$\$ 4$ matched asymptotic expansions
4.1 Singmar perturbations
small parameters.
Consider a ditterentral equation a the term $D_{\varepsilon} y=0$
\rightarrow naturally the would look at $D_{0} y=0$ as an approximation fer me solution.
Haverer-problem it ε multiplier the highest denvanve eg $d^{k} y / d x^{k}$ since then talking $\varepsilon=0$ reduces the coder of the problem.
\rightarrow an issue since $D_{\varepsilon} y=0$ is a kith order eqn with k boundary conditions but $D_{0} y=0$ is $a(k-1)^{\text {th }}$ order eqn mink boundary conditions - Hey count, in general, all be satished.

- Called a singular perturbation problem.

Example $\quad \varepsilon y^{\prime \prime}+y^{\prime}+y=0$ fer $x \in(0,1)$ moth $y(0)=a$ and $y(1)=b$.

$$
\begin{aligned}
& \underline{\varepsilon=0} \quad y^{\prime}+y=0 \Rightarrow y=A e^{-x} \text { which cannot satisfy } y(0)=a \\
& y(1)=b
\end{aligned}
$$

Interpretation and procedure - The memod of matched asymptotic
One possible explanation: if y satishes $D_{\varepsilon} y=0$ then
expansions

- over most of the range, $\varepsilon^{d^{k} y} / d x^{k}$ is small, and y approximately satishes $D_{0} y=0$.
- in centaur regions (often at the ends at the range), $\varepsilon^{d k y} / d x^{k}$ is not small and y adjusts itself to the boundary conditions (Le it vanes rapidly).

Procedure
(1) determine the scaling of the boundary layers $\operatorname{(eg} x \propto \varepsilon / \varepsilon^{1 / 2}$ etc)
(1) rescale the independent variable in' the boundary layer
(3) Ind the asymporic expansiars in, and outside ct, the boundary
(4) fix the arbitrary constants layers.

- obey problem boundary undstions
- match -inner and ontersolutions.

Bach to the example: $\varepsilon y^{\prime \prime}+y^{\prime}+y=0$ with $x(0)=a, y(0)=b$.
(NB can be solved exactly, but mu pretend olw, for now...)
Scaling
Near $X=0$: let $x_{L}=\frac{x}{\varepsilon^{\alpha}} \quad \frac{d}{d x}=\frac{d}{d x_{L}} \frac{d x_{L}}{d x}=\varepsilon^{-\alpha} \frac{d}{d x_{L}}$

$$
\begin{aligned}
& \begin{array}{c}
\text { local variable } \\
\\
\text { fer inspecting } \\
\text { BLarLHS }
\end{array} \\
& \Rightarrow \quad \sum^{1-2 \alpha} \frac{d^{2} y_{L}}{d x_{L}^{2}}+\varepsilon^{-\alpha} \frac{d y_{L}}{d x_{L}}+y_{L}=0
\end{aligned}
$$

sigmticant in the BL \Rightarrow increase α until this term balances the largest of the others
le $1-2 \alpha=\min (-\alpha, 0)$
Hence $x_{L}=\frac{x}{\varepsilon}$.

$$
\Rightarrow \alpha=1
$$

liB choosing a larger, to balance $1^{\text {st }}$ and $3^{\text {rd }}$ terms gives second term of $O\left(\Sigma^{-\frac{1}{2}}\right)$ which is bigger than the other two...)
similarly, $x_{R}=\frac{(x-1)}{\Sigma} \quad$ (or $\left.x=1+\Sigma x_{R}\right)$ so that $x_{R}<0$.
Expand LH: $y(x)=y_{L}\left(x_{L}\right)=y_{L 0}\left(x_{L}\right)+\varepsilon y_{L}\left(x_{L}\right)+\cdots \quad\left(x_{L}=\frac{x}{\varepsilon}\right)$
middle: $y(x)=y_{m}(x)=y_{m 0}(x)+\varepsilon y_{m 1}(x)+\cdots$

$$
R H: y(x)=y_{R}\left(x_{R}\right)=y_{R O}\left(x_{R}\right)+\sum y_{R 1}\left(x_{R}\right)+\cdots \quad\left(x_{R}=\frac{(x-1)}{\varepsilon}\right)
$$

solution on the lett (innerlett)

$$
\begin{aligned}
& \frac{d^{2} y_{L}}{d x_{L}{ }^{2}}+\frac{d y_{L}}{d x}+\Sigma y_{L}=0 \Rightarrow 0(1): \frac{d^{2} y_{L}}{d x_{L}^{2}}+\frac{d y_{\omega}}{d x_{L}}=0 \\
& O(\varepsilon): \frac{d^{2} y_{L}}{d x_{L}^{2}}+\frac{d y_{L}}{d x_{L}}+\underbrace{}_{L 0}=0 \\
& \therefore y_{L O}\left(x_{L}\right)=A_{L O}+B_{L O} e^{-x_{L}} \\
& \text { terainglem } \\
& \text { teryu } \\
& y_{L I}\left(x_{L}\right)=A_{L I}+B_{L I} e^{-x_{L}}+\left(B_{L O} X_{L} e^{-X_{L}}-A_{L O} X_{L}\right)
\end{aligned}
$$

with $y_{L O}(0)=a=A_{L O}+B_{L O}$

Solution in the middle lonter)

Solution on the night (inner right)

$$
\begin{aligned}
\frac{d^{2} y_{R}}{d x_{R}^{2}}+\frac{d y_{R}}{d x_{R}}+\Sigma y_{R}=0 \Rightarrow & 0(1): \\
\left(x_{R}<0\right) & \frac{d^{2} y_{R_{0}}}{d x_{R}^{2}}+\frac{d y_{R_{0}}}{d x_{R}}=0 \\
& 0(\varepsilon): \frac{d^{2} y_{R 1}}{d x_{R}^{2}}+\frac{d y_{R 1}}{d x_{R}}+y_{R 0}=0
\end{aligned}
$$

$$
\therefore y_{R_{0}}\left(x_{R}\right)=A_{R_{0}}+B_{R_{O}} e^{-x_{R}}
$$

$$
y_{R 1}\left(x_{R}\right)=A_{R 1}+B_{R 1} e^{-x_{R}}+\left(B_{R 0} x_{R} e^{-x_{R}}-A_{R O} x_{R}\right)
$$

Boundary condition $e x=1 \Rightarrow y_{R 1}(0)=b=A_{R O}+B_{R O}$

Matching to establish west order coelticients

- Hare tire constants: $A_{L 0}, B_{L O}, A_{m o}, A_{R O}, B_{R O}$ and two equations: $A_{L O}+B_{L O}=a$ and $A_{R O}+B_{R O}=b$
- we dotain three more undmions by mateung.
\rightarrow Idea: Faverlap regiai here both expansions should hold, and hence be equal.
e. $y_{L}\left(x_{L}\right) \sim y_{m}(x)$ as $x_{L}=\frac{x}{\Sigma} \rightarrow \infty$ and $x \rightarrow 0$.

$$
\begin{aligned}
& \varepsilon \frac{d^{2} y_{m}}{d x^{2}}+\frac{d y_{m}}{d x}+y_{m}=0 \Rightarrow 0(1): \frac{d y_{m 0}}{d x}+y_{m_{0}}=0 \\
& O(\Sigma): \quad \underbrace{\frac{d^{2} y_{m 0}}{d x^{2}}}_{\text {innomogeneons part }}+\frac{d y_{m 1}}{d x}+y_{m 1}=0 \\
& \therefore y_{m o}(x)=A_{m o} e^{-x} \\
& \left.y_{m i l}(x)=A_{m 1} e^{-x}-A_{m 0} x e^{-x}\right\} \\
& \left\{\begin{array}{l}
\text { we mill match } \\
\text { solutions to determine }
\end{array}\right. \\
& A_{m o}, A_{m 1}
\end{aligned}
$$

One approach-introduce a scaling -should be 'intermediate'
li $\hat{x}=\frac{x}{\varepsilon^{\alpha}}$ where $0<\alpha<1$.
Then, meh $\varepsilon \rightarrow 0^{+}$and \hat{x} fixed, $x=\varepsilon^{\alpha} \hat{x} \rightarrow 0$

$$
x_{L}=\varepsilon^{\alpha-1} \hat{x} \rightarrow \infty
$$

Matching at the LH end: We want $y_{L}\left(\varepsilon^{\alpha-1} \hat{x}\right) \sim y_{m}\left(\varepsilon^{\alpha} \hat{x}\right)$ as $\varepsilon \rightarrow 0^{+}$ li they generate $\rightarrow \min \hat{x}>0, \hat{x} \sim \operatorname{ord}(1)$. the same expansicin

$$
\begin{aligned}
& y_{L}=A_{L_{0}}+B_{L O} e^{-\varepsilon^{\alpha-1} \hat{x}}+O(\varepsilon) \\
&=A_{L O}+O(\varepsilon) \hat{\uparrow} \begin{array}{ll}
\text { since } \alpha \in(0,1) \\
\text { thentuisterm } \\
\text { is exp. small } \\
\text { as } \varepsilon \rightarrow 0^{+}
\end{array} y_{m}=A_{m_{0}} e^{-\varepsilon^{\alpha} \hat{x}}+0(\varepsilon)
\end{aligned}=A_{m_{0}}\left(1-\varepsilon^{\alpha} \hat{x}+\cdots\right)+0(\varepsilon)
$$

Hence, at leading order, $A_{L_{0}}=A_{m o}$. $]$ y values need to match - tine (as $\varepsilon \rightarrow 0^{+}$) outer unit of the inner problem matches the inner unit of the outer problem.
matching at the RH end: This time use $x=1+\varepsilon^{\alpha} \tilde{x}$ be $\tilde{x}=\frac{(x-1)}{\varepsilon^{\alpha}} \leqslant 0$

$$
\text { So that } x_{R}=\frac{x-1}{\Sigma}=\varepsilon^{\alpha-1} \tilde{x}
$$

we want $y_{R}\left(\Sigma^{\alpha-1} \tilde{x}^{2}\right)=y_{m}\left(\Sigma^{\alpha} \tilde{x}\right)$

$$
\begin{aligned}
& y_{R}=A_{R O}+B_{R O} e^{-\varepsilon^{\alpha-1} \tilde{x}}+0(\varepsilon) \quad, \quad y_{m}=A_{m_{0}} e^{-1-\varepsilon^{\alpha} \tilde{x}}+O(\varepsilon) \\
& \text { tui term blows } \\
& \text { up as } \varepsilon \rightarrow 0^{+} \Rightarrow \\
& =\frac{A_{m 0}}{e}\left(1-\varepsilon^{\alpha} \hat{x}+\cdots\right)+0(\varepsilon) \\
& \text { we need } \mathrm{B}_{\mathrm{RO}}=0 \text {. }
\end{aligned}
$$

$$
\begin{gathered}
\text { Hence, at leading order, } \\
\left(\text { as } \varepsilon \rightarrow 0^{+}\right)
\end{gathered} \quad A_{R o}=\frac{A_{m o}}{e} .
$$

(Again-yvalues must match..)
\rightarrow Now have pre equations and fire untorowns in

$$
\begin{aligned}
& A_{L O}+B_{L O}=a, A_{R O}+B_{R O}=b, A_{L O}=A_{M O}, B_{R O}=0, A_{R_{O}}=A_{M O} e^{-1} \\
& \Rightarrow \quad A_{L O}=e b, B_{L O}=a-e b, \quad A_{R O}=b, B_{R O}=0, A_{M O}=e b .
\end{aligned}
$$

Putting this all together:

$$
y_{L_{0}}=e b+(a-e b) e^{-x_{L}}
$$

$$
\begin{aligned}
& y_{m 0}=e b e^{-x} \\
& y_{R O}=b .
\end{aligned}
$$

\leftarrow No rapiaranation in The RH BL -we don't really need it?
NB Exact solution is $y(x)=A_{+} e^{\lambda+x}+A_{-} e^{\lambda-x}$ with $\lambda_{ \pm}=\frac{-1 \pm \sqrt{1-4 \varepsilon}}{2 \varepsilon}$ Expanding eg. $\lambda_{+} \sim-1+0(\varepsilon), \lambda_{-} \sim-\frac{1}{\varepsilon}+1+0(\varepsilon)$ as $\varepsilon \rightarrow 0^{+}$etc. $\left.\begin{array}{ll}\text { one can show that } \\ \left.\text { las } \varepsilon \rightarrow 0^{+}\right)\end{array} \quad \begin{array}{l}y\left(\varepsilon x_{L}\right)=y_{L 0}\left(x_{L}\right)+0(\varepsilon) \\ y(x)=y_{m 0}(x)+0(\varepsilon) \\ y\left(\varepsilon x_{R}\right)=y_{R O}\left(x_{R}\right)+0(\varepsilon)\end{array}\right\} \quad \begin{aligned} & x_{L}>0, \quad x_{L} \sim \operatorname{ord}(1) \\ & x_{R}<0, x_{R} \wedge \operatorname{ord}(1)\end{aligned}$
matching to establish coefficients at the next order
we have $\left.\begin{array}{rl}y_{L I} & =-e b x_{L}+(a-e b) x_{L} e^{-x_{L}}+A_{L 1}+\underline{B_{L 1}} e^{-x_{L}} \\ y_{M 1} & =-e b x e^{-x}+\underline{A_{m 1}} e^{-x} \\ y_{R 1} & =-b x_{R}+\underline{A_{R 1}}+\underline{B_{R 1}} e^{-x_{R}}\end{array}\right] \begin{aligned} & \text { again i } \\ & \text { are } \\ & \text { constants. }\end{aligned}$
The boundary conartions supply two equs: $A_{L 1}+B_{L I}=0 \quad 3 y_{L 1}(0)=0$

$$
\left.A_{R 1}+B_{R 1}=0\right\} y_{R 1}(0)=0
$$

Matching at the LH end: as before, we unite $x=\varepsilon^{\alpha} \hat{x} \Rightarrow X_{L}=\varepsilon^{\alpha-1} \hat{x}$
we have, on the left,

$$
\text { with } \alpha \in(0,1), \hat{x} \sim \operatorname{ord}(1)
$$

$$
\begin{aligned}
y_{L}= & y_{L 0}\left(\Sigma^{\alpha-1} \hat{x}\right)+\Sigma y_{L 1}\left(\varepsilon^{\alpha-1} \hat{x}\right)+o\left(\varepsilon^{2}\right) \\
= & e b+(a-e b) \underbrace{e^{-\varepsilon^{\alpha-1}} \hat{x}} \\
& +\Sigma\left(-e b \Sigma^{\alpha-1} \hat{x}+(a-e b) \varepsilon^{\alpha-1} \hat{x} e^{-\varepsilon^{\alpha-1} \hat{x}}+A_{L I}+B_{L L} e^{-\varepsilon^{\alpha-1} \hat{x}}\right)+0\left(\varepsilon^{2}\right) \\
= & e b-e b \varepsilon^{\alpha} \hat{x}+A_{L I} \Sigma+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

and, in the cher,

$$
\begin{aligned}
& y_{m}=y_{m o}\left(\varepsilon^{\alpha} \hat{x}\right)+\varepsilon y_{m 1}\left(\Sigma^{\alpha} \hat{x}\right)+o\left(\varepsilon^{2}\right) \\
& =e b e^{-\Sigma^{\alpha} \hat{x}}+\Sigma\left(-\infty \Sigma^{\alpha} \hat{x} e^{-\Sigma^{\alpha} \hat{x}}+A_{m 1} e^{-\Sigma^{\alpha} \hat{x}}\right)+o\left(\varepsilon^{2}\right) \\
& \text { expand as } 1-\varepsilon^{\alpha} \hat{x}+\ldots \\
& =e b\left(1-\Sigma^{\alpha} \hat{x}+\frac{\Sigma^{2 \alpha} \hat{x}^{2}}{2!}+\cdots\right) \\
& -e b \varepsilon^{\alpha+1} \hat{x}\left(1-\varepsilon^{\alpha} \hat{x}+\ldots\right)+A_{m l} \Sigma\left(1-\varepsilon^{\alpha} \hat{x}+\ldots\right)+0\left(\varepsilon^{2}\right) \\
& =e b-e b \hat{x} \varepsilon^{\alpha}+\frac{\varepsilon^{2 \alpha} \hat{x}^{2}}{2} e b+\cdots-e b \varepsilon^{\alpha+1} \hat{x}+. .
\end{aligned}
$$

the o(1) term, $+\varepsilon A_{m l}-A_{m i} \Sigma^{\alpha+1} \hat{x}+\cdots+o\left(\varepsilon^{2}\right)$ matched in order to be able m $y_{L} V_{J}$ to neglect these rems
companing terms that are $O(\varepsilon)$ gives $A_{L 1}=A_{m 1}$. we need $2 \alpha>1$ ie $\alpha>\frac{1}{2}$ $\Rightarrow \alpha \in\left(\frac{1}{2}, 1\right)$.

NB some terms thump order: $-\varepsilon^{\infty}$ ed \hat{x} comes from the inner expansion of the first outer term, but from the cuter expansion of the second inner term!

Matching at the RH end: as betere, we unite $x=1+\varepsilon^{\alpha} \tilde{x}, \tilde{x}<0$

$$
\Rightarrow \hat{x}=\frac{x-1}{\varepsilon^{\alpha}}, x_{R}=\frac{x-1}{\varepsilon}=\varepsilon^{\alpha-1} \tilde{x}
$$

we have, an the right,

$$
\begin{aligned}
y_{R} & =b+\varepsilon\left(-b \varepsilon^{\alpha-1} \tilde{x}+A_{R 1}+B_{R 1} e^{-\varepsilon^{\alpha-1} \tilde{x}}\right)+o\left(\varepsilon^{2}\right) \\
& =b-b \varepsilon^{\alpha} \tilde{x}+\Sigma A_{R 1}+B_{R 1} \sum e^{-\varepsilon^{\alpha-1} \tilde{x}}+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

blows up as $\varepsilon \rightarrow 0^{+}$

$$
\Rightarrow \quad B_{R 1}=0
$$

$$
\begin{aligned}
& \text { and, in me outer, } \\
& \begin{aligned}
y_{m}= & e b e^{-1-\varepsilon^{\alpha}} \hat{x} \\
= & \left.\frac{e b}{e}\left(1-\varepsilon^{\alpha} \hat{x}+\frac{\varepsilon^{2 \alpha} \hat{x}^{2}}{2}+\cdots\right)-\frac{b e x}{e}\left(\varepsilon+\varepsilon^{\alpha+1} \tilde{x}\right)\left(1-\varepsilon^{\alpha} \tilde{x}+\cdots\right) e^{-1-\varepsilon^{\alpha} \hat{x}}+A_{m_{1}} e^{-1-\varepsilon^{\alpha} \hat{x}}\right)+O\left(\varepsilon^{2}\right) \\
& +\frac{\sum A_{m 1}}{e}\left(1-\varepsilon^{\alpha} \hat{x}+\cdots\right)+O\left(\varepsilon^{2}\right) \\
= & b+\left(A_{m_{1}} e^{-1}-b\right) \Sigma+\ldots
\end{aligned}
\end{aligned}
$$

\uparrow matches the $o(1)$ contribution \checkmark
Hence, conecing terms at $O(\varepsilon)$ gives $A_{m l} e^{-1}-b=A_{R I}$
Again, ne now have tive equations and tire unkerowns ت̈

$$
\begin{aligned}
& A_{L 1}+B_{L 1}=0, \quad A_{R 1}+B_{R 1}=0, \quad A_{L 1}=A_{m 1}, \quad B_{R 1}=0, A_{m 1} e^{-1}-b=A_{R 1} \\
& \Rightarrow A_{R 1}=0, B_{R 1}=0, A_{m 1}=b e, \quad A_{L 1}=b e, \quad B_{L 1}=-b e
\end{aligned}
$$

Putting it all together:

$$
\begin{aligned}
& y_{L I}=-e b x_{L}+(a-e b) x_{L} e^{-x_{L}}+e b-e b x^{-L} \\
& y_{M 1}=-e b x e^{-x}+e b e^{-x} \\
& y_{R 1}=-b x_{R}
\end{aligned}
$$

Note that $\lim _{x \rightarrow 1} y_{m}=e b e^{-x}+\operatorname{\sum eb}(1-x) e^{-x}+o\left(\varepsilon^{2}\right)=b+o\left(\varepsilon^{2}\right)$
Which satisfle's the $B C e x=1$. Hoverer $\lim _{x \rightarrow 0} y_{m}=e b$ which does not satisily the $B C$. Hence don't actually need the RH BL, but we do need the LH are!

T was indicated by the blow up in the inner solution..
4.1.4 Van Dyke's matching rule

- using the intermediate mule is tiresome! leven fer nat simple example it was bad..)
- Van Dyke's mile usually wanks, and It's simple / convenient.
(m term inner) (n term onter $)=$ (n termonter) $(m$ term inner $)$
in the outer term expand to n terms, then switch to the inner vanables and re-expand to terms
in the inner expand to m terms, then sultan to the counter vanables and re-expand to n terms.

Example

$$
\begin{array}{rl|l|l}
y_{L O}= & A_{L O}+B_{L O} e^{-x_{L}} & \mid y_{M O}=A_{m O} e^{-x} & \mid y_{R O}=A_{R O}+B_{R O} e^{-x_{R}} \\
y_{L I}= & A_{L I}+B_{L I} e^{-x_{L}} & y_{M 1}=A_{M 1} e^{-x} & y_{R 1}=A_{R 1}+B_{R 1} e^{-x_{R}} \\
& +\left(B_{L O} x_{L} e^{-x_{L}}-A_{L O} x_{L}\right) & -A_{M O} x e^{-x} & +\left(B_{R O} x_{R} e^{-x_{R}}-A_{R O} x_{R}\right)
\end{array}
$$

with constraints $A_{10}+B_{L 0}=a, A_{R O}+B_{R O}=b, A_{L 1}+B_{L 1}=0, A_{R 1}+B_{R 1}=0$. and $x=\Sigma x_{L}=1+\Sigma x_{R} \in[0,1] \quad\left(x_{L}>0, x_{R}<0\right)$.

First-consider what happens at the RH boundary: $X_{R}<0$ so $e^{-x_{R}} \rightarrow \infty$ as $X_{R} \rightarrow \infty$ le as we go fromin the $R H B L \rightarrow$ cuter soln.

$$
\Rightarrow B_{R 0}=0, B_{R 1}=0
$$

^ Again i demonstrates that assuming fast Vanahion in the RH inner reglai (BL) gives $y_{R O}=$ constant. Then

$$
\sum y_{R 1}=\sum A_{R O} x_{R}=-\sum A_{R_{0}} \frac{(x-1)}{\varepsilon}=-A_{R O}(x-1)
$$

Le the vanation is not quicu relative to x so there is no BL at the RH end and we can Just consider the outer solution, y_{m}, all the way to the boundary.

Applying VD's marching rube fer $m=n=1$:

$$
(\text { Ito })=A_{m o} e^{-x} \underbrace{=}_{\substack{\text { suitento } \\ \text { inner } \\ \text { vanables }}} A_{m_{0}} e^{-\Sigma x_{L}}=\underbrace{=}_{\text {expand }} A_{m 0}\left(1-\Sigma x_{L}-\frac{\Sigma^{2} x_{L}^{2}}{2}+\cdots\right)
$$

$$
\begin{aligned}
\therefore \quad\left(1 t_{i}\right)\left(1 t_{0}\right) & =A_{m o} \\
\left(2 t_{i}\right)\left(1 t_{0}\right) & =A_{m o}-\sum A_{m o} X_{L} \quad \text { etc. }
\end{aligned}
$$

Then

$$
\left(\mid t_{i}\right)=A_{L O}+B_{L O} e^{-x_{L}} \underbrace{=}_{\begin{array}{c}
\text { suntchto } \\
\text { cuter } \\
\text { vanables }
\end{array}} A_{L_{0}}+B_{L O} e^{-x / \varepsilon}=A_{L O}+\underbrace{\exp }_{\substack{\text { small } \\
\text { terms }}}
$$

$$
\therefore \quad\left(1 t_{0}\right)\left(1 t_{i}\right)=A_{10}
$$

Hence $\left(1 t_{i}\right)\left(1 t_{o}\right)=\left(1 t_{0}\right)(1 t i) \Rightarrow A_{m o}=A_{L_{0}}=e b$ evaluating:
comestrom
evaluating:
$\quad y_{\text {mo }}(1)=b$

$$
\text { le } B C \text { e } x=1
$$

$$
\begin{aligned}
\therefore y_{m_{0}} & =e b e^{-x} \\
y_{L 0} & =A_{L 0}+B_{L 0} e^{-x_{L}}=e b+(a-e b) e^{-x_{L}}
\end{aligned}
$$

This automatically satisthes $\lim _{x \rightarrow 0} y_{m o}(x)=\lim _{x_{L} \rightarrow \infty} y_{L}\left(x_{L}\right)$ as we prenonsly observed. This mill generally be me case.
Now, apply van Dyne's matching mule for $m=n=2$:
2 term cuter: $y_{m o}(x)$

$$
\begin{aligned}
y_{m}(x) & =\underbrace{e b}_{A_{m 0}} e^{-x}+\Sigma(A_{m_{1}} e^{-x}-\underbrace{e b x}_{A_{m 0}} e^{-x}) \\
& =e b e^{-\Sigma x_{L}}+\Sigma\left(A_{m_{1}} e^{-\Sigma x_{L}}-e b \Sigma x_{L} e^{-\Sigma x_{L}}\right) \quad \begin{array}{c}
\text { change to } \\
\text { mnervanable }
\end{array} \\
& =e b\left(1-\Sigma x_{L}+\cdots\right)+\Sigma\left(A_{m_{1}}\left(1-\Sigma x_{L}+-\right)-e b \Sigma x_{L}\left(1-\Sigma x_{L}+\ldots\right)\right) \\
& =e b-e b x_{L} \Sigma+\Sigma A_{m 1}+O\left(\Sigma^{2}\right)
\end{aligned}
$$

$\therefore A_{l l}=A_{m 1}=e b$ (by the RH benndary condition-since we know that there is wo boundany layer...)
Also, $A_{L I}+B_{L I}=0 \Rightarrow B_{L I}=-e b . \quad$ (Have all ine same mtermation
summany and we get it mucu faster!)

$$
\begin{aligned}
& y_{m}(x)=e b e^{-x}+\varepsilon e b(1-x) e^{-x^{x}}+\ldots \\
& y_{L}(x)=e b+(a-e b) e^{-x_{L}}+\varepsilon\left(e b\left(1-e^{-x_{L}}\right)-e b x_{L}+(a-e b) x_{L} e^{-x_{L}}\right)+\ldots
\end{aligned}
$$

$$
\left[\begin{array}{c}
\left.N B-\text { canchech unat happens fer }\left(1 t_{i}\right)(2+0)=\left(2 t_{0}\right)(1 t i)\right] \\
\rightarrow \text { no new intermation! }
\end{array}\right.
$$

Comp osite expansion
veither of y_{m} or y_{L} is rand acioss the whole domain
\rightarrow but when eg. puoting it can be really usemi!

- Am-combine the mnes and cuter expansiars to dotaur a unutermly vand expansion.

$$
\begin{aligned}
& \text { Yomposite }^{\text {coun }} \text { (pterms cuter) }+(\text { pterms innér) } \\
& \begin{array}{l}
\text { (byVDIsMR) } \\
=(\text { pterms chter) (pterms inner) }
\end{array} \underbrace{\text { ptermsinner)(pterms onter) }}_{\begin{array}{l}
\text { need to sublract as } \\
\text { At has been counted }
\end{array}} \\
& \text { tuice in ine creulap } \\
& \text { regran... }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { term inner: } \\
& y_{L}=\overbrace{e_{L D}}^{e_{A_{L O}}}+\underbrace{(a-e b)}_{B_{L 0}} e^{-x_{L}}+\varepsilon \overbrace{\left(A_{L I}+B_{U L} e^{-x_{L}}+(a-e b) x_{L} e^{-x_{L}}-e b x_{L}\right)+\cdots}^{y_{L 1}}
\end{aligned}
$$

$$
\begin{aligned}
& =e b+\Sigma A_{4}-e b x+e x p .8 m a l l \text { ferms } \\
& \text { Lexpand } \\
& + \text { neep } \\
& 2 \text { terms } \\
& \text { Recall } y_{m}=c b-\underbrace{e b x_{i} \Sigma}_{=x}+\Sigma A_{m_{1}}+O\left(\Sigma^{2}\right)
\end{aligned}
$$

Example: $p=1$

Example: $p=2$

$$
\begin{aligned}
y_{\text {composite }}= & y_{m_{0}}(x)+\varepsilon y_{m_{1}}(x)+y_{L 0}(x / \varepsilon)+\varepsilon y_{l 1}(x / \varepsilon)-(2+i)(2+0) \\
= & e b e^{-x}+\varepsilon e b(1-x) e^{-x}+e b+(a-e b) e^{-x / \varepsilon} \\
& +\varepsilon\left(e b\left(1-e^{-x / \varepsilon}\right)-e b \frac{x}{\varepsilon}+(a-e b) \frac{x}{\varepsilon} e^{-x / \varepsilon}\right) \\
& -e b+e b x-\Sigma e b
\end{aligned}
$$

$$
(2 t i)(2+o)
$$

$$
=e b e^{-x}+(a-e b)(1+x) e^{-x / \varepsilon}-\varepsilon e b(1-x) e^{-x}-\varepsilon e b e^{-x / \varepsilon}
$$

$$
+o\left(\varepsilon^{2}\right)
$$

choice ct scaling re-visited Near $x=0$-let $x_{L}=x / \varepsilon^{\alpha}, y(x)=y_{2}\left(x_{L}\right)$

Next - we mu l think about how to determine where the BC is.

$$
\begin{aligned}
& \Rightarrow \quad \varepsilon^{1-2 \alpha} \frac{d^{2} y_{L}}{d x_{L}{ }^{2}}+\Sigma^{-\alpha} \frac{d y_{L}}{d x_{L}}+y_{L}=0 \\
& \alpha=0 \\
& 0<\alpha<1 \\
& \alpha=1 \\
& \alpha>1 \quad \text { dominant } \\
& \text { called disingnished lints. }
\end{aligned}
$$

$$
\begin{aligned}
& y_{\text {composite }}=y_{m_{0}}(x)+y_{\text {LO }}\left(\frac{x}{\Sigma}\right)-(1 \text { terminner })(1 \text { term inter }) \\
& =\underbrace{e b e^{-x}}_{y_{m 0}}+\underbrace{e b+(a-e b) e^{-x / \varepsilon}-e b}_{y_{10}} \\
& \begin{array}{c}
y_{y_{L 0}} \\
\Rightarrow \text { Itermonter }=e b e^{-x}=e b e^{-\varepsilon x_{L}} \\
\Rightarrow \text { (Iterminner) }(1 \text { term inter })=e b
\end{array} \\
& =e b e^{-x}+(a-e b) e^{-x / \varepsilon} \\
& +o(\varepsilon) \text {. } \\
& \text { rapid change at } U H \text { boundary } \\
& \text { cis } x \sim 0(\varepsilon) \text {) ensures the } \\
& B C \text { is satished. }
\end{aligned}
$$

4.2 Where is the boundary layer?
-To have a non-tnvial boundary layer possuble-need a solution in the under region that decays as we mure towards the outer.
(saw this in the prencis example muir the LHBL.)

- In the publem that we consraered, though, the solution in the RH BC grew exponentially as we moved tow aras the outer \Rightarrow cannot have a RHBL!
- Note - Busdon't need to beat boundanès! we can have small regions of ugh gradient in the intencir (\Rightarrow intent layer).

Example wisider the general publem

$$
\varepsilon y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \text { fer } 0<x<1 \text { min } p(x)>0, y(0)=A, y(1)=b \text {. }
$$ and p, q smooth, and $\varepsilon \ll 1$.

RH bound ar layer
Rescale: $x=1+\delta \hat{x}, \quad y(x)=y_{R}(\hat{x})$ min $\hat{x}<0$

$$
\Rightarrow \quad \frac{\varepsilon}{\delta^{2}} y_{R}^{\prime \prime}+\frac{p(1+\delta \hat{x})}{\delta} y_{R}^{\prime}+q(1+\delta \hat{x}) y_{R}=0
$$

(' = denvative

$$
\begin{aligned}
& \text { envative } \\
& \text { ut argument) }
\end{aligned}
$$

we want this term to be included
since seeling a
solution st. y" large
\rightarrow here, the $\frac{P(1+\delta \hat{x})}{\delta} y_{R}{ }^{\prime}$
mu dominate the $q(1+\delta \vec{x}) y_{e}$ term

Hence, the dominant balance is $\frac{\varepsilon}{\delta^{2}}=\frac{1}{\delta} \Rightarrow \Sigma=\delta$.

$$
\begin{array}{ll}
\therefore & y_{R}^{\prime \prime}+p(1+\varepsilon \hat{x}) y_{R}^{\prime}+\varepsilon q(1+\varepsilon \hat{x}) y_{R}=0 \\
\Rightarrow & y_{R}^{\prime \prime}+\left[p(1)+\varepsilon \hat{x} p^{\prime}(1)+\ldots\right] y_{R}^{\prime}+\varepsilon\left[q(1)+\varepsilon \hat{x} q^{\prime}(1)+\ldots\right] y_{R}=0
\end{array}
$$

Let $y_{R}(\hat{x})=y_{R O}(\hat{x})+\sum y_{R 1}(\hat{x})+\cdots$, subsitinte and correct temp of the same order:
$O(1): y_{R O}{ }^{\prime \prime}+p(1) y_{R_{0}}{ }^{\prime}=0 \Rightarrow y_{R O}(\hat{x})=J+k e^{-p(1) \hat{x}}$ m th $\hat{x}<0$.
we want to mated the outer solution when \hat{x} large and negative. BUT, then $k e^{-p(1) \hat{x}} \rightarrow \infty$ and so we have to take $k=0$, and $y_{R O}=J$ (constant).
le no fast vanation near the RH boundary \Rightarrow NO BOUNDARY LAYER, (we can mares the outer at $x=1$ to $y(1)=b$).

* Blow up as the inner soluhon is extended towards the outer solution \Rightarrow NO BOUNDARY LAYER.

LH Boundary Layer
Let $x=\Sigma \hat{x}$ min $\hat{x}>0$ and $y(x)=y_{L}(\tilde{x})$.
similarly,

$$
y_{L}^{\prime \prime}(\tilde{x})+\left[p(0)+\sum \hat{x} p^{\prime}(0)+. .\right] y_{L}^{\prime}(\hat{x})+\varepsilon\left[q(0)+\varepsilon \tilde{x} q^{\prime}(0)+.\right] y_{L}(\hat{x})=0
$$

Expanding: $y_{L}(\hat{x})=y_{L 0}(\hat{x})+\Sigma y_{L 1}(\hat{x})+\ldots$ gives $y_{L 0}(\hat{x})=M+N e^{-p(0) \tilde{x}}$ Then, wong from the inner to the cuter $(\hat{x} \rightarrow \infty)$ gives $N e^{-p(0) \hat{x}} \rightarrow 0$;

$$
\therefore \quad y_{10}(\hat{x})=M+N e^{-p(0) \times / \varepsilon}
$$

le have a very rapid change in mine solution near me boundary, and can match cuter.
NB if $p(x)<0$ then the situation is reversed ana we expect to find a boundanylayer at the RH e $x=1$. If $p\left(x_{0}\right)=0$ fer some $x_{0} \in(0,1)$ then there may be an intenor layer.
(' nextexampla!)

Example
$\Sigma^{2} y^{\prime \prime}+2 y\left(1-y^{2}\right)=0$ fer $-1<x<1$ minn $y(-1)=-1$ and $y(1)=1$.
Then fer $\varepsilon=0$ we can have outer solutions with $y=0, \pm 1$.
To satisfy the $B C S$, we take, $\left.\left.\begin{array}{c}y_{0 L}=-1 \\ \text { cuter solus } \\ \text { on LHIRH } \\ \text { sides }\end{array}\right\} \Rightarrow \begin{array}{c}\text { Must be a transition }\end{array}\right\} \begin{gathered}\text { mermen them in } \\ \text { ben interior. } \\ \text { The }\end{gathered}$
By inspection, we see mat we need to rescale near $x=x_{0} \quad\left(x_{0} \in(0,1)\right.$ by setting $x=x_{0}+\Sigma x$ and $y(x)=Y(x)$

$$
\Rightarrow y^{\prime \prime}(x)+2 y\left(1-y^{2}\right)=0 \text { fer }-\infty<x<\infty \quad y \rightarrow-1 \text { as } x \rightarrow-\infty
$$

If scaling nut donas
then let $x=x_{0}+\delta(\varepsilon) X$ and establish

Solution is $Y(x)=\tanh \left(x-x_{*}\right)$ dominant balance.

Recall $X=\frac{x-x_{0}}{\varepsilon}$ and let $X_{*}=\Sigma X_{*}$ to unite $y(x)=\tanh \left(\frac{x-x_{0}-x_{*}}{\varepsilon}\right)$
Note that if $y(x)$ is a solution then $-y(-x)$ is also a solution, and by picard, the solution is umque. In particular $y(0)=-y(0)=0$ and so $x_{0}+x_{*}=0$ and we have $y(x) \sim \tanh \left(\frac{x}{\varepsilon}\right)$.

NBI The position of the BL is exponentially sensitive to the boundary data. Finding the location fer over data is nontrivial.

4.3 Boundary layers in PDEs

Heat transfer from a cylinder in potential flow moth small ch tresian (high peclet number)
$(0<\varepsilon \ll 1)$

$$
\underset{\text { velocity }}{\underline{u}}=\underbrace{\nabla \varphi}_{\text {gradient flow vecter field }}, \quad \varphi=\left(r+\frac{1}{r}\right) \cos \theta=x+\frac{x}{x^{2}+y^{2}}
$$

$$
T \rightarrow 0 \text { as }
$$

NB $\nabla^{2} \varphi=0 \Rightarrow u$ inotational and incompressible, and has zero normal component on $r=1 . \Rightarrow$ How is around the cyunder e $r=1$, and this adrects thermal energy.
Physical problem: steady state temperature protue-mith dittusicui and adrechin of internal energy represented through temperature T.

Outer solution
Expand $T \sim T_{0}+\varepsilon T_{1}+\ldots$ as $\varepsilon \rightarrow 0$ and substitute to get
$O(1) \cdot \underline{u} \cdot \nabla T_{0}=0$, win the $B C \quad T \rightarrow 0$ as $r \rightarrow \infty$ Consider any curve with $\frac{d r}{d s}=\underline{u} \quad(\underline{r}=(x, y))$

Then $\frac{d T_{0}}{d S}=\nabla T_{0} \cdot \frac{d r}{d s}=\nabla T_{0} \cdot \underline{u}=0$
Fer $r>1, \frac{d x}{d s}=u_{1}=\varphi_{x}=1+\frac{1}{x^{2}+y^{2}}-\frac{2 x y}{x^{2}+y^{2}}=1+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=1-\frac{\cos 2 \theta}{r^{2}}>0$
\therefore all curves $\underline{u}=\nabla \varphi$ end up at infinity where $T_{0}=0$.
Hence $T_{0}(s)$ is constant along such curves and, using the BC, this constant must be zero, ie $T_{0}=0$.

Proceeding murther, we nave $T_{u}=0 \forall n \Rightarrow \exists$ thermal boundary layer near the cylinder.
inner solution
Incylindrical coordinates,

$$
\underbrace{\left(1-\frac{1}{r^{2}}\right) \cos \theta \frac{\partial T}{\partial r}-\left(1+\frac{1}{r^{2}}\right) \frac{\sin \theta}{r} \frac{\partial T}{\partial \theta}}_{\underline{u} \cdot \nabla T}=\Sigma(\underbrace{\left(\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}}\right)}_{\nabla^{2} T}
$$

- we need to scale r close to $r=1$ so that the diffusive term balances: let $r=1+\delta(\varepsilon) \rho$ m th $0<\delta(\varepsilon) \ll 1$ and let $T(r, \theta)=T_{i}(1+\delta(\varepsilon) \rho, \theta)$.
Then,

$$
\begin{aligned}
& \left(1-\frac{1}{(1+\delta \rho)^{2}}\right) \frac{\cos \theta}{\delta} \frac{\partial T_{i}}{\partial \rho}-\left(1+\frac{1}{(1+\delta \rho)^{2}}\right) \frac{\sin \dot{\theta}}{1+\delta \rho} \frac{\partial T_{i}}{\partial \theta} \\
& \quad=\Sigma\left(\frac{1}{\delta^{2}} \frac{\partial^{2} T_{i}}{\partial \rho^{2}}+\frac{1}{\delta(1+\delta \rho)} \frac{\partial T_{i}}{\partial \rho}+\frac{1}{(1+\delta \rho)^{2}} \frac{\partial^{2} T_{i}}{\partial \theta^{2}}\right)
\end{aligned}
$$

Expand to give

$$
\begin{aligned}
(2 \delta p & \left.+o\left(\delta^{2}\right)\right) \frac{\cos \theta}{\delta} \frac{\partial T_{i}}{\partial p}-(2+o(\delta)) \sin \dot{\theta} \frac{\partial T_{i}}{\partial \theta} \\
& =\underbrace{\sum\left(\frac{1}{\delta^{2}} \frac{\partial^{2} T_{i}}{\partial p^{2}}\right.}_{\uparrow}+\underbrace{\frac{1}{\delta}(1+o(\delta)) \frac{\partial T_{i}}{\partial p}}+(1+o(\delta)) \frac{\partial^{2} T_{i}}{\partial \theta^{2}})
\end{aligned}
$$

Hence, we need $\delta=\sqrt{\varepsilon}$.

Expand: let $T_{i}(\rho, \theta)=T_{i o}(\rho, \theta)+\Sigma^{\frac{1}{2}} T_{i 1}(\rho, \theta)+\ldots$
$O(1): \quad 2 \rho \cos \theta \frac{\partial T_{i 0}}{\partial \rho}-2 \sin \theta \frac{\partial T_{i 0}}{\partial \theta}=\frac{\partial^{2} T_{i 0}}{\partial \rho^{2}}$
still a non-tutial PDE to solve - but we can
with $T_{i 0}|0, \theta|=1$ and $T_{i 0} \rightarrow 0$ as $\rho \rightarrow \infty$ make analytic progress.
$\rho=0-$ lei on the cylinder.
seen a similarity solution fer $T_{i o}$ of me form

$$
\begin{aligned}
& T_{i o}(\rho, \theta)=f(\eta) \text { m th } \eta=\rho g(\theta) \\
& \frac{\partial T_{i 0}}{\partial \rho}=g(\theta) f^{\prime}(\eta), \frac{\partial^{2} T_{i 0}}{\partial p^{2}}=g^{2}(\theta) f^{\prime \prime}(\eta), \quad \frac{\partial T_{i 0}}{\partial \theta}=f^{\prime}(\eta) \rho g^{\prime}(\theta)
\end{aligned}
$$

Substitute into the equ fer $T_{\text {io }}$:

$$
\begin{align*}
& 2 p \cos \theta g(\theta) f^{\prime}(\eta)-2 \sin \theta f^{\prime}(\eta) \rho g^{\prime}(\theta)=g^{2}(\theta) f^{\prime \prime}(\eta) \\
& \Rightarrow \quad \frac{p g(\theta)}{\eta}\left[\frac{2 \cos \theta}{g^{2}(\theta)}-\frac{2 \sin \theta}{g^{3}(\theta)} g^{\prime}(\theta)\right] f^{\prime}(\eta)=f^{\prime \prime}(\eta)
\end{align*}
$$

Note that if $f(\eta)$ is a similaniy solus then * should be a function of manly

$$
\Rightarrow \quad \frac{2 \cos \theta}{g^{2}(\theta)}-\frac{2 \sin \theta}{g^{3}(\theta)} g^{\prime}(\theta)=\text { constant, } c
$$

- If $c>0$ then the solution mill blow up at infinity
\Rightarrow must have $c<0$.
- Note that c can be re-scaled without changing g
\Rightarrow WLOG we can take $C=-1$
\therefore Canting a siminanty solution as ing as we can tied a solution to

$$
\frac{2 \cos \theta}{g^{2}(\theta)}-\frac{2 \sin \theta}{g^{3}(\theta)} g^{\prime}(\theta)=-1
$$

Let $g=\frac{1}{\sqrt{p}} \rightarrow$ then we can solve to get $g(\theta)=\frac{|\sin \dot{\theta}|}{(J+\cos \theta)^{\frac{1}{2}}}$.

- If $J>1$ then the solution mill blow up.
- If $J<1$ then we have furinev phblems
at $\theta=\pi: T(r, \pi) \sim T_{i 0}(\rho, \pi)=f(\underset{=0}{(\rho g(\pi)})=f(0)=0$
but $T\left(0, \frac{\pi}{2}\right) \sim T_{i 0}\left(0, \frac{\pi}{2}\right)=f\left(0 . g\left(\frac{\pi}{2}\right)\right)=f(0)=1$
\therefore Must have $J=1$ so that $g(\theta)=\frac{|\sin \dot{\theta}|}{(1+\cos \theta)^{1 / 2}}$. by the BPs.

Can now solve fer $t: \quad f(y)=A \int_{\eta}^{\infty} e^{-\frac{1}{2} u^{2}} d u+B$

$$
\begin{aligned}
& f \rightarrow 0 \text { as } y \rightarrow \infty \Rightarrow B=0 \\
& f=1 \text { for } \eta=0 \Rightarrow A=\sqrt{\frac{2}{\pi}} \\
& \left.\therefore \quad T_{i 0}=\sqrt{\frac{2}{\pi}} \int_{\eta}^{\infty} e^{-\frac{1}{2} u^{2}} d u \quad \text { with } \eta=\frac{\rho|\sin \theta|}{(1+\cos \theta)^{1 / 2}}\right] \rho g(\theta)
\end{aligned}
$$

NB as $\rho \rightarrow \infty$, $T_{i o}$ decays exponentially, to match mitch outer solution (solutach is exponentially small in the outer regiai).

NBI As the enter solution is equal to zen, the composite solution is given by $T_{i o}$.
NB2 Solution fouls fer $\theta=0$ and r large
\rightarrow since r large, expect (from a physical perspechve) to have $T=0$, but the cower limit on the integral is zen $\Rightarrow T(n \theta)=1$.
$\uparrow \Rightarrow$ we need another distinguished unit fer this region!! similar argument applies fer $\theta=\pi$.
$\theta=0, \pi$ - stagnation pants
AISO BLM The wahe-sheamune here comes from cylinder, not infinity.
Heat coss: $\frac{\partial T}{\partial r} \sim 0\left(\frac{1}{\Sigma^{1 / 2}}\right)$ (reason ter mind chile facter).

Example-boundany layer at infinity
Lasso an asymptric power serves that isn't interns of powers of ε)

$$
\left(x^{2} y^{\prime}\right)^{\prime}+\varepsilon x^{2} y y^{\prime}=0 \quad \text { meth } x>1, y(1)=0, y(\infty)=1, \quad 0<\varepsilon \ll 1
$$

we kill try to find a solution of the form $y \sim y_{0}+\varepsilon y_{2}+\ldots$
mill tina that this duesn't warm an its own and that we need another termof the form $\Sigma \log \left(\frac{1}{\Sigma}\right) y_{1}(x)$
To see mathis is the case - substitute, and conect terms:

$$
\begin{aligned}
& \left.O\left(\varepsilon^{0}\right):\left(x^{2} y_{0}\right)^{\prime}=0 \Rightarrow y_{0}=1-\frac{1}{x} \text { using } B C s\right) \\
& O\left(\Sigma^{\prime}\right):\left(x^{2} y_{2}{ }^{\prime}\right)^{\prime}=-x^{2} y_{0} y_{0}^{\prime}=-1+\frac{1}{x} \underbrace{\Rightarrow y_{2}(x)=A\left(1-\frac{1}{x}\right)-\ln x-\frac{\ln x}{x}}_{\begin{array}{c}
\text { integrate and } \\
\text { solvemanth } y_{2}(1)=0
\end{array}} \\
& \text { Solvent } y_{2}(1)=0 \quad y_{2}(\infty)=0 \text { fer } \\
& \text { any } A \text { since } \\
& \ln x \rightarrow \infty \text { as } \\
& x \rightarrow \infty \\
& \Rightarrow \text { BLat infinity ! }
\end{aligned}
$$

\therefore he need to expand in an inner region where x is large, and match to the canter solution where $x=\operatorname{ord}(1)$.
\rightarrow this is green by $y_{0}+\Sigma y_{2}$
Inner solution - use a new vanable $x=\frac{x}{\delta_{1}(\varepsilon)}$ where $\delta_{1}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$,
so that $X \sim \operatorname{crd}(1)$ as $x \rightarrow \infty$ and $\varepsilon \rightarrow 0^{+}$, and let $y=1+\delta_{2}(\varepsilon)$ Y mon $\delta_{L}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$. \uparrow satisfies the $B C y(\infty)=1$.
Substituting:

Hence the dominant balance comes from matching (1) and (2):

$$
\frac{\Sigma \delta_{2}}{\delta_{1}}=\delta_{2} \Rightarrow \delta_{1}=\Sigma \text { and } \delta_{2} \text { (as yet) undetermmed. }
$$

Let $y=Y_{0}(x)+0(1) \Rightarrow \frac{d}{d x}\left(x^{2} \frac{d y_{0}}{d x}\right)+x^{2} \frac{d y_{0}}{d x}=0$

$$
\Rightarrow \quad x^{2} \frac{d y_{0}}{d x}=e^{-x}
$$

$$
y_{0}(x)=B \int_{x}^{\infty} \frac{e^{-s}}{s^{2}} d s
$$

single constant B
\Rightarrow antropate we
Can mater to the outer solution

Evaluate as $x \rightarrow 0^{+}$by spiriting the integral:

$$
\begin{aligned}
\int_{x}^{\infty} \frac{1}{s^{2}} e^{-s} d s & =\int_{x}^{1} \frac{1}{s^{2}} e^{-s} d s+\int_{1}^{\infty} \frac{1}{s^{2}} e^{-s} d s \\
& =\int_{x}^{1} \frac{1-s}{s^{2}} d s+\int_{x}^{1} \frac{e^{-s}-1+s}{s^{2}} d s \\
& =\left\{\frac{1}{x}+\ln x+\operatorname{crd}(1)\right\} \quad \uparrow \sim \operatorname{crd}(1)
\end{aligned}
$$

\Rightarrow will generate a power sene with first term $\frac{1}{2} s^{2}$ - which is $\operatorname{ard}(1)$.

$$
\therefore y_{0}(x)=B\left[\frac{1}{x}+\ln x+\operatorname{crd}(1)\right] .
$$

To mateh-consider an intermediate vanable: $\hat{x}=\varepsilon^{\alpha} x=\varepsilon^{\alpha-1} X, 0<\alpha<1$. Expand both the enter and inner solutions in the intermediate vanable: then $\hat{x}=\operatorname{crd}(1)$ as $\varepsilon \rightarrow 0^{+} \Rightarrow x \rightarrow \infty$ and $X \rightarrow 0$ towards BL towards inter

$$
\begin{array}{ll}
\text { INNER: } Y_{0} \sim B\left(\frac{1}{x}+\ln x+\operatorname{crd}(1)\right) & \mid \text { OUTER: } y_{0}=1-\frac{1}{x} \\
\Rightarrow y=1+\delta_{2} y \sim 1+\delta_{2} B \frac{\varepsilon^{\alpha-1}}{\hat{x}}+\delta_{2} B \ln \left(\varepsilon^{\alpha-1} \hat{x}\right) & y_{2}=A\left(1-\frac{1}{x}\right)-\ln x-\frac{\ln x}{x} \\
& \Rightarrow y \sim 1-\frac{\varepsilon^{\alpha}}{\hat{x}}+\operatorname{crd}(\varepsilon)
\end{array}
$$

Need to match These

$$
\therefore y=1-\frac{\varepsilon}{\hat{x}}+(1-\alpha) \Sigma \ln \left(\frac{1}{\varepsilon}\right)-\underbrace{\Sigma \ln \hat{x}}_{0(\varepsilon)}
$$

$$
\begin{aligned}
& \Rightarrow \frac{-\varepsilon^{\alpha}}{\hat{x}}=\frac{\delta_{2} B \Sigma^{\alpha-1}}{\hat{x}} \Rightarrow \delta_{2}=\Sigma \\
& B=-1
\end{aligned}
$$

However, the ard (ε) term in the cuter soluhon mill never be matched by the $(1-\alpha) \Sigma \ln \left(\frac{1}{\Sigma}\right)$ term in the inner solution.
\rightarrow the y_{2} termini * generates terms at the form $\sin \left(\frac{1}{\varepsilon}\right)$ but we should really have the $\Sigma \ln \left(\frac{1}{\Sigma}\right)$ in' the asymptotic sequence as the missing y_{1} in the outer solution!
Li. We shone id have arginally taken $y(x)=y_{0}(x)+\varepsilon \ln \left(\frac{1}{\Sigma}\right) y_{1}(x)$

$$
+\Sigma y_{2}(x)+\cdots
$$

Then, $\left(x^{2} y^{\prime}\right)^{\prime}=0 \Rightarrow y_{1}=c\left(1-\frac{1}{x}\right) \leftarrow$ dresn't need io satisfy $y(\infty)=1$-will matenwitithe Inner solution.
The enter solution in the intermediate vanable is

$$
\begin{aligned}
y(x) & \sim\left(1-\frac{\varepsilon^{\alpha}}{\hat{x}}\right)+c \varepsilon \ln \left(\frac{1}{\Sigma}\right)\left(1-\frac{\varepsilon^{\alpha}}{\hat{x}}\right)+A\left(1-\frac{\varepsilon^{\alpha}}{\hat{x}}\right)-\ln \left(\varepsilon^{-\alpha} \hat{x}\right)-\frac{\ln \left(\varepsilon^{-\alpha} \hat{x}\right)}{\varepsilon^{-\alpha} \hat{x}} \\
& \sim\left(1-\frac{\varepsilon^{\alpha}}{\hat{x}}\right)+\Sigma \ln \left(\frac{1}{\Sigma}\right)(c-\alpha)+o(\varepsilon)
\end{aligned}
$$

\uparrow additional term that includes the parameter c - which we determine by matching to
the inner solution $(\delta=\varepsilon, B=-1)$.

$$
\rightarrow(1-\alpha) \Sigma \ln \left(\frac{1}{\Sigma}\right)=\Sigma \ln \left(\frac{1}{\Sigma}\right)(1-c) \Rightarrow c=\alpha
$$

\Rightarrow a's cancel v_{s} (since we need this to held fer a range of α).

NB Hare not determined A at this order - would need to go to higher order! (67)
SUMMARY
inner: $y \sim-\left[\frac{1}{x}+\ln x+\operatorname{crd}(1)\right]$

Outer: $y \sim 1-\frac{1}{x}+\varepsilon \ln \left(\frac{1}{\varepsilon}\right)\left(1-\frac{1}{x}\right)+o(\varepsilon)$
To go to higher orders - he need to use the follaning expansiai sequence:

$$
\left.1_{1} \varepsilon \ln \left(\frac{1}{\Sigma}\right), \varepsilon, \varepsilon^{2} \ln \left\lvert\, \frac{1}{\Sigma}\right.\right), \varepsilon^{2}\left(\ln \left(\frac{1}{\Sigma}\right)\right)^{2}, \varepsilon_{1}^{2} \ldots
$$

NB he can only use van Dyke's matching rule it we let $\left.\ln \left\lvert\, \frac{1}{\varepsilon}\right.\right) \sim \operatorname{ard}(1)$ directly contradicts our assumption we treated $\ln \left(\frac{1}{2}\right) \gg 1$!

