunt $t=0$ has a singulanty - and It's made worse by difterentianing!).
Example 4 (Anusther examplect a failure).

$$
I(x)=\int_{0}^{\infty} e^{-x t^{2}} d t=\frac{1}{2} \sqrt{\frac{\pi}{x}} \quad(x>0) . \quad \begin{aligned}
& \text { (compute the integral } \\
& \text { directly using } u=\sqrt{x} t)
\end{aligned}
$$

IMPS:

$$
\begin{aligned}
I(x) & =\int_{0}^{\infty}\left(-\frac{1}{2 x t}\right)\left(-2 x t e^{-x t^{2}}\right) d t \quad u=-\frac{1}{2 x t} \Rightarrow \frac{d u}{d t}=\frac{1}{2 x t^{2}} \\
& =\left[-\frac{e^{-x t^{2}}}{2 x t}\right]_{0}^{\infty}-\int_{-0}^{\infty} \frac{1}{2 x t^{2}} e^{-x t^{2}} d t \quad \frac{d v}{d t}=-2 x t e^{-x t^{2}} \Rightarrow v=e^{-x t^{2}}
\end{aligned}
$$

botuct these are poblemanic, and there's no sumplefix!

NB IBPs mill also not ware when the dominant contribution to the integral comes from an intenar point raker than an end point.
summary - IBPS is simple, and gives an explicit enorterm that can be bounded. BUT, united applicability.
3.2 Laplacers method

General technique fer integrals of the term $I(x)=\int_{a}^{b} f(t) e^{x \varphi(t)} d t$ $(f(t), \varphi(t)$-real, continuous functions, and as $x \rightarrow \infty$.
$[a, b]$ generally an interval on the real uni.)
Example $I(x)=\int_{0}^{10} \frac{e^{-x t}}{(1+t)} d t \quad$ as $x \rightarrow \infty$
Split the range of integration:

$$
I(x)=\underbrace{\int_{0}^{\varepsilon} \frac{e^{-x t}}{(1+t)} d t}_{I_{1}}+\underbrace{\int_{\varepsilon}^{10} \frac{e^{-x t}}{(1+t)} d t}_{I_{2}}
$$

 very small region around $x=0$.
x
we want to choose \& st. The dominant unimbution comes from $I_{1} \Rightarrow$ choose
ε small but $\varepsilon \gg \frac{1}{x}$
le $\frac{1}{x} \ll \varepsilon \ll 1$.
Hence I_{2} is
Then
\uparrow by iteration (or seeing mat its a Γ function!)
Looking at $k_{n}: k_{n}=\int_{x \varepsilon}^{\infty} s^{n} e^{-s} d s=(x \varepsilon)^{n} e^{-x \varepsilon}+n \int_{0}^{x \varepsilon} s^{n-1} e^{-s} d s \quad$ (BAPs)

$$
=n!\int_{x \varepsilon}^{\infty} e^{-s} d s+\text { exponentially small terms }
$$

$$
\text { alsoexp.small! }=n!e^{-x \varepsilon}+\text { exp. small terms. }
$$

$\therefore k_{n}$ always exponentially small compared to the rest ct in e terms.

$$
\begin{aligned}
& I_{1}(x)=\int_{0}^{\varepsilon} \frac{e^{-x t}}{(1+t)} d t \quad \text { let } s=x t \Rightarrow d t=\frac{1}{x} d s \\
& =\int_{0}^{x \varepsilon} \frac{e^{-s}}{1+s / x} \cdot \frac{1}{x} d s \\
& =\frac{1}{x} \int_{0}^{x \varepsilon} e^{-s}\left(\sum_{n=0}^{\infty}\left(\frac{-s}{x}\right)^{n}\right) d s \quad\left\{\begin{array}{l}
\text { stop } J_{1}, \sum \text { since side } \\
\text { radius of convert gene of } \Sigma .
\end{array}\right. \\
& =\frac{1}{x} \sum_{n=0}^{\infty}[\underbrace{\int_{0}^{x \varepsilon} s^{n} e^{-s} d s}] \frac{(-1)^{n}}{x^{n}} \\
& =\int_{0}^{\infty} s^{n} e^{-s} d s-\int_{\sum x}^{\infty} s^{n} e^{-s} d s \\
& =n!-k_{n} \quad=k_{n} \text {, anticipate small }
\end{aligned}
$$

Putting it all back together

$$
I(x) \sim I_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{x^{n+1}} \quad \text { as } x \rightarrow \infty
$$

3.3 Watson's Lemma (Generally very useml, can be used to Justify Laplace's consider $\quad I(x)=\int_{0}^{b} f(t) e^{-x t} d t \quad(b>0)$. method)
suppose that (1) $f(t)$ is continuous on $[0, b]$
(2) has the asymptric expansion $f(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_{n} t^{\beta n}$ as $t \rightarrow 0^{+}$ where $\alpha>-1$ and $\beta>0$, so the integral converges at $t=0$.
$\operatorname{CNB} \mid b=\infty$ then we also need $f(t) \ll e^{c t}$ as $t \rightarrow \infty$ fer some $c>0$ so that the integral converges at $t=\infty$.)
Watson's lemma states that

$$
I(x) \sim \sum_{n=0}^{\infty} \frac{a_{n} \Gamma(\alpha+\beta n+1)}{x^{\alpha+\beta n+1}} \quad \text { as } x \rightarrow \infty .
$$

$$
\begin{aligned}
\Gamma(m) & =\int_{0}^{\infty} t^{m-1} e^{-t} d t \\
& =(m-1)!
\end{aligned}
$$

Denvarion- essentially the same as vi tine example, so lang as the asymptotic sene is unitermly convergent in a neighbourhood of $t=0$ (often the case). If not -cant exchange S, Σ so we wore moth a int number of terms, N, and show that, fer any N,

$$
I(x)=\sum_{n=0}^{N} \frac{a_{n} \Gamma(\alpha+\beta n+1)}{x^{\alpha+\beta n+1}}+O\left(\frac{1}{x^{\alpha+\beta N+1}}\right) \quad \text { as } x \rightarrow \infty
$$

3.4 Asymptotic expansion a general laplace integrals

$$
I(x)=\int_{a}^{b} f(t) e^{x \varphi(t)} d t \quad \leftarrow \text { dominant contribution trow region }
$$ where $\varphi(t)$ is the largest.

Three cases: (1) max. o $t=a$
(2) \max e $t=b$
(3) Max. e $t=c$ with $a<c<b$ (ieintenar pant)
in each case we argue: (1) dominant connibuton prom around max. of φ So reduce domain cf integration to this region:
(ii) Expand $f_{1} 9$ in Taylor seines about max here.
mane integral as simple as possible.
(III) rescaung the integ ration vanable means we can replace Integration limits by ∞ and introduce orly exp. small errors.

Case(1)-max e $t=a$

$$
I(x)=\underbrace{\int_{a}^{a+\varepsilon} f(t) e^{x \varphi(t)} d t}_{I_{1}}+\underbrace{\int_{a+\varepsilon}^{b} f(t) e^{x \varphi(t)}}_{I_{2}} d t
$$

$\max . q \phi(t) @ t=a$ \Rightarrow assume $\varphi^{\prime}(a)<0$, and also that $f(a) \neq 0, \varphi^{\prime \prime}(a) \neq 0$.
new Σ as a small
paraineter - yet suIt.
large that dominant
contubution to the
integral from I_{1}.
Need to work out how big ε must be incrder fer $\left|I_{1}\right|>\left|I_{2}\right|$.
consider

$$
\frac{e^{x \varphi(a+\varepsilon)}}{/}<\underbrace{e^{x \varphi(a)}}_{\text {largest value of } e^{x \varphi(t)}}
$$

\leftarrow we want this to hold!
size ct exp (t)
at tine 'start' of I_{2}
Taylor \exp and to unite $\varphi(a+\varepsilon)=\varphi(a)+\varepsilon \varphi^{\prime}(a)+\ldots$

$$
\Rightarrow e^{x \varepsilon \varphi^{\prime}(a)} \ll 1 \Rightarrow x \varepsilon \ll 1 \text { le } 0<\frac{1}{x} \ll \varepsilon
$$

consider the first integral:
$I_{1}(x)=\int_{a}^{a+\varepsilon} f(t) e^{x \varphi(t)} d t$ e expand $f_{1} \varphi$ as asymptotic senses about $x=a$

$$
\begin{array}{rl}
= & \int_{a}^{a+\varepsilon}\left[f(a)+(t-a) f^{\prime}(a)+\ldots\right] \exp \left\{x \left[\varphi(a)+(t-a) \varphi^{\prime}(a)\right.\right.
\end{array}+\underbrace{\frac{1}{2}(t-a)^{2} \varphi^{\prime \prime}(a)}_{\text {We want to }}+\ldots]\} d t
$$

$$
e^{\frac{1}{2} x(t-a)^{2} \varphi^{\prime \prime}(a)}=1+\frac{x(t-a)^{2}}{2} \varphi^{\prime \prime}(a)+\cdots
$$

Taylor expansion requires $x(t-a)^{2} \ll 1$-but t is at most $a+\varepsilon \Rightarrow$ require $x(t-a)^{2}<x \varepsilon^{2}<c 1$
Altogether 2 Hence second constraint on $\varepsilon: \quad \Sigma \ll \frac{1}{\sqrt{x}}$

$$
\therefore \quad \frac{1}{x} \ll \Sigma \ll \frac{1}{\sqrt{x}}
$$

Therefore

$$
I_{1}(x)=e^{x \varphi(a)} \int_{a}^{a+\varepsilon}\left[f(a)+(t-a) f^{\prime}(a)+\ldots\right] e^{x(t-a) \varphi^{\prime}(a)}\left[1+\frac{x^{2}(t-a)^{2}}{2} \varphi^{\prime \prime}(a)+\ldots\right] d t
$$

we want to be able
Let $x(t-a)=s \Rightarrow d t=\frac{1}{x} d s$ to conclude that this term is asy uplotically
Then small...

$$
\begin{aligned}
I_{1}(x) & =\frac{e^{x \varphi(a)}}{x} \int_{0}^{\varepsilon x}\left[f(a)+0\left(\frac{s}{x}\right)\right] e^{s \varphi^{\prime}(a)}\left[1+0\left(\frac{s^{2}}{x^{2}}\right)\right] d s \\
& =\frac{e^{x \varphi(a)} f(a)}{x}\left[\int_{0}^{2 x} e^{s \varphi^{\prime}(a)} d s\right]\left[1+0\left(\frac{1}{x}\right)\right]
\end{aligned}
$$

Here we can now replace $\sum x$ moth ∞ because only exponentially small terms are being neglected.

$$
\int_{0}^{\infty} e^{s \varphi^{\prime}(a)} d s=-\frac{1}{\varphi^{\prime}(a)}
$$

$$
\therefore I(x) \sim-\frac{f(a) e^{x \varphi(a)}}{x \varphi^{\prime}(a)}
$$

Case (2): $\max e t=b \quad\left[\varphi^{\prime}(b)>0, f(b) \neq 0, \varphi^{\prime \prime}(b) \neq 0\right]$
\rightarrow very similar argument shows $I(x) \sim \frac{f(b) e^{x \varphi(b)}}{x \varphi^{\prime}(b)}$
Case(3): maxet=c,a<c<b$\quad \varphi^{\prime}(c)=0, \underbrace{\varphi^{\prime \prime}(c)<0}_{\substack{\mid e^{\prime} \max _{c}^{\prime \prime}}}, \varphi^{\prime \prime \prime}(c) \neq 0, f(c) \neq 0$
Split the integral up:

$$
I(x)=\underbrace{\int_{a}^{c-\varepsilon} f(t) e^{x \phi(t)}}_{I_{1}} d t+\underbrace{\int_{c-\varepsilon}^{c+\varepsilon} f(t) e^{x \varphi(t)} d t}_{I_{2}}+\underbrace{\int_{c+\varepsilon}^{b} f(t) e^{x \varphi(t)} d t}_{I_{3}}
$$

\uparrow want to find

For I_{2} to be dominant, we want $e^{x \varphi(c+\varepsilon)} \ll e^{x \phi(c)}$ so that I_{3} is small.
Taylor expand: $\quad \varphi(c+\varepsilon)=\varphi(c)+\varepsilon \varphi^{\prime}(c)+\frac{1}{2} \varepsilon^{2} \varphi^{\prime \prime}(c)+\ldots$
$=0 \quad$ hence fer $e^{x \varphi(c+\varepsilon)}<c e^{x \varphi(c)}$
ne need $e^{x \varepsilon^{2} \varphi^{\prime \prime}(c) / 2} \ll 1$

$$
\Leftrightarrow x \varepsilon^{2} \ll 1 \quad\left(N B q^{\prime \prime}(C)<0\right.
$$

sauce C is a max.)
A similar argument then shows that I_{1} also small fer $x \varepsilon^{2} \ll 1$.
ie $\varepsilon \gg \frac{1}{\sqrt{x}}$
Then, consider I2. Taylor expand

$$
\begin{aligned}
& \varphi(t) \sim \varphi(c)+(t-c) \varphi^{\prime}(c)+\frac{1}{2}(t-c)^{2} \varphi^{\prime \prime}(c)+\frac{1}{6}(t-c)^{3} \varphi^{\prime \prime \prime}(c)+\ldots \\
& f(t) \sim f(c)+(t-c) f^{\prime}(c)+\ldots
\end{aligned}
$$

and substitute into I_{2} :

$$
I_{2}=\int_{c-\varepsilon}^{c+\varepsilon}[f(c)+0(t-c)] e^{x \varphi(c)} e^{x(t-c)^{2} \varphi^{\prime \prime}(c) / 2}\left[1+0\left(\frac{x(t-c)^{3}}{6} \varphi^{\prime \prime \prime}(c)\right)\right] d t
$$

In summary, we
need $\frac{1}{x^{\frac{1}{2}}} \ll \varepsilon \ll \frac{1}{x^{\frac{1}{3}}} \leqslant \int e^{x(t-c)^{3} \varphi^{\prime \prime \prime}(c) / 6}$ here we have Taylor expanded
 higher order terms are small he need $x(t-c)^{3} \ll 1$

$$
\text { ie } \quad x \varepsilon^{3} \ll 1
$$

which gives a second constraint
le x needs to be much larger to get an accurate expansion ter integrals of this term.
Now we rescale the integration vanable to make the integral as simple as possible: Let $\sqrt{x}(t-c)=s \Rightarrow d t=\frac{1}{\sqrt{x}} d s$

Putting everyinng together:

$$
\begin{aligned}
& I_{2}(x) \sim \frac{f(c) e^{x \varphi(c)}}{\sqrt{x}} \sqrt{\frac{2}{-\varphi^{\prime \prime}(c)}} \int_{-\infty}^{\infty} e^{-u^{2}} d u\left(1+0\left(\frac{1}{\sqrt{x}}\right)\right) \\
\Rightarrow & I(x) \sim \frac{2 \pi f(c) e^{x \varphi(c)}}{\sqrt{-x \varphi^{\prime \prime}(c)}}
\end{aligned}
$$

3.5 memod of stationary phase
-used fer cases where $\varphi(t)=i \psi(t)$ where $\psi(t)$ real
ie. $I(x)=\int_{a}^{b} f(t) e^{i x \psi(t)} d t$
exponent is purely imaginary
\Rightarrow behaves very differently trim the previous integrals
3.5.1 Riemann-lebesgne lemma

If $\int_{a}^{b}|f(t)| d t<\infty$ and $\psi(t)$ ctsly differentiable fer $a \leqslant t \leqslant b$ and nut constant an any snbintenal in $a \leq t \leq b$ then $\int_{a}^{b} f(t) e^{i x \psi(t)} d t \rightarrow 0$ as $x \rightarrow \infty$.
-NB useinl when integrating by parts
Example

$$
\begin{aligned}
I(x)=\int_{0}^{1} \frac{e^{i x t}}{1+t} d t & =\left[\frac{-i}{x(1+t)} e^{i x t}\right]_{0}^{1}-\frac{i}{x} \int_{0}^{1} \frac{e^{i x t}}{(1+t)^{2}} d t \\
u=\frac{1}{1+t} \Rightarrow \frac{d u}{d t}=\frac{-1}{(1+t)^{2}}, \frac{d v}{d t}=e^{i x t} \Rightarrow & v=\frac{-i}{x} e^{i x t} \\
= & \frac{-i e^{i x}}{2 x}+\frac{i}{x}-\frac{i}{x} \underbrace{\int_{0}^{1} \frac{e^{i x t}}{(1+t)^{2}} d t}_{0} \\
& \rightarrow 0 \text { as } x \rightarrow \infty \text { by RLL } \\
& \text { Ie This term is o }\left(\frac{1}{x}\right)
\end{aligned}
$$

subdominant and so first term is the start of an asymptotic exp.)

Why is the Rul true?
First-thmu about eg $\psi(t)=t$ so that $I(x)=\int_{a}^{b} f(t) e^{i x t} d t$ osullates more and more rapidly as $x \rightarrow \infty$
everything just
'cancels $\mathrm{cnt} \rightarrow$ ($1_{\text {looks }}$
What about more general truetions: Taylor expand near $t=t_{0}$:

$$
\psi(t)=\psi\left(t_{0}\right)+\left(t-t_{0}\right) \psi^{\prime}\left(t_{0}\right)+\frac{1}{2}\left(t-t_{0}\right)^{2} \psi^{\prime \prime}\left(t_{0}\right)+\ldots
$$

Then $e^{i x \psi(t)}=\underbrace{e^{i x \psi\left(t_{0}\right)}}_{\text {constant }} \underbrace{e^{i x \psi^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\ldots}}_{\text {oscillating component }}$
\therefore Penod of Osculation close to $t=t_{0}$ is $\approx \frac{2 \pi}{x\left|\psi^{\prime}\left(t_{0}\right)\right|}$, provided $\psi^{\prime}\left(t_{0}\right) \neq 0$.

$$
\rightarrow 0 \text { as } x \rightarrow \infty \quad 11
$$

ie increasingly fast oscillations which cancel each other ont as $x \rightarrow \infty$. tregardless of the $t \underline{\mu} f(t)$).
NB only exception is A $\psi^{\prime}\left(t_{0}\right)$ is very small - Then, unless x is revylarge, the pend of oscullation mill be large and cancellation wan't warn.
If $\psi^{\prime}\left(t_{0}\right)=0$ men cancellations won't occur \Rightarrow dominant
contributions to the integral when $\left|\psi^{\prime}\left(t_{0}\right)\right|=0$)
\rightarrow his is how we mill generate asymptotic approximations to integrals etuis form!

Suppose that $\psi^{\prime}(c)=0$ with $a<c<b$ and $\psi^{\prime}(t) \neq 0$ fer $a \leq t<c$ and $c<t \leq b$. Also, assume $f(c) \neq 0$ and $\psi^{\prime \prime}(t) \sim \operatorname{ord}(1)$ in a neighbourhood ct c.

As betere, to mane progress, we spit the range a integration up:

$$
I(x)=\underbrace{\int_{a}^{c-\varepsilon} f(t) e^{i x \psi(t)} d t}_{I_{1}}+\underbrace{\int_{c-\varepsilon}^{c+\varepsilon} f(t) e^{i x \psi(t)} d t}_{I_{2}}+\underbrace{\int_{c+\varepsilon}^{b} f(t) e^{i x \psi(t)} d t}_{I_{3}}
$$

\uparrow
Expect I_{2} to dominate as $x \rightarrow \infty$ fer sufficiently well chosen $\varepsilon \ll 1$
first-wnsider I_{2} (we will see the constraints on \sum needed fer I_{2} to dominate..)
Expand ψ and f about $t=c$:

$$
\begin{aligned}
& f(t) \sim f(c)+(t-c) f^{\prime}(c)+\cdots \\
& \psi(t) \sim \psi(c)+(t-c) \underbrace{\psi^{\prime}(c)}_{=0}+\frac{1}{2}(t-c)^{2} \psi^{\prime \prime}(c)+\frac{1}{6}(t-c)^{3} \psi^{\prime \prime \prime}(c)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
\text { Then } & \left.\begin{array}{rl}
I_{2}(x) & =\int_{c-\varepsilon}^{c+\varepsilon}\left[f(c)+(t-c) f^{\prime}(c)+\cdots\right] e^{i x\left\{\psi(c)+\frac{1}{2}(t-c)^{2} \psi^{\prime \prime}(c)+\frac{1}{6}(t-c)^{3} \psi^{\prime \prime \prime}(c)\right.}+\underbrace{f(c)+o(t-c)}_{0\left((t-c)^{3}\right)} d t \\
& =e^{i x \psi(c)} \int_{c-\varepsilon}^{c+\varepsilon}[f(c)+0(t-c)] e^{i x(t-c)^{2} \psi^{\prime \prime}(c) / 2}\left[1+0\left((t-c)^{3} x\right)\right]
\end{array}\right]
\end{aligned}
$$

Taylor serer expansion, validif $\varepsilon^{3} x \ll 1$
let $S=\sqrt{x}(t-c)$

$$
\begin{aligned}
& =\frac{e^{i x \psi(c)}}{\sqrt{x}} \int_{-\Sigma \sqrt{x}}^{+\sum \sqrt{x}}[f(c)+c \\
& \text { want also to } \\
& \text { replace the limits } \\
& \text { by } \pm \infty \text { - requires } \\
& \sum \sqrt{x} \gg 1 \text { le } \quad \varepsilon \ll \frac{1}{\sqrt{x}}
\end{aligned}
$$ le $\varepsilon \ll \frac{1}{x^{\frac{1}{3}}}$

subleading
 (we mill constr the corrections later -but both subleading...)

$$
\text { Together we have } \frac{1}{x^{\frac{1}{2}}} \ll \varepsilon \frac{1}{x^{\frac{1}{3}}}
$$ large to get clear sep. ct scales)

Then $I_{2}(x) \sim \frac{e^{i x \psi(c)} f(c)}{\sqrt{x}} \int_{-\infty}^{\infty} e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s$.
use contour integration
suppose $\psi^{\prime \prime}(c)>0$ (the case $\psi^{\prime \prime}(c)<0$ is very similar...)
tm (s)

areal circle. radNsR

By Cauchy,

$$
\begin{aligned}
& \quad 0=\int_{\langle\rightarrow 1} e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s=\mid \int_{\rightarrow}+\int_{x}+\underbrace{\int_{i}}_{\rightarrow 0 \text { as } R \rightarrow \infty}) e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s \\
& \text { we want to consider } \uparrow \text { in the }
\end{aligned}
$$ unit $R \rightarrow \infty \ldots$) by Jordan's Lemma

$$
\rightarrow \text { ie } \int_{\rightarrow}=-\int_{\neq}=\int_{\nless}
$$

Then,

$$
\int_{0}^{\infty} e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s=\underbrace{\int_{0}^{\infty} e^{-p^{2} \psi^{\prime \prime}(c) / 2} e^{i \pi / 4}}_{\text {on } \gamma \text { let } s=e^{i \pi / 4} p} d p
$$

$$
=e^{i \pi / 4} \cdot \sqrt{\frac{2 \pi}{\psi^{\prime \prime}(c)}} \quad \begin{gathered}
\text { (since left moth a Gaussian } \\
\text { integral to evaluate) }
\end{gathered}
$$

If we have $\psi^{\prime \prime}(c)<0$, use an angle of $-\pi 4$ Which gives the general result:

$$
\int_{0}^{\infty} e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s=e^{i \pi / \psi \cdot \operatorname{sign}\left(\psi^{\prime \prime}(c)\right)} \cdot \sqrt{\frac{2 \pi}{\left|\psi^{\prime \prime}(c)\right|}}
$$

(NB since we assumed $\psi \sim \operatorname{ord}(1)$ near C, we don't need to consider $\psi^{\prime \prime}(c)=0$.)
we now need to consider I factored cutin from evaluating factoredchtin tom evalnati
calculations the integral
(1) The size of I_{1}, I_{3} the corrections need to be considered Mir relation to this term!
(2) The site ct the neglected terms in the integral Is

First consider the contuiontian from I_{1} :
correction

The memod fer I_{3} proceeds in exactly the same way...
Next Wonder the correction from the change ct limits - we have added terms of the form

$$
\begin{aligned}
\int_{\Sigma \sqrt{x}}^{\infty} e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s & =\int_{\Sigma \sqrt{x}}^{\infty} \frac{1}{i s \psi^{\prime \prime}(c)} \cdot \underbrace{i s \psi^{\prime \prime}(c) e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s}_{d v / d s} \begin{aligned}
\left.i \frac{1}{i s \psi^{\prime \prime}(c)} e^{i s^{2} \psi^{\prime \prime}(c) / 2}\right]_{\Sigma \sqrt{x}}^{\infty}-\int_{\Sigma \sqrt{x}}^{\infty} \frac{-1}{1 s^{2} \psi^{\prime \prime}(c)} e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s
\end{aligned} .
\end{aligned}
$$

$$
\sim O\left(\frac{1}{\Sigma \sqrt{x}}\right)
$$

\uparrow this is then small compared to the anginal this is a smaller correction due to the $\frac{1}{s^{2}}$ compared to $\frac{1}{s} \mathrm{in}^{\circ}$ the anginal integral, and $\Sigma \sqrt{x} \gg 1$.

$$
\begin{aligned}
& I_{1}(x)=\int_{a}^{c-\varepsilon} f(t) e^{i x \psi(t)} d t=\int_{a}^{c-\varepsilon} \underbrace{\frac{f(t)}{i x \psi^{\prime}(t)}}_{u} \frac{d v / d t}{\frac{d}{d t}\left(e^{i x \psi(t)}\right)} d t \\
& \text { (ImPs) }=\left[\frac{f(t)}{i x \psi^{\prime}(t)} \cdot e^{i x \psi(t)}\right]_{a}^{c-\varepsilon}-\frac{1}{x} \underbrace{\int_{a}^{c-\varepsilon} e^{i x \psi(t)} \frac{d}{d t}\left(\frac{f(t)}{i \psi^{\prime}(t)}\right)}_{\rightarrow 0 \text { as } x \rightarrow \infty \text { by RLL }} d t \\
& \sim 0\left(\frac{1}{x \psi^{\prime}(c-\varepsilon)}\right) \\
& \text { hence the term is } \circ\left(\frac{1}{x}\right) \text {. } \\
& \text { dominantterm since } \psi^{\prime}(c)=0 \Rightarrow \psi^{\prime}(c-\varepsilon) \text { relativelysmall. } \\
& \text { (more concretely, } \psi^{\prime}(c-\varepsilon)=\underbrace{\psi^{\prime}(c)}_{=0}-\underbrace{\varepsilon \psi^{\prime \prime}(c)}_{\text {ord }(1)}+\cdots) \\
& \sim 0\left(\frac{1}{x \varepsilon}\right) \\
& \sim 0\left(\frac{1}{\Sigma \sqrt{x}} \cdot \frac{1}{\sqrt{x}}\right) \text { then } \sum \sqrt{x} \gg 1 \Rightarrow \begin{array}{l}
\text { thistermgives } a \\
\text { genumely small }
\end{array} \\
& \text { genuinely small }
\end{aligned}
$$

Finally, insider the correction from making the Taylor sender expansions
From the Taylor sene expansion of f, we have (fer $n \geqslant 1$) terms of the form

$$
\begin{array}{r}
\frac{1}{\sqrt{x}} \int_{-\Sigma \sqrt{x}}^{+\sum \sqrt{x}} \frac{s^{n}}{x^{n / 2}} e^{i s^{2} \psi^{\prime \prime}(c) / 2} d s=\frac{1}{\sqrt{x}} \cdot \frac{1}{x^{n / 2}}(\sqrt{x} \varepsilon)^{n-1} \sim \frac{\varepsilon^{n-1}}{x} \in \operatorname{sinall} \\
\text { relatre } \\
\text { to } \circledast
\end{array}
$$

and also, from the Taylor sever expansion of the exponential

$$
\frac{1}{\sqrt{x}} \int_{-\Sigma \sqrt{x}}^{+\Sigma \sqrt{x}} \frac{\left(s^{3}\right)^{n}}{x^{n / 2}} e^{i s^{2} \psi^{n}(c) / 2} d s=\frac{1}{\sqrt{x}} \frac{1}{x^{n / 2}}(\sqrt{x} \varepsilon)^{3 n-1} \sim \frac{\left(\varepsilon^{3} x\right)^{n}}{x \varepsilon} \sim \frac{\varepsilon\left(\varepsilon^{3} x\right)^{n}}{x \varepsilon^{2}}
$$

since $\varepsilon^{2} x \gg 1$ this term is also small, relative to the $O(1)$ termite is compared against.
Hence, in summary,

$$
I(x) \sim \frac{\sqrt{2 \pi} f(c) e^{i x \psi(c)} e^{i \pi / 4 \cdot \operatorname{sign}\left(\psi^{\prime \prime}(c)\right)}}{\sqrt{x}\left|\psi^{\prime \prime}(c)\right|^{1 / 2}}+0\left(\frac{1}{x \varepsilon}\right) \quad \text { as } x \rightarrow \infty
$$

NB - the errors are only algebraically small, not exponentially small, as In Laplace's method.

- higher coder corrections rev difficult to get since they come from the whole range of integration Lagaivi- incoutvast to Laplace's method where the thu asymptotic expansion depends ally on the local region since the chows are algebraically small...).
3.6 Method of steepest descents

$$
\begin{aligned}
& I(x)=\int_{c} f(t) e^{x \varphi(t)} d t \\
& f(t), \varphi(t) \text { - complex and } \\
& \text { holomorphic } \Rightarrow \text { analytic. }
\end{aligned}
$$

t-complex vanable
$x \in \mathbb{R}$-intereste din the expansion as $x \rightarrow \infty$
c- contour in the complex plane.
NB Laplace's method and the method of stationary phase are just special cases of the MOSD.

Caution we might expect lbasedon what he have seenfer laplace's method) That the impatant untibution as $x \rightarrow \infty$ comes from This is a huge overestimate because t ignores all the cancellation from oscillations due to $\operatorname{Im}(\varphi)$. We can, intact, see that the estimate is wrong by deferming C-wou't change the value ct I, but it mill Cingeneral) change max Rel).

KEY IDEA I(x) will be unchanged by deforming c to a new
 contour Γ moth the same start and end points

- this is because $f_{1} \Phi$ are analytic and $x \in \mathbb{R}$, so there are no poles c residues in $\mathrm{CU}-\Gamma$.
we are tree to choose Γ to make the integral as simple to compute as possible. We will find a contour Γ an which $\operatorname{Im}(\varphi(t))$ is precenise constant ie find Γ_{j}, v_{j} s.t. $\Gamma=\cup_{j} \Gamma_{j}$ and $\operatorname{Im}(\varphi(t))=v_{j}$ on Γ_{j}. Then

$$
I(x)=\sum_{j} e^{i x v_{j}} \underbrace{\int_{\Gamma_{j}} f(t) e^{x \operatorname{Re}(\varphi(t))}}_{\begin{array}{c}
\text { can now evaluate using } \\
\text { laplace's memod }
\end{array}} d t
$$

So, we need to understand how to deferm $C \rightarrow \Gamma$.
Let $\varphi(t)=u(3, \eta)+i v(3, \eta)$ math $t=3+i \eta$.
Since $\varphi(t)$ is holomorphic, the cauchy Riemann equations hold.

$$
\Rightarrow u_{3}=v_{\eta} \text { and } u_{\eta}=-v_{3}
$$

As such: (1) $\nabla u \cdot \nabla v=u_{3} v_{3}+u_{\eta} v_{1}=0 \Rightarrow \nabla u y \nabla v$ (perpendicular)
(he know
that) (2) $\nabla \vee y$ to contours of constant v

$$
\Rightarrow \text { Contours of constant V } / \overline{\nabla u}
$$

(3) Du points in the direction where u increases at the fastest rate.
(4) - Du pants in the direction where u decreases at the fastest rate.

Hence, contours with $v=$ constant give a path of steepest ascent I descent of U.
Let's consider the Landscape of $n(3, \eta)$:
by the CRES we have $u_{33}+u_{\eta \eta}=\left(v_{\eta}\right)_{3}+\left(-v_{3}\right)_{7}=0$ le u hammonic.
Hence, by the maximum punciple, u cannot have a maximum or minimum in the futenor of the domain.
$\left[\begin{array}{l}\text { NB exception is it we consider a punt where } 4 \text { is singular, or a } \\ \text { branch paint, where } y \text { is not holomorphic. }\end{array}\right]$, might be some such casesinithe examples.
\therefore At a stationary point: $u_{3}=0, u_{7}=0$, and we have a saddle. le the general structure of the landscape of u is hills and valleys at infinity with saddle points in the interior of the complex plane.

Example $\quad \varphi(t)=1 t^{2}=i(3+i \eta)^{2}=-23 y+i\left(3^{2}-\eta^{2}\right) \quad(t=3+i \eta)$
Then, $\nabla u=-2(n, 3) \Rightarrow$ saddle punt at $(0,0)$

These are pains ot steepest descent fer u_{1} with $v=$ constant
we want to consider a contour C which gains two valleys of u :

then we want to deferm c to a new contour 1 that has the same start and end_pouts (reach valley).
\rightarrow In the valleys with u negative then the contubuncin to the coeval mregral will be exponentially small since

$$
e^{x \operatorname{Re}(\varphi)}=e^{x u}
$$

We want to find parrs on which $V=\operatorname{mm}(\varphi)$ is constant eg. $V=0$
Then, $I(x)=\int_{c} f(t) e^{x \phi(t)} d t=\int_{\Gamma} f(t) e^{x \operatorname{Re}(\varphi(t))} d t$
\uparrow sinceon 1 we have $V=$ constant
 at elmer end of $\Gamma \Rightarrow$ contributions from the end perints mill be exponentially small.
\therefore Main contubntion to the integral - from $u=\operatorname{Re}(\varphi(t)$) at (around) the saddle punt. can evaluate using Laplace's metuod.

Method of steepest descent is
(1) Deform the contour to uniorict steepest descent ($v=$ constant) contours throng the end pants and any relevant saddle paints.
(2) Evaluate local contribution from saddle point, and the local contribution from the end pants, using laplace's method.

NB -could have defermed to Γ sit. $\operatorname{Re}(\varphi)=$ constant andapphed the method of Stationary phase - but we have seen that Laplace's method is fou supenor (can generate all terms in' The asymptotic senses, and neglected Itans' are exp. small. (Actually, fer a stationary phase integral, the best approach is to transform to the steepest descent contour...)
Example $I(x)=\int_{0}^{1} e^{x \varphi(t)} d t$ as $x \rightarrow \infty m$ th $\varphi(t)=\not t^{2}$ and $t=3+i n$.
\therefore As in the prencons example,
jan C_{1} and C_{3} using C_{2}

$$
\varphi=\underbrace{-2 z y+i\left(\zeta^{2}-\eta^{2}\right)}_{u=\operatorname{Re}(\varphi) v=\operatorname{Du}(\varphi)}
$$

a sub-leading term.

$$
\begin{aligned}
& C_{1}(R)=\{3(1+i): \zeta \in[0, R]\} \\
& C_{2}(R)=\left\{3+i R: 3 \in\left[R, \sqrt{R^{2}+1}\right]\right\} \\
& C_{3}(R)=\left\{\sqrt{1+\eta^{2}}+i \eta: \eta \in[0, R]\right\}
\end{aligned}
$$

Then we unite the anginalintegral as

$$
I(x)=\left[\int_{c_{1}(R)}+\int_{c_{2}(R)}-\int_{c_{3}(R)}\right] e^{i x t^{2}} d t
$$

Along $c_{2}:\left|e^{i x t^{2}}\right|=\left|e^{x\left(-23 \eta+i\left(3^{2}-\eta^{2}\right)\right)}\right|$ s.t. $\eta=R$ (bydeyn $a_{1} C_{2}$)

$$
\begin{aligned}
= & \left|e^{-2 \times \xi R}\right| \text { nth } \zeta \geqslant R \\
\sim & O\left(e^{-2 \times R^{2}}\right) \\
\rightarrow O \text { as } R \rightarrow \infty \Rightarrow & \text { only an exponentially } \\
& \text { small contribution. }
\end{aligned}
$$

Along G: as $R \rightarrow \infty$ with $t=s(1+i) \Rightarrow d t=d s(1+i)$

$$
\begin{aligned}
\int_{c_{1}(\infty)} e^{i x t^{2}} d t & =\int_{0}^{\infty} e^{i \times 3^{2}(1+i)^{2}}(1+i) d 3 \\
& =(1+i) \int_{0}^{\infty} e^{-2 \times s^{2}} d 3 \\
& =\frac{e^{i \pi / 4}}{2} \sqrt{\frac{\pi}{x}}
\end{aligned}
$$

$$
i x 3^{2}(1+i)^{2}=i \times 3^{2}(1+2 i-1)
$$

$$
=-2 \times 3^{2}
$$

\uparrow Gaussian integral, let $u=\sqrt{2 x} 5$

Along C_{3} : as $R \rightarrow \infty$ moth $t=\sqrt{1+\eta^{2}}+$ in $\Rightarrow t^{2}=1+2 \eta \sqrt{1+\eta^{2}}$ i

$$
\begin{aligned}
\int_{c_{3}(\infty)} e^{i x t^{2}} d t & =\int_{0}^{\infty} e^{i x\left[1+2 \eta \sqrt{1+\eta^{2}} i\right]} \frac{d t}{d \eta} d \eta \\
& =\underbrace{e^{i x} \int_{0}^{\infty} e^{x \phi(\eta)} f(\eta) d \eta} \quad \begin{array}{l}
\text { fer } \varphi(\eta)=-2 \eta \sqrt{1+\eta^{2}} \\
\\
f(\eta)=\frac{d t}{d \eta}=i+\frac{\eta}{\sqrt{1+\eta^{2}}}
\end{array}
\end{aligned}
$$

use Laplace's mernod to evaluate the asymptotic approximation (consider the real and imaginary pouts of $f(\eta)$ separately).

BuT, to get to a quicker answer, mete that on $C_{3}(\infty) t=3$ tin
with $\zeta^{2}-\eta^{2}=1 \Rightarrow t^{2}=3^{2}-\eta^{2}+2 i \xi \eta=1+2 i \eta\left(1+\eta^{2}\right)^{\frac{1}{2}} \quad \eta \in[0, \infty)$.
\Rightarrow suggests to re-parametense c_{3} as $t^{2}=1+$ is min $s \in[0, \infty)$
(since $\operatorname{lm}\left(t^{2}\right)$ is monotonic increasing from $0 \rightarrow \infty$)

$$
\int_{c_{3}(\infty)} e^{i x t^{2}} d t=\int_{0}^{\infty} e^{i x-x s} \frac{d t}{d s} d s \quad \begin{array}{ll}
t=(1+i s)^{\frac{1}{2}} \\
& \Rightarrow \frac{d t}{d s}=\frac{1}{2}(1+i s)^{-\frac{1}{2}}
\end{array}
$$

$$
=\frac{1}{2} i e^{i x} \int_{0}^{\infty} e^{-x s} \frac{1}{(1+i s)^{\frac{1}{2}}} d s
$$

apply Watson's lemma

$$
=\frac{1}{2} i e^{i x} \sum_{n=0}^{\infty} \frac{a_{n} \Gamma(n+1)}{x^{n+1}}
$$ to get this, meth

$$
a_{n}=\frac{(-1)^{n} \Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1) \sqrt{\pi}}
$$

combining c_{1}, c_{2}, c_{3} gives

$$
\begin{array}{r}
I(x) \sim \frac{1}{2} e^{i \pi / 4} \sqrt{\frac{\pi}{x}}-\frac{i e^{i x}}{2 \sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \Gamma\left(n+\frac{1}{2}\right)}{x^{n+1}} \begin{array}{l}
\text { (neglecting } \\
\text { exparentially } \\
\text { small temp } \\
\text { tron } \left.c_{2}\right)
\end{array}
\end{array}
$$

Note - Local contributions dominate - so to generate the asymptotic approximations we simply need the tangents to the steepest descent paths eg.

Example $I(x)=\int_{c} e^{s} s^{-x} d s$ as $x \rightarrow \infty$

branch cut fer ln s given by

$$
\{\operatorname{Re}(s)<0,1 \mathrm{~m}(s)=0\}
$$

First-need to ind the saddle pants of the integrand: write $e^{s} s^{-x}=e^{s-x i n s}$
saddle point: $\frac{d}{d s}\left(e^{s-x \ln s}\right)=0$

$$
\Leftrightarrow 1-\frac{x}{s}=0
$$

le $x=5$
Note that the location ct the saddle point depends on the asymptotic
parameter x - not good!
\Rightarrow make a change of varables to fix the saddle point
let $s=t x$ so that when $s=x, t=1$ and the saddle is fixed.
Then.

$$
\begin{aligned}
I(x) & =x \int_{c^{*}} e^{t x-x \log (t x)} \widetilde{d t}=t x-x \log t-x \log x \\
& =x^{1-x} \int_{c^{*}} e^{x \varphi(t)} d t \text { win } \varphi(t)=t-\log t
\end{aligned}
$$

$$
t=3+i \eta \Rightarrow \varphi=3+i \eta-\log r-i \theta
$$

stationary point fer φ : $\varphi^{\prime}(t)=1-\frac{1}{t} \Rightarrow \varphi^{\prime}(t)=0$ fer $t=1$. $(n \theta)=$ poplars fer $(3,4)$
\rightarrow hence, tron the CRES we have a saddle for $u=\operatorname{Re}(\varphi)$ at $t=1$
So, deform c^{*} to go through this part (the saddle $e t=1$)

On this path, $r=\frac{\theta}{\sin \theta}$ for $\theta \in(-\pi, \pi)$

$$
\begin{aligned}
v=0 \quad u=r \cos \theta-\log r & =\theta \cot \theta-\log \left(\frac{\theta}{\sin \theta}\right) \\
& =\theta \cot \theta-\log \theta+\log (\sin \theta):=u(\theta)
\end{aligned}
$$

through the saddle pant e $t=1$

Take the contour integral, parametrised by θ : will be along a deformed C^{*} such that ne go through the saddle pant on the path of steepest descent.

$$
\begin{array}{rlrl}
I(x)=x^{1-x} \int_{-\pi}^{\pi} e^{x u(\theta)} \frac{d t}{d \theta} d \theta & & t=\zeta+i \eta=r e^{i \theta} \\
& & \text { with } r(\theta)=\frac{\theta}{\sin \theta} \\
& \Rightarrow \frac{d t}{d \theta}=\left[r^{\prime}(\theta)+i r(\theta)\right] e^{i \theta} \\
& =x^{1-x} \int_{-\pi}^{\pi} e^{x\{\theta(\theta) \theta-\log \theta+\log (\sin \theta)\}} & \underbrace{\left[r^{\prime}(\theta)+i r(\theta)\right] e^{i \theta} d \theta .}_{f(\theta)}
\end{array}
$$

Le $I(X)$ in the fern of a Laplace integral, with $\varphi(\theta)$ taking its maximum at $\theta=0$ (mich is the saddle pant location).
\Rightarrow use Laplacels method to generate the approximation to the integral fer large x.

$$
\begin{aligned}
& \therefore I(x) \sim \frac{x^{1-x} \sqrt{2 \pi} f(0) e^{x q(0)}}{\sqrt{-\varphi^{\prime \prime}(0)}} \quad \text { as } x \rightarrow \infty \text {. } \\
& r(\theta)=\frac{\theta}{\sin \theta}=\frac{\theta}{\theta-\frac{1}{3!} \theta^{3}+\cdots}=1+\frac{1}{6} \theta^{2}+0\left(\theta^{3}\right) \Rightarrow f(0)=i \\
& \text { only need local } \\
& \text { behanouraround } \\
& \theta=0 \Rightarrow \text { taylor expand. } \\
& \varphi(\theta)=\theta \cot \theta-\log \left(\frac{\theta}{\sin \theta}\right) \\
& =\frac{\theta\left(1-\frac{1}{2!} \theta^{2}+\cdots\right)}{\theta-\frac{1}{3!} \theta^{3}+\cdots}-\log \left(1+\frac{1}{6} \theta^{2}+\cdots\right) \\
& =1-\frac{1}{2} \theta^{2}+o\left(\theta^{3}\right) \Rightarrow \varphi(0)=1 \\
& \varphi^{\prime \prime}(0)=-1 \\
& \therefore I(x) \sim i x^{\frac{1}{2}-x} e^{x} \sqrt{2 \pi} \text { as } x \rightarrow \infty \text {. }
\end{aligned}
$$

NB can use this example to deduce stirlings approximation!

$$
\Gamma(x) \sim \sqrt{2 \pi} x^{x-\frac{1}{2}} e^{-x}
$$

(since we computed $\frac{1}{\Gamma(x)} \ldots$).
3.7 splitting the range of integration
\rightarrow idea: we can split the range of integration and use different approximations in each part.
Example $I=\int_{0}^{\pi / 4} \frac{1}{\varepsilon^{2}+\sin ^{2} \theta} d \theta$ as $\varepsilon \rightarrow 0^{+}$
Regions (1) $\theta=O(\varepsilon) \Rightarrow$ integrand is $O\left(\varepsilon^{-2}\right)$ and contribution to the integral is $O\left(\frac{1}{\varepsilon}\right)$.
(2) $\theta=O(1) \Rightarrow$ integrand is $O(1)$ and Contribution to the integral is $O(1)$.
the $\theta \sim 0$ (1) temmu
(so expect the local conmbution to dominate...) unmbute at ingnercuder..
As before, we spit the region of integration (at δ, with $\varepsilon \ll \delta \ll 1$)

$$
\begin{aligned}
& I=\int_{I_{1} \quad \int_{\quad \theta=\varepsilon u}^{0} \frac{1}{\varepsilon^{2}+\sin ^{2} \theta} d \theta+\underbrace{\int_{\delta}^{\pi / 4} \frac{1}{\varepsilon^{2}+\sin ^{2} \theta}}_{I_{2}} d \theta}^{\underbrace{}_{\varepsilon}} \\
& I_{1}=\int_{0}^{\delta / \varepsilon} \frac{\varepsilon}{\varepsilon^{2}+\sin ^{2}(\varepsilon u)} d u \sim \int_{0}^{\delta / \varepsilon} \frac{\varepsilon}{\varepsilon^{2}+\varepsilon^{2} u^{2}-\frac{1}{3} \varepsilon^{4} u^{4}+\cdots} d u \\
& \Rightarrow \text { sate to Taylor } \\
& \begin{array}{l}
\begin{array}{l}
\text { expand given } \\
u \varepsilon \in(0, \delta) \\
\text { and } \delta \ll 1 .
\end{array}
\end{array} \int_{0}^{\delta / \varepsilon}(\underbrace{\frac{1}{\varepsilon\left(1+u^{2}\right)}}_{\begin{array}{l}
\text { leading } \\
\text { order }
\end{array}}+\underbrace{\frac{\varepsilon u^{4}}{3\left(1+u^{2}\right)^{2}}}_{\frac{u^{4}}{\left(1+u^{2}\right)^{2}}} \sim \text { o(1) over } \\
& \text { range } u \in(0, \delta / \varepsilon) \\
& \Rightarrow O\left(\Sigma \cdot \frac{\delta}{\varepsilon}\right)=O(\delta) \text {. } \\
& =\frac{1}{\Sigma} \tan ^{-1}\left(\frac{\delta}{\varepsilon}\right)+O(\delta) \\
& =\frac{1}{\Sigma}\left[\frac{\pi}{2}-\frac{\varepsilon}{\delta}+O\left(\frac{\varepsilon^{3}}{\delta^{3}}\right)\right]+O(\delta) \\
& =\frac{\pi}{2 \varepsilon}-\frac{1}{\delta}+0\left(\frac{\varepsilon^{3}}{\delta^{3}}\right)+0(\delta)
\end{aligned}
$$

Fer I_{2} :

$$
I_{2}=\int_{0}^{\pi / 4} \frac{1}{\varepsilon^{2}+\sin ^{2} \theta} d \theta \sim \int_{0}^{\pi / 4}\left(\frac{1}{\sin ^{2} \theta}-\frac{\varepsilon^{2}}{\sin ^{4} \theta}+\cdots\right) d \theta
$$

here $\sin ^{2} \theta$
dominate ε^{2}
Since $\sin \theta \sim \delta$
and so
$\sin ^{2} \theta \sim \delta^{2}>\varepsilon^{2}$

dominant contribution to the integral mill be rom abound $\theta=\delta$, where $\sin ^{4} \theta \sim \delta^{4}$. Then $\frac{\varepsilon^{2}}{\sin ^{4} \theta} \sim \frac{\varepsilon^{2}}{\delta^{4}}$ which mill integrate to $O\left(\varepsilon^{2} / \delta^{3}\right)$
more formally,

$$
\frac{1}{\varepsilon^{2}+\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}\left(\frac{1}{1+\frac{\Sigma^{2}}{\sin ^{2} \theta}}\right)=\frac{1}{\sin 2 \theta}\left(1-\frac{\varepsilon^{2}}{\sin ^{2} \theta}+\cdots\right)
$$

so then

$$
\begin{aligned}
I_{2}(x) & =[-\cot \theta]_{\delta}^{\pi / 4}+O\left(\frac{\varepsilon^{2}}{\delta^{3}}\right) \\
& =-1+\frac{1}{\delta}+0(\delta)+O\left(\frac{\varepsilon^{2}}{\delta^{3}}\right)
\end{aligned}
$$

mot the requirement then that $\frac{\varepsilon^{2}}{\delta^{3}} \ll 1$ ie

$$
\varepsilon^{2 / 3} \ll \delta \ll 1
$$

\therefore Putting it all back together:
$I(x) \sim \frac{\pi}{2 \varepsilon}-1+o(1)$

$$
\mu
$$

comestrom I_{1},
where we predicted a
contribution of O ($\frac{1}{\varepsilon}$)

Note that the $\pm \frac{1}{\delta}$ terms cancel this needs to happen in order that the result does nit depend ar the specific drokect o used to partition the integral!

