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Course Overview

Network Science provides generic tools to model and analyse systems in a broad range of disciplines,
including biology, computer science and sociology. This course aims at providing an introduction to
this interdisciplinary field of research, by integrating tools from graph theory, statistics and dynamical
systems. Most of the topics to be considered are active modern research areas.

This year course has been altered to incorporate some new material on dynamically evolving networks
and the analysis of scaling properties of growing networks.

Learning Outcomes: Students will have developed a sound knowledge and appreciation of some of
the tools, concepts, models, and computations used in the study of networks. The study of networks
is predominantly a modern subject, so the students will also be expected to develop the ability to read
and understand current (2010-2022) research papers in the field.

Course Synopsis: roughly week by week
1. PRELIMINARIES. Probability theory; Renewal processes; Random walks; Power-law distribu-
tions; Matrix algebra; Markov chains.

2. BASIC STRUCTURAL PROPERTIES OF NETWORKS. Network Definitions; Degree distribu-
tion; Measures from walks and paths; Clustering coefficient; Centrality Measures; Spectral properties.

3. RANDOM GRAPH MODELS. Random Graphs; Erdös-Rényi random graph; Stochastic Block
model; Configuration model; Small World model; Growing network with preferential attachment;
Max likelihood calibration

4. COMMUNITY DETECTION: spectral method; Modularity

5. DYNAMICALLY EVOLVING NETWORKS: Markov chains of random graphs, application to
triadic closure, via a mean field analysis

6. CONSENSUS DYNAMICS: Dynamics on networks

7. RANDOM WALKS : Discrete-time random walks on networks; PageRank; Models of epidemics

8. SCALING PROPERTIES OF GROWING NETWORKS: sequentially combining networks to form
large growing networks.
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1 PRELIMINARIES

1.1 Probability

Probability theory plays an important part in defining different classes of networks (and fitting net-
works to data), the dynamics of time-dependent networks, as well the dynamics of walks over net-
works. For those who have not studied probability in any great depth we begin with some basic
foundations. Those who are interested further should consult [41], which is freely available online
and is a life-changing book. Bayesian probabilities are subjective: we can each estimate our own
priors based on our own knowledge and experience. In certain very well defined cases (such as the
drawing playing cards from a pack, all coloured balls from an urn) we might all agree. Bayesian prob-
abilities are usually conditional, and so they may be updated as more information becomes available
to us (via Bayes’ rule, given below). The important idea is that we all update the probabilities in a
consistent way.

We deploy a conditional notation:
P (X|Y ),

which denotes the probability that a proposition X is true given that the proposition Y is true. Some-
times Y may denote a list of possibly inter-dependent propositions and sometimes it may be null, in
which case we just write P (X), the probability that X is true in any and all circumstances (thatis,
with no conditions).

In all our usage we will always have

P (X|Y ) = 1− P (notX|Y ).

Here notX is the logical opposite proposition of X .

Then we may combine successive conditional probabilities by multiplication

P (X and Y ) = P (X|Y ).P (Y ) = P (Y |X).P (X).

And so on. . .

P (A,B and C) = P (A and B|C).P (C) = P (A|B,C).P (B|C).P (C).

These two features of probability mat be derived from basic requirements of consistency [41].

Rearranging the alternative expressions for P (X and Y ) we obtain Bayes’ rule:

P (X|Y ) = P (Y |X).P (X)/P (Y ).

We usually say that P (X) is the prior probability of X , and that P (X|Y ) is the posterior probability
of X , the probability of X after we know that Y is true. In most applications Y will denote some set
of observations (or some given data) while X will denote some proposition of interest.

If X and Y are independent then P (Y |X) = P (Y ). In that case P (X and Y ) = P (X).P (Y ).
Strangely this multiplication of independent probabilities is usually taught first in schools.

Let O(X|Y ) = P (X|Y )/P (notX|Y ) on [0,∞) denote the odds of X given Y , and so on. Then
Bayes’ rule can be rewritten as

O(X|Y ) =
P (Y |X)

P (Y |notX)
.O(X).
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This gets rid of the division by P (Y ): we can see how the prior odds are updated to become the
posterior odds by the ratio of the probabilities of Y given X and notX . The ratio is usually called a
Bayes factor.

Bayes’ rule is often ignored by many (non-mathematical) professionals who should know better.

A person is the victim of knife crime in a New York neighbourhood [2]. The police fan out over
the area and after one hour they arrest a man, taking him to the police station. He is found to
have a knife hidden about his person. Does that fact make him more or less likely to be guilty?
The Police Chief immediately lets him go free. Let X= “The suspect is the perpetrator”, and
P (X) = p at the time of arrest (p is subjective). Let Y = “The suspect has a knife”. About 10%
of all men in the particular neighbourhood carry a knife, so P (Y |notX) = 1/10. Only 1/1000
perpetrators would be crazy enough to still have a knife on them an hour after after committing a
knife crime. So we have

O(X|Y ) =
1/1000

1/10
.

p

(1− p)
. =

1

100
.

p

(1− p)
.

This Bayesian machinery works whether we are considering the probabilities of events with discrete
possible outcomes or of continuous varying events, such as unknown real parameters.

In the former case we may have uncertainty over a discrete random variable, which might be an inte-
ger (the count of a given type of instance) or a categorical variable (such as gender, or eye colour) that
is restricted to a discrete number of alternatives. The variable in question may take a number of mutu-
ally exclusive distinct values. Where there is a finite number of such alternatives, say {α1, . . . , αK},
this is usually described by a multinomial distribution. This is a set of probabilities {pk|k = 1, . . . , K}
that sum to unity, and pk is the probability that the variable is equal to αk, has a type-k outcome. The
distribution when there are just two types of outcome (heads or tails for some possibly biased coin,
for example) is well known with probabilities p and (1− p). Multiple experiments/observations give
rise to combined outcomes distributed by the Binomial distribution as follows. If we have n inde-
pendent experiments with exactly k type-1 results and n− k type-2 results then the probability mass
distribution is given by (

n

k

)
pk(1− p)k

because pk(1 − p)k is the probability of each specific sequence of outcomes occuring with exactly k
type-1 results; and there are

(
n
k

)
such sequences.

In the latter case we uncertainty over the value of some continuous random variable, θ, within some
admissible set Ω, that may be analysed from observations (data). Suppose that our prior distribution
for such a θ ∈ Ω is some non-negative function P (θ) = f(θ) and that we observe a piece of new data,
D. Then we have

P (θ|D) = P (D|θ)f(θ)/P (D) ∝ P (D|θ)f(θ),

since P (D) is just a normalising constant and plays no active roll in distributing θ. In fact we can
always normalise P (D|θ)f(θ) by making sure that the integral over admissible θ values is equal to
unity. So the posterior distribution is given by

P (θ|D) =
P (D|θ)f(θ)∫

Ω
P (D|θ)f(θ) dθ

. (1)

The terms P (D|θ) should be thought of as a model. We must assume some model form for possible
values of the data D given the possible values of θ. As modellers we will impose that model based on
our experience and our own assumptions (our prior subjective pre-judgement).
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Maximum likelihood estimation refers to finds the best value, the most likely value of θ, say θ∗,
given the data D:

θ∗ = argmaxθP (D|θ)f(θ).

It provides one way, the mode, to summarise the posterior distribution for θ.

One might prefer the expected value (the mean) of the posterior distribution:

〈θ〉 =

∫
Ω
θP (D|θ)f(θ) dθ∫

Ω
P (D|θ)f(θ) dθ

,

but this is polluted by the extreme values and the behaviour of the tails of the distribution. The mode
is usually easily found using calculus (especially in the case of Gaussians) or by some optimisation
via hill walking, gradient, methods.

We will aways use the notation 〈.〉 to denote the expected value of the expression inside. Higher
moments are calculated similarly:

〈θk〉 =

∫
Ω
θkP (D|θ)f(θ) dθ∫

Ω
P (D|θ)f(θ) dθ

, k = 1, 2, . . . .

In particular we have the variance

σ2
θ = 〈(θ − 〈θ〉)2〉 = 〈θ2〉 − 〈θ〉2.

When we are confronted with empirical data, a crucial step is to find the parameter values that best
reproduce the data, given a model. There exist many different approaches to parameter fitting. The
use of maximum likelihood is surely the most popular.

Firstly though, in practice we do not always bother to normalise probability distributions. If we have
a distribution we can always divide it by a constant so that is integrates or sums to unity (whenever
we need to). It is only important that it is non negative. In Bayes’ theorem we will usually ignore the
denominator write (1) simply as

P (θ|D) ∼ P (D|θ)f(θ).

Even more permissively, sometimes we will consider distributions (especially as priors) which cannot
be summed (they have an infinite mass): these are termed improper distributions, f(θ). Nevertheless
they still possess maxima and must still be nonnegative, so maximum likelihood methods (usually
gradient search numerical methods, or detremined via calculus etc) can be applied for such distribu-
tions.

Consider a sequence of m observations {xi} (i = 1, 2, . . . ,m). Suppose that we are trying to fit a
certain model for the distribution of possible values of the individual observations, say q(x|θ), whose
parameter vector, denoted by θ, is assumed to have a support in Ω, and our prior distribution f(θ) is
a constant, meaning any possible admissible value of θ ∈ Ω is equally likely.

Maximum likelihood dictates that the parameter values are chosen to maximise the probability with
which the model generates the observed data. To this end, we calculate p(θ|{xi}), which is related to
p(xi|θ) by Bayes’ law, as above. We have the posterior,

p(θ|{xi}) =
p(xi|θ)
p(xi)

.
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In maximising this quantity, and thus estimate θ, we can simply ignore the denominator since By
definition, the probability of observing certain data is fixed, and it does affect the optimisation of θ.
Then, p(θ|{xi}) and p(xi|θ) , the likelihood of the data given θ, are proportional to each other, and
the locations of their maxima coincide.

As an example, consider the model in which each individual xi independently obeys the same model
distribution, say q(x|θ). (As modellers we can propose or assert a model of our choice give our
experience and knowledge.) Then likelihood of the data, L is given by

L =
∏
i=1m

q(xi|θ).

Note (as we saw earlier) the multiplication of probabilities can only be valued when each successive
observation is independent of the others.

In almost all practical circumstances we take logs and rather than maximise L we will maximise
logL:

logL =
∑
i=1m

log(xi|θ).

This is because when we try to multiply hundreds or thousands of probabilities together we may get
sufficiently small num bers to be below machine accuracy, since the largish data sample outcomes
are more and more diversified and thus all occurrences (even at the maximum likelihood) become
unlikely. If in doubt, then, one is always advised to take logarithms; and one should avoid models for
which q(x|θ) = 0 anywhere relevant.

1.2 Matrix Algebra

We begin with some basic considerations from linear algebra.

A self-adjoint matrix, or Hermitian matrix, A, is such that A = A∗, the complex conjugate transpose
of A. If A is real then this means A = AT . Every self-adjoint matrix is a normal matrix, meaning
that is diagonalisable. Indeed the spectral theorem says that any real self-adjoint matrix can be diag-
onalised by a unitary matrix: UT .A.U is diagonal, where U is unitary, and that the resulting diagonal
matrix has only real entries. This implies that all eigenvalues of a self-adjoint matrix are real, and that
it has a full set of linearly independent eigenvectors.

Exercise Show that all of the eigenvalues of a self-adjoint matrix, A are real.

Non-negative matrices play a very important role within many theories including network theory,
unsupervised discrimination, mathematical economics and Markov chain theory. Nonnegative sym-
metric matrices are especially interesting since their spectrum is real. Many courses on linear algebra
do not emphasise the properties of nonnegative matrices, but within analytics of many areas of busi-
ness they occur quite often.

The Perron-Frobenius theorem gives us a ready way to estimate the spectral radius of nonnegative
matrices and other things besides. It was proved by Oskar Perron and Georg Frobenius and says that
a real square matrix with strictly positive entries has a unique largest real eigenvalue and that the
corresponding eigenvector has strictly positive components, and it also asserts a similar statement for
certain classes of nonnegative matrices, called irreducible nonnegative matrices.

A non-negative matrixA is irreducible if for every pair of indices i and j, there exists a natural number
k, depending on (i, j), such that (Ak)ij > 0. If A is real and A > 0 then it is trivially irreducible
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(we will see later what this condition means when A is an adjacency matrix). We state the following
standard result without proof.

Perron-Frobenius Theorem Let A be an irreducible non-negative n× n matrix with spectral radius
ρ(A) = r > 0. Then the following statements hold.
a) r is an eigenvalue of the matrix A, called the Perron-Frobenius eigenvalue.
b) The Perron-Frobenius eigenvalue, r, is simple. Both right and left eigenspaces are one-dimensional.
c) A has a left eigenvector and a right eigenvector with eigenvalue rwhose components are all posi-
tive.
d) The only eigenvectors whose components are all positive are those associated with the eigenvalue
r.
e) The Perron-Frobenius eigenvalue is bounded above and below by the maximum and minimum row
sums of A respectively:

min
i=1,..,n

n∑
j=1

Aij ≤ r ≤ max
i=1,..,n

n∑
j=1

Aij.

Similarly r is bounded above and below by the maximum and minimum column sums of A.

Exercise. Suppose an n× n matrix A is nonnegative and the spectral radius of A is given by the
Perron-Frobenius eigenvalue, r. Let α ∈ (0, r). Then consider

(I − αA)−1.

Show that if this matrix is strictly positive then A is irreducible. Is the converse true? Show that
if the matrix

exp(A) = I + A+ A2/2! + A3/3! + . . .

is strictly positive then A is irreducible. Is the converse true?

The singular value decomposition of a matrix is an extremely useful factorisation of a general matrix
that finds uses in all sorts of fields: matrix approximation, the definition of pseudo inverses, total least
squares, and many other applications including signal processing and state space embedding methods.

Let M denote an m× n matrix whose entries are real or complex. The singular value decomposition
of M is a factorization of the form

M = UΣV ∗,

where U is an m×m unitary matrix; Σ is an m× n diagonal matrix with nonnegative real numbers
on the diagonal; and V ∗ denotes the conjugate transpose of the n× n unitary matrix V .

The diagonal entries of Σ are known as the singular values of M . A common convention is to list the
singular values in descending order.

The m columns of U and the n columns of V are called the left-singular vectors and right-singular
vectors of M , respectively. The ideas of singular value decomposition and the eigenvalue decompo-
sition are closely related. In particular, we have both

MM∗ = U(ΣΣ∗)U∗, M∗M = V (Σ∗Σ)V ∗,

and these relations describe eigenvalue decompositions. Thus the left-singular vectors of M are
eigenvectors of MM∗, and right-singular vectors of M are eigenvectors of M∗M . Hence the non-
zero singular values of M (found on the diagonal entries of Σ) are the square roots of the non-zero
eigenvalues of both M∗M and MM∗.
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The singular value decomposition can define the pseudo-inverse of a matrix. Indeed, the pseudoin-
verse of the matrix M with singular value decomposition is M+ = V Σ+U∗ where Σ+ is the pseudo-
nverse of Σ, formed by replacing every non-zero diagonal entry by its reciprocal and transposing the
resulting matrix. Working numerically one only “inverts” those singular values greater than some
small tolerance.

The singular value decomposition can be applied to any m×n matrix, whereas eigenvalue decompo-
sition can only be applied to certain classes of square matrices.

In the special case that m = n and M is a normal matrix, the spectral theorem says that it can
be unitarily diagonalised using a basis of eigenvectors, so that it can be decomposed UDU∗, with
a unitary matrix U and a diagonal matrix D. Thus if M is also positive semi-definite, then the
eigenvalue decomposition is also a singular value decomposition. Yet the eigenvalue decomposition
and the singular value decomposition will differ for all other matrices.

Exercise
Suppose A is normal and invertible. Then there is a unitary U such that A = UΛUT and Λ is
diagonal containing the eigenvalues of A. Let f : R → R be any function that is well defined at
all of the eigenvalues of A. Define f(A) = Uf(Λ)UT where f(Λ) is diagonal; with f applied to
each corresponding element of Λ.

a) Show that if Q is any polynomial

Q(x) = q0 + q1x+ ...+ qmx
m

then
Q(A) = q0I + q1A+ ...+ qmA

m.

b) Similarly show that

Q(A− I) = q0I + q1(A− I) + ...+ qm(A− I)m = UQ(Λ− I)UT ,

and

c) that
Q(A)−1 = UQ(Λ)−1UT.

Exercise
Suppose A is normal and its spectral radius is ρ(A) < 1/α for some α > 0. Then consider
(I − αA)−1 = U(I − αΛ)−1UT . Show that this is the geometric series S = I + αA + α2A2 +
α3A2 + . . .

Suppose that A is a real, non-negative, normal, n × n matrix and let s = (1, 1, . . . , 1)T ∈ RN .
Then the vector As = (d1, d2, ..., dn)T contains the row (and hence the column) sums of A. Let
D = diag(d1, d2, ..., dn) be the diagonal matrix of A’s row sums.

The (combinatorial) Laplacian associated with A, denoted by L, is the symmetric matrix

L = D − A.

Note the sign convention here: it is inherited from that of the discrete graph Laplacian (continuum
mechanicists might well wish to write L as the negative of this).
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Then, by design, we have
L.s = 0,

and for all w = (w1, . . . , wn)T ∈ Rn we have the quadratic form:

wT .L.w =
1

2

m∑
i,j=1

(wi − wj)2Aij. (2)

Please prove this. We have

wT .L.w =
n∑
i=1

diw
2
i −

n∑
i,j=1

Aijwiwj =
n∑

i,j=1

Aijw
2
i −

n∑
i,j=1

Aijwiwj.

But, using the symmetry of A, we have the first term,

n∑
i,j=1

Aijw
2
i =

1

2

n∑
i,j=1

Aij(w
2
i + w2

j ).

Hence the result.

Thus L is always positive-semidefinite, and if w is any eigenvector of L corresponding to the zero
eigenvalue of L then its components must be the same for any pair (i, j) where Aij > 0.

1.3 Markov chains

Markov chains are stochastic dynamics on n states in discrete time. A state may be the position in
a network having n vertices such that the process represents a random walk on the network. Al-
ternatively, a state may be the number of infected people, between 0 and n − 1, in a structureless
population of N − 1 individuals. In both cases, we number the states as 1, 2, ..., n. The state at time
t. (t = 0, 1, . . . ), which is a random variable, is denoted by Xt .

In a stochastic process on N states in general, state Xt+1 may depend on all preceding states (the
full history) of the dynamics, i.e., X0, X1, ..., Xt. Under the Markov assumption, the conditional
probability to observe a state at time t + 1 only depends on the state at time t. Such a discrete
stochastic process is called the Markov chain.

Among the class of Markov chains, we are often interested in the stationary ones, in which the condi-
tional state-transition probability does not depend on t: it has fixed (matrix of) transition probabilities,

p(Xt+1 = j|Xt = i) ≡ Tij.

Processes satisfying both properties, Markovianity and stationarity, are called stationary Markov
chains. Because any realisation of the process visiting state i must go somewhere, including itself, at
the next time step, we obtain

1 =
n∑
j=1

Tij.

A stationary Markov chain is fully described by an initial state and an n × n transition matrix T =
(Tij). The probability that state i is visited at time t, denoted by py(t), evolves according to

pj(t+ 1) =
∑

pi(t)Tij (1 ≤ j ≤ N).
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It should be noted that
∑n

i=1 pi(t) = 1 for any t, if the initial condition is properly normalised. The
evolution equation may be compactly rewritten in vector form as

p(t+ 1) = p(t)T,

where p(t) is the row vector (p1(t), . . . , pN(t)).

We also have
p(t) = p(0)T t. (3)

A Markov chain is composed of different types of states. By definition, the process does not escape
from an absorbing state once it has been reached. State i is absorbing if and only if Tii = 1, which
implies that Tij = 0 for any j 6= i. A group of states forms an ergodic set if it is possible to go from
i to j for any states i and j in the set and if the process does not leave the set once the process has
reached it. An absorbing state is thus an ergodic set composed of a single state. Finally, a state is
called a transient state if it is not a member of an ergodic set.

We denote the non-negative stationary density by p∗ = (p∗1, . . . , p
∗
n), where p∗i = limt→∞ pi(t) for

1 ≤ i ≤ n: clearly we must have
p∗ = p∗T.

Therefore, the stationary density is the left eigenvector of T with eigenvalue equal to unity. If the
entire set of the n states is ergodic, T is guaranteed to have such an eigenvalue of unity: p∗ is simply
the Perron-Frobenius left eigenvector and 1 is the Perron-Frobenius eigenvalue. This observation is
consistent with the fact that all elements of the Perron-Frobenius vector are positive. In addition, the
discrepancy of p(t) from p∗ decays exponentially as∝ |λ2|t, where λ2 is the second largest eigenvalue
of T in terms of the modulus. In words, the second largest eigenvalue governs the relaxation time of
the iterate. More generally, the speed of convergence is determined by the difference or ratio between
λ2 and λmax, with the latter being equal to unity in the current case. Therefore, we often call 1 − λ2

the spectral gap. A Markov chain with a large spectral gap converges rapidly.

Markov chain theory also allows us to answer other types of questions. For example, how long on
average do the dynamics need to reach a certain state? What is the probability of ending in a certain
absorbing state, depending on the initial condition?

1.4 Renewal Processes

Let us consider a system where events take place in a discrete and apparently random fashion. Those
events may be emails arriving in a mail box, or atoms colliding in a gas. Such systems are often
modelled, as a first order approximation, by a Poisson process, also called the homogeneous Poisson
process. The Poisson process assumes that the events are independent of each other, that the rate at
which the events take place is constant over time and that time is continuous. These assumptions are
often violated in empirical data. For instance, in the case of emails, their reception certainly depends
on the time of the day and on the day of the week. In addition, emails are often not independent
processes; an email may trigger a discussion thread between two users, causing a cascade of emails.
Yet, the Poisson processes are advantageous in their simplicity, which allows us to exactly calculate
their properties and make them serve as a baseline model.

The Poisson process is defined as follows. Consider a time window of duration ∆t and the probability
q that an event takes place within time ∆t. By definition, the event rate is given by λ = q/∆t. A
Poisson process is specified by the rate λfor infinitesimally small ∆t. For λ to be well-defined, q → 0
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must be satisfied as ∆t → 0. Consistent with this requirement, we do not allow multiple events to
occur in a time window when ∆t is sufficiently small.

We derive two key properties of Poisson processes.

(1) The distribution of inter-event times, i.e., time between consecutive events: Let p(n, t) be the
probability of observing n events in time window [0, t]. By definition, for small ∆t, we have

q = p(1,∆t) = λ∆t,

and
1− q = p(0,∆t) = 1− λ∆t.

For any n ≥ 1, we obtain

p(n, t+ ∆t) = p(n, t)(1− λ∆t) + p(n− 1, t)p(1,∆t).

This holds true because, if there aren events in time window [0, t + ∆t], either there are n events in
[0, t] and no event in [t, t + ∆t], or there are n − 1 events in in [0, t]and one event in [t, t + ∆t],. In
the limit as ∆t→ 0 we have

dp(n, t)

dt
= λp(n− 1, t)− λp(n, t). (4)

For n = 0, p(0, t) is the probability that no event occurs in [0, t], and so we have p(0, 0) = 1, so we
obtain

dp(0, t)

dt
= −λp(n, t),

so
p(0, t) = e−λt.

The probability that the first event occurs in [t, t+ ∆t] is given by p(0, t)− p(0, t+ ∆t). This implies
that the inter-event time between two consecutive events, denoted by τ , is distributed according to the
density

ψ(τ) = −dp(0, τ)

dτ
= λe−λτ .

So the inter-event time of a Poisson process is distributed according to this exponential distribution.

The mean inter-event time is given by

〈τ〉 =

∫ ∞
0

τψ(τ)dτ =
1

λ
.

In Poisson processes, different interevent times τ are independent of each other because event times
before the last event time do not affect the time to the next event since then. This property is called
the renewal property of a Poisson process. Poisson processes satisfy a stronger property, i.e., having
no memory in the sense that

p(τ > t1 + t2|τ > t2) = p(τ > t1).

This indicates that the length of time, t2, for which we have waited without an event does not affect
the time of the next event. The time to the next event starting from t = t2, that is t1, is independent of
t2 and obeys ψ(t1).
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(2) The distribution of the number of events observed within a given time window. Using Eq. (4)
recursively, with p(n.0) = 0 for n ≥ 1, we obtain

p(n, t) =
(λt)n

n!
e−λt.

Therefore, the probability of observing n events in [0, t] obeys the Poisson distribution with mean and
variance equal to λt. The Poisson distribution is a limiting case of the binomial distribution when the
number of trials is very large and the expected number of successes remains fixed. This interpretation
is consistent with the discrete-time formulation of the Poisson process because in [0, t], there are t/∆t
trials in each of which an event occurs with small probability q. Therefore, the number of events in
[0, t] is distributed according to the binomial distribution whose mean is equal to (t/∆t)× q = λt.

1.5 Random walks and diffusion in discrete time

The Poisson processes provide a basic model for modelling temporal events, when random events
take place. Random walk processes are its counterpart for modelling trajectories in space: when and
where random events take place. Random walk processes are a standard tool to emulate diffusion on
networks and also to extract information from the structure of networks, as we will show later. In this
section, we derive some basic properties of random walk processes in their simplest setting, when
they take place on a one-dimensional space (the real line) in discrete time.

In each discrete time step, a walker performs a jump whose length and direction are random variables.
The probability density of transition is denoted by f(r). In other words, the probability that the walker
located at x arrives in the interval [x+r, x+r+∆r] in one jump is equal to f(r)∆r. The normalisation
condition is given by

∫∞
−∞ f(r)dr = 1.

Our aim is to derive the density of the probability density that the walker is located at x after tsteps,
denoted by p(x; t). Under the assumption that jumps are inde-pendent events, we obtain the following
master equation:

p(x; t) =

∫ ∞
−∞

f(x− x′)p(x′, t− 1)dx′

because the probability of visiting x at time t is the prob-ability of having visited x′ at time t− 1, and
performing a jump of displacement x− x′.

The Fourier transform transfers a convolution into a product. So we have

p̂(k; t) = f̂(k)p̂(k; t− 1),

where
ĝ(k) =

∫ ∞
−∞

g(x)e−ikxdx

denotes the Fourier transform of the function g(x).

If the walker known to be at x = 0 at t = 0 then we have p(x; 0) = δ(x), the Dirac distribution; and
so p̂(k; 0) = 1. Putting this all together, we have

p̂(k; t) = [f̂(k)]t.

Using the inverse Fourier transform, the formal solution of the random walk in the time domain is
given by

p̂(x; t) =
1

2pi

∫ ∞
−∞

[f̂(k)]te−ikxdk,
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This solution depends on the function, f̂(k). However, the asymptotic behaviour of the random walk
as t grows only depends on some of its properties.

When the first two moments of the structure function are finite (the mean and variance of f ), the
solution converges to the Gaussian profile

p(x; t) =
1

(2πDt)1/2
e−

(x−vt)2

4Dt ,

with a variance controlled by a constant D growing linearly in time.

Alternatively the appearance of a Gaussian distribution is anticipated by the use of the Central Limit
Theorem, since the walk is made up of the sum of a number of independent steps, each drawn from a
distribution, f , itself having a finite variance.

Spatial processes that yield distributions having a variance which grows linearly in time, and have no
memory, are all general forms of diffusion.

If f has no finite variance (it is infinite) the spatial process is not diffusive: large jumps are possible
(F might be a Cauchy distribution for example) . In that case a Lévy flight is often the consequence,
giving a distribution p(x; t) that has a fat and growing tail. These processes are often observed in the
analysis of stock market equity data movements and that of other financial instruments.

1.6 Power-law distributions

We have seen the emergence of two types of distributions in stochastic processes, the exponential
distribution in the case of Poisson processes, and the Gaussian distribution in the case of random walk
processes. Another type of distribution, the power-law distribution, plays a central role in network
science and in the theory of complex systems in general.

In this section we overview properties of power-law distributions and raise some flags in order to
properly use them when modelling complex systems.

We explain a power-law distribution for continuous variables, keeping in mind that most of the obser-
vations generalise to the case of discrete variables. Consider the Pareto distribution given by

p(x) = Cx−α (x > xmin),

where α > 1 is the power-law exponent of the distribution, xmin > 0 is the minimum value taken by
the random variable and C = (α− 1)xα−1 is the normalisation constant, so that∫ ∞

xmin

p(x)dx = 1.

Other more general power-laws distributions are, by definition, those that are asymptotically (for large
x) the same as this up to a normalisation constant.

Power-law distributions mainly differ from the exponential and Gaussian distributions by the signifi-
cant mass of probability carried by their “fat” tail, at the large values of x. The exponential and Gaus-
sian distributions have a characteristic scale such that the probability of observing instances many
times larger than this scale is negligible. In contrast, under a power-law distribution, a vast majority
of instances exhibits small values while few but non-negligible instances produce very large values.
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Power-law distributions are associated with a broad heterogeneity in the system and are said to have
a fat or long tail, because the tail of the distribution is much more populated than in exponential-like
distributions. Power-law distributions are typically found in the wealth of individuals, populations
of cities, the frequency of words in text, sales of books and music, citations that a scientific paper
receives and so forth. This is summarised in many applications in [12].

Since the advent of the Pareto distribution, and the associated Zipf’s law, power-law distributions
have been studied over a century. We stress that fat tails are also present in distributions with out a
power-law tail. Examples include stretched exponential distributions and log-normal distributions.

The moments of power-law distributions are given by

〈xβ〉 =

∫ ∞
xmin

xβp(x)dx =
α− 1

α− 1− β
xβmin.

This moments for which β > α− 1 are divergent and do not exist. For example, the sample mean for
the power-law distribution with α = 2 diverges as we accumulate samples.

The Cauchy distribution (occurring for Levy flight spatial processes - see the box below) is of the
form ∼ 1/(1 + x2) and is asymptotic to p(x), above, where α = 2. This it has no expected value and
no finite variance. Hence if individual independent samples from the Cauchy distribution are summed
(aggregated) to model a memoryless stochastic spatial process, the Central Limit Theorem does not
apply (it only applies when increments are drawn for a distribution with a finite variance) and hence
there can be no longer-term, larger-scale, diffusion-like behaviour (see box below).

Memoryless spatial processes: Fickian diffusion and Lévy flights in continuous time
Let X = Lp(R) for p ≥ 1. Let f ∈ L1(R) denote a real nonnegative function with unit mass, and
r be a positive real parameter. For continuous time t > 0 we define the “similarity” function

Ft(x) =
1

tr
f
( x
tr

)
,

and the corresponding family mappings St, evolving any initial distribution, u ∈ X , at time t = 0,
via the convolutions

St.u = Ft ∗ u, u ∈ X.

Then for any well-defined, memoryless, time-dependent evolution we must have Sta+tb .u =
Stb .Sta .u, for all ta, tb > 0. This requires that S satisfies the semigroup property: Sta+tb = Sta .Stb
for ta, tb > 0. Taking Fourier transforms we see that this last is true if and only F̂t(k) = etg(k),
for some even function g(k) vanishing at k = 0, and tending to −∞ for k large. On the other
hand, given the definition of Ft, a direct calculation of the transform shows that F̂t(k) = f̂(tr|k|).

Putting these together we must have g(k) = −µ.|k|1/r, for some constant µ > 0 (without loss of
generality we take µ = 1) so that, f̂(trk) = e−t|k|

1/r
.

If r = 1/2 we recover the usual Fickian (diffusion) process: Ft(x) is the fundamental solution of
the diffusion equation. The semigroup St is the Gauss-Weierstrasse semigroup.

If r = 1 we obtain Ft(x) = 1/ (πt(1 + (x/t)2)), the standard Cauchy distribution. The semi-
group St is called the Poisson or Cauchy semigroup.

These two examples are very well known [13, 14] with the general case 1/2 ≤ r ≤ 1 treated in
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[13]: in fact, for r outside of this range f is not non-negative so we may rule out such cases.

Variations on Lévy motions and the corresponding fractional partial differential equations have
been very widely proposed for use within pricing models in finance applications, extending the
Black-Scholes method . Almost all of the resulting analysis seems to resort to numerical (sam-
pling) methods. The semigroup property ensures that there is no memory dependence of solutions
so the adoption of this class of dispersive process does not invite infinite opportunities for arbi-
trage.

In many applications Lévy flight methods are developed with controlled truncations of the Cauchy
distribution.

Other properties of power-law distributions include the following:

• Power-law distributions are scale-invariant because they satisfy

p(c1x) = c2p(x)

for large x, where c1 and c2 are constants. This implies that multiplying the variable, or equiv-
alently, changing the unit in which it is measured, does not affect properties of the system.

• Power-law distributions conveniently take the form of a straight line in a log-log plot because

log p(x) = logC − α log x.

When testing if empirical data are power-law distributed, it is instructive (but not conclusive)
to plot their distribution on the log-log scale.

Although we have introduced power-law distributions for a real stochastic variable x, it is easy to
see how the above idea applies to distributions for integer valued stochastic variables, which are
normalised by sums rather than by integrals. If such distributions decay as a power law then moments
are calculated through series, which may or may not converge.

Many networks exhibit power-law distributions in their network properties, such as the (integer) dis-
tribution for vertex degree which is defined in Section 2 below.

Exercise
Take an electronic version of a large book, measure the number of occurrences of each word and
then plot the distribution of these numbers. Observe the behaviour of the distribution for large
values (very popular words). Plot the “Zipf plot” of the data, that it is the relation between the
rank of the word and the number of occurrences of the word. Any connection between the Zipf
plot and the distribution?

1.7 Entropy, information and similarity measures

The entropy of a random variable, denoted by H , is a measure of its uncertainty and quantifies how
much we know about a variable before observing it. After the observation, we get rid of the uncer-
tainty and thus gain information H about the system. For a discrete random variable X , that can take
one of n possible values (with the process existing in one of exactly n states), x, each with probability
p(x) the entropy is defined as

H(X) = −
∑
x

p(x) log p(x).
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The maximum value H(X) = log n is realised when p(x) is the uniform density, (p(x) = 1/n). The
minimum value H(X) = 0 is realised when X is deterministic, where p(x) = δx,x0 for a specific
value x0, and δ is Kronecker delta. Small H is complete order and certianty: larger H corresponds to
more and more disorder and uncertainty.

The joint entropy H(X, Y ) of a pair of discrete random variables with joint distribution p(x, y) is
defined as

H(X, Y ) = −
∑
x

∑
y

p(x, y) log p(x, y).

Similarly the conditional entropy H(Y |X) is defined as

H(Y |X) = −
∑
x

∑
y

p(x, y) log p(y|x) =
∑
x

p(x)H(Y |X = x),

and refers to the entropy of Y conditioned on the value of X and is averaged over all possible values
of X .

The joint entropy and conditional entropy are related by the chain rule:

H(X, Y ) = H(X) +H(Y |X).

This states that the total uncertainty about X and Y is simply the uncertainty about X , plus the aver-
age uncertainty about Y once X is known.

What does the knowledge of one variable tell us about another one? The conditional entropyH(Y |X)
addresses this question. More precisely, mutual information I(X, Y ) is defined as the amount of
information gained on X by knowing the value of Y as follows:

I(X, Y ) ≡ H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ).

If Y is perfectly informative in the sense that it tells us everything about X , mutual information
reduces to the entropy of X because I(X, Y ) = H(X) −H(X|Y ) = H(X). Mutual information is
rewritten as

Mutual information may be rewritten as

I(X, Y ) =
∑
x

∑
y

p(y, x) log
p(y, x)

p(x)p(y)
,

and is clearly symmetric.

Mutual information measures the cost of assuming that two variables are independent when they are in
fact not. Mutual information captures non-linear correlations between random variables, in contrast
to linear quantities such as the Pearson correlation coefficient; since the nature of the distribution
around any nonlinear relationship is subsumed within the joint distribution, p(y, x).
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2 BASIC STRUCTURAL PROPERTIES OF NETWORKS

In this chapter we give an introduction to some basic ideas an Model Exampled concepts within
network science.

2.1 Network Definitions

A network is a system made of vertices connected by links. Links can be undirected or directed, and
un-weighted or weighted. In the mathematical literature, a network is called a “graph”. It is defined
as

G = (V,E),

where V is a set of vertices (also called vertices) and E is a set of edges (also called links).

The number of vertices and that of edges are denoted by n and m throughout. Each edge is defined by
a pair of vertices, i.e., e = (v, v′) ∈ E. In the case of undirected networks, the order of v and v′ does
not matter. In the case of directed networks, (v, v′) indicates a link from v to v′, and if (v, v′) ∈ E
and (v′, v) ∈ E, the two vertices are reciprocally connected. In the case of weighted networks, edges
are also assigned with a weight function, characterising the importance or weight of the link.

In order to efficiently store networks and to carry out computations, it is necessary to use appropriate
data structure. Each representation emphasises a certain aspect of the network and is amenable to
certain types of computational or mathematical operations. For sparse graphs it may be easier tio just
keep a list of present edges.

A network can be represented by the corresponding n × n adjacency matrix. Being adjacent means
that two vertices are directly connected by an edge.

In the case of unweighted networks, the entries of the adjacency matrix are given by

Aij = 1 if (vi, vj) ∈ E; Aij = 0 otherwise.

In general we will not allow self to self connections (self-loops), or double edges. So A is always
binary and has all zeros all along its diagonal.

Sometimes we will write GA to denote the network with adjacency matrix A, implicitly defining the
vertex set.

A walk through a network is an ordered sequence of links where the ending vertex for each link is
the starting vertex for the next link (see subsection 3.1 below). The length of a walk is the number of
separate sequential edges.

Let A and B be two adjacency matrices defined on a common set of n vertices. Then (AB)ij counts
the number of walks from vi to vj taking one edge from GA, from vi to vk for some k 6= i, j, followed
by one edge from GB, from vk to vj . This is the exactly equal to number of vertices vk that are linked
from vi in GA; AND that are linked to vj in GB.

Similarly for k ≥ 1, the entry (Ak)ij counts the number of walks from vi to vj of exact length k, in
GA.

We say a vertex vi is walk-connected, or just “connected”, to a vertex vj in GA iff there exists a path
from vi to vj in GA .
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We say GA is a strongly connected network if any pair of vertices are connected.

Then GA is strongly connected iff and only if for all i 6= j there is an integer k such that (Ak)ij > 0;
and hence GA is strongly connected iff A is irreducible (see the condition of the Perron-Frobenius
theorem above).

The degree of a vertex inGA is the number of edges that connect to that particular vertex For an undi-
rected graph the degree of vertex is simply the ith row/column sum of the A. The degree distribution,
P (d), represents the probability that a randomly chosen vertex has a particular degree, d.

We will usually let di denote the degree of vertex vi.

It is clear that the sum of the degrees of all of the vertices is equal to twice the number of edges, 2m.
This simple result is called the “hand shake lemma”.

For directed networks, we distinguish the in-degree, i.e., the number of links incoming to the vertex,
and the out-degree, i.e., the number of links outgoing from the vertex. They are given by column
sums of A and the row sums of A, respectively.

For directed graphs both the in-degrees and the out-degrees must sum to m separately. And A is not
necessarily symmetric (it can be so iff all directed edges are reciprocated).

A network is called a regular network if all vertices have the same degree.

Vertex degree is the most basic measure of the centrality, or importance, of a vertex in a network. See
later section for more details.

A majority of networks across different domains possesses long-tailed degree distributions P (d)
(see Figure 3 for examples). In many situations, their tail is described by a power-law, i.e.,

P (d) ∼ d−γ,

where γ is typically between two and three. Because the maximum degree is equal to n − 1, this
scaling law approximately holds true up to a certain cutoff degree, above which P (d) rapidly decays
to zero.

For an undirected graph, the average degree, denoted by 〈d〉, is given by

〈d〉 =
∑
d

dP (d) = 2m/n.

The friendship paradox is a phenomenon, in which, anecdotally, the average number of friends of a
friend is greater than the average number of friends of an individual. This is purely a mathematical
consequence that always arises unless every vertex has the same degree. The paradox originates
from the fact that vertices with a large degree contribute disproportionately to the average degree of a
friend, as they have a higher probability of being friends than do low degree vertices.

Consider the situation shown where the network has N = 6 vertices with degrees 1,2,3,1,4, and
1 respectively and the average degree of a randomly selected individual is equal to 2.

To calculate the average number of friends of a friend, we have instead to perform a weighted
average, accounting for the fact that a vertex with degree d will appear d times in the calculation

20



of the average degree of friends. In this case the weighted average degree of friends is equal to

2.67 =
(12 + 22 + 32 + 12 + 42 + 12)

(1 + 2 + 3 + 1+4 + 1)
.

In general, for sufficiently large and random graph the mean degree of a neighbour is given by

〈d2〉
〈d〉

which is ≥ 〈d〉 (since the varaince of the degree distribution is given by σ2 = 〈d2〉 − 〈d〉2 ≥ 0).

A clique is a graph where all of the edges are present: every vertex is connected to every other vertex.
The adjacency matrix for a clique contains all ones except for the main diagonal, which contains zeros
(as we do not allow edges connecting a vertex to itself). We will usually denote this adjacency matrix
by 1.

If G = (V,E), then the complementary graph is given by G′ = (V,E ′), where E ′ is the complement
of E, and is the set of all admissible edges not in E. So considering GA, then 1− A is the adjacency
matrix for the complementary graph, G′A.

3 RANDOM GRAPH MODELS

We often wish to generate graphs which are drawn from a distribution, with suitable properties.

An undirected random graph is a probability distribution defined over the set of all possible graphs.
Usually we will talk about an equivalent probability distribution being defined over the set of all such
possible adjacency matrices (symmetry, binary, with zeros along the diagonal).

We could very laboriously list all possible candidates for A and assign each a probability, P (A). Note
that for n vertices there are exactly 2

n(n−1)
2 distinct possible adjacency matrices for indirected graphs

(why?). More usually we will have some rule that determines whether each element of the upper
triangle part A, or various groups of the upper triangle elements of A, are equal to one.

For example we mights define a graph where each link (each element of A) is present independently
with some given fixed probability p ∈ [0, 1]. Then when we wish to generate a graph from this
random network we simply run around each element in the upper triangular part of A and set it to 1
with independent probability p. This random graph, on n vertices, is called an Erdös-Rényi graph,
and it is usually denoted by G(n, p). See Figure 1

More generally we might state that any edge (vi, vj) is present independently with a given probability
pij (the individual edge probabilities could all be different). In that case we have an expected value
for A, denoted by 〈A〉, with (i, j)th term, given by 〈A〉ij = pij .

Of course 〈A〉 is symmetric and if we wish to generate a graph from this random graph we again
simply run over all of the elements in the upper triangular part of A and make it equal to one with
the corresponding independent probability pij; and then impose the fact that A is symmetric if it is
required.

Let S denotes the set of all real valued, symmetric matrices, having zero diagonal elements and all
non-diagonal elements taking values in [0,1], so that they are probabilities. Then for any random
graph we must always have 〈A〉 ∈ S.
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Figure 1: Example of an Erdös-Rényi graph: adjcency matrix and network plot.

The expected value of the adjacency matrix for an Erdös-Rényi graph is simply p1 ∈ S.

An important class of such graphs are Stochastic Block Model. Here 〈A〉 ∈ S is assumed to have
has a block structure, so that all possible edges between pairs vertices within the same block are all
present independently with a common given probability (just as for Erdös-Rényi graphs), while all
possible edges between pairs of vertices within distinct blocks are all present independently with a
common (given) probability depending only on the relevant pair of blocks. Again though, each edge
is present independently of the presence of any and all others.

Core periphery graphs are often modelled via a Stochastic Block Model, with edges between vertices
in the core set being more likely to occur, and edges between vertices in the periphery being less
likely or even impossible.

Stochastic Block Model Example
Consider a model for an undirected graph where there are two disjoint blocks of vertices, block
B1 containing n1 vertices and block B2 containing n2 vertices. Edges evi,vj , (i 6= j), are present
independently with the following given probabilities (p1, p2, p1,2):

p(evi,vj) = p1 vi ∈ B1, vj ∈ B1,

p(evi,vj) = p2 vi ∈ B2, vj ∈ B2,

p(evi,vj) = p1,2 vi ∈ B1, vj ∈ B2.

This could model the friendship network in a college where vertices are students and B1 and B2

are sets of science undergraduates and humanities undergraduates respectively. m1 and n2 are
quite large.

What is the expected degree of a random vertex in each Bi? What is the expected degree of a
random student from B1 ∪B2? what is the expected number of (two way) edges?

Fix the probabilities and generate instances of the adjacency matrix A for this stochastic block
model, with vertices 1, . . . , n1 in B1, and vertices n1 + 1, . . . , n1 + n2 in B2 for large n1 and n2.
What in 〈A〉? See Figure 2

Random graphs can be thought of as models that are often used to generate observable instances of
graphs with certain (expected or likely) properties. The probabilistic rule (the model) is usually a
recipe that that uses random processes to determine whether every edge is present (the elements in
the upper triangular part of A).
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Figure 2: Example of a Stochastic Block Model: adjacency matrix and network plot. There are two
two blocks with p1 = p2 = 0.2 and p12 = 0.002.

One might ask whether we consider graphs where the edges are NOT independent.

Random Triangles Example
Consider the graph on n = 20 vertices where each closed triangle of distinct vertices, (vi, vj, vk),
is present with an independent probability p = 0.02. This graph is a union of randomly generated
triangles. Is this graph edge independent?

There are m = n− 2 possible triangles that contain any single edge, say (vi, vj). Thus each edge
has a probability equal to

1− (1− p)m = 0.3049. . .

of being present within this graph.

Now suppose that we know that we observe that the edge (vi, vk) is present. What is the proba-
bility, knowing this, that edge (vi, vj) (i 6= j 6= k) is present too?

The triangle (vi, vk, vj) is one of the m triangles containing the edge (vi, vk). So the triangle
(vi, vk, vj) has an updated probability, q say, of being present as a result of this new information.
In fact q = p/(1 − (1 − p)m) > p, since, applying Bayes’ Theorem to update the odds on the
edge (vi, vk), we have

q

1− q
=

P ((vi, vk)|(vi, vj, vk))
P ((vi, vk)|not(vi, vj, vk)))

× p

1− p
=

1

1− (1− p)m−1
× p

1− p
.

Now all of the other (m−1) triangles involving (vi, vj) still have a probability p of being present.
So now the edge (vi, vj) has a posterior probability equal to

1− (1− p)m−1(1− q) = 0.3372. . .

of being present. Hence our knowledge of one edge, (vi, vk), being present, has changed our
estimation of whether a second distinct edge, (vi, vj), can be present.

Returning to the simplest case of an undirected random graph with edge independence (with no self-
loops and no multiple edges), if we know 〈A〉 ∈ S, the matrix of independent edge probabilities, then
for that random graph and any admissible symmetric binary adjacency matrix (with zero diagonal),
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A, we have the distribution

P (A) =
N−1∏
i=1

N∏
j=i+1

〈A〉Aij

ij (1− 〈A〉ij)(1−Aij).

This is just the product of the corresponding probabilities for each edge in A being present or not
being present.

Hence the edge-independence assumption together with the knowledge of the expected value, 〈A〉 ∈
S, is enough to determine the probability distribution, P (A), over the set of admissible adjacency
matrices.

So far we have met Erdös-Rényi graphs and their generalisation to stochastic block model graphs.
Both are edge-independent, so we can just examine the probability that each edge is present.

The Erdös-Rényi model is usually seen as a model for sparse networks, where the total number of
links scales linearly with the number of vertices, n. In G(n, q), every link exists independently with
the same probability, q Therefore, the probability of generating a network with an exact total of m
links, from the (n− 1)n/2 possibilities, is given by the binomial distribution:

p(m) =

(
n(n− 1)/2

m

)
qm(1− q)n(n−1)/2−m.

The expected number of links is given by qn(n − 1)/2. Similarly, because a vertex is independently
adjacent to any other vertex with probability q, the degree distribution is given by

p(d) =

(
n− 1

d

)
qd(1− q)n−1−d.

In practice we would not wish that the average degree of the vertices 〈d〉 = q(n − 1) should depend
on N . Therefore, we usually employ a small value of q, more precisely, q ∝ 1/n. In the limit of large
networks, where q = 〈d〉/(n− 1) is sufficiently small, the binomial degree distribution above is well
approximated by the Poisson distribution

p(d) =
〈d〉d

k!
e−〈d〉.

Several properties of the Erdös-Rényi random graph can be derived thanks to the independence of
links. Although difficult to derive, the average distance between pairs of vertices in the Erdös-Rényi
random graph is given by

≈ log n

log〈d〉
.

In general the degree distribution p(d), above, for the Erdös-Rényi model decays much faster for large
d than that for observed graphs (in social media, bioinformatics and other applications).

In Figure 3 we can see that many observed degree distributions decay much more slowly than that for
the Erdös-Rényi graphs.

Those observed graphs tend to have degree distributions with fat tails that very often decay as power
law decay (at least until some cut off). For this reason the Erdös-Rényi model in its simplest form is
not very practical as a model of real world phenomena. It is rather popular within combinatorics: but
is useful mainly as a “null hypothesis” within applied network theory — merely a way of generating
graphs with some little structure (just the desired edge density) to be contrasted with a real-world
observed graph. We can do rather better.
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Figure 3: Cumulative degree distributions for six different networks. The horizontal axis for each
panel is vertex degree d (or in-degree for the citation and Web networks, which are directed) and
the vertical axis is the cumulative probability distribution of degrees, i.e., the fraction of vertices
that have degree greater than or equal to d. The networks shown are: (a) a collaboration network
of mathematicians; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for
Scientific Information; (c) a 300 million vertex subset of the World Wide Web, circa 1999; (d) the
Internet at the level of autonomous systems, April 1999; (e) the power grid of the western United
States; (f) the interaction network of proteins in the metabolism of the yeast. Of these networks,
three of them, (c), (d) and (f), appear to have power-law degree distributions, as indicated by their
approximately straight-line forms on the doubly logarithmic scales. Taken from [4]

The configuration model is a generalisation of the Erdös-Rényi random graph to the case of an
arbitrary but given degree for each vertex.

It is used to inspect the effect of heterogeneous degree distributions because it does not have more
specific features such as high clustering. The model is defined as a random graph in which all possible
configurations appear with the same probability under the constraint that vertex vi has degree di
(1 ≤ i ≤ n). The degree sequence {di} is sometimes observed within a real world network or often
generated by a given degree distribution p(k) under the constraint that the sum of the degrees is an
even number to satisfy the handshaking lemma.

To generate an instance of the configuration model for a given degree sequence, we first create exactly
di “stubs” (half-edges) at each vertex vi. Then we randomly select pairs of stubs one by one to connect
them as an edge, as long as the tentatively connected pair does not form a multiple edge or self-loop.
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In fact, we must avoid the case in which the link creation stops reaches an impasse. For example, if
there remain three vertices which have 1, 2, and 3 unused stubs, we have to create three more links
because there are six stubs remaining. However, we cannot do that without a self-loop or multiple
edge.

Consider a large network generated from a configuration model with a given degree sequence. A
stub emanating from vi is connected to vj with probability dj/2m because the number of stubs in the
network is equal to 2m =

∑n
i=1 di (this is called the handshake lemma).

Because vi owns di stubs, the expected number of links between vi and vj is given by

〈Aij〉 =
didj
2m

, (5)

where 〈Aij〉 represents the mean of the adjacency matrix element.

So far we have met Erdös-Rényi graphs and their generalisation to the stochastic block model and the
configuration model. We will meet some more models later.

3.1 Measures derived from walks and paths

A walk is defined as a succession of adjacent vertices such that one can travel from the start vertex to
the end vertex by traversing links. A path is a walk where each vertex is visited only once (with the
possible exception that the walk may end at the vertex where it begins - becoming a cycle).

Walks are used for constructing dynamical processes on networks (e.g., random walks) and measure-
ments such as the Katz centrality (see below), where all possible walks from one vertex to another
are exhaustively counted. Paths are particularly useful when considering the shortest travelling route
from one vertex to another. In the network science literature, which is rooted in statistical physics,
authors tend not to distinguish walks and paths. Here, however, we will do so.

We have already seen that the number of walks of a certain length can be obtained from powers of
the adjacency matrix. The adjacency matrix provides the number of walks of length 1 between two
vertices. In general, the number of walks of length l is given by the elements of Al.

To identify paths from a vertex to another requires some more effort. The distance between a pair of
vertices, vi and vj, denoted by δ(vi, vj), is defined as the smallest number of edges in a path necessary
to go from vi to vj .

One way is to calculate:
δ(vi, vj) = min

l≥1
{l|(Al)ij > 0}.

For undirected networks, the distance defined in this way satisfies the axioms that a distance measure
should satisfy: non-negativity (i.e., δ(vi, vj) ≥ 0), coincidence (i.e., δ(vi, vj) = 0 if and only if vi =
vj), symmetry (i.e., δ(vi, vj) = δ(vj, vi)) and triangle inequality (i.e., δ(vi, vj) ≤ δ(vi, vk)+δ(vk, vj)).

For directed networks, the symmetry is broken because a shortest path from vi to vj is not generally
the same as that from vj to vi.

For both undirected and directed networks, δ(vi, vj) can be efficiently calculated by Dijkstra’s algo-
rithm, as follows.
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For a fixed vi, first initialise the distance from vi by setting δ(vi, vi) = 0 and set tentative distances
δ(vi, vj) =∞(j 6= i). Second, set d(vi, vi) = 1, where vj is a neighbour of vi. Third, we declare that
vi has been visited. Fourth, consider each neighbour of vj except vi. If a neighbour, vl, has a tentative
distance value from vi larger than two, then we reset it to δ(vi, vl) = 2. When all neighbours of vj are
exhausted, we declare that vj has been visited. Fifth, we select an unvisited vertex with the smallest
tentative distance value (equal to 2 at the first iteration) and we inspect its all neighbours one by one
(resetting to δ = 3, 4, . . . at each successive iteration). We repeat the same procedure to determine
the distance from vi to every other vertex.

This procedure sweeps out through the graph from vi. For large and sparse graphs this is far more
efficient that calculating the successive powers, Al (requiring n2 calculation at each value of l, many
of them resulting in zero).

For undirected networks, the average distance for a network is defined by tye vaeregae ove all pairs
of distinct vertices:

L =
2

n(n− 1)

n∑
i=1

i−1∑
i=1

δ(vi, vj).

In many real networks, L is remarkably small as compared to the number of vertices,N . For example,
a Face-book network composed of n ∼ 7.2×108 active users, with 6.9×1010 friendship links, yielded
L ∼ 4.7.

The diameter of a networks is defined by the longest paths between any pair of vertices:

D = max
u,v,∈V

δ(u, v).

In undirected networks, we defined two vertices to be connected if there exists a path between them.
Connectedness is an equivalence relation because it is reflexive , symmetric, and transitive. Intu-
itively, a connected component is an island within which one can travel from any vertex to any other
along a path. There is no path between vertices in different components. Connected components
impose limitations on any dynamical process taking place on the network. In epidemic processes, for
example, the existence of distinct components implies that certain regions of the net- work are never
infected, independently of the model of epidemic dynamics and its parameters.

In directed networks, symmetry is not satisfied because the existence of return paths cannot be guar-
anteed. Therefore, the concept of connectedness is more complex, and the notions of strong and weak
connectedness are distinguished. vertices u and v are said to be strongly connected if there exist re-
ciprocal paths. Two vertices u and v are said to be weakly connected if there exists a path between u
and v in a network where the direction of the links is discarded. Both strong and weak connectedness
is an equivalence relation and induces strongly and weakly connected components, respectively. For
example, a strongly connected component is a maximum set of vertices in which each pair of vertices
is strongly connected. Strong connectedness implies weak connectedness but not vice versa.

3.2 The clustering coefficient and small worlds

The observable relatively small diameters of some large sparse networks brought about the concept
of small world networks.

Empirical networks are quite often abundant in triangles, i.e., mutually connected three vertices. The
amount of triangles in a network is quantified by the clustering coefficient. It is defined through the
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local clustering coefficient:

Ci ≡
number of triangles including the ith vertex

di(di − 1)/2)
,

which measures the abundance of triangles in the neighbourhood of the ith vertex vi. The denominator
gives the normalisation such that 0 ≤ Ci ≤ 1.

In a social friendship network Ci measures how many pairs of your friends are themselves friends.

If any possible pair of the neighbours of vi are adjacent to each other, to form a triangle, then Ci = 1.
If no pair of neighbours of vi are adjacent to each other, then Ci = 0. The clustering coefficient,
denoted by C, is defined as the average of Ci over the vertex set:

C ≡
N∑
i=1

Ci.

Note that 0 ≤ C ≤ 1.

What is C for the Erdös-Rényi graph G(n, p)?

There are many examples of networks that have a high C coefficient.

For example, consider a directed circular lattice with N vertices arranged like the hours on a clock,
ith all pairs of vertices separated by less than or equal to k < (n− 1)/2 places being connected with
an edge.

What is C in this case? Each vertex has degreeK = 2k, with k connections in the clockwise direction
and k connections in the clockwise direction. The denominator of Ci is thus k(2k − 1), while there
are exactly k(k+1)/2 pairs of adjacent vertices that are not directly connected (show that this is true).

Thus (since, by symmetry, all vertices have the same clustering coefficient) we have

C = Ci =
3(k − 1)

2(2k − 1)
.

Note that some authors write K = 2k, the degree of each vertex in the lattice, so that

C = Ci =
3(K − 2)

4(K − 1)
.

In either representation as k becomes large then C → 3/4.

This 3/4 value is really quite high, even though N might be very large, since there are many local
triangles in the circular lattice.

The small-world model due to Watts and Strogatz [3] is created by choosing at random a fraction
p of the edges in the graph and moving one end of the edge to a new location, chosen uniformly at
random.

There is a slight variation on the model in which some shortcuts are added randomly between vertices,
but no edges are removed from the underlying one-dimensional lattice. See Figure 4.

If the rewiring probability p is small then the number of adjusted edges is small and so C remains
close to 3/4.
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Figure 4: (a) A one-dimensional lattice with connections between all vertex pairs separated by k or
fewer lattice spacing, with k = 3 in this case. (b) The small-world model of Watts and Strogatz is
created by choosing at random a fraction p of the edges in the graph and moving one end of each to a
new location, also chosen uniformly at random. (c) A slight variation on the model in which shortcuts
are added randomly between vertices, but no edges are removed from the underlying one-dimensional
lattice. Taken from [4].

If the rewiring probability p is very close to one then almost all if the edges are rewired: the network
is thus equivalent to an Erdös-Rényi graph. There are k2 edges in total. Any possible edge is thus
present with probability q = 2k2/n(n− 1). Thus C → q = 2k2/n(n− 1) as p→ 1.

The rewiring process is designed to reduce the diameter of the resultant network to be low while
keeping the clustering coefficient high. Without it the diameter would be ∼ n/2k (why?): so if k
is fixed and n is large one has to jump around the network k places at a time. Each rewiring edge
reduces this estimate [3].

A high density of triangles is often associated to the mechanism of triadic closure (see also section 5,
below), that is the tendency for wedges (paths of length 2, like open jaws) to form closed triangles.
Wedges are then associated to unstable structures, later turning into more stables ones. This mecha-
nism is at the heart of several methods for edge prediction. Say that you have a snap-shop of a social
network, at a certain time. In order to predict the links that will be created at future steps, a simple,
but very efficient strategy consists in considering pairs of vertices that are not (yet) connected, but
belong to several wedges. So friends of friends tend to become friends. See for instance [8].

Small world networks (where there is high local clustering but a small diameter) are often ob-
served in social networks. The small diameter is reflected in the famous “Six degrees of sepa-
ration” phenomena: please read this https://en.wikipedia.org/wiki/Six_degrees_
of_separation.

3.3 Preferential attachment

A broad range of networks grow in time in terms of both the number of vertices, n, and the number
of edges, m. Examples include citations in science, web graph and networks of airports. Network
growth is a type of temporal fluctuations of networks. Understanding mechanisms of network growth
definitely helps one to understand temporal dynamics of networks.

In this section, we study a popular growing network model with the preferential attachment mech-
anism, that has played a pivotal role in the entire network science. The model was proposed by
Barabási and Albert [24, 25], which we call the BA model, while the model had been known for
longer time. The model is an instance of a family of multiplicative stochastic models, starting around
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a century ago with the Polya urn model and the Yule process. Historically, the mechanism of pref-
erential attachment was also identified qualitatively by the sociologist Robert Merton, who called it
the Matthew effect, after a passage in Biblical Gospel of Matthew. The Yule process was studied by
the economist Herbert Simon, interested in the distribution of wealth, who showed that it produces
power-law distributions. This work inspired the Price’s network model.

The BA model produces a network according to the following steps:

1. Prepare n0 initial vertices each of whose degree is at least one. A typical choice is the clique (where
a link exists between every pair of nodes).
2. Add a new vertex with m < .n0 half-edges to the existing network. This simplest case is where
m = 1. Suppose that the existing network has n′ nodes (n′ = n0, initially, but we shill apply this step
iteratively) with degrees di for i = 1, . . . , n′. Then the probability that each half-edge connects to vi
is specified by

Π(di) =
di∑n′

j=1 dj
i = 1, . . . , n.

This indicates that any existing vertex receives a new edge with the probability proportional to its
present degree, hence the name of preferential attachment. If m > 1 this must be applied under the
constraint that we avoid multiple edges, although this constraint is non-essential. Strictly, we also
have to decide on whether or not to update the relevant degree, di, values used in Π(di) when one of
the m links has been added. However, this decision is again immaterial.
3. Add the nodes one by one until we have n nodes according to step 2.

As will we show below, the BA model produces networks with a power-law degree distribution
P (d) ∝ d−3.

In early stages, nodes have similar values of d, which are equal to or slightly larger than m. However,
once {di} becomes somewhat heterogeneous, the heterogeneity will self-reinforce owing to the pref-
erential attachment mechanism. The degree distribution of the BA model can be derived in different
ways. Here we proceed via master equations. Denote by p(d, ti, t) the probability that a node vi that
has joined at time-step ti has degree d at time-step d. The master equation for p(d, ti, t) is given by

p(d, ti, t+ 1) =
d− 1

2t
p(d− 1, ti, t) +

(
1− d

/
2t

)
p(d, ti, t)

because d increases by one with probability mΠ(d) ≈ d/2t and does not change with probability
1− d/2t in a time step. When n is large, we wish to obtain the asymptotic solution

P (d) = lim
t→∞

∑
ti
p(d, ti, t)

t
.

The normalisation factor 1/t comes from the fact that there are t+m ≈ t nodes at time t.

The vertex that joins at time ti = t+ 1 has been absent at time t, such that p(d, t+ 1, t) = 0. By using
this and summing the master equation over ti, we obtain

t+1∑
ti=1

p(d, ti, t+ 1) =
d− 1

2t

t∑
ti=1

p(d− 1, ti, t) +

(
1− d

/
2t

) t∑
ti=1

p(d, ti, t).

But

p(d) ≈
t∑

ti=1

p(d, ti, t)/t =
t∑

ti=1

p(d, ti, t+ 1)/(t+ 1)
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and

p(d− 1) ≈
t∑

ti=1

p(d− 1, ti, t)/t,

so we have

(t+ 1)p(d) =
d− 1

2t
tp(d) +

(
1− d

2t

)
tp(d).

Hence
p(d) =

d− 1

d+ 2
p(d− 1) d ≥ m+ 1,

which yields

p(d) ∝ 1

d(d+ 1)(d+ 2)
∝ d−3.

So the degree distribution has a “fat”, powerlaw, tail for large d. This d−3 behaviour was what we set
out to demomnstrate.

An alternative argument, using a differential equation, is as follows [2].

Consider the situation, as before, where a graph grows by having a single vertex added to the existing
graph over each unit of time, that is attached to exactly m of the existing vertices. As before, the
probability that it becomes attached to any vertex is assumed to be given by the relative degree of the
vertex. Suppose that at t = 0 we start with a very small number, say n0, of sparsely connected vertices,
and that new vertices are added randomly at an expected rate of one per unit time. After integer time
t we will have added approximately t vertices and there will be approximately mt edges connecting
the t+ n0 vertices.

Let di(t) denote the expected degree of the ith added vertex, the one that was added at around time
i. Then for t ≥ i, di(t) grows as successive vertices (and hence edges are added), with vertex i wins
new attachments at a rate proportional to its current relative degree. We have

d

dt
di(t) = (rate at which new edges are added)× P (new edge attaches to vertex i),

so that
d

dt
di(t) = m

di(t)

2mt
=
di(t)

2t

(since at time t the sum of all vertex degrees is the twice the number of edges, which is thus ≈ 2mt),
and it must also satisfy the initial condition di(i) = m.

So directly we have
di(t) = m(t/i)1/2.

Hence for any value of d chosen larger than m, at time t we will have di(t) < d if and only if
i > tm2/d2. So there are approximately n0 + t− tm2/d2 vertices with degrees less than d. Therefore
there is a fraction

1− tm2

d2(t+ n0)

of the vertices that have degrees less than d. For large time the distribution forgets n0 and this is
simply

1− m2

d2
.

Note that this doesn’t make sense for d < m since all vertices have degree greater than or equal to m.
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This is the cumulative distribution for the vertex degrees (valid for large enough d where d ≥ m).
The density distribution (the derivative of the cumulative with respect to d) is thus P (d) ∝ d−3, as
required.

It can also be shown that the clustering coefficient is given by

C ≈ m− 1

8

(log n)2

n

which tends to zero for large n. Some extensions of the BA model can realise a non-vanishing C
value as n→∞.

The BA preferential attachment model contains some rather unrealistic ingredients, as a new vertices
must have access to information about the whole network in order to decide which vertex to connect
to. This limitation can be solved by using local mechanisms, such as redirection and copying, that
essentially lead to preferential attachment together with other desirable features. In particular, copying
processes allow to generate scale-free net- works with a high density of cliques of different sizes; see
[27].

We will generalise this model to stochastic block model preferential attachment in section 8.2, below.

Exercise.
Generate numerically networks according to the preferential attachment model and verify the
theoretical predictions for the degree distribution.

3.4 Centrality

Centrality measures aim to quantify the importance of vertices in a network. The simplest one is the
degree (i.e., degree centrality), with which hubs are considered to be important. The degree centrality
is effective in various situations but not always. This observation has motivated the introduction of
different types of centrality measures. In this section, we explain some of them.

The closeness centrality and betweenness centrality are popular centrality measures based on the
distance between pairs of vertices.

The closeness centrality for vertex vi is defined by

closenessi =
n− 1∑N

j=1,j 6=i δ(vi, vj)
.

It is the reciprocal of the mean distance to all other vertices. The closeness centrality is well-defined
only for connected networks

The betweenness centrality is defined as the fraction of the shortest paths passing through the vertex
in question. This quantity is averaged over all possible pairs of vertices. The betweenness of the ith
vertex is defined by

betweennessi =
2

(n− 1)(n− 2)

n∑
j=1,j 6=i

j−1∑
l=1,l 6=i

σIjl
σjl

where σjl is the number of the shortest paths connecting the jth and lth vertices, and σIjl is the
number of such shortest paths that pass through the ith vertex. The convention is that we regard the
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summand on the right- hand side to be zero when σjl is equal to zero (i.e., when the jth and lth
vertices are in different connected components). The summation excludes the shortest paths that start
or end at the ith vertex because it is obvious that such a path does not go through the ith vertex.
The normalisation factor 2/((n − 1)(n − 2)) comes from the combinations of j and l, whereas it
is often neglected in practice. Betweenness is employed more in fields of computer science than in
mathematical approaches, largely as it does not yield to algebra. The next concept will do so.

Given an adjacency matrix, A, we have seen that the number of walks from the ith vertex to the jth
vertex with exactly l steps is given by the (Al)ij .

Supposing that short walks are more important than long walks in mediating, e.g., communication
and infectious diseases, the we scale the importance of each walk of length l (for l ≥ 0) by a factor
of αl, where we have 0 < α < 1. Then, the weighted sum of the number of walks from the ith to the
jth vertices of various lengths is given by the (i, j)th element of the geometric series

I + αA+ α2A2 + α3A3 + . . . = (I − αA)−1;

providing that the sum converges.

Note that the walks of length zero also contribute to the counting with weight one.

The Katz centrality of the ith vertex is defined by

Katzi =
n∑
j=1

[(I − αA)−1]ij.

In other words, the weighted sum of the number of walks starting from the ith vertex is summed over
all destination vertices. If α = 0, then Katzi = 1 for all i. Therefore, we are interested in making α
large to diversify the values of Katzi.

In fact, as intuitively understood f, (I−αA)−1 diverges for a large α. This occurs when an eigenvalue
of I − αA hits zero for the first time as α is increased from zero. Therefore, the Katz centrality is
well-defined when α is smaller than the inverse of the largest eigenvalue of A; which is the Perron-
Frobeneus eigenvalue, the spectral radius of A, ρ(A).

A well-known centrality measure for directed networks is the PageRank, which was first introduced
for ranking webpages and later adopted in a variety of applications. The PageRank is defined as the
stationary density of a discrete-time random walk, particularly on directed networks.

We will introduce it later on, after introducing the concept of random walks on networks. In contrast
with the previous metrics, either defined in terms of shortest paths or number of paths passing by
a vertex, PageRank is a typical recursive metric, based on the circular idea that: a vertex is impor-
tant if it receives connections from many important vertices. As we will see, this relation leads to
an eigenvector problem. Similar arguments lead to other centrality measures, such as Eigenvector
centrality.

3.5 Spectral properties

A broad range of dynamical and structural properties of networks is characterised by spectral proper-
ties of a matrix describing the network. Depending on the problem at hand, we often use the adjacency
matrix (denoted by A), the (combinatorial) Laplacian matrix (denoted by L) or the normalised Lapla-
cian matrix (denoted by L̃).
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Spectral properties of networks have been studied in detail, and various bounds are available. In this
section, we present a summary of basic spectral properties of undirected networks.

The Laplacian, which we have already met in section 1.2, using matrix notation, and the normalised
Laplacian are defined by

Lij = diδij − Aij ⇐⇒ L = D − A;

L̃ij = δij −
Aij√
did)j

⇐⇒ L̃ = I −D−1/2AD−1/2.

Recall that D is the n × n diagonal matrix whose (i, i)th element is equal to di. The eigenvectors of
the three matrices are the same for regular networks.

Both Laplacian matrices are symmetric and their eigenvectors ul (1 ≤ l ≤ n) form an orthonormal
basis such that the inner products satisfy uTl ul′ = δll′ . Any vector x ∈ Rn can be decomposed as

x =
n∑
l=1

alul,

where al = xTul.

For the adjacency matrix, A, it is customary to order the eigenvectors from the largest λ1 to the
smallest λn , whereas the eigenvalues are usually ordered from the smallest to the largest for the
Laplacian matrices.

The two Laplacian matrices always have a zero eigenvalue. In fact, the corresponding eigenvector for
L and L̃ is given by u1 = (1, . . . , 1)T and u1 = (

√
d1, . . . ,

√
dn)T respectively.

In undirected networks, the zero eigenvalue, λ1 = 0, is an isolated eigenvalue and all the other
eigenvalues are positive such that 0 = λ1 < λ2 ≤ . . . ≤ λN if the network is connected. In
this case, the smallest nonzero eigenvalue of the Laplacian matrix, λ2, determines the relaxation
time of diffusion and synchronisation dynamics induced by L, and is often called the spectral gap.
The corresponding eigenvector, u2, is called the Fiedler vector. In general, the number of connected
components is given by the number of zero eigenvalues ofL or L̃. Therefore, the network is connected
if and only if λ2 > 0.

3.6 Fitting models to data

When we are given a network, usually as a list of edges, with the vertices labelled in no particular
order, we often wish to represent that data according to a particular model. This is a very practical
problem and here we consider some approaches based on maximum likelihood methods and also
investigate some consequences of having errors in te given data. The latter problem tens to be ignored
by many practitioners, but it is real. The problem essentially arises when a network is formed by
observing some underling evidence of relationships between entities (represented by vertices) and
interpreting some such relationships as (undirected or directed) edges or not; and then presenting they
data to the network analysis. False positives are edges which are in thee network which really should
not have been there. False negatives are missing edges in the data : edges which are not observed or
accepted as such, and thus are not present.

We consider some inverse problems: how should we represent the observed data within a given class
of networks?
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Whenever a scientist seeks to impose some structure on a collection of observed data, he or she
learns something. A wonderful example is provided by the periodic table of elements: by wrapping
elements around with respect to their atomic numbers with a period of eight one finds that elements
with similar properties form up the columns, instantly validating the idea. This told us something
about the structure of atoms, yet it also enabled the prediction the properties of elements that had still
to be observed.

A good test of any inverse is to generate an actual network using the class of network model of interest
and then shuffle the vertices randomly. Then apply the inverse method to the “observations” and see
if it returns (un-shuffles) the observed data back to the correct form (as it was generated).

3.7 Calibration for undirected range dependent models

Consider first undirected range depenedent random networks. Here we have a network whers the
vertices are arranged in a simple ordered list i = 1, . . . , n and vertices i and j are connected by an
edge with independent probability

pij = f(k) k = |i− j|,

where f is a monotonically decreasing function taking values in (0,1), and k = |i − j| is called the
range of the possible edges. Intuitively pairs vertices of vertices with a smaller range are relatively
more likely to be connected. The expected value 〈A〉 > is a Toeplitz matrix.

Typically we will choose f(k) = abk, where a and b are constants in (0,1), or more simply

f(k) = αe−ηk
2

/(1 + αe−ηk
2

),

for some ηα > 0 . We will choose the latter here to keep the algebra simple. Later we will generalise
this model to undirected networks, but let us keep this undirected for now.

To generate such a network with independent edge probabilities we simply visit each edge and accept
its presence with probability f(k) - essentially filling in the upper triangular part of A and then
imposing symmetry.

Now if we are given the edge data Aij , a binary adjacency matrix, the given indices i will usually not
be in the right order. The vertex list is scrambled. So we have to fit the parameters in f and determine
the correct ordering (intro the range dependent concept).

Let q = (q1, ..., qn)T denote some permutation function for the index set i = 1, ..., n. Then since we
assume independence of the individual super-diagonal matrix elements within our random adjacency
matrix model, the probability of observing the data, given the permutation q, can be formed by the
product of the probabilities for each element, after the indices have been permuted. We have the
conditional “likelihood”: a product over possible edges:

L =
∏
i<j

f(|qi − qj|)Aij(1− f(|qi − qj|))1−Aij

So
logL =

∑
i<j|Aij=1

log f(|qi − qj|) +
∑

i<j|Aij=0

log(1− f(|qi − qj|)).

Now comes a trick:

logL =
∑

i<j|Aij=1

log
f(|qi − qj|)

1− f(|qi − qj|)
+
∑
i<j

log(1− f(|qi − qj|)).
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But the second term does not depend on q, so it can be discarded in maximising logL. So we just
maximise a product of log-odds over the observed edges:

logL =
∑

i<j|Aij=1

log
f(|qi − qj|)

1− f(|qi − qj|)
.

Substituting f(k) = αe−ηk
2
, we have

logL ∝
∑

i<j|Aij=1

(qi − qj)2 = −1

2

n∑
i,j=1

Lij(qi − qj)2.

Here L is the Laplacian matrix associated with A, that we met earlier. This follows directly from (2)
in section 1.2.

So we must minimise
− logL ∝ qTAq.

How best to choose a permutation q to achieve this.

Next we make a huge simplifying step. We relax the problem to consider a nearby problem that has a
much easier solution.

Above we sought a vector q taking integer values (and indeed all integer values in {1, . . . n}) and then
we wished to reorder the vertices in the increasing order given by the corresponding elements of q
(the reordering equivalent to making the permutation q). Notice that if we add any fixed constant onto
all elements of q , or we multiply q by any positive constant, then this has no effect on the reordering.
We just reorder by sorting vertices by the values of the corresponding elements, qi.

We will minimise− logL with respect to q ∈ Rn, and we will reorder the vertices in increasing order
of their corresponding real elements of q. Now, since multiplying the solution, q, by any positive
constant, or adding a fixed constant onto all of its elements, makes no difference, we must find a real
q to satisfy

||q|| = 1 and q.(1, 1, ..., 1)T = 0.

But we have seen that this functional is minimised by taking q to be the Fiedler eigenvector. Since
A is self adjoint the Fiedler eigenvector orthogonal to (1, 1, ..., 1)T , the eigenvector corresponding to
the Null space. So we re-order the given vertices of the graph in the order of the increasing elements
of the Fiedler eigenvector.

TRY THIS OUT: generate a large Range Dependent Graph: find the Fieldler eigenvector (for
the giant component) Check that the ordering suggested by the Fieldler eigenvector components
is as that (or close to that) used to generate the RDG. Add in some (5%) false positives (extra
edges that are extremely unlikely): what happens? Or create false negatives (delete 5% of existing
edges) :what happens?

Example: a proteome - protein-protein interaction (PPI) networks
Here we illustrate the methods above with applications originally published twenty years ago (see
[2] and the references therein).

Since the time of Gregor Mendel, biologists have been attempting to understand how genes deter-
mine biological properties. How the “genotype” (the organism’s full set of genetic information)
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relates to the “phenotype” (the organism’s features and functionalities). Differences in genes
largely explain biological diversity. DNA forms an organisms genetic signature and may be
viewed as a linear string where each character is one of the four nucleotide bases: C,A,T,G. It is
arranged as a number of one-dimensional lattices (chromosomes). Certain contiguous chunks of
DNA, that satisfy known constraints, may code for genes. Genes are important because they in
turn code for proteins. Proteins are linear strings of amino acids, from an alphabet of 20 charac-
ters, but, unlike DNA, these strings fold into complicated 3D shapes, capable of interacting with
each other in a myriad of ways.

Proteins are three-dimensional objects, and if two proteins are said to interact this means that they
can physically combine. Experiments can be conducted where every possible pair of proteins in
the cell can be tested to see if a mutual interaction takes place. The resulting protein-protein
interaction (PPI) network is simply an undirected graph whose the nodes are proteins and the
edges denote observed interactions. The emergence of such data (admittedly often containing
both false-positives and false- negatives) raised a number of intriguing network-theoretic ques-
tions: how should such networks be characterised? How did they evolve? Where (relatively
to the whole) are the evolutionarily old and young proteins located? and do they contain small
subnetworks of proteins that work together to produce common ends (cellular functions)?

Yeast two hybrid (Y2H) experiments allow biologists to measure, in a pairwise fashion, whether
yeast proteins interact. The two hybrid system is based on the premise that many eukaryotic
transcriptional activators consist of two physically discrete modular domains. The DNA binding
domain of the transcription factor is expressed as a hybrid protein fused to protein P1 (the “bait”),
while the activation domain is fused to protein P2 (the“prey”). The domains act as independent
modules: neither alone can activate transcription. Only if proteins P 1 and P 2 interact will the
activation domain be in the proper position to activate transcription of the reporter gene. PPI
networks obtained this way are very noisy, experimental limitations are believed to result in a
rate of at least 50% for both the false negative (missing interactions) and false positive (spurious
interactions) rates.

In Figure 5 we plot the undirected (symmetric) sparse adjacency matrix of a PPI network for yeast
based on the original (rather arbitrary) ordering given in data. Here, a dot in row i and column
j indicates an interaction between proteins i and j. In this case there are n = 1048 proteins and
1029 interactions.

In Figure 6 we show how the PPI network from Figure 5 looks when it is reordered according
to the Fiedler vector, q, determined via the SVD. In linear algebra terms, we have applied a
symmetric row/column permutation to the adjacency matrix. We see that the network as being
made up largely of local interactions with relatively few long-range links, as proposed in range
dependent networks. The blocks correspond to small groups of proteins likely top work together
in creating cellular functions for the organism.

3.8 Calibration for general directed stochastic block models

Given an observed directed graph we wish to impose relaxed versions of some stochastic block model
(SBM). The outcome will be a partition of the n vertices in the graph to exactly one of the correspond-
ing into K subsets, called “blocks”, by integers {1, 2, .., K}. This partition is defined more exactly
by a mapping z : {1, ..., n} → {1, ..., K}, such that the ith vertex lies within the kth block, where
k = z(i).
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Figure 5: Original yeast PPI data adjacency matrix.

For k = 1, .., k, we let
nk = |{i|k = z(i)}|, k = 1, ..., K (6)

be the number of vertices assigned to the kth block.

The model is completely defined by the partition along with aK×K probability matrix, P , containing
where the (k, k̃)th element, pk,k̃ ∈ [0, 1], denoting the probability that an edge connecting a given
vertex within block k to a given vertex within block k̃ is actually present within the network.

Suppose that we know both P and also the partition. Let ei,j denote the possible edge from vertex i to
vertex j. Let E denote the actual edge set for the given observed graph. Then, given P and assuming
the edges are present independently, the likelihood of the given graph is given by

L =
∏
ei,j∈E

pz(i),z(j) .
∏
ei,j /∈E

(1− pz(i),z(j)),

This implies

logL =
∑
ei,j∈E

log

(
pz(i),z(j)

1− pz(i),z(j)

)
+
∑
ei,j

log(1− pz(i),z(j)).

The first term is just the sum of the log-odds for each edge in E, while the second term sums over all
possible edges, and may be rewritten as

K∑
k=1

K∑
k̃=1

nknk̃ log(1− pk,k̃),

which is independent of z (other than via the nks). This is the same log-odds trick that we used in the
last subsection.

This suggests the following two-step iterative algorithm.

If we are given z then we may estimate the nk’s directly using (6) and then estimate the pk,k̃’s (and
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Figure 6: Reordered yeast PPI data adjacency matrix.

thus P ) using Laplace’s rule of succession [41],

pk,k̃ =
1 +mk,k̃

2 + nk(nk̃ − δk,k̃)
, (7)

where mk,k̃ is the total number of edges in E that go from a vertex in block k to a vertex block k̃ (the
Kronecker delta arises since we do not allow any self-connecting loop edges).

Notice even if mk,k̃ = 0 we will still estimate pk,k̃ = 1/(2+nk(nk̃−δk,k̃)) > 0, and, similarly, even if
all such edges are present (mk,k̃ = nk(nk̃−δk,k̃)) we will estimate pk,k̃ = 1−1/(2+nk(nk̃−δk,k̃)) < 1.
Thus we avoid asserting any certainty even when there is no observed evidence to the contrary.

Alternatively if the nk’s and P are known, then we may update z so as to maximise the log-odds
likelihood,

log L̂ =
∑
ei,j∈E

log

(
pz(i),z(j)

1− pz(i),z(j)

)
. (8)

This is usually very efficient since the networks we consider are sparse and this is a sum of log-odds
over extant edges.

In order to maximise L̂ in (8) we proceed as in [39] (which in turn follows [5]) where a maximum
likelihood approach was found to achieve the highest accuracy. We begin with the vertices randomly
allocated across the K blocks, as an initial allocation. Then we consider each vertex in turn, keep-
ing all of the others fixed within their present blocks, moving it into whichever block results in the
greatest increase in L̂. We sweep through the vertices a number of times (less that five appears always
sufficient) until none are re-allocated. This results in a near optimal solution, though the solution
achieved certainly depends somewhat on the initial allocation.

Example: determining the partition
Here we consider a specific example, seeking z so as to maximise (8), where we have K = 4, and

P =


5. 10−7 0.05 0.05 0.075
5. 10−7 0.05 5. 10−7 5. 10−7

5. 10−7 0.05 0.05 0.075
5. 10−7 5. 10−6 5. 10−6 5. 10−6

 .
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Figure 7: The data (top left) generated by a suitable core-periphery stochastic block model (n = 100,
with 25 vertices in each of the four blocks, and the number of observed edges is m = 224) showing
the natural log likelihood L̂, given in (8). We show five distinct attempts to maximise L̂ converging
from distinct initial allocations.

We actually generated a block model with n = 100 and 25 vertices within each block, where the
number of observed edges was m = 224 (out of 9900 possible edges).

In Figure 7 we show five results achieved for the block allocation step using distinct initial allocations,
alongside of the original data. We also give the value of L̂ achieved in each case.

See [40] for further ideas within this area of analysis.

3.9 Sensitivity to false negative and false positive errors

How sensitive is this allocation step to edge set? Since L̂ is a sum over edges, we normalise it by
dividing by m = |E|. Then we may successively delete edges, producing false negatives (edges we
have not observed that should have been so), or indeed we can successive add in false positive edges
(edges which are observed that should not have been so), and are not necessarily consistent with the
original model.

Consider the impact on the log-odds/m, as m varies, shown in Figure 8. Obviously the existence of
false negative edges (the deletion of actually edges) is less damaging than the addition false positive
edges (edges which are mostly very low probability according to the model, P ).

In fact, given the estimates made for nk’s the pk,k̃’s we can calculate the expected log-odds for a single
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Figure 8: The change in L̂/m, as successive edges in E are deleted (producing false negatives), and
m decreases; and as successive new edges are added to E (producing false positive edges, which
are mostly inconsistence with the model, p), and thus m increases. We show the envelopes made
up of 100 instances of sequential deletions and sequential additions, respectively. To the left we are
sampling fewer true edges drawn from a distribution of trie edge log-odds values (and then taking the
average), so the phenomena reflects the central limit theorem.

true edge or a single false (positive) edge:

〈log(p/(1− p)) | true edge〉 =

∑K
k=1

∑K
k̃=1 nknk̃pk,k̃ log(pk,k̃/(1− pk,k̃))∑K

k=1

∑K
k̃=1 nknk̃pk,k̃

,

and

〈log(p/(1− p)) | false edge〉 =

∑K
k=1

∑K
k̃=1 nknk̃(1− pk,k̃) log(pk,k̃/(1− pk,k̃))∑K

k=1

∑K
k̃=1 nknk̃(1− pk,k̃)

.

For the above SBM example, in Figure 8 we have

〈log(p/(1− p)) | true edge〉 = −2.82... 〈log(p/(1− p)) | false edge〉 = −8.97... .

In summary we see that then instance of even a few false positive edges is very corrosive for L̂/m, the
overall log-likelihood per edge (the consequences of erroneous observations/interpretations), whereas
even a largish number (50%) of false negatives (possible true edges which were not observed) do
not make very much difference to the the overall log-likelihood per edge (since the remainder are
consistent with the model).
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4 COMMUNITY DETECTION

Many networks exhibit community structure. Community structure implies that the network is com-
posed of groups (communities) of vertices that are densely connected within the same group (the
same community) and yet are relatively sparsely connected across different groups (communities). It
is often termed a “network of networks” structure. We have seen how models such a Stochastic Block
models can be deployed give rise to such structure.

Suppose we are give a network: how do we best divide it up into sub communities that are relatively
densely connected internally and relatively sparsely connected from community to community.

There are many algorithms aiming to detect community structure in a given network in the absence of
predefined labelling of vertices. In this section, after giving an introduction on the related problem of
graph partitioning, we introduce community detection methods based on the notion of modularity.

The problem of graph partitioning has a long tradition in computer science and has important appli-
cations for parallel or distributed computation. It consists in dividing the vertices of a network into a
predefined number of groups such that the number of edges between groups is minimised. Problems
of this type can be solved in polynomial time, but with a prohibitive complexity of nc2 , where n is the
number of nodes and c the number of groups. For practical applications, approximate methods have
been developed, among which the popular spectral partitioning method, due originally to Fiedler.
That divides up the vertices using the eigenvalues and eigenvectors of the combinatorial Laplacian.

4.1 A spectral method

Consider a case where we consider the simplest instance of the problem, with c = 2, thus consisting
in finding the best bi-partition of the vertices in a strongly connected undirected network, such that
the number of edges between the two communities is minimised.

Let A be the n × n adjacency matrix of our undirected graph, as usual. For a partition into two
communities, denoted by B1 and B−1, let si denote the community that vertex i belongs to: so that
vi ∈ Bs(i).

By definition, given any bi-partition, the number of edges R running between the two communities
of vertices, also called the cut size, is given by

R =
1

2

∑
i,j|s(i)6=s(j)

Aij,

Let s = (s1, . . . , sm)T . Then sT .s = n, the number of vertices, since all elements of s are equal to
±1.

The expression
1

2
(1− sisj)

is equal to zero if vi and vj are in the same community and equal to one if they are in different
communities.

Thus
R =

1

4

∑
i,j

(1− sisj)Aij,
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which, using ∑
i,j

Aij =
∑
i,j

δi,jdi =
∑
i,j

sisjδi,jdi,

implies

R =
1

4

∑
i,j

sisj(diδi,j − Aij).

Here, as usual, di is the degree of vertex vi and δi,j is the Kronecker delta.

We can write this in matrix (quadratic) form as

R = sTLs

where L is the combinatorial Laplacian introduced earlier in section 3.5.

If we relax the requirement that s be a vector of elements equal to ±1, and instead allow s to be real
and assign the vertices simply by the sign of the corresponding si, then we see that R is minimised
by choosing s to be (a suitably normalised version of) the first eigenvector corresponding to the first
non-zero eigenvalue, called the Fiedler eigenvalue (see section 3.5). The smallest eigenvalue of L of
course is always zero, but for a connected graph it is simple and its eigenvector contains elements that
are all equal to one, so is not a useful solution here. The Fiedler eigenvector minimises R subject to∑n

i si = 0.

Relaxation is often used in numerical; methods, to reduce hard combinatorial problems to linear
algebra and spectral theory.

Hence one simply takes the Fiedler eigenvector (corresponding to the smallest non-zero eigenvalue)
of the combinatorial Laplacian. Note that its elements must sum to zero (why? the eigenvectors of a
self-adjoint matrix are orthogonal). One partitions the vertices according to whether the correspond
elements of the Fiedler eigenvector are positive or negative.

As an example we take a Stochastic Block Model (SBM) on n = 20 vertices with two blocks, each
of size 10 vertices (containing vertices 1 thru 10, and vertices 11 thru 20, respectively) with the intra-
block edge probability equal to 0.5 and the inter-block edge probability equal to 0.2. Note that these
probability values are not too dissimilar. If we reduce the inter-block probability to 0.1 the problem
become too easy.

In Figure 9 we show the results for this method for a particular instance of the above SBM: in this
case two vertices are misclassified. Below we will introduce an alternative approach (maximising)
which is more accurate.

The advantage of this spectral method is that it is relatively inexpensive in terms of computations and
really just requires us to locate the Fiedler eigenvector. It therefore deploys well worn ideas from
numerical linear algebra. It is fast and reliable, when n become very large.

How might we generalise this if we require c > 2? What what is the optimum value for c? Here is an
alternative method that generalises well.

4.2 Modularity

In Figure 10 we show a large connected component of an online friendship network for citizens of
Bristol, a historical port and city in the UK (it is the Twitter “reciprocated mentions” network for
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Figure 9: Left: the n × n (n = 20) adjacency matrix for the SBM network: black entries indicate 1s
(see text). Centre: bi-partition via the Fiedler vector - two vertices misclassified. Right: bi-partition
via maximum modularity (see section 4.2) - no vertices misclassified.

citizens of Bristol [28]). This is partitioned into 74 communities. Here there are 2892 vertices, with
average degree 3.14. Similar data is available for the largest 10 cities in the UK [10].

In the graph partitioning problem, so far we have implicitly have had to fix the number of groups.
For instance, the spectral partitioning method described before does not provide ways to determine
these quantities; this is an input of the algorithm. The community detection problem relaxes these
constraints and aims at finding the best partition of a network into communities, whichever their
number of their size. The idea is that the structures present in the network should guide the algorithm
to the right partition.

Modularity, denoted by Q, is a quantity introduced to measure the goodness of the partitioning of a
network into communities. Like the cut size, this quantity is often used as an objective function to
be optimised in order to uncover the best partition of a network. The main ad- vantage of modularity
over other quality functions for node partitioning is that it allows us to compare partitions made of
different numbers of communities. Let us consider a subset of vertices, denoted by CM (standing for
a “ComMunity”). The underlying idea of modularity is to compare the number of edges connecting
vertices within CM with the expected number of edges in an appropriate null model. Under the
configuration model, we saw earlier in (5) that the probability that nodes vi and vj are adjacent is
given by

Pij =
didj
2m

.

Other choices for the null model Pij have also been considered. We quantify the contribution of CM
to Q as ∑

vi,vj∈CM

(
Aij −

didj
2m

)
.

Let us now consider a partition of the network into nCM disjoint communities. The cth community
(c = 1, 2, ..., nCM) is denoted by CMc.

Modularity is defined as a properly normalised sum of over all communities:

Q =
1

2m

nCM∑
c=1

 ∑
vi,vj∈CMc

(
Aij −

didj
2m

) .
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Figure 10: An observed friendship network, formed via Twitter reciprocated mentions, for n = 2892
citizens of Bristol [28]; partitioned into 74 communities. This is the optimum partition in maximising
modularity (see section 4.2), according to the Mathematica implementation.

We may also write this as

Q =
1

2m

n∑
ij

(
Aij −

didj
2m

)
δ(si, sj),

where si denotes the community that vi belongs to: so that δ(si, sj) = 1 iff vi and vj belong to the
same community, and is equal to zero otherwise.

Now the idea is to maximise Q over all possible partitions of the vertices. However, the problem is
not that simple, because there are so many possible partitions, as we will discuss later.

If, for a moment we restrict the partitions to be a bi-partition, then this Modularity method usually
does as well as, or better than, the inexpensive spectral method, see Figure 9.

The Bristol example in Figure 10 uses the modularity maximisation method encoded within the com-
mercial Mathematica package. It partitions Bristol into 74 communities. Any more or any fewer
communities, even when tweaked and optimised, would result in smaller values of Q.

Modularity ranges in [−0.5, 1]. The trivial partition into one large community always yields

Q =
1

2m

n∑
ij

(
Aij −

didj
2m

)

=
1

2m

(
2m−

∑n
i=1 di

∑n
j=1 dj

2m

)
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=
1

2m

(
2m− 2m× 2m

2m

)
= 0.

Exercise Write a function that takes a graph and its partition as an input and returns its modularity.
Create an image graph the and colour the vertices by the various elements in the partition (as in
Figure 9 and Figure 10)?

4.3 Spectral optimisation of modularity

Optimising the modularity partition of a network into communities is far from trivial, as it was proved
to be NP-hard (there are cn ways of producing a c-element partition), and so various approximate
optimisation methods have been designed.

In this section, we present an approach based on the spectral properties of the network, similar in spirit
to the spectral partitioning method. For the sake of simplicity, we consider the division of a network
into just two communities (division into more communities can be then obtained recursively). Our
aim is thus to find the best bipartition of the network, that is the bipartition that optimises modularity.
As before, we denote a potential such division by an in- dex vector s with elements as above, satisfying

δ(gi, gj) =
1

2
(sisj + 1).

where gi and gj are the communities containing vi and vj . So thjen

Q =
1

4m

n∑
ij

(
Aij −

didj
2m

)
(sisj + 1) =

1

4m

n∑
ij

(
Aij −

didj
2m

)
sisj,

where as usual, we have used the handshaking lemma.

Hence in matrix form we have the quadratic form:

Q =
1

4m
sTBs,

where B is the real symmetric matrix

Bij = Aij −
didj
2m

.

This is called the modularity matrix. All rows (and columns) of the modularity matrix sum to zero,
which implies that the vector (1, 1, 1, . . . )T is an eigenvector with eigenvalue zero, just as is the
case with the Laplacian. Unlike the Laplacian however, the eigenvalues of the modularity matrix
are not necessarily all of one sign and in practice the matrix usually has both positive and negative
eigenvalues.

Equation is the equivalent of that above for the cut size and similar matrix methods can be applied
to modularity optimisation (in this case maximise Q, rather than minimise R). By direct analogy, we
write s as a linear combination of the normalised eigenvectors ui of B:

s =
n∑
i=1

aiui with ai = uTi s,
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so that

Q =
n∑
i=1

βia
2
i ,

where βi is the eigenvalue of B corresponding to the eigenvector ui.

Note that s is normalised:

n = sT .s =
n∑
i=1

a2
i .

Assume that the (necessarily real) eigenvalues are labeled in decreasing order β1 ≥ β2 ≥ . . . βn .

Modularity optimisation thus becomes equivalent to choosing the quantities a2
i so as to place as much

as possible of the weight in the terms corresponding to the largest (most positive) eigenvalues.

As with ordinary spectral partitioning, in the previous subsection, this would be a simple task if our
choice of s were unconstrained (apart from normalisation): we would just choose s proportional to
the leading eigenvector u1 of the modularity matrix. But the elements of s are restricted to the values
±1.

As before, we relax the problem good approximate solutions can be obtained by choosing s to be
as close to parallel with u1 as possible, which is achieved by setting si equal to the sign of the ith
element of u1.

This is our first and simplest algorithm for modularity-based community detection: we find the eigen-
vector corresponding to the most positive eigenvalue of the modularity matrix B and divide the net-
work into two groups according to the signs of the elements of this vector. Importantly, the separation
between positive and negative entries determines the optimal sizes of the communities. Moreover,
finer divisions are obtained by applying the algorithm re- cursively. The method thus produces a set
of partitions, with an increasing number of partitions. Modularity can then be used to find, among
those, the best partition, and thus determine the right number of modules. The magnitudes of the
elements of the eigenvector u1 also contain useful information about the network, indicating, the
“strength” with which vertices belong to the communities into which they are placed.

4.4 Louvain method to optimisation of modularity

The spectral method presented in the previous section is divisive, as it proceeds by divising the net-
work into smaller parts until reaching an optimal partition. The implementation of optimising Modu-
larity in the Mathematica package works that way (but is not discussed openly). One of its limitations
is computational, as its implementation requires the estimation of eigenvectors of the modularity
matrix, which is prohibitively expensive for systems much beyond 104 nodes, in general. For such
systems, alternative methods have been designed, often based on greedy, agglomerative principles. In
this section, we describe one such method, the Louvain method, implemented in many libraries and
packages.

The Louvain method consists of two phases, which are iteratively repeated, until a local maximum of
modularity is obtained. The algorithm begins with an undirected weighted graph having n vertices to
which an index between 1 and n has been randomly assigned. It is then designed as follows.

First phase: local optimisation. The initial partition consists of placing each vertex into a separate
community, this partition is therefore composed of n singleton communities. We then consider the
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first vertex, v1, and calculate the modularity variation obtained by removing v1 from its community
and placing it in the community of one of its adjacent neighbours, vj say. This variation is therefore
calculated for each of the neighbours of v1 and it is then moved to the community where this increase
is maximum, but only if this maximum increase is positive. If all the increases are negative, then v1 is
put back into its original community. This process is applied sequentially, that is the process is then
reapplied to all the vertices repeatedly until no vertex is moved during a complete iteration. The first
phase is then finished. We stress the fact that there are generally several iterations (i.e. after vertex
vn, one returns to v1, and so on) and this phase ends when a local maximum of modularity is reached,
meaning that no individual movement can increase the modularity. After this first phase, the network
of n vertices has been divided in a partition P having nc communities. If n > nc, meaning if the
first phase has grouped some vertices, then the algorithm continues to the second phase, if not the
algorithm is finished and the result is the partition P .

Second phase: merging of vertices. The second phase consists in constructing a new graph whose
vertices are the nc communities discovered during the first phase. The weight of the edges between
two of these new vertices is given by the sum of the weights of the edges which existed between the
vertices of these two communities. The links which existed between the vertices of a same community
create loops over the community in the new graph. Once this second phase is finished, it is possible
to reapply the first phase of the algorithm on the weighted graph and to iterate.

A single combination of the two phases is usually called a “pass”. The first phase consists in finding
a local optimum, where each vertex can only be linked to one community in its direct neighbourhood.
The second phase consists in aggregating the vertices, such that the application of the first phase on
the aggregate graph will lead to collective movements of vertices at a higher level.

This repetition of passes reminds us of the concept of self-similarity of complex network and naturally
constructs a hierarchy of communities. The output of the algorithm is therefore a set of partitions,
one per pass, such that the average size of the communities and the modularity increase from one pass
to another. By construction, the partition found after the last pass is the one maximising modularity,
and it is the main outcome of the algorithm, but the hierarchy provided by the algorithm can also be
exploited to characterise the hierarchical structure of the network.

4.5 Limitations of modularity optimisation

Methods based on modularity maximisation suffer from several drawbacks.

First, by construction, they are not capable of uncovering overlapping communities, often observed
in empirical networks.

Second, Q exhibits a resolution limit, because using Q it is impossible to detect dense clusters of
nodes that are smaller than a certain scale. The resolution limit originates from the dependency of
the null model on 2m. The dependency decreases when the number of links, m, is increased. Then,
modularity maximisation tends to favour larger communities. In the limit m → ∞, the null model
is neglected and modularity optimisation simply uncovers the connected components. Modularity-
based methods implicitly favour communities having a certain size, depending on the size of the
entire network, not only on its internal structure.

Third, the modularity landscape is usually extremely rugged and degenerate such that there exists an
exponential number of alternative, high-scoring partitions. AS one approaches the actual optimum,
using an interactive method, the final few iterations yield very marginal increments. See Figure 11, for
example, considering Bristol’s reciprocated Twitter mentions network, considered earlier in Figure 10
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Figure 11: Successively increasing the size of the partition for Bristol’s reciprocated Twitter mentions
network, considered in Figure 10. The dashed line denotes the relative modularityQ. Clearly the final
gains are highly marginal — perhaps we are working too hard. The solid line denotes the entropy.
Taken from [28]

Finally, although modularity allows us to compare partitions of the same network, it is by no means
intended to compare modularity values of different networks. Therefore, Q should not be used as an
absolute measure of the modularity of a network. For instance, the modularity of the best partition of
a random network tends to Q = 1 when the network is sufficiently large, whereas this network is by
no means modular.
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5 DYNAMICALLY EVOLVING NETWORKS

5.1 Katz Centrality for Observed Evolving Networks

Let A be an n×n symmetric adjacency matrix, for an undirected graph, as usual (no loops, no double
edges).

Consider the Katz centrality matrix, that we met before,

Q = I + αA+ α2A2 + α3A3 + . . . = (I − αA)−1.

Recall that this is a weighted count of all the walks between pairs of vertices, with a weight of αl for
a walk of length l.

Here α must be small enough so that the geometric sum exists. To be precise we must have αρ(A) <
1, where ρ(A) is the spectral radius (the Peron-Frobeneous eigenvalue) of A.

Here we wish to generalise the notion of vertex-to-vertex Katz centrality that we defined earlier for
static networks, to apply to evolving (sequential) two way communications networks.

We follow [2]. We consider evolving networks that represent time stamped peer-to-peer communi-
cations. In dealing with such networks and we have to consider walks through them with successive
edges being at the same or later time steps.

Sending messages across such networks is obviously asymmetric, even when each individual commu-
nication is symmetric. If I talk with you today and you talk with Ramona tomorrow, then I could have
sent a message via you to Ramona, but she could not have sent a message to me. So unlike static net-
works, the passage of time produces asymmetries and good senders/transmitters are not necessarily
the same as good lis- tens/receivers.

Suppose that we wish to find out who is a good transmitter of information through an evolving net-
work, and who is a good receiver, who has access to all the information being passed around an
evolving network. Perhaps we wish to make some intervention. For a static network these proper-
ties were the same, and vertices could be rank ordered by the row/column sums of the symmetric
centrality matrix. Yet now this will not be the case here.

Consider an evolving network (represented by its sequentially evolving adjacency matrix), say {Ak},
for k = 1, 2, . . . , K on an enumerated set of vertices, {1, 2, . . . , n}. Each of the Aks is an n × n
symmetric adjacency matrix, for an undirected graph, as usual (no loops, no double edges). We will
say the evolving network is equal to Ak at time step tk.

A dynamic walk of lengthm from vertex i1 to vertex im+1 is a sequence of edges (i1, i2), (i2, i3), . . . (im, im+1)
and a non-decreasing sequence of times

tr1 ≤ tr2 ≤ . . . ≤ trm ,

such that the edge (ij, ij+1) is traversed at time trj . This is equivalent to saying that

(Arj)ijij+1
= 1.

Hence the dynamical walk is made up of m successive edges, each drawn from the evolving network
at some suitable non-decreasing set of time steps. In this definition we can use successive edges at
the same time or at later times.
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The time-dependent context offers a rich variety of alternatives. In some circumstances it may be
appropriate to allow at most one edge to be used per time point, so the constraint on the time sequence
would involve strict inequality tr1 < tr2 < . . . < trm , . For example, at a formal evening ball, each
time the band plays a dance, you may partner-up with an acquaintance or sit it out. (No cutting in is
allowed!). How could you spread a rumour from partner to partner?

Alternatively, it may be appropriate to force exactly one edge to be used per time point. Analogous
definitions of dynamic paths and dynamic trails could be made.

Here we will keep to our original definition tr1 ≤ tr2 ≤ . . . ≤ trm , , so that any number of the edges
could be selected for a single time step, but the ordering of the edges cannot go back in time.

The dynamic walk concept proceeds via the observation that the matrix product

Ar1Ar2 . . .Arm

has (i, j)th element that counts the number of dynamic walks of length m from vertex vi to vertex vj ,
where the jth step of the walk takes place at time trj . This is really a simply corollary of a result we
considered earlier, when we had walks in a network and then add an edge from a “next” network. So
recall that each time we take a successive step, we can count the possible walks by post-multiplying
by the right adjacency matrix.

Consider all of the possible dynamical walks from vi to vj that take exactly mk ≥ 0 edges at each
time step k = 1, ..., K. Such a walk is of total length m = m1 + ... + mK , where the walk traverses
exactly mk ≥ 0 edges from Ak. The number of such walks is given by the (i, j)th term of the matrix
product

Am1
1 Am2

2 . . .AmK
K .

Just as in the static network case we want to count up all such walks that are possible (by varying the
mk), though we will discount each walk according to αm, where m is the total length.

It follows that the matrix product

(I + αA1 + α2A2
1 + ...)(I + αA2 + α2A2

2 + ...)...(I + αAK + α2A2
K + . . . )

contains all such terms. So its (i, j)th term counts all possible walks of all possible combinations of
edges taken from the successive time steps, suitably discounted for total length.

Thus the matrix product

Q = (I − αA1)−1(I − αA2)−1. . . (I − αAK)−1

is called the Katz centrality matrix for the evolving network.

In order that Q is well defined the infinite sums (the inverses deployed must all exist). This requires
that α < 1/ρ(Ak) for all k = 1, 2, ..., K. Hence α is bounded above by the inverse of the maximum
spectral radius of the adjacency matrices.

It is non symmetric in general as matrix multiplication is not commutative.

Let s = (1, 1, . . . , 1)T . The row sums,
b = Q.s,

count the the outward influence of each vertex within the network (the weighted sum of walks from
each vertex to anywhere). These are called “broadcast-centralities”. The column sums,

r = QT .s,
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count the the inwards influence of the network upon each vertex (the weighted sum of walks from
anywhere to each vertex). These are called “receive-centralities”.

Corporate email Communications as an Evolving Network
One widely studied time-dependent interaction data set in the public domain lists the email activ-
ities of 151 Enron employees (see http://www.cs.cmu.edu/enron/).

We first summarise all of the employee-employee email interactions over a period of 1138 con-
secutive days. This leads to a sequence of 1138 symmetric adjacency matrices, each of dimension
151× 151.

Figure 12 shows the total number of edges per day. This gives rise to 1138 single day adjacency
matrices, we know that many of them are empty. We contrast the centrality vectors, b and r, with
the total vertex degrees (the sum of degrees over all days).

Figure 13 shows the broadcast-centralities and receive-centralities. Interestingly we know the
actual identities of the individuals in this data set as it is a matter of public record (due to the legal
proceedings). Obviously those with high degrees have a likelihood of having high centralities.
But it depends how they are distributed within the network, and when (earlier or later in the
sequences).

Figure 12: Daily edge counts in an observe evolving network.
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Figure 13: Vertex scatterplots of broadcast-centrality, b, and receive-centrality, r, against total vertex
degree. Some vertices with small total degrees are of high centrality: influencing everybody or being
influenced by everybody over time.

Example: A Mobile Telephone Call Network We consider the 52-week “Reality Mining” data
set as an evolving network with n × n adjacency matrices K = 52 and n = 106. Specifically
we used the data on voice calls made between pairs of subjects (106 members of MIT faculty)
to derive the weekly adjacency matrices. We depict the first 48 weeks of the sequence below. It
is very sparse at both the beginning and the end of the sequence, which represents an academic
year starting in July. See Figure 14.

So for Q to be well defined, 1/α must be larger that the spectral radius (the Perron Frebeneous
eigenvalue) of each of theAk (larger than 17.456 in this example, which occurs when the evolving
network is relatively less sparse).

Next in Figure 15 we plot source (broadcast)-centralities held in b versus sink(receive)-centralities
held in b . There are clearly some vertices that are much better as broadcasters/sources than re-
ceivers/sinks and vice versa.

5.2 Nonlinear Dynamics: an Evolving Network Model

A network that evolves over time can be generated by a nonlinear Markov model. We follow [11].

Consider a population of n individuals connected through a dynamically evolving undirected network
representing person-to-person voice calls or online chats. Let A(t) denote the n×n binary symmetric
adjacency matrix for this network at time t, having a zero diagonal (you cannot talk to yourself). The
edges if GA(t) are appearing and disappearing over time

Let S denote the set of real, symmetric, n×nmatrices with all elements taking values in [0,1], having
a diagonal containing only zeros. Then at any time the expected value for the adjacency matrix B of
an undirected random graph, denoted by 〈B〉, lies in S. We have considered random graphs earlier in
section 3. If we assume that the edges in GB are independent then we may generate an instance by
examining each possible edge, (i, j), in turn and having it present with probability 〈B〉ij (since the
graph undirected, so B (and 〈B〉) is symmetric, and we only need to consider the under triangular
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Figure 14: Weekly edge counts in an observe evolving network.

part of 〈B〉).

Our simplest model for GA(t) assumes that it is known up until the present moment, t and then at
future times A(t+ t+ δt), and this the graph, is a stochastic object, representing a random graph (see
section 3) defined by a conditional probability distribution over A (the set of all possible adjacency
matrices). Each edge within this network will be assumed to evolve independently over time, though
it is conditionally dependent upon the current network, so multiple edges may be conditional upon
some common parts of the current structure. Rather than model a full probability distribution over A
for future network evolution, conditional on its current structure, say P (A(t+ δt)|A(t)), it is enough
to specify its expected value 〈A(t+ δt)|A(t)〉, a matrix containing all edge probabilities, from which
edges may be generated independently.

Now we specify our conditional model for the stochastic network evolution via an equation of the
form

〈A(t+ δt)|A(t)〉 = A(t) + δtF (A(t))

valid as δt→ 0. Here the real matrix-valued function F is assumed to take values in S, and thus it is
symmetric, it has a zero diagonal, and all elements within the right hand side must be in [0,1] (since
they are independent edge probabilities).

By convention we use the rule into determine the independent edges in the upper triangular part of
〈A(t+ δt)|A(t)〉, and then impose symmetry.

We shall fix F more specifically, and write it in the form

F (A(t)) = −A(t) ◦ ω(A(t)) + (1− A(t)) ◦ α(A(t)).

Here 1 denotes the adjacency matrix for the clique, where all possible n(n − 1)/2 edges are present
(all elements are ones except for zeros on the diagonal), so that 1−A(t) denotes the adjacency matrix
for the graph complement of A(t); ω(A(t)) and α(A(t)) are both real non-negative symmetric matrix
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Figure 15: Vertex scatterplots of (source) broadcast-centrality, b versus (ink) receive-centrality, r.

functions containing conditional edge death rates and conditional edge birth rates respectively; and
◦ denotes the Hadamard product, or element-wise matrix product, where one simply multiplies the
corresponding terms in each matrix together.

One may think of α(A(t)) as a matrix of instantaneous birth rates for edges: those edges that are not
in A(t) and instead are in 1−A(t) . Similarly one may think of ω(A(t)) as a matrix of instantaneous
death rates for edges: those edges in A(t) and not in 1− A(t). The Hadamard products simply picks
out the required rates for each edge, since both A(t) and 1− A(t) are binary.

To simplify matters further let us consider a discrete uniform time version of the above evolution. Let
{Ak|k = 1, . . .K} denote an ordered sequence of adjacency matrices (all binary, symmetric with zero
diagonals) representing a discrete time evolving network with value Ak at time step tk. Then we shall
assume that the edges evolve (appearing and disappearing) independently from time step to time step
with each new network conditionally dependent on the previous network. A first order model is given
by an iterative process (a process Markov, see previous notes):

〈Ak+1|Ak〉 = Ak ◦ (1− ω̃(Ak)) + (1− Ak) ◦ α̃(Ak).

Here ω̃(Ak) ∈ S and α̃(Ak) ∈ S is a real nonnegative symmetric matrix function containing the
conditional death and birth probabilities in [0,1], respectively, valid over each time step.

As before the edge independence assumption implies that the conditional distribution P (Ak+1|Ak)
can always be reconstructed from the expected value 〈Ak+1|Ak〉.

In the sociology literature the simplest form of nonlinearity occurs when people introduce their friends
to each other. So if two non-adjacent people are connected to a common friend at step k then it is
more likely that those two people will be directly connected at step k + 1. To model this triadic
closure dynamic we may employ

ω̃(Ak) = γ1,
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so that all current edges have the same step-to-step death probability, γ ∈ [0, 1]; together with

α̃(Ak) = δ1 + εA2
k ◦ 1.

Here δ > 0 and ε > 0 are positive constants and such that δ + ε(n− 2) < 1 . This condition ensures
that

Ak ◦ (1− ω̃(Ak)) + (1− Ak) ◦ α̃(Ak) ∈ S

for all possible values of Ak (why?). The off-diagonal elements (A2)ij count the number of mutual
connections that person i and person j have at step k . The Hadamard multiplication in α̃(Ak) simply
zeros the main diagonal in that term.

It is thus clear that for these definitions both α̃(Ak) and ω̃(Ak) take values in S as required.

We have the dynamic

〈Ak+1|Ak〉 = Ak ◦ (1− γ)1 + (1− Ak) ◦ (δ1 + εA2
k ◦ 1). (9)

The resulting dynamical equation is ergodic, meaning that over long time, although it it may visit all
possible states, such instances are weighted and its average behaviour over time can be described by
its expected evolution. In this case the solution is destined to spend most of its time close to states
where the density of edges means that there is a balance between edge births and deaths.

In Figure 16 we depict the evolution of this system via the observed edge density, the fraction of edges
present in simulations of Ak versus time step k. At each step we generated Ak+1 from its expected
value given by (9): then iterated as required. Cleary the system moves towards one or another quasi
stable state. In fact all of these simulations evolve from identical initial conditions. We say “quasi”
because in theory, at any time step, we have a distribution for P (Ak+1|Ak). So the next graph could
jump to anywhere (jump to the empty graph or the clique in the extreme): but some next graphs are
much more likely, of course.

Figure 16: Multiple simulated evolutions of the stochastic dynamic given by (9): we show the ob-
served actual edge density (analogous to the edge probability, p, for an Erdös-Rényi random graph).
Here (n, δ, ε, γ) = (100, 0.0004, 0.0005, 0.01).
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A mean field approach can be applied by approximating each Ak with its own expectation, which (by
symmetry) may be assumed to be of the form pk1, an Erdös-Rényi random graph, with edge density
pk. We may make such an assumption since no vertices are preferred by the model and the model is
invariant under permutations of the vertices.

In the mean field dynamic approximation one writes 〈Ak+1|Ak〉 = pk+11 and replaces the right hand
side of the evolution equation (9) with its expected value, using

〈Ak〉 = pk1,

and
〈A2

k ◦ 1〉 = (n− 2)p2
k1.

This last is true since for any two distinct selected vertices: (a) each of the (n − 2) possible paths of
length 2 between them involves two independent edges (each with probability pk), and such edge are
independent from one another, so such a path has a probability of p2

k; and (b) since no two such paths
can share any edges we may sum those (n − 2) probabilities to obtain the expected number of such
paths, and hence the expected value of the corresponding term in A2

k, as (n− 2)p2
k .

Hence from (9) we obtain mean field evoltion

pk+1 = pk(1− γ) + (1− pk)(δ + (n− 2)εp2
k).

If δ is small and ω < ε(n − 2)/4 then this nonlinear iteration has three fixed points: two of them
stable, at δ/γ + O(δ2) and 1/2 +

√
1/4− γ/ε(n− 2) + O(δ); and one unstable in the middle at

1/2−
√

1/4− γ/ε(n− 2) +O(δ). See figure 17 for example.

Thus the extracted mean field behaviour is bistable.

Figure 17: Plot of p (dashed) and (1− p)(δ + (n− 2)εp2)/(1− γ) (solid) versus p. The fixed points
are at 0.049, 0.229 and 0.721: compare these values to those quasi steady states in Figure 16. Here
(n, δ, ε, γ) = (100, 0.0004, 0.0005, 0.01).
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In practice an observer of data from such a system (9) would see the edge density of such a network
approaching one or other stable mean field equilibria, and jiggling around it for a very long time,
without any awareness that another type of orbit or pseudo stable edge density could exist.

That is why models are so important, as they imply possibilities or consequences that we have not yet
seen.

Notice that the mean field dynamic is deterministic, whereas in practice the actual dynamic in (9) is
stochastic. There is always a small chance in (9) that Ak+1 = 0 or Ak+1 = 1 at the next step.

Direct comparisons of transient orbits generated from the full stochastic Markov model (9) with the
mean field dynamic, incorporating triadic closure, are very good indeed over short to medium time
scales. See Figure 18.

Figure 18: Jagged curves show simulations of edge density extracted for three independent stochastic
paths from the Markov chain (9) using the same model parameters. Solid curve shows the smooth
mean field evolution.

In fact, the initial condition in Figure 16 was deliberately chosen to be close toe the unstable rest
point for the mean field evolution equation, so as to observe divergent trajectories. Yet though we
have captured the nonlinear effects well in, the stochastic nature of the full model must eventually
cause orbits to diverge from the deterministic stability seen in mean field approximation.

The model in this section can represent friendships a new year cohort of undergraduate school or
college where few of the n students know any of the others, and where we measure the social graph
of student friendships weekly. Assume δ → 0. If triadic closure (introducing friends of friends) never
gets going then we are destined to approach the lower equilibrium where random friendships form
at a rate close to γ and rate that existing friendships expire. The mean field model applies. If there
are drinks and cheese parties early on in the first term, the system may get shifted to run close to the
upper, more sociable, equilibrium.
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6 DYNAMICS ON NETWORKS

One of the main motivations for identifying modular structures in networks is that they provide a
simplified, coarse-grained description for the system structure.

Think for instance of a social network, in which we might be able to decompose the system into groups
of people such as circles of friends. We may then represent the system in terms of the interactions
between these different groups of people, thereby reducing the complexity of our description. The
hope is to not only arrive at a more compact structural description, but that the found modules can be
interpreted as the ‘building blocks’ of the system with a functional meaning.

In general this functionality is expressed in the ways by which dynamics is constrained by the under-
lying structure. Think of flows of passengers in the underground, flows of ideas in citations networks,
or flow of information in the social network example. To properly understand such systems, we in-
deed to consider the dynamics that acts on top of an underlying structure structure. In this section,
we will provide an overview of the interplay between structure and dynamics in complex networks by
considering (linear) consensus dynamics. First, we describe dynamics with a separation of time-scales
and discuss how such a time-scale separation can be a direct consequence of the network structure.
Second, we discuss how the presence of particular symmetries in a network can give rise to in- variant
subspaces in the dynamics that can be precisely described by graph partitions.

Here is a short summary of the notations used in this section. For simplicity, in the following we
consider mainly undirected, connected graphs with n vertices and m edges, as usual.

Our ideas extend to directed graphs, however, which we will outline as we go along. The topology of
a graph is encoded in the weighted (non-negative) adjacency matrix A ∈ Rn×n, where the weight of
the edge between vertex i and vertex j is given by Aij . Note that A = AT for an undirected graph.

The weighted out-degrees (or strengths) of the nodes are given by the vector out-degrees d = A.1̂,
where 1̂ denotes the n-vector of ones. For any vector x = (x1, . . . , xn)T , we define diag(x) to be the
diagonal matrix X with elements Xii = xi and zero otherwise. We thus define the diagonal matrix of
degrees as D =diag(d).

Recall also that combinatorial graph Laplacian is defined as L = D−A. It is symmetric (self adjoint)
and positive semi-definite, with a simple zero eigenvalue when the graph is connected.

6.1 Consensus dynamics

Consensus has been one of the most popular and well- studied dynamics on networks. This is due to
both its analytic tractability as well as its simplicity in approximating several fundamental behaviours.

For instance, in socio-economic domains consensus provides a model for opinion formation in a
society of individuals. For engineering systems, it has been considered as a basic building block
for an efficient distributed computation of global functions in networks of sensors, robots, or other
agents. To define a standard consensus dynamics, con- sider a given connected network of n nodes
and adjacency matrix A. Let us endow each node with a scalar state variable xi ∈ R, which is a
function of time t. Let x(t) = (x1(t), . . . , xn(t))T .

Suppose viand vj are neighbours. Then vi sees a difference of (xj − xi) in their states. If this is
positive (respectively negative) then vi should increase (respectively decrease) its states so as to close
the gap.
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The (average) consensus dynamics on such a network is then defined by the autonomous differential
equation:

ẋ = −Lx. (10)

Note that in coordinate form this simply amounts to ẋi =
∑

j Aij(xj − xi), that is, the state of each
vertex adjusts so that the difference to its neighbours is reduced. The name of these dynamics de-rives
from the fact that for any given initial system state x0 = x(0), the differential equation above will
drive the state to a global ‘consensus state’ in which the state variables of all nodes are equal.

Since 1̂T .L = 0, 1̂ is an eigenvector of L with zero eigenvalue, we see that

1̂T .ẋ = 0→ 1̂T .x = constant.

Mathematically, this means that xi → x∗ for all i, as t → ∞, where x∗ = 1̂T .x0/n is the arithmetic
average of the initial node states. Intuitively, this dynamics may be interpreted as an opinion formation
process on a network of agents, who will in the absence of further inputs eventually agree on the same
value: namely, the average opinion of their initial states.

The rate of convergence is limited by the second smallest eigenvalue of L, the Fieldler eigenvalue, λF
say. with

x(t) = x∗1̂ +O(e−λF t).

To see this simply expand x(t) out in terms of the orthonormal eigenvectors of L, and observe that the
resulting scalar equations decouple. Note that, of course, if the network is NOT strongly connected,
so 0 is not a simple eigenvalue for L, then we can solve this equation on each connected component
independently, whence λF > 0.

We illustrate this with an example in Figure 19.

As we will show this process is the dual of a random walk process taking place on a network.

Exercise. Write a code to simulate consensus dynamics on a network, and verify that the dynam-
ics asymptotically converges towards the state x∗1̂.

6.2 Time-scale separation in dynamical systems

Before discussing time-scale separation in the context of a dynamical process acting on a network, let
us explain the concept of time-scale separation with a generic example first.

Consider the following simple dynamical system:

dx

dt
= f(x, y),

ε−1dy

dt
= g(x, y),

where ε << 1 is a small positive constant. Note that, the above implies that x(t) changes much more
rapidly than y(t). Indeed, dy/dt will be proportional to εg(x, y), which is small by construction.
Alternatively, simply define a new, slow time variable τ := εt and note that the above can be written
as

dx

dt
= f(x, y),
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Figure 19: Illustration of a consensus dynamics on the small, often studied, Karate Club
network (https://en.wikipedia.org/wiki/Zachary%27s_karate_club), originally
analysed by Zachary. A: the network. B: Consensus dynamics on the Karate club network starting
from a random initial condition. As discussed in the text, as time progresses the states of the indi-
vidual nodes become more and more aligned, and eventually reach a consensus value, equal to the
arithmetic average of the initial condition.

dy

dτ
= g(x, y).

There is a separation of time-scales in the dynamics, where y evolves according to the ‘slow’ timescale
τ , and x according to the much faster timescale, t

This time-scale separation can be exploited for the analysis of a system in various ways. On the one
hand, if we are mainly interested in the short term (fast) behaviour of the system above, we may
effectively treat y as a fixed parameter and ignore its time evolution, leading to an effective one-
dimensional system description. Indeed for the so called singular perturbation, ε → 0, y and x will
effectively be decoupled.

On the other hand, if we are mainly interested in the long term behaviour of the system, then it is y
we are most interested in. Let us assume, that x(t) converges to some fixed point x∗(y) on the fast
timescale, t, as a function of y which is effectively constant on that timescale. Then on the slow time
scale we have

dy

dτ
= g(x∗(y), y).

Using this simplification will, of course, lead to some errors when comparing to the actual time-
evolution of y, especially for an initial transient period when f is a long way from zero. However, it
allows us again to focus on a simpler one-dimensional system, facilitating a simpler analysis.

This general idea is the basis for center manifold theory and the asymptotic method of multiple
timescales [33]. To summarise, the separation of time-scales acts in such a way that it almost de-
couples the system in two different regimes.
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6.3 Time-scale separation in networks with consensus dynamics

Let us now discuss how the above ideas can be trans-lated into the context of networks on which a
diffusion or consensus dynamics is acting. For simplicity we will de- scribe the results here in the
context of consensus, though translating these ideas to diffusion processes is straight- forward.

For any initial condition x0, standard linear systems theory tells us that the solution to 10 is given by

x(t) = exp(−Lt)x0,

where exp(∆) denotes the matrix exponential. Writing the solution in this way disguises however the
time-scales present in the evolution of x as these gets mixed via the network interactions. In order to
reveal the characteristic time-scales present in the system we can make use of a spectral decomposition
of L. Let us denote the eigenvectors of the Laplacian by vi , i.e., Lvi = λivi, and assume that we have
ordered the eigenvalues (and associated eigenvectors) in increasing order 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

We may now decompose the Laplacian via

L =
∑
i

λiviv
T
i ,

and write
x(t) =

∑
i

exp(−λit)vivTi x0.

In this format the time-scales of the process become apparent. They are dictated by the eigenvalues of
the Laplacian matrix: each eigenvector (or eigenmode) decays according to a characteristic time-scale
τi = 1/λi. Hence, if there are large differences between the eigenvalues, we will have a time-scale
separation. More precisely assume that there is a group of k small eigenvalues {0, ..., λk}, which
are well separated from the remaining eigenvalues in the sense that λk << λk+1. Then after some
time, τ0 ∼ 1/λk+1, the eigenmodes associated with teh larger eigenvalues become negligible and
the system can be effectively described by the k smallest eigenmodes. More technically, the k first
eigenvectors form a dominant invariant subspace of the dynamics.

The main point of the discussion above is that if there is a separation of time-scales, there exists a
lower dimensional description of the dynamics on the network after a specific time-scale τ0. A natural
question is thus how this time-scale separation and the lower-dimensional description of our dynamics
is related to the network structure.

As an example let us consider a network composed out of k modules, only weakly coupled to the
other. To simplify our exposition let us consider the case of a graph with k modules, whose adjacency
matrix is dominated by k blocks, corresponding to the k modules, and can be written as:

A = Astructure + Arandom =


A1

A2

. . .
Ak

+ Arandom.

Here Arandom may be interpreted as a realization from an Erdös-Rényi random graph, with unstruc-
tured, sparse connectivity (just a “noise term”); the Ai are the adjacency (sub-)matrices of the indi-
vidual clusters which have much higher internal connectivity.

How does the structure present affect the spectrum and the eigenvalues of the cor- responding Lapla-
cian L = Lstructure + Lrandom?
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Let us first consider the case where Lrandom = 0, so the graph consists of k disconnected components.
Then we will have λ = 0 with algebraic (and geometric) multiplicity k, and the associated eigenspace
can be spanned by eigenvectors of the form c(j)i = 1 if vertex i is in component j and zero otherwise.

To gain insight into the case where Lrandom 6= 0, we can appeal to matrix perturbation theory and
random matrix theory, respectively. For a network of the form above, the Davis-Kahan theorem pro-
vides bounds on the (angular) distance between the subspace Y spanned by {c(j)}, and the subspace
Y ′ spanned by the corresponding eigenvectors of L associated with the smallest eigenvalues. On an
intuitive level, the Davis-Kahan theorem states that if the noise level is not too high, then Y ≈ Y ′.
The implication is that the dominant invariant subspaces will be commensurate with the structural de-
composition of the network in terms of the block-vectors. Hence the long-term dynamics will directly
reflect the structural decomposition of the network. In other words, the time scale separation in such
a networked system takes an intuitive meaning: quasi-consensus is reached more quickly within each
block, while global consensus is only reached on a longer time scale.

To illustrate the above discussion let us consider here a numerical example. The network displayed in
Figure 20A consists of 3 groups with 100 nodes each, and is structured as outlined in our discussion
above. As can be seen clearly in Figure 20B the dynamics becomes effectively low dimensional after
around t = 0.05 and can be well approximated by the dominant eigenmodes.

Figure 20: llustration of a consensus dynamics on a structured network. A: Adjacency matrix (un-
weighted) of a structured network with 3 modules/groups, as discussed in the text. B: Consensus
dynamics on this network displays a time-scale separation until around t = 0.05, approximate con-
sensus is reached within each group (groups indicated by colour); then a consensus is reached between
the groups. Note that for the shown network λ4 = 18, in good agreement with our discussion above.

63



7 RANDOM WALKS

Consensus dynamics has important applications, in connection to the fields of decentralised algo-
rithms and synchronisation. Another important dynamical process on networks is diffusion, aiming at
modelling how an entity randomly explores the underlying structure. In this section, we provide a de-
tailed analysis of random walk processes on networks. As we will show, in certain set-tings, random
walks can be seen as a dual process of the consensus dynamics described in the previous section.

7.1 Discrete-time random walks on networks

Let us consider a walker diffusing on an undirected network. At each step, the walker located at a
certain vertex selects one edges connected to the vertex at random and jumps to an adjacent node.
This process is equivalent to a Markov chain, and is described by the n× n transition matrix T . The
probability that the walker visits the ith node after t steps, pi(t), is given in by

p(t) = p(0)T t,

where p(t) = (p1(t), . . . , pn(t)). Thus us just (3) in Section 1.3.

The solution, involves products of matrices and can be simplified with the use of a graph Fourier
transform. The underlying idea is to decompose the sig-nal in an adequate base of vectors, such that
the matrix products take the form of algebraic products for ampli-tudes associated to the different
dynamical modes. To work out this idea, let us first note that the transition matrix of the random walk
is given by

Tij = Aij/di,

representing the probability that the walker transits from vi node to vj . The transition matrix, T , is
in general asymmetric, except if the underlying graph is regular (A is symmetric). Nonetheless, its
spectral properties can be directly derived from those of the symmetric matrix

Ãij =
Aij√
didj

,

whose properties are essentially equivalent to those of the normalised Laplacian. By applying the
usual spectral (orthonormal) decomposition to Ã, we obtain

Ã =
n∑
i=1

λiui.u
T
i

.

Now becasue
Tij =

√
diÃij/

√
di equivalently T = D−1/2ÃD−1/2

, where D = diag(d1, . . . , dn), as usual, it is easy to check that the right eigenvectors of T are given
by

wR
i = D−1/2ui,

and the left eigevectors of T are given by

wL
i = D1/2ui.
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Note that we write both the right and left eigenvectors as column vectors: so taking the transpose of
wL
i we have:

(wL
i )T .T = λi(w

L
i )T ,

while we also have
T.wR

i = λiw
R
i .

In this case we have the decomposition:

T =
n∑
i=1

λiw
R
i .(w

L
i )T .

(Take care here : we are using T for the transition matrix, T , and also as a superscript to denote the
transpose of a vector! Sorry.) Note also that: (wL

i )T .wR
j = δij from the orthonormality to the u’s.

We may now solve for the row vector p(t) = (p1(t), . . . , pn(t)):

p(t) = p(0).T t =
n∑
i=1

λt(wL
i )T (p(0).wR

i ).

The eigenvalues λj of the transition matrix are in the interval [-1,1]. The mode with λj = 1 cor-
responds to the stationary density, and we thus write (wL

j )T = p∗. The right eigenvector of that
corresponds to this mode is wR ∝ (1, ..., 1)T .

All of the other modes for which −1 < λj < 1 decay to 0. The eigenvalue λj = 1 is the largest-
magnitude eigenvalue, and the Perron–Frobenius theorem guarantees that all elements of wL

j and wR
j

are positive.

Similar results hold for directed networks, although we cannot take advantage of the symmetric struc-
ture of the matrix Ã in general, though similar considerations apply.

By letting t be large but finite, we obtain the row vector:

p(t) ≈ (wL
max)

T (p(0).wR
max) + λt2(wL

2 )T (p(0).wR
2 ).

Here λmax = 1 and λ2 denotes the second largest eigenvalue in absolute magnitude.

Hence the second-largest eigenvalue of T governs the relaxation time. More generally, the relaxation
speed is determined by the ratio between |λ2| and λmax = 1. The difference 1 − |λ2| is often called
the “spectral gap”. A large spectral gap entails fast relaxation.

The Cheeger inequality gives useful bounds on |λ2|. The Cheeger constant, which is also sometimes
called the “conductance”, is defined by

h = min
S

{
number of edges that connect S and its complement, S̄

min{|S|, |S̄|}

}
,

where S is a subset of the vertices in the network, and S̄ is the complement.

The Cheeger inequality is
h2

2
< 1− |λ2| ≤ 2h,

so a small Cheeger constant, h, implies a small spectral gap, 1 − |λ2|; and hence slower relaxation.
This result is intuitive, because one can partition a network with a small value of h into two well-
separated communities such that it is difficult for random walkers to cross from one community to the
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other. Note that there are various versions of Cheeger constants and inequalities. These results are in
line with our discussion on spectral methods for community detection in the previous chapter.

The power method is a practical numerical method to calculate the stationary density of a random
walk in a directed network.

7.2 Application: PageRank

A well-known centrality measure for directed networks is the PageRank, which was first introduced
for ranking webpages and later adopted in a variety of applications. The PageRank is defined as the
stationary density of a discrete-time random walk, particularly on directed networks.

As a reminder, we considered discrete-time random walks on undirected networks. In this section, we
start by looking at discrete-time random walk on directed networks, which is a representative Markov
chain.

Consider a directed network and a random walker in discrete time. In each step, the walker located
at the ith node jumps to one of the out-neighbours selected at random. The transition matrix, i.e., the
probability that the walker moves from the ith node to the jth node is given by

Tij = Aij/d
out
i .

Although we focus here on the case of unweighted networks, the following analysis may be easily
generalised to the weighted case.

The time evolution of the density of the random walk is driven as before. The stationary density
essentially defines the PageRank. The PageRank states that node vi is important if is receives many
links, the links entering vi emanate from important nodes, and a node vj sending a directed link in
to vi has a small out-degree. The last condition says that the total importance of vj is shared among
its out-neighbours. This circular relationship, i.e., a node is important if it is connected to important
nodes, leads to an eigenvalue problem.

The naive use of the stationary density, says,

p∗ = (p∗1, . . . , p
∗
n),

is in general not appropriate because p∗ is not unique when there are multiple absorbing states and
the stationary density is equal to zero for transient nodes. Recall, the stationary state uniquely exists
if and only if the network is strongly connected, which is rare in empirical directed networks. To
circumvent these problems, mathematical tricks have been proposed to make the dynamics ergodic
even when the underlying network is not strongly connected. The most popular method consists in
allowing walkers to randomly teleport to other nodes. Random walks with teleportation are driven by
the rate equation

pi(t+ 1) = α

n∑
j=1

pj(t)Tji + (1− α)bi, (11)

where the “preference” row vector b = (b1, . . . , bn) is non-negative and sums to unity; and α ∈ (0, 1)
is the probability of teleportation at any given time step; so bi is the probability of a teleporter landing
at vi, post teleportation. In the case of web browsing, teleportation is interpreted as a jump to a new
webpage without following a hyper-link.
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The stationary state is formally given by

p∗i = bi +
∞∑
l=1

n∑
j=1

bj(T
l
j,i − T l−1

j,i ). (12)

This expression clearly shows the non-local nature of the PageRank because it is made of walks of all
length l. A small α value gives a low credit to longer walks. As in the case of the Katz centrality, the
stationary density may radically change when α is modified.

In matrix form (11) is re-write as an dynamic equation for the row vector p(t+ 1) as

p(t+ 1) = αp(t)T + (1− α)b,

and thus the solution at steady state in (12) may be calculated in the form

p∗ = (1− α)b(I − αT )−1.

If we take the transpose of this last equation one obtains a matrix equation for the column vector, p∗T ,
and the similarity to Katz centrality is again apparent.

7.3 Models of epidemic processes

Epidemic processes are probably the most studied dynamical processes on networks, both for static
and temporal networks. Many of these investigations are motivated by their applications to infec-
tious diseases of humans and animals, viral and other information spreading on social networks, and
computer viruses. In this section, we first present classical models of epidemic spreading, and their
behaviour in the mean-field, before consider- ing two types of models on networks: meta-population
models and spreading on contact networks.

The susceptible-infected-susceptible (SIS) model, the susceptible-infected-recovered (SIR) model
and the susceptible-infected (SI) models are probably the most frequently studied epidemic processes.
These models are named after the types of state that each node assumes: the susceptible (in short,
healthy), infected and recovered states, and admitted transitions between the states. They are called
compartmental models, where compartment is a synonym of state. We focus on stochastic versions
of these models, which are usually studied when considered on networks. The transition rates of the
three models, which fully define the models, are summarised as follows

The SIS model assumes just two processes. When a susceptible node interacts with an infected node,
the susceptible node contracts infection and moves into the infected state at rate β. In other words,
the probability that a susceptible node gets infected in small time ∆t is equal to β∆t . If a susceptible
node is adjacent to kI infected neighbours, the transition rate is equal to kIβ. An infected node
recovers at rate µ irrespectively of the states of the neighbours. Once an infected node recovers, it
transits back to the susceptible state. Therefore, a node may contract infection multiple times during
a single run of the SIS model.

Consider the mean-field population, that is, , the complete graph on n veryices, where each vertex
pair is connected with each other with a normalised weight of 1/N . Denote the fraction of susceptible
and infected nodes at time t by S(t) and I(t), respectively. The dynamics for lafrge N are:

dS(t)

dt
= −βI(t)S(t) + µI(t)
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dI(t)

dt
= βI(t)S(t)− µI(t).

Clearly this c onserv es mass:
d

dt
(S(t) + I(t)) = 0.

So S(t) + I(t) = 1 for all tiume. At eqaulibrium, either I∗ = 0 (no infection ever present) or else we
have the possibility

S∗ =
µ

β
I∗ = 1− µ

β
.

This is intuitive in that the magnitude of infection is large if the infection rate β is large or the recovery
rate µ is small. In addition, I∗ > 0 holds true if and only if

β

µ
> 1.

We say that the epidemic threshold in terms of β
µ

is equal to unity in the well-mixed population.
Below this value the infection always dies out. As we will see, the epidemic threshold depends on the
structure of the underlying network in general.

In the SIR model, infection events occur in the same manner as in the SIS model. The only difference
to the SIS model is that when an infected node recovers at rate µ, it transits to the recovered state,
not back to the susceptible state. A recovered node does not infect others or is not reinfected. The
recovered state can also be interpreted as the removed or dead state because a dead node would not
infect or be infected by others. In contrast to the SIS model, infectious nodes are eventually extinct
in the SIR model even if the infection rate is high. For an arbitrary initial condition, the final state
consists of susceptible and recovered nodes, but not infected nodes. We typically start the SIR model
from a single infected node or a small fraction of infected nodes in the background of the susceptible
population. The primary interest is in the final size, i.e., the number of recovered individuals when
the dynamics have terminated.

The SIR model is suitable for describing the response of a population to a triggering event, such as
the viral spreading of a tweet in Twitter. Because such one-shot epidemic dynamics are relevant to
many real phenomena, the SIR model and its variants are probably more frequently used than the SIS
model unless a slow time scale set by births and deaths of individuals comes into play; birth and death
events make the SIR model similar to extensions of the SIS model.

The SIR dynamics for the well-mixed population are described by

dS(t)

dt
= −βI(t)S(t)

dI(t)

dt
= βI(t)S(t)− µI(t).

dR(t)

dt
= µI(t)

Summing we defdice that S(t) + I(t) +R(t) = 1 for all time.

When dI(t)/dt > 0 at t = 0, the number of infectious nodes first increases to a macroscopic (O(N))
number. In this case, we regard that an outbreak has occurred. Otherwise, initially infected nodes do
not trigger secondary infections on a visible scale.

Now we introduce metapopulation models for epidemic spreading. In short, the model assumes a
network of subpopulations, not that of individuals.
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A subpopulation hosts individuals, and individuals move from one subpopulation to an adjacent sub-
population. A metapopulation model network consists of Ñ vertices , called subpopulations, a and
links between pairs of subpopulations, and N particles, which we call individuals. An individual can
be anything that is mobile and typically represents a human or animal individual. A subpopulation
is a container of individuals, corresponding to a household, office, city, airport, country and so on,
where interactions can take place.

The (weighted) adjacency matrix of the metapopulation model is denoted by Ã and fixed over time.
For simplicity, we assume that it is an undirected network: Ã is symmetric. A edge between two
subpopulations allows flows of individuals between them and may be weighted. A metapopulation
model can be regarded as a coarse-grained network of individuals and is practical because detailed
connectivity between individuals is often unknown, whereas connectivity between subpopulations
may be more accessible. At least to estimate.

Metapopulation models are typically defined by two ingredients: a rule for the mobility of the indi-
viduals, and a rule for their interactions on the vertices. We first focus on the former aspect. Denote
by Ni (1 ≤ i ≤ Ñ ), the number of individuals in the ith subpopulation, which varies over time t.

For any t,
∑Ñ

i=1 Ni = N is satisfied.

The simplest assumption for the mobility of individuals is to assume that each individual performs an
independent continuous-time random walk from subpopulation to subpopulation. In other words, an
individual moves to a neighbouring subpopulation with probability D∆t in short time ∆t. The time
to the next movement obeys the independent exponential distribution with mean 1/D. An individual
moves from the ith subpopulation to a neighbouring jth subpopulation with probability

D∆tÃij/d̃i,

where

d̃i =
Ñ∑
j=1

Ãij,

is the (weighted) degree of the ith subpopulation. The number of individuals in each subpopulation,
Ni(t), is approximated to be a continuous variable when N is large (there are many exchanges). The
master equation for Ni is given by

Ni

dt
= −DNi +D

Ñ∑
j=1

Nj
Ãji

d̃j
= −D

Ñ∑
j=1

NjL
′ji.

where i = 1, . . . , Ñ and L′ denotes the random walk normalised Laplacian matrix, as usual.

By setting the left-hand side to zero, we obtain the equilibrium density of individuals as

N∗i =
d̃iN

〈d̃〉Ñ
. (13)

Note that N/Ñ is the average population density per subpopulation.

The second ingredient of metapopulation models is the rule of interaction between the agents. Im-
portantly, the population is assumed to be structureless within each subpopulation, and thus well-
described by a mean-field, all-to-all process. In the following, we focus on a SIS model on the
metapopulation model.
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We denote by NS,i and NI,i the numbers of susceptible and infected nodes in the ith subpopulation,
respectively. We assume that the diffusion rates for susceptible and infected individuals, DS and
DI , respectively, are possibly different and that each pair of individuals in the same subpopulation
interacts at a constant rate. The master equations are thus given by

dNS,i

dt
= −βNS,iNI,i + µNI,i −DSNS,i +DS

Ñ∑
j=1

NS,j
Ãji

d̃j

dNI,i

dt
= +βNS,iNI,i − µNI,i −DINI,i +DI

Ñ∑
j=1

NI,j
Ãji

d̃j
.

To determine the epidemic threshold, we consider the situation in which NI,i (1 ≤ i ≤ Ñ) is
infinitesimally small. As long as susceptible individuals move (i.e., DS > 0), then the equilibrium for
the susceptible individuals is given by their stated state in (13), in the absence of any infection:

N∗S,i =
d̃iN

〈d̃〉Ñ

Now consider the NI,i dynamics for N∗I,i very small, substituting this equilibrium value for N∗S,i, we
have

dNI,i

dt
= +β

d̃iN

〈d̃〉Ñ
NI,i − µNI,i −DINI,i +DI

Ñ∑
j=1

NI,j
Ãji

d̃j
. (14)

This equation is linear in the NI,i. In matrix form we can write (14) as

dNIdt = BNI ,

where NI = (NI,1, . . . , NI,Ñ)T . The equilibrium solution at NI = 0 becomes unstable as soon as
the rightward most eigenvalue of B becomes positive — whence very small perturbations away from
zero will grow exponentially. This condition determines the epidemic threshold for this system.

In practice this always provides a condition on β/µ that depends on the distribution of the degrees
within the metapopulation network.

For example, in the limit DI = 0 (invectives are immobilised), let us consider (14, which decouples.
The epidemic threshold is determined by the subpopulation having the largest degree, denoted by
d̃max. The condition for endemicity is given by

β

µ
>
〈d̃〉Ñ
d̃maxN

.

In fact though, even if this condition is met, only the subpopulations having the largest degrees ac-
commodate infected individuals.
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8 SCALING PROPERTIES OF GROWING NETWORKS

We follow [18] and focus on graphs which grow by successively combining various smaller graphs.
In concept this reverse of the community detection process of partitioning larger networks into small
densely connected sub-communities, called modules, considered earlier.

Instead, here we will successively combine graphs, potentially creating composite high-modularity
graphs, and consider the behaviour of various functions that may be defined over them. While includ-
ing a variety of graph combination mechanisms, we will consider only well behaved functions that
are insensitive to a small number extra edges to be added-in to the combination. In many applications
to social, organisational, biological, or urban networks we observe scaling laws that govern the be-
haviour of functional properties of graphs, or properties of dynamical systems that are defined over
the graphs, as the underlying graphs grow [12, 19, 20, 21].

In that context it is important to differentiate between two distinct types of scaling law behaviour,
which should not be conflated (yet may be related). There is the scaling behaviour exhibited within
a single large graph: by the decay of its degree distribution, for example, in scale-free graphs, which
are often formed by mechanisms such as preferential attachment [?, ?]. There is also the scaling law
exhibited by the evolution of graph properties as the graphs themselves grow, which is observed when
we examine and compare such objects of very different sizes (and thus different stages of growth),
such as cities, organisations, and organisms [12, 19, 20, 21]. We are primarily focused on the latter
here, though we will allow graphs to grow by successive combination of components, including via
preferential attachment-type mechanisms.

In subsection 8.2 we deal with the situation where we combine multiple copies of a single random
graph. In that case, within any realisation, each addition might be distinct from all others, yet all
conforming to the same random (sub)graph model. In one step this creates large graphs whose mod-
ules are themselves generated as random graphs, and which necessarily must posses scaling laws (for
growth and asymptotic decay).

A realistic model might include a sophisticated combination mechanism that would allow for both
the additional graphs to be incorporated and also the associated inter-graph attachments. To achieve
this the commutative operation used to combine any two random graphs may itself, of course, include
some biased random elements. It would still result in a new, combined, random graph.

8.1 Scaling laws for successively combined graphs

Let S denote the set of all undirected graphs on a finite number of vertices. For each graph, S ∈ S,
we let V (S) denote its vertex set and E(S) denote its edge set. Let 3 denote a commutative binary
operation over S.

For example 3 might denote the disjoint union of two graphs,
⋃
D , as in [15] .

Alternatively we might extend the definition of S so that each graph in S also has a distinguished
vertex, then 3 might denote the disjoint union, except for the two distinguished nodes, which are to
be identified together as the one new distinguished vertex, inheriting neighbours from both original
graphs (this is a kind of star combination of the two graphs).

For any positive integer n ∈ Z+ let nS denote the 3 operation on n successive copies of S:

nS = S3S3...3S = S3(n− 1)S, n = 2, 3, ....
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[Warning: in this section we will be using n to denote the number of successive graphs combined
together, and not the number of vertices in any given graph, as we have previously.]

A Banach space is a complete normed vector space. Think of the real numbers R.

Let Q : S → B be a function over S taking values in a Banach space, B. We are interested in
functions which are relatively well behaved with respect to the edge set of S: in particular functions
where a small relative change in the edge set may only result in a small change inQ. Since S contains
discrete objects we will assume the following condition: there exists C > 0 such that for any graph
S1 ∈ S, if we add some new edges to produce a new graph, S2, then

||Q(S2)||B − ||Q(S1)||B ≤ C
|E(S2/S1)|
|E(S1)|

.

Here |E(S2/S1)| = |E(S2)| − |E(S1)| is the change in the number of edges. As S1 and E(S1) get
larger the addition of a fixed number of edges become a smaller relative change, and thus the change
in Q tends to zero in the limit.

This rules out many functions, Q, which count graphs properties. For example if Q counts the con-
nected components of a graph, then even for the very largest disconnected graph, the addition a single
edge can reduce Q by one. This restriction is important within applications, since the data specifying
graphs may contain some errors in either the observation or the interpretation of edges: with both
false positives and false negatives. Many properties of graphs may not be robust to such errors.

We define a scaling function, H : B × Z+ → B, for Q and 3, if it exists, to be a mapping that
describes how the function Q behaves under the 3-combination of multiple isomorphisms of any
graph in S ∈ S, that satisfies

Q(nS) = H(Q(S), n), (15)

for all S ∈ S and all n ∈ Z+.

We are interested in setting out a sufficient condition on the pair (3, Q) for the existence of a scaling
function,H ,

The following result is a generalisation of that given in [15] (where B = R and 3 represented the
disjoint union of two graphs).

Suppose that for all S0 ∈ S there exists C(S0) > 0 such that Q satisfies

||Q(S13S0)−Q(S23S0)||B ≤ C(S0)||Q(S1)−Q(S2)||B for all S1, S2 ∈ S. (16)

for all S1 and S2 ∈ S. Then there exists a scaling function, H , satisfying (15).

This is proved as foolows.

On the contrary if for any S1 and S2 in S such that Q(S1) = Q(S2) we also have Q(nS1) = Q(nS2)
for all n ≥ 1, then the scaling function H may be constructed in a pointwise fashion, without any
ill-definition. For any pair (Q̂, n), such that Q̂ is in the range of Q we may select any S for which
Q(S) = Q̂ and assign the corresponding value Q(nS) to H(Q̂n)), without any inconsistency.

So , if (15) fails then there must exist a pair of graphs S1 and S2 in S and a smallest integer n∗ > 1,
such that Q(nS1) = Q(nS2) for n = 1, ..., n∗− 1, that is, Q cannot distinguish between nS1 and nS2
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for n < n∗; and yet Q(n∗S1) 6= Q(n∗S2), so that Q does distinguish between n∗S1 and n∗S2. Such a
situation clearly would make any desired scaling function, H , ill-defined.

Secondly, we will assume (16) together with the converse of (15) and establish a contradiction.

Assuming the converse of (15), then there exist S1 and S2 in S such that Q(nS1) = Q(nS2) for
n = 1, ..., n∗ − 1 and yet Q(n∗S1) 6= Q(n∗S2). Then, by using the commutativity of 3, we have

||Q(n∗S1)−Q(n∗S2)||B = ||Q(S13(n∗ − 1)S1)−Q(S23(n∗ − 1)S2)||B

= ||Q(S13(n∗ − 1)S1)−Q(S23(n∗ − 1)S1) +Q(S23(n∗ − 1)S1)−Q(S23(n∗ − 1)S2)||B
≤ ||Q(S13(n∗− 1)S1)−Q(S23(n∗− 1)S1)||B + ||Q(S23(n∗− 1)S1)−Q(S23(n∗− 1)S2)||B.

Employing (16) twice we have

||Q(n∗S1)−Q(n∗S2)||B ≤ C((n∗−1)S1)||Q(S1)−Q(S2)||B+C(S2)||Q((n∗−1)S1)−Q((n∗−1)S2)||B.

But both of these terms vanish, so Q(n∗S1) = Q(n∗S2), which is the required contradiction.

Hence the required result.

Remark. The expression (16) is a Lipschitz-type condition.

Remark. The argument given in [15] may be extended to show that the functional equation (15),
together with the initial condition H(Q, 1) = Q, has solutions in the form of both power law growth
and power law decay to a constant, H(Q, n) = n−α + β(1 − n−α), for constants α ∈ R, β ∈ B.
This is achieved by applying (15) twice over, so that H(Q, nm) = H(H(Q,m), n), and deploying an
ansatz.

If the binary combination operation is not commutative, then we will require Q to be Lipshitz in both
arguements of 3, since the proof above theorem relies on this, and we replace it by the following
result.

Suppose that for all S0 ∈ S there exists C(S0) > 0 such that Q satisfies

max{||Q(S13S0)−Q(S23S0)||B, ||Q(S03S1)−Q(S03S2)||B} ≤ C(S0)||Q(S1)−Q(S2)||B, (17)

for all S1, S2 ∈ S. Then there exists a scaling function, H , satisfying (15).

8.2 Scaling laws for random graphs

In this section we wish extend the above considerations to apply to random graphs, as some natural
graph-building operations have a stochastic elements: for example, preferential attachment construc-
tions [?].

As we have seen random graph W is a probability distribution, PW (S) defined over S. LetW denote
the set of all random graphs. W is a complete metric space under the L1 metric: d(W1,W2) =∑

S∈S |PW1(S|X)− PW2(S|X)|.
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A random graph may be described by a probability distribution, or else, more succinctly, by the
random process which generates them [26], for example, by defining an independent probability
for every possible edge. Alternatively, a circular “range-dependent” random lattice on K vertices,
arranges those vertices in a circle, like the hours of the clock, with the longer range, more distant,
vertices being successively less likely to be connected [2], similar to the well known “small world”
networks [3].

Next we use � to denote a commutative binary operation over W , so that W1�W2 is composite
random graph, formed according to some commutative mechanism, that is conditional on both W1

and W2 (as well as X).

As before, we let nW = W�...�W denote the combination of n copies of W .

Now let Q : W → B be a given mapping taking values in a Banach space, B. Then we may extend
the arguments given in the above to yield the following result.

If Q and � are such that for allW0 ∈ W , there is a constant C(W0) > 0, and for all W1 and W2 ∈ W ,
we have

max{||Q(W1�W0)−Q(W2�W0)||B, ||Q(W0�W1)−Q(W0�W2)||B} ≤ C(S0)||Q(W1)−Q(W2)||B,
(18)

then a scaling function H : B × Z+ → R exists, satisfying

Q(nW ) = H(Q(W ), n),

for all W ∈ W and all n ∈ Z+.

Note that this scaling law refers to the Q-valued property (in B) of the random graph nW as it grows
with n.

A Preferential Attachment Stochastic Block Model (PASBM)
Using this result we may introduce a novel form of random graph, with familiar parentage,

constructed as follows.

We generate successive sub-component graphs, all from the same random Erdös-Rényi graph,
G(K, p), with parameters K and p fixed. At each successive step we have an “existing combina-
tion graph” (ECG) and a new Erdös-Rényi graph to be added. At the first step the ECG is just a
single graph drawn from G(K, p).

At each step we combine the two graphs by introducing an edge between a vertex within the
ECG selected with probability proportional to the present ECG’s vertex degree distribution, and a
vertex within the new Erdös-Rényi graph, G(K, p), again selected with probability proportional
to the observed vertex degree distribution. After n steps we have a random graph over Kn
vertices, where the successive n Erdös-Rényi graphs have been preferentially attached. In Figure
21, we show such a graph, where (K, p, n) = (10, 0.6, 100). So, for the PASBM graph, the
combination operation, �, involves (degree-biased) random preferential attachment. Note ifK =
1, then we preferentially attach a single new vertex to the ECG at each step, and thus we reduce
to the usual preferential attachment model [?, ?].

For any graph growing in this way (via PASBM), and for any well behaved function of such a
graph, there will exist a scaling function. The latter is highly likely to be a powerlaw in n, the
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number of basic random graphs being successively combined.

Figure 21: An instance of a Preferential Attachment Stochastic Block Model (PASBM) random graph
with (K, p, n) = (10, 0.6, 100). The three vertices with equal highest degree (equal to 11) are high-
lighted.

8.2.1 Some alternative random graph combination operations

Our characterisation of � as a commutative binary operation overW , leaves much room for further
thought. Beyond disjoint union and preferential attachment, which are both types of aggregation,
we now discuss some alternatives well worth considering as prospective models for system growth,
since all will yield scaling laws, with respect to growth, whenever suitably behaved functions, Q, are
observed.

Mechanistic aggregative combination

So far we have combined two random graphs via (biased and random) preferential attachment. In
that case we first took the disjoint union and then selected a single vertex from each component sub-
graph, according to a probability distribution proportional to the (sub-graph) vertex degrees, and then
joined them with a single new edge.
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Similarly, we might have first taken the disjoint union and then selected a single vertex from each
component sub-graph, according to a probability distribution proportional to the r power of the ver-
tex (sub-graph) degrees, and joined them with a single new edge. As r → 0 this is equivalent to
randomly choosing a vertex within each graph, with equal probabilities, and joining them: this might
be termed non-preferential attachment. As r → ∞ this is equivalent to picking a vertex with the
maximum degree within each graph and then joining them: this might be termed most popular vertex
attachment (a random element is necessary only if there exists more than one vertex with maximum
degree in either graph).

We may generalise these mechanisms to include up to J > 1 connected edges between the random
sub-graphs, each drawn independently with repetition: this might be termed called multiple-edge
preferential attachment/non-preferential attachment/most popular vertex attachment.

These are all aggregative operations, since they embellish the disjoint union of the sub-components,
maintaining the component vertices.

We have already mentioned star attachment. This applies where each of the graphs drawn from a
random graph additionally has a unique distinguished vertex. Two such graphs are combined by first
taking their disjoint union, and then followed by identifying both components’ distinguished vertices
together as one single distinguished vertex in the combined graph, retaining all of the edges from both
of the component graphs.

Product combination

Hierarchical network models [29] have been proposed two decades ago, where a deterministic self-
similar network is constructed iteratively, by successively combining copies of the same graph. This
was motivated by the failure of the other simple scale-free models to produce and maintain high clus-
tering coefficients [30]. The combination operator can be extended to produce a hierarchical model
combining successive random graphs. The random graph must have a distinguished, “core”, vertex
(as with star attachment), the none core vertices are termed “peripheral”. At each new iteration/level
multiple copies of (in our case) a random graph are attached, with edges connected all peripheral
nodes to the core vertex from an instance at the previous iteration/level.

In this constriction, the iterated operator, �, is not commutative. However the scaling theorem from
section 8.2 still applies, under the extended condition given in 18, guaranteeing a scaling law for
certain functions, under the corollary given in section 8.2.

Hierarchical models combining random graphs are analogous to statistical self-similar fractals, rather
than deterministically self-similar fractals.

A hierarchical approach also underpins the Kronecker graphs [31], introduced over a decade ago,
with graphs combining via a product; and that non-commutative combination operation calls for the
the corollary from section 8.2 in order to guarantee scaling laws as graphs grow iteratively.

Directly combining probability distributions

Let h : [0, 1]2 → R+ be any commutative mapping of two variables. Then for any two random graphs
W1 and W2 inW , and all graphs S ∈ S, we define � by

PW1�W2(S|X,W1,W2) =
h(PW1(S|X), PW2(S|X))∑

S′∈S
.
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If, in addition, h(x, x) = x for x ∈ [0, 1] then W�W = W .

This type of definition may actually be impractical in many ways, as it seems non-constructive. Yet
one can imagine sampling (using MCMC for example [32]) graphs from such a combined probability
distribution, albeit relatively inefficiently.

8.3 Summary

We have shown that there are a wide number of methods by which one might successively combine
random graphs so as to create a growing random graph. Regardless of that chosen combination oper-
ator, �, which may itself include some random elements, there is a strong possibility that observable
(summary) performance measures (taking values in some Banach space) will posses a scaling law,
as the underlying graph grows. Such scaling might control unbounded growth or the decay to some
asymptotic constant. The deciding factor will be whether the function of interest, denoted byQ above,
is well behaved meaning that it satisfies a Lipschitz-type condition under alternative combinations.

By making these, quite general, considerations we have created a framework that subsumes aggrega-
tive combination processes and also product combination processes, including Hierarchical and Kro-
necker models. We also introduced the particular class of preferential attachment stochastic block
model graphs.

Power laws are an important sub-class of scaling laws, for both growth and decay. Their relative
preponderance within analyses of aggregative processes is well known. They are of course solutions
of the general scaling law functional equation (though exponential scaling laws can also exist).

The importance of all this lies in considering combinations of random graphs, and allowing the com-
bination operator to be quite general. It is thus applicable far beyond the standard applications to the
aggregative growth of highly modular graphs in modelling cities, organisation and organisms.
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9 Centrality in continuous time

9.1 Matrix Valued Functions

We have already seen various matrix valued functions of matrices: A2, (I −αA)−1, ExpA and so on.

Before going any further we pause to consider some properties of matrix valued functions that will
be useful. In particular we would wish to be able to define fractional powers of matrices, as well as
the matrix logarithm.

These last are multivalued, so we wish to take their primary value, while other functions, such as eA
or the resolvent (I − αA)−1 that we have met, simply need to be well-defined.

There is a number of ways to define matrix valued functions and we shall focus on the simplest. The
book [34] is an excellent source of further reading. It is game changing. Or consult the notes at
http://eprints.maths.manchester.ac.uk/2067/1/paper.pdf.

Suppose A in an n × n matrix with complex valued elements. Then it can be written in its Jordan
canonical form: where Z is non-singular and

A = ZJZ−1,

J = diag(J1, J2, ..., Jq) is a block diagonal matrix with each Jk corresponds to an eigenvalue λk,
has dimension nk × nk, and is of the form

Jk =


λk 1 0 0

λk 1
λk

. . .
0 λk

 .

The eigenvalues λk are all distinct, with multiplicities nk, which sum to n.

For any complex function f , at least nk − 1 derivatives, denoted by f (1), f (2), ..., f (nk−1), we define

f(Jk) =


f(λk) f (1)(λk) f (2)(λk)/2! . . . f (nk−1)(λk)/(nk − 1)!

0 f(λk) f (1)(λk) . . . f (nk−2)(λk)/(nk − 2)!
...

...
... . . .

...
0 0 0 . . . f(λk)

 .

Let f be defined on the spectrum of A and let A have the Jordan canonical given above. Then we
define

f(A) = Zf(J)Z−1 = Zdiag(f(Jk))Z
−1.

This definition yields a matrix f(A) that can be shown to be independent of the particular Jordan
canonical form.

In the case of multivalued functions, such as f(t) =
√
t or ln t, is is implicit that a single branch has

been chosen in each sub-block, f(Jk).

There are many others ways to define matrix valued functions.
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Recall that the adjacency matrixA of any undirected graph is real and symmetric. Therefore, A = AT

and AAT = ATA so A is normal (by definition) and thus unitarily diagonalisable (J is diagonal, as is
f(J) – if it is well-defined).

Put simply, for our own purposes, we must make sure that f is well defined at all of the eigenvalues
of A.

For example, consider f(z) = (1−αz)−1, for some real α > 0. This has a simple pole at z = 1/α. By
the P-F theorem the eigenvalues of an adjacency matrix are contained in a disc of radius r = ρ(A) > 0,
theP-F eigenvalue. So provided we have 1/α > r we will be fine and f(A) exists. This is equivalent
to assuming α is small enough (< 1/r). We saw this before when we wanted the geometric series to
converge (for Katz centrality):

f(A) = (1− αA)−1 = I + αA+ α2A3...

Let A have no eigenvalues on R− (the closed negative real axis). We need the following definition.
Principal log: B = logA denotes the unique B such that eB = A and arg µi ∈ (−π, π)for every
eigenvalue µi of B.

Exercise Let A be the adjacency matrix for an undirected graph. Then A is diagonalisable. How
many square roots does A have (that is matrices B for which B2 = A)? What about fractional powers
of A, denoted by Aβ , for β ∈ [0, 1]?

We can define the Principal pth root as follows. For integer p > 0, B = A1/p is the unique B such
that Bp = A and arg µi ∈ (−π/p, π/p), for every eigenvalue µi of B.

Siumilarlty we define the Principal power. For s ∈ R, the principal power is defined as As = es logA,
where logA is the principal logarithm.

Exercise Let A be the adjacency matrix for an undirected graph. We write A = UΛUT , where U is a
unitary matrix with columns given by eigenvectors ofA, and Λ = diag(λ1, λ2, ...λn) is a real diagonal
matrix of eigenvalues. Show that for all polynomials, P , of any degree there exists a polynomial R of
degree less than n such that P (A) = UR(Λ)UT , where R(Λ) = diag(R(λ1), R(λ2), ...R(λn)).

9.2 Katz Centrality revisited with age discounting

Suppose that we receive more and more data as time evolves. Then it is necessary to update Katz
centrality, Q, for successive time steps. Suppose for ease that each time step is of duration δt.

We write
Q(T ) = (I − αA1)−1(I − αA2)−1...(I − αAK)−1

where T = Kδt and δt is the uniform time step. Then if new information AK+1 corresponding to the
time interactions within the time step (Kδt, (K + 1)δt], we have

Q(T + δt) = Q(T )(I − αAK+1)−1.

So Q is updated by a single (sparse) matrix solve.

A discount for aged information may be introduced as follows. This is important as it means Q will
be successively less dependent on older data, by down-weighting those dynamic walks by their total
age (the total time since starting). This is achieved by discounting non-trivial paths at each time step:
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we have Q = I+ (Q− I), where I counts the trivial walk (staying stationary up to now), while Q− I
counts walks with at least one edge from some past time step.

So we may rewrite our update as

Q(T + δt) = (I + e−bδt(Q(T )− I))(I − αAK+1)−11.(7)

Here b > 0 and any path of length m starting out exactly r time steps ago will be discounted with a
weighting equal to αme−brδt.

In fact it has been shown that if we exploit this form of Q to forecast some element of the future
behaviour of the evolving network then there is an optimal range of values for the discount parameter.
If we take b = 0 then all of the history appears equally within Q and may affect the forecast, but if the
evolving network is changing rapidly, or is even non-stationary, this will not be a good thing. On the
other hand if we take b to be very large, then Q “lives in the moment”, and there is no memory at all
(we forecast tomorrow using only today’s data): hence forecasts are likely to be extremely sensitive
when the sequence is voilatile.

This age discounting form is extremely useful in applications and some experimentation should be
made with b depending on the desired use of Q.

9.3 Katz Centrality revisited with continuous time

A problem with chunking an evolving network into discrete time-steps is that within each time-step
we allow walks to traverse connected edges in any order. But had we taken a smaller time-step one
edge might occire at a step before another and then they may only be traversed in time-order. For this
reason one may want tio try smaller and smaller time-steps. Here we consider the limit.

Suppose we can observe our evolving network over continuous time rather than discrete time. In
effect we have a time dependent adjacency matrix A(t) where the elements switch from zero to one,
or vice versa. It is defined for t ≥ 0 (or on a suitable interval) taking values in A, and we shall assume
that it is continuous from the right (so that we can take limits).

Suppose first that we somehow sample from A(t) so as to discretise the continuous time evolving
networks and try to calculate Q as in teh last section.

Fix δt > 0. Then we might define Ak to be the union of all of the connections existing at any
time within the half open interval ((k − 1)δt, kδt]. Then as δt → 0 while K → ∞, we will have
AK → A(Kδt+) and we recover an instantaneous sample.

Now consider Q as in the last section, where we write T = Kδt :

Q(T + δt) = (I + e−bδt(Q(T )− I))(I − αAK+1)−1.

We cannot yet take the limit as δt→ 0 in this equation just as it is. If we reduce δt by dividing into m
equal sub-steps then we obtain m new resolvent terms each in the form (I − αAK′)−1 as we update
from T to T + δt. If A(t) is constant between T and T + δt then it is clear that this limit cannot
converge. We would repeatedly update by multiplying by new resolvent terms for intervals that are
arbitrarily small.

To get around this we must re-scale (renormalise) our formula so that it make sense in the limit. We
modify our equation to become

Q(T + δt) = (I + e−bδt(Q(T )− I))(I − αAK+1)−δt.
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Then as δt→ 0 we are updating with successive terms that tend to the identity.

Notice that now we are employing the fractional power of a matrix, in this case fractional powers of
the resolvents (I − αA)−1, which is itself a matrix valued function of a matrix.

We have introduced functions of matrices in an earlier section. We wish to define the logarithm of a
matrix, log(I − αA): A(t) is always normal and non-negative with spectral radius assumed to satisfy
r = ρ(A) < 1/α, as usual. So the spectrum of I − αA, which is also normal, is real and lies to the
right of zero along the positive axis in the complex plane. Thus, under this assumption, the matrix
logarithm and hence all powers less than or equal to one, both positive and negative, of (I−αA) exist.

We have
Q(T + δt) = (I + e−bδt(Q(T )− I)) exp(−δt log(I − αAK+1)).

Now we can allow δt → 0 in order to obtain an ordinary differential equation (ODE) for a continu-
ously defined centrality matrix:

dQ(T )

dt
= −Q(T ) log(I − αA(T )) + b(I −Q(t)).

Note all eigenvalues of I −αA(T ) are real and lie between 0 and 1. So the log term is itself negative.
Hence if A(T ) is constant for a while the first term encourages the exponential positive growth of Q.

In order to focus on vertex properties, we can take row and column sums in the matrix Q(T) to define
the dynamic broadcast and dynamic receive centrality vectors just as before:

b(T ) = Qs, r(T ) = QT s,

where s = (1, 1, ..., 1)T .

It is interesting to note that the receive centrality satisfies its own vector-valued ODE:

r′(t) = b(s(t)− r(t))− (log(I − αA(t)))T r(t),

with r(0) = s; which is a factor of n smaller in dimension than the matrix equation for Q and hence
cheaper to calculate. By contrast, it is not possible to disentangle the broadcast centrality in this way.
Intuitively, this difference arises because the node-based receive vector r(t) keeps track of the overall
level of information flowing into each vertex and this can be propagated forward in time as new links
become available. However, the broadcast vector b(t) keeps track of information that has flowed
out of each vertex: it does not record where the information currently resides and hence we cannot
update it based on b(t) alone. So, with this methodology, real-time updating of the receive centrality
is fundamentally simpler than real-time updating of the broadcast centrality.

This ODE approach dramatically enhances the existing snapshot-based paradigm for network central-
ity in terms of both data-driven simulation and theoretical analysis. Our framework fits very naturally
into the context of online or digital recording of human interactions. The ODE setting conveniently
avoids the need to discretise the network data into predefined time windows, an approach that can
introduce inaccuracies and computational inefficiencies. By defining a continuous time dynamical
system, we can solve with an off-the-shelf adaptive time-stepping numerical ODE solvers, so that
time discretisation is performed “under the hood”, in a manner that automatically handles consid-
erations of accuracy and efficiency. In this way we may deal adaptively with dramatic changes in
network behaviour.

We may take large time-steps when A(t) is almost 0, as Q returns towards I . and small time-steps
when A(T ) explodes into life.
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Figure 22: Here is the basic directed graph, as a directed tree on n = 80 vertices: adjacency matrix
(left) with flows; and visualisation (right).

10 Trees and cycles in directed graphs

Inosculation is a natural phenomenon in which trunks, branches or roots of two trees grow together.
It is biologically similar to grafting and such trees are referred to in forestry as “gemels”, from the
Latin word meaning “a pair”. The branches first grow separately in proximity to each other until they
touch. At this point, the bark on the touching surfaces is gradually abraded away as the trees move
in the wind. Once the cambium of two trees touches, they sometimes self-graft and grow together as
they expand in diameter.

The term inosculation is also used in the context of plastic surgery, as one of the three mechanisms
by which skin grafts take at the host site. Blood vessels from the recipient site are believed to connect
with those of the graft in order to restore vascularity.

10.1 A tree

Here we generated a directed graph on n = 80 vertices, in the from of a connected tree (no cycles)
containing only directed flows (represented by random random independent variables in (0,10)), mov-
ing out from the centre at vertex v1 towards various twigs. So every node, vi (i ≥ 2), has in-degree of
one with an in-flow coming from an a vertex, vj , having a lower index, j < i. See Figure 22

10.2 Helmholtz-Hodge Decomposition

The Helmholtz-Hodge, or Hodge, decomposition represents any flow on a directed graph (with vertex
set V and ordered edges in V × V ) as a sum of a potential flow and a divergence free flow (that is, a
rotational flow). We may calculate the Hodge potential at each vertex, and in this case of our tree we
have a potential flow out from vertex 1 towards the twigs, while the divergence free (rotational flow)
is equal to zero (since there are no cycles anyway).

We should associate the potential flow with trophic or periphery flows, and the divergence free flow
with core, circulatory flows.
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We briefly recap the Hodge-Decomposition, based on [35].

Let A denotes the usual binary adjacency matrix. Let B ≥ 0 denote the corresponding real-values
weighted adjacency matrix with positive flow whenever the corresponding terms in A is one.

Let W = (A+ AT )/2 the symmetric part of A. Let F = B −BT denote the net flows.

Then the Hodge decomposition is a unique way to write

Fij = Wij(φi − φj) + FCirc
ij .

Here φ : V → R is the Hodge potential and we use φi to denote the value of the Hodge potential at
vertex vi. FCirc

ij denotes the divergence free flow on each edge, meaning that it satisfies

N∑
j=1

FCirc
ij = 0.

Using this last condition we must have

N∑
j=1

Fij =
∑
j=1

Lijφj,

where L is the usual graph Laplacian

L = −W + Diag(W.1),

where 1 = (1, 1, ...., 1)T .

Since L.1 = 0, we need one extra condition: say, 0 =
∑N

j=1 φj . Then φ is completely determined,
and FCirc

ij is the difference between F and the gradient flow.

10.3 Perturbing our tree

Now returning to our tree example, we select two twig-end nodes: v37 and v73. We join them together
by adding a single edge, from v37 to v73 with a flow equal to 4.99279.

Now we can see from Figure 23 that there is a single long, 12 vertex, cycle:

{v1, v2, v3, v19, v20, v28, v37, v73, v29, v25, v18, v12, v1}.

Recalculating the Hodge potential we may compare the resulting potential directly, with those for
the unadulterated tree; see figure 24 where blue values are for the tree and the red values are for the
grafted tree.

The resulting decomposition of the tree with the extra edge (and cycle) now has a non-trivial flow
around the 12-cycle, is shown in Figure 25.
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Figure 23: An extra directed edge is added from v37 to v73: in the the 37th row and 73rd column in
the weighted adjacency matrix, B (left), resulting in a single 12 vertex cycle (right). Compare with
that shown in Figure 1: there is a single extra edge at (37,73).

Figure 24: Hodge potentials for each vertex of the directed tree graph (blue) and for the directed tree
graph now amended to contain an extra edge - and thus a long cycle (red values).

10.4 Breaking cycles - un-grafting

Next we consider working this process in reverse. Since trees are such easy graphs to deal with, for
all sorts of calculations, we consider how best to break cycles within a given graph, by selecting and
removing particular edges. This is the opposite of the above grafting process.

Consider the following example

A =



0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0


B =



0 0 0 0 5.715 0 0 0
0 0 0 6.651 0 0 0 0
0 0 0 0.390 0 0 2.356 0
0 0 2.250 0 0 0 0 0

6.897 0 0 0.3282 0 1.215 0 0
0 0 0 0 1.511 0 0 0

5.144 0 0 0 0 0 0 0
3.574 0 0 8.096 0 0 5.891 0


In this case we may use the Hodge decomposition to split the flow into a potential flow and a diver-
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Figure 25: Here we show only the divergence free, circulatory, flow.

Figure 26: From the Left: i) the original network flow; ii) the associated divergence free flow, fol-
lowing the Hodge decomposition; iii) the divergence flow following the deletion of the directed edge
v7v1; iv) the divergence flow following the further deletion of the directed edge v8v4.

gence free flow: the latter is

FCirc =



0 0 0 0 0.407 0 0 3.113
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2.691 0
0 0 2.691 0 0 0 0 0
0 0 0 0.407 0 0 0 0
0 0 0 0 0 0 0 0

3.520 0 0 0 0 0 0 0
0 0 0 2.284 0 0 0.829 0


We take the Euclidean norm of this last (defined to equal the sum of the squares of the elements): we
have

β = 42.80.

In Figure 26 we show the original network flow and the associated divergence free flow, following
the Hodge decomposition. We will examine how the successive deletion (“cutting”) of edges reduces
this norm of the divergence free part of the flow.

Next we evaluate the sensitivity of β to the deletion of each edge in turn. We find that the deletion of
edge v7v1 reduces β the most, so that, post deletion, we have β = 13.16. The divergence free flow
is also shown in Figure 26. Next we find that deleting the further edge v8v4 reduce β by the most, so
that, post that second deletion, we have β = 0.12. The divergence free flow is also shown in Figure
26. Finally the removal of any of the remaining edges around the remaining single cycle (within the
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divergence free flow) will result in a zero divergence free flow (β = 0.0). The remaining part of the
original flow will be a potential flow, on a tree.
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