
⑦

ZAoymptotieapproximations-2.llonvefg.CI
series I tnlz ) is said toaMYeat*t 17 , given arbitrary E>0 .

n=o
N

wecan find No It, E) Sit . / Im fn It) I < E t M IN > No

series [ fnG) is said to converge to a function f-4) at a fixedvalue
h=0

It
,

if given arbitrary E>o,wecanhndNolZ,E)
N

I [ fnl≥ ) - fH) / < E t N > No .

h=0

i. series converges 17 terms decay shanty rapidly as n →
•

.

NB Not always all thatuseful , in
'

the sense thatwe can have

series that don't converge but nonetheless provide very good

approximations !

Example ert.tl = IT [edt 4- c- e)
-

analytic in entre complexplane
↑

⇒ has Taylor series expansion with ⇒ e-
"
= É◦ tᵗn

Infinite radius d- convergence
(converges ft )

so , integrate termby term Ican swap E , s ) to give

earth = ¥ I ""ᵗ = E- f- - I + E. -¥5 + ¥5 ,É+ . _ )
n=o 12nA ) n !

For an accuracy of 10-5 : 2- = 2 - 16 terms

2- = 3 - 31 terms

2- = 5
- 75 terms ! !

Aso ,
Intermediate terms get very large lots d- cancellation d- the /-ve )
⇒ issues with round off

terms

from a computational perspective .



④
Problem : truncated sums are very different from the converged UMA

he
-

approximation doesn't get better with more terms ,
unless youhave alot !)

Alternative approach : write erfG) = I -É [ e-"dt
↳ It's going to give a divergent
series

,
buttheapproximation

will be mu£ better !
☆

Integrate by parts : [ e-Edt ⇐ / ¥ . 2±Édt = [- [ e-
*

2-
It
dt

2- 2-
I dvldt

⇒ du/dt = -2¥ = - e-
+2

writhing the integration by parts :

erflz ) = I - e-
" radius d- convergence

⇒ / 'II+1¥,≥- .
+ . . . )

←
"tensest≥ : has

equal to ten .

Truncated series very useful
: for 2-= 2.5 then three terms ⇒

accuracy of 10-5 .

At 2- =3 we only need two terms (recall 31 for
the other

why does it work? ① The leading term is
almost correct series ! ! )

② Adding subsequent terms gets Us
closer 1becausethe terms are d-

decreasing site ,
at least initially . . . )

↑
and the early ones

are usually enough .

This is an asymptomatic .(that is not convergent) .

22AsympMicness_
For a sequence : Efn (E) } new◦ is said

to beLIE it ,
t n≥ I

,

tᵈ → 0 as E→o
.

hi ratio of successive terms→ 0 as o)
.

fn- itE)

nÉtnk ) is said to be anaqzrolorasym.pl#exEd-)a function ft ) as to it , TN≥ 0,

fK¥%=;f → o as ◦

a
' remainder smaller

thanthe last term

Included once E

shlt.ioentry small .



④
we usually write f- ~ I fn (e) as 0

.

land don't generally
n=o

worry about getting more
than the first few terms . .

. )

Often f- ~ £ an E" a. the tuk) are powers of E ✗ coefficient .

n=o

mpMicponersenes_

230rdernota.it
Big O

'

-

f-= 0 (g) if 7 K> 0 , so> 0 Sit. If I
< Klg I t s < %

.

stronger statement :
'hHeO'_ f-= o (g) as 2-30 ⇒ ±g → 0 as 0

. / to> 0,7s. s.t. )If I ≤ 81g I t s< Eo .

Hence ① fn IE) is an asymptotic sequence if tn
- o Hn- i )

② f-~ I fn 17 f- [ fn = 0 lfn ) FN≥ 0 .

F-0 n=o

c f- (E) = Ord ( g KI ) as so if 7 KE1R 1EO] Sit. fg¥,→ K as
E→ So

NB f- (E) = 01g tell ⇒/ f-(E) = ordlg (E) )

1but common to write 0 Instead d-ord whenA's clear what
themeaning

IS from the context . Eg .

"
✗= old ✗ with dlE) → 0

,
✗ = and 4) as {→ o

"
.

Examples

sin✗ = 01×1 as ✗→ 0 ,
sinx = 04) as ✗→• ,

8h✗ = 04) as ✗→ 0

log ✗ = 01×1 as ✗→ a , log ✗ = oh, as ✗→a , log ✗ = 01×-0) as ✗→ 0

for any or> 0 .2.4Iessandmarupnlati-asympn.sn
If a function has an asymptotic approximation in terms d-an

asymptotic sequence , then that approximation is unique to that

particular sequence .



④
Ifwe have f- ~ I am on (e) the given {dn (E)} new◦ , then

N=0

a,
= um f-(E) - É⇒Andn (E) (evaluate inductively )
E-so -

DK1E)
NB UM9hess - for agiven sequence .

But
, a sequence may have many

asymptotic approximations , each in terms d- a deferent sequence .

Eg . tank I ~ [+ § + 7¥ + . .

~ an [+ ± Istria 13+§ Giri [ I
'
t . .

~ [ wshHI e) + 23¥ Is wsn /JI 4)4 . . .

NB uniqueness - also for a given function : two functions can share the
same asymptotic approximation because they defer by an amount
smaller than the last term Included .

Eg .

e.
E
~ [ In°⇒ a- as E-so

I:::÷÷the same asymptotic

e
'

+ e-
±
~ E÷n as ◦

+
alter by a function
which is not analytic .

↑
because two analytic
functions withthesame

power series are identical .

M3 nseympcnic approximations can be naively added , subtracted , multiplied
or divided .

NB we can substitute are asymptotic series into another .

↳ we need to take care when doing this with exponentials though !

eg . f-12-1 = e
2-2
and 2-(E) = I +E

⇒ f- (2-(E) I = e
⇐ + ≤"

= e.
±
e2 e
"
= e
±
e
'

( it E2+ It + . .
. )

Foi
But

,
if we only take the leading term in z

le
.

let 2-≈£ then we Miss the fader e
'



④
To avoid this issue : need to calculate exponents to 04) , not just leading order .
I Shi

, cos are exponentials here too . .
I

NB we call Integrate asyrupchic expansions term by term art . E ⇒

correct asymptotic expansion of the integral .
often higherBut we can't 4hgeneral ) differentiate with safety . order terms
that wef. Ieg . f- (E) = Ews IE ) = O1E ) as E→ 0
neglected
become

f-
'
let = WS IE ) + I 8h

'

II ) = 0 /E) as {→ 0 .

Important .

Butwhenwe deferential theasymptotic expansion :

& [ 211 +I + . .
. I ] = 1 Instead of 01£ 1 ! *

2.JNumen.ca/Useq-dnergentseries-
- usually the first few terms in a sequence are enough Her adesired
↳ and if we need better accuracy we just add accuracy ) .

more terms
.

→ this is problematic if the series is divergent !

Clearly , we should stop whenthe terms start

getting larger- knownas the optimal

tnncation.2.bparametricexpansiav.tn
are generally , we will want to consider eg ft✗ i E) he

'

functions

that depend also an ✗ .

↳ eg have a deferential equation in xn which depends on small

parameter E (hence parametric expansion .
.

)
.

we usually write the asymptotic expansion as

f-I✗ i E) ~ [ an4) on (E) as E.→on
=o

- N

coefficients
⇔ II, f-kid-⇐animals]→ 0

dependon✗ as E→o
.
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3Aoymptohcappwximahond-iwegrals-R.mg
e 9- deferent approaches to approximate integrals with either

very large or very small parameters .

3.lk/egraHonbyparts- Ihave already seenthis tower1-12-11

Example If f-(E) is differentiable near 2=0 then we can Andy
local behaviour d- f-(E) near E- 0 Using 113ps

.

f- let = f-to )+ [ f- ' 1×1 DX
↑ assuming f-

'

dilteentiabhe near ✗=o .

I
IBP : let ¥, = 1 and V = IX- E)

,
U = 1- ' 1×1 ⇒ ¥ = f- " (x )

Then

f- I [ I = f- 107 + [4-E) f- ' let] } + [ IE-× ) f-"4)DX

repeat
! Tt

N - I N

times
. . .

=

£ E"f + ↓, /? IE-✗ 1^1-1
"" Ix )d✗

-

remainder
,
RN

If RN exists tN and shltiutht.ly small s>0 then

f- IE ) ~ [ Enf"n as e→o If the series converges
n=o then it's just the

Taylor expansion d-

f- about to .

Example I 1×1--1 ; e- "dt ← want an expansion
as ✗→ oo

.
There's noTaylor
series to help ! )write

-1-1×1=1 ; e-
"
at = ) ; -4¥ . 1-14-31 e-

"
dt

IT
a-
⇒ ✓ = e-

++

1- = It
-4



230
then 1=1×1 = f¥÷ ] ; - If :# e-"

'

at

= e-
✗4

-4×3
- ¥ [ t4→dt

this term is much smaller than

LIT the original integrand / e-
ᵗ+)

the first term is the leading orderasymptotic approximation because

g-= [ ¥ e-
"
dt < ¥ / e- +

"

dt = 1×-41-7×1 ← Ilx) as ✗→ •

Intact
,

= It - ✗ Ilttx ) 1×2++21 - let u=t-✗ Inthe integral
J< * e-✗ +[ e- It"- ✗4) dt
= # [
" [""""" """"""• /

"
"

F- 0 / e-
✗ 4

< * e-✗
"

[ e- "
"

du Tt )
< * e-✗

"- [ e-"2 die and 1=1×1 ~ e-
✗ +

-4×3
as ✗→o.

→
I canget more terms

Example /sometimes 113ps fails ! ) by repeated integration . . . )

I1×1 = /
✗

t
- ± e-tdt u=t-± ⇒ It = -It- ± , drat= e-+ ⇒ ✓= -e

-t

0

Taking a name approach gives

+⇒ e-tdtIIX ) = FEE e-+] ? - I [
-

⇒ end upwith
'

o -o
'

not integrable
But

,
it's pretty simple to fix ! let

1=1×1 = [ t-± e-+ dt - /It -± e-tdt
-

can evaluate by
_

can Iutegrate ← because contributions
letting u=t±

, answer by parts from endpoints vanishes .

is T1E I = IF



④
I1×1 = JI - f; t-± e- tdt
-

rewrite as + [t-±£ (e- t ) dt 1-
= e-
t
u=t

-±

✓ = - e
- t du

a-
= It

-I

= J1F - e-
×

☒
+ ± [ t

-≥Éᵗdt~ Parco d- the integrand is reduced , so

we anticipate that e-
✗HI is the

←
-

leadingterm and this termgives
the correction< ¥ [ e- ᵗdt = É "
←

union is indeed the case
.

Geheralmle_ Integration by parts will not work if the contribution from
one d- the limits of Integration is much larger thanthe
size d- the integral

.

/For the example above , 1-7×1 is finite t ✗ > 0
,
but hi the Integral ,

the endpoint t=o has a singularity - and it's made worse
by differentiating ! I

.

E×amphe4_ (Another exampled- a failure) .

1-7×1 = [ e-✗+2 dt = ± III Imo)
.

Icompute the integral
directly using u⇒It)

IBPS :
I1×1 = [ I-2¥ ) fzxte-×" ) dt u= -2¥ ⇒ ᵈᵈdt= ¥+2

It = -2✗te
-✗+2

⇒ ✓ = e-
✗t2

= [ ¥ [¥+2e-
✗"
at

→ bothof these are problematic ,
and there's no simplefix !

NB1B Ps will also not work when the dominant contribution to the

integral comes from an interior point rather than an end point.

Summary - IB Ps is simple , and gives an explicit errortermthat
can be bounded

. BUT
, limited applicability .



④

3.2laplacelsmethodfeneraltechmqueterlwtegralsg.me term 1--1×1=1/ fate ✗"t 'dt
1-141,91+1 - real , continuous functions , and as ✗→ •

.

[aib] generally an interval on the realtime .)

to

e-
✗t n as ✗→so , IntegrandEtah IW= f.¥,

dt as ✗→ •

Yomavery small region

split the range ofmigration :
around ✗⇒ .

' °

e-
✗t

-17×1 = 1 ! e-
✗ ᵗ ✗

⇒
d- + /

,

ᵈt

I ÷
we want to choose Iz< /[ e-✗ tdtEst. the dominant

UMMbutton comes

from II.⇒ choose
= e-

✗E- e-
'◦ ×

E small but {⇒ f- ~

Hence Izis
lie f- << [ ⇐ I . _

✗≤→ I
asymptotically

Then ⇒ negligible small compared
E e-

✗t to I,
IIIXI =/

◦
⇒

dt

1 let 5- xt ⇒ dt
- Ids

=)?, • Ids
= f- /{ e-

ˢ

/É
.

I:-)
"

)ds
)
shops ,

[ since inside

=

f- [ [ f.
"

sne
-

sds]t¥
'

ʳhᵈ'"d- convergence d- [ .

n=o

-

= [ she- sds - I :S " e-sds

= n ! -kn

-

=kn
, anticipate small

↑ by iteration for seeing that it'sattraction
! )

Looking at kn : Kn= /[ she - sds = /✗E) " e-
"

+n /{ sn- 'e-Sds ( IBPS)

g-_exponentially small
= n ! /

×,
C-sds + exponentially small terms

alsoexp. small !
✗Et exp .

Small terms .

i. Kn always exponentially small compared to the rest d- the terms .



Putting it all back together ④

IK1 ~ It 1×1 = £
.

1-111-1 as ✗→ a

3.3watsonlstomma-loenerallyvevyuse.nu , can be used to justify Laplace's

method)
consider

It×) = µ f-(f) e-
✗+
dt lb> o)

.

Suppose that ① f-It is continuous on [0
,
b]

② has the asymptotic expansion 1- It) ~ t✗ [ ant $" as to
n=o

where ✗ > -1 and 13 > 0
, so the integral converges at 1-= 0 .

INB.tt b = * then we also need f- (f) << eat as t→ • ten
some c> 0 so that the integral converges at too. )

Watson 's lemma states that

PIMI = [ tm- 'e - tdt
Ilx) ~ I antfff-pfn-f.tl as ✗→a .

n=o = (m- 1) !

for MEIN.

Derivation - essentially the same as in
'

the example , so long as the

asymptotic series is uniformly convergent in
'

a neighbourhood. d- to
ktten the case)

. If not - can't exchange S
,
[ so we work with a finite

number d- terms , N ,
and show that , for any N,

N

I'M =

£ antff-p.nl?.nt''-t0/xa+p-n+i ) as ✗→•

tsitttsymphticexpansraiotgenerallaplaceintegrals-
IIXI = /

a

f- It / e
✗ 9"' dt ← dominant contribution from region

where cflt) is the largest .

Three cases : ① Max . @ E- a

② MAX
. @ t = b

③ Max
. @ t-cmthacccbheinleno.ir point ) .

In each case we argue : 4) dominant contribution from around Max . d-0-

so reduce domain
.

d- integration to this region :

1111 expand f , 9 inTaylor series aboutMax here .

Make integral {
1111) resealing the integration variable means we

as simple as can replace integration limits by • and

possible .
Introduce only exp .

small errors
.



④

caseio-max.et-e.at
1×1--1!

"

f-It) @
✗ 4)
dt + /

"

f-(f) exalt)dt
Max - d-OUT@ t= a

⇒ assume of
' (a) <0

,

andalso that
÷ If flat -1-0 ,

" (a) 1=0
.

new E as a small

parameter - yet suit .

large that dominant
contribution to the

Integral from II.

Need to work out how big E must be Marder fer II , I >> 11--21.2
hmsider

e.
✗of late I

← @
✗Ola) ← we want this to

- - hold !

/ largest value of EX9H
sizeof ex It )

at the
'

start
'

d- Iz

Taylor expand to write opiate )
= 91a) + E9

' (a) + . . .

⇒ e.
✗EQ

' (a)
⇒ ✗≤ << I lie |0<t←E

T
← I -

g
' (a)< 0

consider the first integral :

IRN = / of
"

fettle
× "'
dt

f. expand f , as asymptotic series about ✗=a

= /off (a)+ It- a)f' (a)+ .
.] exp {✗ [of (a)

+ It-a) 9
' (a) 1- Elt-a)24

" (a) t . .]}dt
-

wewant to

Taylor expand← this term

@
Exit -at

" (a)
= It ✗lt¥ " (a)+ . .

.

↳
Taylor expansion requires ✗ it-all← I -but

tis atmost ate ⇒ require ✗It-a)
2
< ✗E2 <at

All together I Hence second constraint on E : |E←_
:

. I;=←E←
1-



⑧
Therefore

I
, 1×1 = e

✗%) /
""

[f- (a) + It-a) f-
'(a) + . .] e

""" "" [ It ✗ "
q
" (a) f) dt

a

be able

Let ✗ it-a) = S ⇒ dt= f- ds to conclude that this

term is asymptotically
then small . . .

Iilxl = e× /{ [Halt 01;-)] e""" [It 01¥ / Ids
← from higherorder terms

= e×% [ f.
"

e
"""

as ] [+ ◦ IE1]
-

Here we can now replace {✗ with •

because only exponentiallysmall
terms are being neglected .

1; e "
""
ds = -¥

:H×n-t%e;:
1-

Case②:Md✗.@t=b- [ of
' (b) > 0 , f-(b) 1--0 , Q

" (b) 1--0 ]

↳ very similar argument showsfIlxlntlbfeqf_fT.case30-max@t-Gaccab-qic-o.cf
m%÷ , y

' " (c) 1--0,1-0=10

spent the integral up : ee

GE b

IIXI = /
a

"

fit)e
"'t' dt + f.

→
f.It)e×

"'
at + |⇔fltIe× "'dt
I ÷I

↑ want to find
conditions are

such thatI2

dominates .



④
For Iz to bedominant , we want @

✗ "+ E)
<< e

✗∅" so that Isis small .

Taylor expand : 9kt E) = 4k) + Eq
' (c) + EE29 " (c) + . . .

To_
hence for e.

✗acts )
<< exotic

)

we need e
✗" " (c) 12

← I

⇔ ✗[ < << 1 (NB9
" (c)< 0

since c

isamax . )

A similar argument then shows that I , also small for ✗EK1 .

ie E>>¥
Then , consider -1-2 . Taylor expand :

-

01+1-91c) + It-c)¥1T Elt
- c)2g

"

(c) + £ It- c)
3 "' (c) +. . .

f- Its ~ f-4) + It- c) f-
'

(c) + .
. .

And substitute Into Iz :

Iz = /
"E

← ,

[f- (c) to It - c)]e×
"'
e
" 't- c)29

"""
[ + 0 /✗lt¥ @" (c) )] dt
-

here we have Taylor expanded

ftnsummaoy.me/lt-cYQ'"(c) 16 .

To ensureneed

¥ << { ← ¥ / ⇐
higherorder terms are

small

-
mama,y need ✗ quite ,arge { we need ✗ µ- e,

>
← ,

to get a clear separation d-scales .

Ie
.

✗E3← I

eg . ✗= 8 ⇒ ⇐ ← < < ±
whichgives a second

constraint
he

'

✗ needs to bemuch larger
to get an accurate expansion for
Integrals d- this term .

Now we rescue the integration variable to make the integral as simpleas

possible : let JI It - c) =s ⇒ dt=¥ds

1=21×1 = fk° /
""

e
" " ""

2/1+0 /¥ ) ) /1+01%3=1 )ds
-

JIE
-

-

will generate a
since # << {← ¥ correction that

is 01¥ / sincewe have [✗ ± >> I so

we can approximate /[ se
-"
ds v04)

as I] with only
exponentially small
corrections.



④
Putting everything together : ←

a-= -s%

Iilxl ~ f%f I;- / [ e-"du / ' to /¥ ) )

⇒ I1×1 ~ 2Tfg ,
3.5melnodd-stati-arypha.ee
-used ten cases where 91+1 = it4) Where ✗4) real

ie
. -1-1×1 = fba fit) ei✗+ lttdt

-

exponent is purely imaginary
⇒ behaves very devoutly
from the previous integrals

3.5.IRiemann-kbesghelemmal-7-fablfltlldt-wahdy.lt) Holy deterrent
-

able for a≤t≤b and

not constant on any sub interval in
'

a ≤ t≤b then /If 4) ei✗+"'d-→ 0
as ✗→• .

-NB useful when Integrating by parts

Examine

1=1×1--1 ! at = [×÷+e"
"] ! - ÷ / I at

u=¥t ⇒ ᵈᵈat = ¥+12 , ᵈˢdt = ei×ᵗ ⇒ ✓= ¥ eixt

=
- i; + I - I !'I→ᵈt_

→ o as ✗→ * by RLL

It this term is 01£ )

(subdominant and so

first term is the start

d-an asymptotic exp .
)

.



①
Why is the RLL true?

First - think about eg 4 It =t so that I1×1 = lab f-It ei×ᵗ dt
-

oscillates more and

more rapidly as ✗→•

everything justµ fit)
' cancels out ' →

- \
looks

locally that

what about more general functions : Taylor expand near t= to :

411-1 = 4401 + It - toIt
'

It
.
I + ± It- to 124" Lt◦ It . . .

Then
@
i✗41+1

= @
i✗4 It◦ I

e.
i ✗ 4

' 1to ) It- toIt . . .

Font-
oscillating component

: Period d- Oscillation close to f- to is ≈ ✗¥TÉ, i provided +
'

Hot -1-0 .

→ 0 as ✗→a -11-

ie increasingly fast oscillations which cancel each other out as ✗→• .

Iregardless of the tʰ 1-11-11 .

NB only exception is 17 y ' Lto) is very small- then , unless ✗ is very large ,
the period of oscillation will be large and cancellation won't work .

117 Y
'

Hot = 0 then cancellations won't occur ⇒ dominant

contributions to the Integral when 14 ' Hot 1--0 )
↳ this is how we will generate asymptotic
approximations to Integrals d-this term !

PT0
.



④
Suppose that +

' (c) = 0 with a <cab and 411+1+-0 for a ≤tee and

cat≤b. Also , assume f- (c)≠ 0 and 4
" G) word 4) In

'

a neighbourhoodd- c.

As before , to make progress . wespit the range d- Integration up :

c-E b

IIXI = /
a

fltle.int"'dt+
c-,

f-It / e'
✗""
dtt / fit / EK4H-1DT

- -HEI
,

I2
I}

↑
Expect Iz to dominate
as ✗→ater sufficiently
well chosen 2<4

First-consider I2 (we will see the constraints on [ needed the I2to dominate . . )

Expand + and f- about t=c :

f- It In f- (c) + It- c) f-
' (c)+ . .

41+1-410 + It-¥ + ± It- c)24
" (c) + It-c)

'

y'
" (c)+ . . .

L

Then

1=21×1 = /
"

[f- (c) + It - c) f' (c)+ . .] @
'✗ {+ (c) + ±"-c)24

"

(c) +41+434 ' " (c) + . . }
- .

c- E
- 014-c)3)
he
'

flat Ott- c)

= ei×4cc) /
HE

← ,

[flat Ott- c) ] e'
✗ """+

" ""
[1+0 ( it - c)3×1 ] dt
-

Taylor series expansion ,
ValidTf ⑤✗ << I

let s⇒I It-c) ie { <<¥
= e /

""

[f- (c)+01¥ ) ] ei
"""" "

[1+01%-1] ds
- s.SI

-

Want also to

Ñᵈᵈʰ9
f Subheading

replace the limits
live.mil consider the

corrections later -but
by ± a - requires both subheading . . . )
EII ⇒ 1 to <←¥

Together we have ¥ ← E ¥; (again ,
need ✗ quite

large to get clear sep.at
scales)



330Then 1=21×1 ~ ei×t [ e. is24
" (c)
12dg

.

-

use contour integration
suppose 4

"

(c) > 0 (the case +" (c) <o is very similar . . .
)

IMISI ^
✗ Closed

contourt.ie#he.,-ana-aiae.radNsR
By Cauchy ,

0 = Jay @
is24" (c)kds = / /

→

+ /
×

+ / g) e. is
≥ +

"" 12
dg

we want Hanada hi the as R→a

limit R→o
. . . ) ( byJordan's lemma

> ie ↳ = - I
,

= /
Then

,
a

✗

/↑ eis2Y
" (c) 12dg = f. e-P24

" (c) 12
@
it

4dg

ÉeitHp
= e.it/4.fyI-T lance leftwith a Gaussian

tutegral to evaluate )

If we have ✗" (c) so ,
Use an angle d- -1174 Which gives the

general result :

[ e. is24
"" /ads = ei

">4. 89" "
"
""

. j,¥÷T
UNB sincewe assumed 4 ~ Ordu ) near C ,

we don't need to consider +
"

(c)= 0
.
)

i. I21XI ~ ei×+g¥f . 1,24%7 @
IM4 sign 14

" cut
so the

⑦
#~⑦ / magnituded-

the corrections

we now need to consider factored outin from evaluating
needto be

considered

4) The size of It , I}
calculations the Integral minyan.ae

to this term !
(2) The sited- the neglected terms In the integral I2



④
First consider the contribution fromIt :

c-E

¥1-71×1 = /
•

"

fate
"""
dt = /

a i×µµ, £ Lei
✗+*' ) dt
-

T dat

1-173131 = [i¥+ , . ei×tlH]
"

a- ± /[e"
""'

d-dt.FI?-+, / dt
-

→ 0 as ✗→• by RLL

~ 0 /✗µÉ ) hence the tennis ◦ (E) .

Tonnant term since y ' (c) = 0 ⇒ 4
' (c- E) relatively small .

(more concretely , Y ' (c- E) = Y
'

(c) - Ey
" (c) +. _

_ )
I %)

~ 01¥ )
~ 0 / {¥ . ¥ ) then HI ⇒ I ⇒ this term gives

-

a

genuinely small

correction

The method ten Is proceeds in exactly the same way . . .

Next consider the correction from the change Ct limits
- we have added terms d- the term

is < 4
" " /2

dsf
,

@
is24

" (c)12
dg = /

°

g-
isy -

is4"÷
U

a

= [j⇒,
e
IS24" (c) 12]

•

EÉ is , e
is≥ 4

" (c)

12dg
-

~ 0 /¥, / this is a smaller

correction due to the

↑ this is then ¥ compared to f- hi
small compared the original integral ,
to the angina and EJI >> 1

.

Integral ⑦



Finally, consider the connection frommaking theTaylor series expansions
o

From the Tayler serves expansion off, he have for nx) terms ofthe term

is to eistic ds = TH KYS)"n out a smallrelative

r to

using test sneisicukds = 0/1xx)"by
IBPs n-1 times

Ier Induction).

and also, from the taylor series expansion of the exponential
#Lis lv eishuckre dS =xik/S)3V- Lxl"-stixe

Since (x) this termis

also small, relative to

the O term it is

compared against.

Hence, in summary,

Nr*exyleeitly
signicl

+ Olisis as X-8

NB- The errors are only algebraically small, not exponentially
small, as In Laplace's method.
- higher order corrections very difficult to get since they come
from the whole range of integration (again - Incontrast to
laplace's method where the fullasymptotic expansion
depends only on the local region since the errors are
vaically small...).



⑧

3.bmethodd-sheepestdescent.tl
✗ I = [ fltle × "' dt t- complex variable

✗c- IR - interested in
.

the expansion

f-HI , ofHl - complex and
as ✗→ a

holomorphic ⇒ analytic .
c- contour in

'

the complex plane .

NB Laplace 's method and the method d- stationary phase arefist
special cases of the most .

Caution wemight expect Ibasedon what wehave seenter Laplace 's
method ) that the important contribution as ✗→ a comes from
places where Rely) is Max .

- this would give In 1-Hole × "" J¥↳j
This is a# overestimate because it ignores all the cancellation
from oscillations due to IM4) .

We can
, intact , see that the

estimate is wrong by deforming c-won't change the value d- I,
but it will Unigeneral ) change Max Rely ) .

KEYlDtA_ 1-7×1 will be unchanged by deforming Cto a new
contour ↑ with the same start and end points

a

+

f
- this is because to are analytic and ⇐ IR

,
so there

are no poles or residues in
'

cu - T
.

we are thee to choose P to make the integral as simple to compute
as possible . We will find a contour Pan which Im 19411 is
piecewise constant to find %.

. Vj Sit . ↑= Y %. and

IM19 1TI I = Vj on Pj . Then

It✗ I = I @
i✗✓i f f(f) e. ✗ the (91+1)dt

j Tj
-

cannow evaluate using
Laplace 's method



⑤SO
,
we need to understand how to deform c→ ↑

.

Let 91+1 = uts.nl t iv 13,41 with +=3+ in .

Since 941 is holomorphic , the Cauchy Riemann equations hold .

⇒ Us = Vy and Uy = - V3

As such : ① On .TV = Us V} + Uyvy = 0 ⇒ On YOU lperpendicwlar)
/ heknow
that ) ② ☐ ✓ ↑ to contours 9- constant v

⇒ contours d- constant v4 On

③ On points wi the direction where u increases at
the fastest rate

.

④ -On pants wi the direction where u decreases atthe
fastest rate .

Hence
, contours with F- constant give a path d- steepest

ascent ldescehtd-t
-

Let's consider the landscape d- hts ,n) :
by the CRES we have us} + Um = Ivy ) } + 1-V3 /y = 0 withharmonic

.

Hence
, by the maximum principle

,
u cannot have a maximum

or minimum wi the interior d- the domain
.

⑨B exception is it we consider a point where u is singular , or a]
' """ be

somesuch

branchpaint
, where q is not holomorphic .

cases in
'

the

examples .

i. Ata stationary paint : ↳ = 0, Uy=0 , and wehave a saddle .

lie the general structure d- the landscaped- u is hills and

valleys at Ihhhrty with saddle paints in
'

the interior

d- the complex phone .



⑱
#ample 91t=12= ((tiy(=-234+ i13242) H+stin)

d =AmLt)
v=p v= 32y2

⑧

Uco - valley
egv=1moutfalls

is

sananocoponnesoneaUco-valley Uso-well

/ contenes
descent.

of-rev
these are paths of

egv=- 1

steepest descent
for us, with v= constant.

We want to consider a contour (whichjoins two valleys of U.

Then he want to determs to a new contourt

that has the same start and endpaints

(in each valley).
↳ In the valleys with a negative then
*heiniananarmamenexRe(4) = eXU.

We want to find paths on which V= Fm1g) is constant eg. V= 0

xRe14Lt1)Then, 1x1 = 1 ftex94at =I fitte meat
S ↑ sincecn ↑ we

-ReCelt1)=whas valleys
have VI constant

ateither endof 4 = To thesketched
example, v= 0

contributions fromthe here
⑧

end paints will be

exponentially small.

:Main contribution to the Integral - from 4= ReCy (HI) atCaround
the saddle paint can evaluate using laprace's method.



390
Method d- steepest descent is
① Deform the contour to unuvi d- steepest descent (Kunstunt )
contours through the end pants and any relevant saddle paints .

② Evaluate local contribution from saddle pant , and the
local contribution from the end pants , using Laplace 's method .

NB-could have deformed to Ms
.
t

. Rely ) = constantandapplied
themethod d- stationary phase - but we have seen that
Laplace 's method is far superior (can generate all terms in

'

the asymptotic series
,
and neglected Hans ' are exp . small .

IActually , ten a stationary phase integral , the best approach
is to transformto the steepest descent contour . . . )

Example
- It✗ I = / I e✗•"'dt as ✗→• with QLH = 172

and b-=3+ in .

.

.

.

As in
.

the previous example , join c, and↳ using cz

with y = R so that as 7
of= -23 y + i 132-421 gets larger, cz heads to

T=ReÑ=tm4)

_
aromas and generate,
a sub-leading term .

7 ^
want to deformour original
contour to one where

descent IM14 ) = 32-42 = Constant
contour

^
↳← deepestdescent÷:÷K÷through contour through

tho)

GLRI = { 3 llti )
: 3c- [0 , R] }

↳ CR1 = { 3ti R : 3 c- [R , JR47 ] }

↳ CR1 = { JHYT+ in : y c- Co , R] }



Then we write the original integral as
⑱

1x1= [Jaust Sami - Sci] extat
HongCz: leixt = 12 x 1234 + 1132411/ / 3.t.7=R (bydef

on 22

= le-2x341 mth 33 R

~Ole-2XRY)

->Oas R8 => only an experentially
small contribution.

Along 9: asRtmth = 311ti1 df = d3 (Iti)

/ CN) eixtdt=/eixil"(Hild]
&>
ix32(i=ix3"11+2in1)

= (Iti) /0e-2x3"dy
-- 2x34

↑ Gaussian integral,

- let n= 53

Along G: asR-0 mth += ITT + in + +== H+ 2y/Tp2 i

I eixth at =/exCICyST:]atd3 (N)

= exex9Ms f() do fer 91y1=-2y6TFrz

--
flyl=d= itE

use replace's method
to evaluate the asymptova
approximation (consider
the real and imaginary
parts of fly) separately).



④BUT
,
to get to a quicker answer, note that on ↳ too ) E- Stig

with 32-12=1 ⇒ +2 = 32-12+2 igy = It Ziy 11+421 ± he Cola) .

⇒ suggests to a-parameterse ↳ as 1-2=1+ is with stain )

lance 1m44 is monotonic increasing from 0 → a)

/
gun ,ei×ᵗ2dt = [ ei×- ✗s ddtds t- l Itis) ±

Is = Elitist
-±

= tziei × /
•

e-
✗s

,,¥, ± ds◦

1
apply Watson's lemma
to getthis, with

= ±iei× [ an¥
n=.

an"

bombing 4 , Cz , ↳ gives

1-7×1 ~ { e.
"""JIT - i÷¥Él+E ' Ineglecting

exponentially
small terms

from C2 )

Note - local contributions dominate - so to generate the asymptotic
approximations we simply need the tangents to the steepest
descent paths n

n (
wntnbntiou from G

- hmmbuttonfrom C]

e. I
.



④Examine It✗ I = fees s -✗ ds as ✗→•
First- need to find the saddle pants d-

°- ,

the integrand : write ess - ✗ = es
-✗ 1ns

/ saddle paint : % les- ✗1ns ) = 0
branchcutter 1ns givenby ⇔ I - f- = 0
{ Reels) < 0

, 1m61-0 }
6- ✗=s

Note that the location 9- the saddle paint depends on the asymptotic
parameter ✗ - not good !
⇒ make a change g- variables to fix the saddle paint
let s=t✗ SO that when s- ✗

,
E- 1 and the saddle is fixed .

then '

II✗ I = ✗ f
,

et✗- ✗ log It✗ I
= tx-✗vogt -✗ log ✗

= ✗
'- ✗ f e

✗ 941dt with ofltl = t- logt
c*

1-=3+ iy ⇒ of = ]+iy
- tog r - i 0

¥=poIarsstationary pointer of : 94-11--1- ¥ ⇒ 9
' 1+1--0 tent=L . tents , y )

↳ hence , from the CRES we have a saddle for u= Rely) at 1-=L .

so
, deform c- to go through this paint the saddle @E- 1)

u= Rely I = FwÉ - tog r
✓ = In (g) = ☒no

.

- • /
Atthe saddlepant 4--1 ) : 0=0

r= I

have v-0 onme path d- deepest descentT through the saddle pant et __ 1

On this path , r = I for 0£ TITIIT)
Sino

to u= rwso- tog r = onto - log /%)
= Onto - logo + log land ) : =uco)



④
Take the contour Integral , parameterised by 0 : will be along a

deformed such that we go through the saddle paintonthe path
d- steepest descent .

1- = Stig = reio
IK1 = ✗

'- × /
+

⇒
E.
✗"° '

Edo do with riot =%
[ ⇒

dt_do-friloltirloieio@xt.om-0-wgotwglsnno.IS
= ✗
" I
← EY.in?eioo

.

ii. 1-7×1 In
'

the term 9-a Laplace integral , with 9101 taking its

maximum at 0--0 lunch is the saddle pant location / .

⇒ use Laplace's method to generate theapproximation to

the integral for large × .

:
.

IK1 ~ ✗t×;Ée' as ✗→a.

Not = % = •÷÷+
. .

= 1+1-602+0103 ) ⇒ Flo ) = i

-

only need local 910)= Onto - log /%)
behaviour around

0--0 ⇒ Taylor expand .

=

°÷%? - log ( I -1*07 . . )

= I -1-202+0103 ) ⇒ 9101--1
9
" lol = -1

.

'

.

It✗ I ~ i ✗ ±
-✗
e.
✗ 121T as ✗→oo .

NB can use this example to deduce starlings approximation !

↑ /✗ I ~ ✗
× -± e-

×
/since we computed IN . . . )

.



#ingthe range of integration ⑭

↳ idea: he can split the range of integration and usedifferent

approximations in each part.

Imple F=" Trize do as at ot

Regns 0 8=01s =>integrand is 015) and contribution

to the Integral is Ok1.

② 0 = 0(=> Integrand is O) and contribution to the

integral is all.
I the oroli temmu

150 expect the local contribution to dominate... ),
humbute at higher order...

As before, hespot the region of Integration lato, withcl

I= J rico do t ↓"Cinia do
- -

# ↓o- su
12

S

I=/"-a Sk*24U+..M22+S122(3n)
- ↳expand
=>safetoTaylor
expand given
use 10,0) L gold theu+-/duand 8C21.

leading thewall over
range no 10.01)

=>0K.2) = 01d)
-I taut old

- - etoff)7 +old
-I-I to (e) +old



④

For I2 :

*4 174

II. = /
•
sÉnoᵈo - f

,
/sino - {÷ot . - / do
- -

here smile dominant contribution to

dominate IE2 the/hlegral will be from

•"" ""°" " ⁿhᵈ°="ⁿʰ
8h40 not

.
then

and so
±

8h20 not>> E2
guy@

~ %, whichwill

Integrate to 0 ("Is} )

more tummy ,

1-

Hanzo
-_ smio /¥÷o ) - shot ' - {÷uot " )

so then

-1-241 = fwto]?
"
+ of ;-)

with the requirement then
= -1+4+0101+0 /E.) that ⇒ << lie

q4s<<d

i. Putting D- all back together :

IK1N I -1+041 Note that the ± f- terms cancel -

this needs to happen harder that
↑

the result does not depend on the
WMESTWMIL

,hmeshomI"
wherewe specific choked- dusedto

wherewe

predicted a predicted a partition the integral !
contribution

lohlnbution
d- 047

.

d-O1E )


