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1. Consider an elastic beam of length L and bending stiffness B in equilibrium and subject to
negligible body force. The beam undergoes two-dimensional deformations in the (x, y)-plane,
such that its centre-line makes an angle θ(s) with the x-axis, where s is arc-length. Compressive
forces (P, 0) and (−P, 0) are applied at the two ends of the beam s = 0 and s = L, respectively.
The end s = 0 is clamped parallel to the x-axis, while the end s = L is clamped at a small
angle α to the x-axis.

(a) [4 marks] Derive the beam equation

B
d2θ

ds2
+ P sin θ = 0,

explaining clearly any assumptions that you make.

Obtain the dimensionless model

d2θ

dξ2
+ π2λ sin(θ) = 0, θ(0) = 0, θ(1) = α,

and define the normalised compressive load λ in terms of P , B and L.

(b) [5 marks] Assuming that |α| � 1 and that θ remains small enough for the problem to be
linearised, obtain the approximate solution

θ(ξ) ∼ A sin
(
πξ
√
λ
)
,

and derive an expression for the amplitude A, in terms of λ and α.

Show that, if the applied load is gradually increased from zero, the linearisation fails as
λ approaches 1.

Explain why nonlinearity becomes important when λ−1 = O
(
|α|2/3

)
and θ = O

(
|α|1/3

)
.

(c) [10 marks] Now assume that α = ε3γ and λ = 1 + 3ε2/2, where 0 < ε� 1 and γ = O(1).
Show that

θ(ξ) ∼ εA1 sin(πξ) +O
(
ε3
)
,

where

A1

(
A2

1 − 12
)

=
16γ

π
.

[You may use without proof the identity sin3(z) ≡
(
3 sin(z)− sin(3z)

)
/4.]

(d) [6 marks] Sketch a bifurcation diagram of A1 versus γ, and describe qualitatively how
the beam would behave if γ were gradually increased from −2π to 2π and then gradually
decreased back to −2π.
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2. Consider steady antiplane strain of a uniform linear elastic solid, with displacement field given

by u =
(
0, 0, w(x, y)

)T
.

(a) [5 marks] Explain why w may be expressed as w(x, y) = Im
[
f(Z)

]
where f is a holomor-

phic function of Z = x+ iy.

Show that the non-vanishing components of the stress tensor T are given by

τyz + iτxz = µf ′(Z).

Deduce that Re
[
f(Z)

]
must be constant on any stress-free boundary.

(b) [14 marks] Consider a Mode III crack whose surface S is given by the ellipse

x2

c2 cosh2 ε
+

y2

c2 sinh2 ε
= 1,

where c > 0 and 0 < ε� 1. The boundary of the crack is stress-free. The crack is inside
an infinite medium and is subject to a linear stress field in the far field, such that

τxz ∼ bx+ ay + o
(
(x2 + y2)−1

)
, τyz ∼ ax− by + o

(
(x2 + y2)−1

)
as x2 + y2 →∞, where a and b are constants.

Show that, in the limit as ε→ 0, the displacement is given up to a constant by

w(x, y) =
1

2µ
Im
[
aZ
√
Z2 − c2 + ibZ2

]
,

carefully defining the square root in the above expression.

[Hint: note that S is the image of the circle |ζ| = eε under the Joukowski conformal
mapping

Z =
c

2

(
ζ +

1

ζ

)
.]

(c) [6 marks] The crack will propagate if KIII > K?, where the stress intensity factor is
defined by

KIII = lim
x↘c

(
τyz(x, 0)

√
2π(x− c)

)
.

Show that the crack propagates if a exceeds a critical value, which is to be determined in
terms of K? and c.
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3. A perfectly plastic material undergoes plain strain in the region outside a circular cavity of
radius a. The material is unstressed in the far field, while the surface of the cavity at r = a is
subject to a pressure P = −τrr and shear stress σ = τrθ, in terms of plane polar coordinates
(r, θ). The applied pressure P is gradually increased from zero, while the applied shear stress
is held at a constant value σ = kτY , where τY is the yield stress and 0 6 k < 1.

(a) [2 marks] Evaluate the shear stress on an infinitesimal surface element with unit normal
n = er cosα+eθ sinα, and show that the maximum shear stress over all inclination angles
α is given by the Tresca yield function

f =

√
(τrr − τθθ)2

4
+ τ2rθ.

(b) [4 marks] Derive the compatibility condition

d

dr
(τrr + τθθ) = 0

which holds when the material is elastic.

(c) [10 marks] Assume that the material remains elastic while f < τY , and the stress satisfies
f = τY when the material is plastic.

Show that plastic yield first occurs when

P

τY
=
√

1− k2.

Show that as P increases further, the material is plastic in a region a < r < s, in which
the radial stress satisfies

dτrr
dr

=
2τY
r3

√
r4 − k2a4.

(d) [9 marks] Deduce that the position r = s of the elastic–plastic boundary is determined
by the relation

P

τY
−
√

1− k2 = cosh−1
(
s2

ka2

)
− cosh−1

(
1

k

)
.

[You may use without proof the radially symmetric Navier equations:

dτrr
dr

+
τrr − τθθ

r
= 0,

dτrθ
dr

+
2τrθ
r

= 0,

and the linear elastic constitutive relations:

τrr = (λ+ 2µ)
dur
dr

+ λ
ur
r
, τrθ = µ

duθ
dr

, τθθ = λ
dur
dr

+ (λ+ 2µ)
ur
r
,

where λ, µ are the Lamé constants.]
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Question 1

0

−P

−P

0
(a) (b)

θ
M(s+ δs)

T (s+ δs)

N(s+ δs)

T (s)

N(s)

M(s)

(a) Balance forces and moments on a small segment of the beam as shown in (a) above,
neglecting inertia and body forces to get

d

ds
(T cos θ −N sin θ) = 0,

d

ds
(N cos θ + T sin θ) = 0,

dM

ds
−N = 0,

where T , N andM are the tension, shear force and bending moment. Apply boundary
conditions as in (b) above to get

T cos θ −N sin θ = −P, N cos θ + T sin θ = 0,

and therefore

T = −P cos θ, N = P sin θ.

Now impose constitutive relation of the bending moment being proportional to the
curvature, i.e.

M = −Bdθ

ds
,

where B is the bending stiffness. Combine all the above to get the beam equation

B
d2θ

ds2
+ P sin θ = 0.

3 Bookwork

Non-dimensionalise ξ = s/L to get the given model with

λ =
L2P

π2B
.

1 Straightforward manipulation
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(b) Linearisation leads to
θ′′ + π2λθ ∼ 0,

and the solution subject to the given boundary conditions is

θ(ξ) ∼ A sin
(
πξ
√
λ
)
, where A =

α

sin
(
π
√
λ
) .

1 Straightforward manipulation

The amplitude increases without bound, so the linearisation must fail, as λ ↗ 1.
Note that

A =
α

sin
(
π
[
1−
√
λ
]) = O

(
α

1− λ

)
.

Furthermore, writing the beam equation in the form

θ′′ + π2θ ∼ π2(1− λ)θ +
π2θ3

6
,

we see that nonlinearity balances excess load on the right-hand side when A2 =
O(1− λ). We estimate A from the above to get

α2

(1− λ)2
= O(1− λ)

and therefore λ− 1 = O
(
|α|2/3

)
, A = O

(
|α|1/3

)
, as required.

4 Unfamiliar scaling using boundary value of θ

(c) Now make the suggested scalings and also scale θ = εφ to get

φ′′ + π2
(
1 + 3ε2/2

) sin(εφ)

ε
= 0, φ(0) = 0, φ(1) = ε2γ

or, expanding in powers of ε:

φ′′ + π2φ ∼ ε2π2

(
φ3

6
− 3φ

2

)
+O

(
ε4
)
.

Now seek the solution as an asymptotic expansion in powers of ε2, i.e. φ ∼ φ0+ε2φ1+
· · · . At leading order:

φ′′0 + π2φ0 = 0, φ0(0) = 0, φ0(1) = 0,
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whose solution is
φ0(ξ) = A1 sin(πξ),

where A1 is (as yet) arbitrary.

At O (ε2):

φ′′1 + π2φ1 = π2

(
φ3
0

6
− 3φ0

2

)
, φ1(0) = 0, φ1(1) = γ.

Substitute in for φ0 and use the hint:

φ′′1 + π2φ1 = π2

[
A3

1 sin3(πξ)

6
− 3A1 sin(πξ)

2

]
= π2

[(
A3

1

8
− 3A1

2

)
sin(πξ)− A3

1

24
sin(3πξ)

]
.

Set v(ξ) = sin(πξ) and note that v′′ + π2v = 0, and hence∫ 1

0

(
φ′′1 + π2φ1

)
v dξ =

∫ 1

0

[(
φ′′1 + π2φ1

)
v −

(
v′′ + π2v

)
φ1

]
dξ = [φ′1v − v′φ1]

1
0

⇒ π2

∫ 1

0

[(
A3

1

8
− 3A1

2

)
sin(πξ)− A3

1

24
sin(3πξ)

]
sin(πξ) dξ = π [φ1(0) + φ1(1)]

⇒ π

2

(
A3

1

8
− 3A1

2

)
= γ

⇒ A1

(
A2

1 − 12
)

=
16γ

π

as required.
10 Generalisation of problem sheet

(d) Left-hand side is an odd cubic function of A1 with stationary points at A1 = ±2,
γ = ∓π:

3



When γ starts at −2π, the solution starts on the lower branch with A1 negative and
the beam bending downwards. As γ increases through the critical value π, the beam
“snaps through” to the other branch where A1 > 0 and the beam bends upwards.
As γ then decreases it stays on the upper branch until γ = −π when it then snaps
back onto the lower branch again.

6 New example
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Question 2

(a) With the given displacement field, the only onzero stress components are τxz and τyz,
and the steady Navier equation reduces to

∂τxz
∂x

+
∂τyz
∂y

= 0.

It follows that there exists a potential function φ(x, y) such that

µ
∂φ

∂y
= τxz = µ

∂w

∂x
, −µ∂φ

∂x
= τyz = µ

∂w

∂y
.

We observe that (−φ) and w satisfy the Cauchy–Riemann equations and can therefore
be expressed as

w = Im
[
f(Z)

]
, φ = −Re

[
f(Z)

]
,

where f is a holomorphic function of Z = x+ iy.

2 Bookwork

Since f(Z) = −φ+ iw, we have

µf ′(Z) = −µ∂φ
∂x

+ µi
∂w

∂x
= τyz + iτxz,

as required.

1 Bookwork

Consider a stress-free boundary (x(s), y(s), z)T parameterised by arc-length s. The
unit normal (suitably oriented) is given by n = (y′(s),−x′(s), 0)T and so the zero
stress boundary condition reduces to

0 = τxz
dy

ds
− τyz

dx

ds
= µ

∂φ

∂y

dy

ds
+ µ

∂φ

∂x

dx

ds
= µ

dφ

ds
.

So Re[f ] = −φ = constant at a stress-free boundary.

2 Bookwork

(b) From the far-field stress condition we have

µf ′(Z) = τyz + iτxz ∼ (ax− by) + i(bx+ ay) = (a+ ib)Z as Z →∞
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and therefore

µf(Z) ∼ (a+ ib)
Z2

2
+O(1) as Z →∞.

Use the hint: define

g(ζ) =
c

2

(
ζ +

1

ζ

)
, F (ζ) = f

(
g(ζ)

)
.

Then

• F (ζ) is holomorphic in |ζ| > eε;

• µF (ζ) ∼ (a+ ib)
c2ζ2

8
as ζ →∞;

• Re
[
F (ζ)

]
= 0 (without loss of generality) when |ζ| = eε.

5 Generalisation of problem sheet

E.g. by separating the variables in polars, or by using the Circle Theorem, or just by
inspection, find the solution

µF (ζ) =
c2

8

(
(a+ ib)ζ2 − (a− ib)

e4ε

ζ2

)
→ c2

8

(
(a+ ib)ζ2 − (a− ib)

ζ2

)
as ε→ 0.

Now invert to get the solution in terms of Z. Note that

ζ2 +
1

ζ2
=

4Z2

c2
− 2, and ζ2 =

2Zζ

c
− 1

to get

µf(Z) =
acZζ

2
− (a− ib)Z2

2
− ibc2

4
.

Solve quadratic equation for ζ:

ζ =
Z +
√
Z2 − c2
c

,

where we take the positive square root to map the outside of S to |ζ| > eε. Plug this
in to get

µf(Z) =
aZ
√
Z2 − c2
2

+
ibZ2

2
− ibc2

4
,

and so

w(x, y) =
1

2µ
Im
[
aZ
√
Z2 − c2 + ibZ2

]
+ constant.

6



7 New example

We define the square root as
√
Z2 − c2 =

√
r1r2 ei(θ1+θ2)/2

where

r1 = |Z − c|, r2 = |Z + c|, θ1 = arg(Z − c), θ2 = arg(Z + c),

and we choose the branch where θ1, θ2 ∈ (−π, π] so the branch cut runs along the
real-Z axis from −c to c as shown.

z

r1

θ1

r2

θ2
Re(z)

Im(z)

2 Bookwork

(c) Calculate stress components from

τyz + iτxz = µf ′(Z) =
1

2

(
a
√
Z2 − c2 +

aZ2

√
Z2 − c2

+ 2ibZ

)
=
a (2Z2 − c2)
2
√
Z2 − c2

+ ibZ

so, when Z = x > c,

τyz =
a (2x2 − c2)
2
√
x2 − c2

, τxz = bx.

We find

KIII = lim
x↘c

(√
2π a (2x2 − c2)

2
√
x+ c

)
=
ac3/2

√
π

2
,

so the critical value of a is

a? =
2K?

c3/2
√
π
.

6 Generalisation of problem sheet
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Question 3

(a) The shear stress on an infinitesimal line element with normal n = er cosα + eθ sinα
and tangent t = −er sinα + eθ cosα is given by

σ =
(
− sinα cosα

)(τrr τrθ
τrθ τθθ

)(
cosα
sinα

)
= − sinα(τrr cosα + τrθ sinα) + cosα(τrθ cosα + τθθ sinα)

= τrθ cos(2α)− τrr − τθθ
2

sin(2α).

=

√
(τrr − τθθ)2

4
+ τ 2rθ cos(2α + φ),

where tanφ = (τrr − τθθ)/(2τrθ). The maximum shear stress over all angles α is
therefore given by the Tresca yield function

f =

√
(τrr − τθθ)2

4
+ τ 2rθ.

2 Standard result

(b) Use given Navier equations and elastic constitutive relations to get

0 =
d

dr

(
(λ+ 2µ)

dur
dr

+ λ
ur
r

)
+

2µ

r

(
dur
dr
− ur

r

)
= (λ+ 2µ)

d

dr

(
dur
dr

+
ur
r

)
,

so
d

dr
(τrr + τθθ) = 2(λ+ µ)

d

dr

(
dur
dr

+
ur
r

)
= 0.

4 From lectures

(c) Impose boundary conditions

τrr = −P, τrθ = kτY at r = a,

τrr, τθθ → 0 as r →∞

to deduce that τrr + τθθ = 0 (while the material remains elastic) so we have to solve

dτrr
dr

+
2τrr
r

=
1

r2
d

dr

(
r2τrr

)
= 0.

Applying the boundary condition at r = a we get

τrr = −Pa
2

r2
, τθθ =

Pa2

r2
,
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and similarly

τrθ =
kτY a

2

r2
.

The yield function is given by

f 2 =
(τrr − τθθ)4

4
+ τ 2rθ =

(P 2 + k2τ 2Y ) a4

r4
,

which is a decreasing function of r, so yield first occurs at r = a when

P 2 + k2τ 2Y = τ 2Y , i.e.
P

τY
=
√

1− k2.

5 New example

As P increases further, the material yields in a neighbourhood of r = a, say a < r < s.
The second Navier equation holds everywhere, so we have

τrθ =
kτY a

2

r2
for all r > a.

In the plastic region a < r < s we apply the yield condition

(τrr − τθθ)2 + 4τ 2rθ = 4τ 2Y

⇒ τθθ − τrr = 2
√
τ 2Y − τ 2rθ

= 2τY

√
1− k2a4

r4
.

The radial Navier equation therefore becomes

dτrr
dr

=
τθθ − τrr

r
=

2τY
r3

√
r4 − k2a4.

5 New example

(d) In r > s the material is still elastic, so we have the solution

τrr = −A
r2
, τθθ =

A

r2
for r > s,

but with A now unknown a priori ; A > 0 by continuity with the above unyielded
solution.
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The yield condition applies at the free boundary r = s, i.e.

A2 + k2τ 2Y a
4

s4
= τ 2Y

⇒ A = τY
√
s4 − k2a4.

3 New example

Now use the Fundamental Theorem of Calculus and apply continuity of τrr at r = s:[
τrr
]s
a

=

∫ s

a

dτrr
dr

dr

⇒ P − A

s2
=

∫ s

a

2τY
r3

√
r4 − k2a4 dr

⇒ P

τY
=

√
s4 − k2a4
s2

+ 2

∫ s

a

√
r4 − k2a4
r3

dr.

Now integrate by parts:

2

∫ s

a

√
r4 − k2a4
r3

dr =

[
−
√
r4 − k2a4
r2

]s
a

+

∫ s

a

1

r2
2r3√

r4 − k2a4
dr

=
√

1− k2 −
√
s4 − k2a4
s2

+

∫ s2

a2

dz√
z2 − k2a4

=
√

1− k2 −
√
s4 − k2a4
s2

+
[
cosh−1

( z

ka2

)]s2
a2
.

Now just assemble all the pieces to get

P

τY
−
√

1− k2 = cosh−1
(
s2

ka2

)
− cosh−1

(
1

k

)
.

6 New example
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