SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2

ELASTICITY AND PLASTICITY

TRINITY TERM 2021
Tuesday 08 June
Opening time: 09:30 (BST)
Mode of completion: Handwritten
You have 1 hour 45 minutes writing time to complete the paper and up to 30 minutes technical time to upload your answer file.

You may submit answers to as many questions as you wish but only the best two will count for the total mark. All questions are worth 25 marks.

You should ensure that you observe the following points:

1. Write with a black or blue pen OR with a stylus on tablet (colour set to black or blue).
2. On the first page, write

- your candidate number
- the paper code
- the paper title
- and your course title (e.g. FHS Mathematics and Statistics Part C)
- but do not enter your name or college.

3. For each question you attempt,

- start writing on a new sheet of paper,
- indicate the question number clearly at the top of each sheet of paper,
- number each page

4. Before scanning and submitting your work,

- on the first page, in numerical order, write the question numbers attempted,
- cross out all rough working and any working you do not want to be marked,
- and orient all scanned pages in the same way.

5. Submit all your answers to this paper as a single PDF document

If you do not attempt any questions at all on this paper, you should still submit a single page indicating that you have opened the exam but not attempted any questions. Please make sure to write your candidate number on this single page.

1. (a) [6 marks] Seek solutions of the unsteady two-dimensional Navier equation (with no body force) of the form

$$
\mathbf{u}(x, y, t)=\binom{u(x, y, t)}{v(x, y, t)}=\mathbf{a} \mathrm{e}^{\mathrm{i} k(x-c t)+K y}
$$

with positive k, c, K and constant $\mathbf{a} \in \mathbb{R}^{2}$. Show that nontrivial solutions exist only if either $\mathbf{a} \propto(k,-\mathrm{i} K)^{\mathrm{T}}$ or $\mathbf{a} \propto(\mathrm{i} K, k)^{\mathrm{T}}$, and find the corresponding values of K, in terms of k, c, c_{s} and c_{p}, where c_{s} and c_{p} denote the S -wave and P -wave speeds, respectively.
[The unsteady Navier equation with no body force reads

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=(\lambda+\mu) \operatorname{grad} \operatorname{div} \mathbf{u}+\mu \nabla^{2} \mathbf{u}
$$

where ρ is the density and λ, μ are the Lamé constants.]
(b) [19 marks] An elastic material undergoes plane strain in the half-plane $\{(x, y):-\infty<x<\infty, y<0\}$. A thin elastic beam of surface density σ and bending stiffness B is attached to the interface at $y=0$.
(i) Assuming that the beam performs small purely transverse displacements and that the tension in the beam is zero, derive the boundary conditions

$$
u=0, \quad \sigma \frac{\partial^{2} v}{\partial t^{2}}+B \frac{\partial^{4} v}{\partial x^{4}}+\rho c_{\mathrm{p}}^{2} \frac{\partial v}{\partial y}=0 \quad \text { at } y=0 .
$$

Explain any approximations and constitutive relations that you use.
(ii) Show that the system supports waves that travel in the x-direction with speed $c>0$ and wavenumber $k>0$, while decaying exponentially as $y \rightarrow-\infty$, if and only if c and k satisfy

$$
k\left(\sigma c^{2}-B k^{2}\right) H(c)=\rho c^{2}
$$

where

$$
H(c)=\frac{c_{\mathrm{s}}}{\sqrt{c_{\mathrm{s}}^{2}-c^{2}}}-\frac{\sqrt{c_{\mathrm{p}}^{2}-c^{2}}}{c_{\mathrm{p}}}
$$

(iii) Deduce that such solutions can exist only if

$$
k \sqrt{B / \sigma}<c<c_{\mathrm{s}} \quad \text { and } \quad c H(c) \geqslant \frac{3 \rho \sqrt{3 B}}{2 \sigma^{3 / 2}}
$$

2. A thin beam of bending stiffness B and length $2 L$ undergoes small two-dimensional deformations in the (x, z)-plane. There is no tension applied to the beam, which lies along the x-axis in its undeformed state. You may assume that, in equilibrium when subject to a downward (i.e. in the negative z-direction) body force $p(x)$ per unit length, the transverse displacement $w(x)$ satisfies the linear beam equation

$$
B w^{\prime \prime \prime \prime}(x)+p(x)=0
$$

The ends of the beam are fixed on the x-axis and simply supported so that $w(\pm L)=w^{\prime \prime}(\pm L)=0$. The effects of gravity are negligible.
A smooth symmetric convex obstacle is brought into contact with the beam from above. The boundary of the obstacle is given by $z=f(x)$, where $f(-x) \equiv f(x), f^{\prime \prime}(x)>0$ and $f(0) \leqslant 0 \leqslant f(L)$. You may assume that the displacement is symmetric, i.e. $w(-x) \equiv w(x)$, and that w, w^{\prime} and $w^{\prime \prime}$ are all continuous at points where the beam makes or loses contact with the obstacle.
(a) [4 marks] Explain why $w(x)$ satisfies the linear complementarity problem

$$
w^{\prime \prime \prime \prime}(x)(w(x)-f(x))=0, \quad w^{\prime \prime \prime \prime}(x) \leqslant 0, \quad w(x)-f(x) \leqslant 0
$$

Show also that the upwards force exerted on the obstacle is given by $F=-2 B w^{\prime \prime \prime}(L)$.
(b) [5 marks] Show that

$$
\int_{-L}^{L} \frac{1}{2} B w^{\prime \prime}(x)^{2} \mathrm{~d} x \leqslant \int_{-L}^{L} \frac{1}{2} B v^{\prime \prime}(x)^{2} \mathrm{~d} x
$$

for all $v \in \mathcal{V}:=\left\{v \in C^{2}[-L, L]: v(\pm L)=v^{\prime \prime}(\pm L)=0, v \leqslant f\right\}$.
Interpret this result physically.
(c) [10 marks] Now focus on the case $f(x)=-\delta+\kappa x^{2} / 2$, where $\kappa>0$ and $0 \leqslant \delta \leqslant \kappa L^{2} / 2$. Show that, as δ is gradually increased from zero, the beam makes contact with the obstacle at a single point until $\delta=\kappa L^{2} / 3$.
For $\delta>\kappa L^{2} / 3$, show that the force F applied to the obstacle is related to the penetration distance δ by

$$
F=\sqrt{\frac{2}{3}} \frac{B \kappa^{3 / 2}}{\sqrt{\kappa L^{2} / 2-\delta}}
$$

[Hint: consider the integral $\int_{s}^{L}(L-x) w^{\prime \prime}(x) \mathrm{d} x$.]
(d) [6 marks] The system described above is used as a catapult to launch a projectile of mass M whose bottom surface is given by $f(x)$. The projectile is pushed down to its furthest extent, with $\delta \rightarrow \kappa L^{2} / 2$, and then released from rest. Assuming that the inertia of the beam is negligible so it remains in equilibrium throughout the motion, write down the equation of motion for the projectile and show that it is launched at a speed $\kappa \sqrt{2 B L / M}$. Explain briefly how this result is related to part (b).
3. (a) [4 marks] Consider a two-dimensional granular medium in which the granules exert a mutual adhesive stress $A>0$, such that the normal stress N and tangential stress F on any line element inside the material satisfy the inequality $|F| \leqslant(A-N) \tan \phi$, where ϕ is the angle of friction.
Show that the stress components satisfy a yield criterion of the form $f\left(\tau_{x x}, \tau_{x y}, \tau_{y y}\right) \leqslant \tau_{\mathrm{Y}}$, where the yield function is given by

$$
f\left(\tau_{x x}, \tau_{x y}, \tau_{y y}\right)=\frac{1}{2} \sin \phi\left(\tau_{x x}+\tau_{y y}\right)+\sqrt{\frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}}
$$

and the yield stress τ_{Y} is to be determined in terms of A and ϕ. [Properties of the Mohr circle may be used without proof.]
(b) [5 marks] The granular medium described above occupies the region $r>a$ outside a circular cavity of radius a, where (r, θ) denote plane polar coordinates. The material outside the cavity undergoes a purely radial deformation with displacement $\mathbf{u}=u(r, t) \mathbf{e}_{r}$, where \mathbf{e}_{r} is the unit vector in the r-direction. The stress tends to zero in the far field, while the surface of the cavity at $r=a$ is subject to a pressure $P(t)$ which is gradually increased from zero.
Assuming that the medium behaves as a linear elastic solid while $f<\tau_{\mathrm{Y}}$, show that yield first occurs at the surface of the cavity when $P=\tau_{\mathrm{Y}}$.
(c) [6 marks] For $P>\tau_{\mathrm{Y}}$, show that the material yields in a region $a<r<s$, where

$$
\frac{s}{a}=\left[1+\frac{\beta}{2}\left(\frac{P}{\tau_{\mathrm{Y}}}-1\right)\right]^{1 / \beta}, \quad \beta=\frac{2 \sin \phi}{1+\sin \phi}
$$

(d) [10 marks] Assuming that the material obeys the associated flow rule, show that the displacement in the yielded region satisfies

$$
\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial r}+(1-\beta) \frac{u}{r}\right)=0 .
$$

Hence evaluate the displacement everywhere in $r>a$.
[You may use without proof the radially symmetric Navier equation:

$$
\frac{\partial \tau_{r r}}{\partial r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0
$$

and the linear strain components

$$
\left.e_{r r}=\frac{\partial u}{\partial r}, \quad \quad e_{\theta \theta}=\frac{u}{r} \cdot\right]
$$

2D Navier eq - :

$$
\rho{\underset{\sim}{u}}_{t t}=(\lambda+\mu) g m d \operatorname{div} \underline{\sim}+\mu \nabla^{l} \underset{\sim}{u}
$$

min $\underline{u}=\underset{\sim}{a} e^{i k(x-c t)+k y}$ we have

$$
\left.\begin{array}{l}
\nabla^{2} \underset{\sim}{u}=\left(k^{2}-k^{2}\right) \underset{\sim}{u} \\
\operatorname{div} \underset{\sim}{u}=\binom{i k}{k} \cdot \underset{\sim}{a} e^{i k(x-c t)+k y} \\
\text { gand diru}=\binom{i k}{k}\left[\binom{i k}{k} \cdot a\right.
\end{array}\right] e^{i k(x-(t)+k y}
$$

Derte $k=\binom{k}{-i k}$, so Navier eq- becores
(3)

$$
\left(\mu\left(k^{2}-k^{2}\right)+\rho c^{2} k^{2}\right) a \underset{\sim}{a}-(\lambda+\mu)(k \cdot \underset{\sim}{a}) k=\underline{o}
$$

Dot witu $\underset{\sim}{k}:\left[(\lambda+2 \mu)\left(k^{2}-k^{2}\right)+\rho c^{2} k^{2}\right](\underset{\sim}{a}-\underset{\sim}{k})=0$
$\underline{\text { Dtt min } \underline{k}^{\perp}}=\binom{i k}{k} \quad\left[\mu\left(k^{2}-k^{2}\right)+\rho c^{2} k^{2}\right]\left(\underset{\sim}{a} \cdot \underset{\sim}{k^{2}}\right)=0$
$\operatorname{Recach} \quad C_{p}^{L}=\frac{(\lambda+2 \mu)}{\rho}, \quad c_{s}^{2}=\frac{\mu}{\rho}$

So fer non tindal a be must hae
either: (1) $\underset{\sim}{ } \cdot{\underline{h^{1}}=0 \text {, is } a \times k}_{a}^{a}$
\& len $k=k \sqrt{1-\frac{c^{2}}{c_{p}^{2}}}=k_{p}, j a$
or (2) $\underline{a} \underline{k}=0, i s . a<t$
(3) \& len $k=k \sqrt{1-\frac{c^{2}}{c^{2}}}=k_{1}$, say

NB re weed $C<C, C C p$ for vies o this fou to occur
[6 marks - similar to problem sheet]

Cminter a sroll seitm y the beam betreen $x=a$ and $x=a+h$ (say)

Denote trauscere shear stress by $N(x, t)$. Verfical copret g stess fim elaki soun undereath

Vertial copppout of Neeche'. IU Lav:

$$
\begin{aligned}
& \frac{d}{d t} \int_{a}^{a+h} \sigma V_{t} d x=[N]_{a}^{a+h}-\int_{a}^{a+h} \tau_{y y} d x \\
\therefore & \int_{a}^{a+L} \sigma V_{t t}-\frac{\partial N}{\partial x}+\tau_{y y} d x=0
\end{aligned}
$$

(2) a,h arbity $\Rightarrow \quad \sigma V_{t f}-\frac{2 N}{\partial x}+t_{y y}=0$ of $y=0$

Molet balane: Derke badry volet by $M(x, t)$ - Lee defies antilochnox, ie. aoul z-axi.
take noest about $(e-g-)$ left-lad ed $x=a$:

$$
h N(a+h)+M(a+h)-M(a)-\int_{a}^{a+h}(x-a) \tau_{y j} d x=0
$$

Nite foll ten is of over h^{2}. [Alss anghler voletum is regligille ven te beam is tur]
(2) so lettiy $h \rightarrow 0$ he get $N+\frac{\partial M}{\partial m}=0$

Filaly, costitutue relation - asshe even blation letreen besiy rorest \& curnthe:

$$
M=B V_{x x} \quad \text { at } y=0
$$

Put te pieces togeter:
(2)

$$
\delta V_{\text {tt }}+B V_{\text {rlxtut }}+T_{y y}=0 \text { at } y=0
$$

we oe abro told tat lean diplusenet is pluely tarswese, so

$$
u=0 \quad \text { at } y=0
$$

ten $t_{y y}=(\lambda+2 \mu) V_{y}+\lambda t_{h e}$

$$
=\rho C_{p}^{2} V_{y} \text { at } y=0 \quad(\text { sile } u=0)
$$

(1) So $\sigma V_{\text {tf }}+B V_{\|n\| u}+\rho C_{p}^{2} V_{y}=0$ at $y=0$
[7 marks - derivation of beam equation from lecture notes but coupling to half-space is new]

Plugin gheed soluter fore pat (a):

$$
\underset{\sim}{u}=c_{1}\binom{k}{-i k_{p}} e^{i k(x-c t)+k_{p} y}+c_{2}\binom{i k_{s}}{k} e^{i k(x-c t)+k_{s} y}
$$

B ls at $y=0$:

$$
k C_{1}+i k_{5} C_{2}=0
$$

(3)

$$
\left.\begin{array}{l}
\sigma\left[C_{1} k^{2} c^{2} i k_{p}-C_{2} k^{3} c^{2}\right]+B\left[-i k_{p} c_{1} k^{4}+C_{2} k^{5}\right] \\
+f c_{p}^{2}\left[-i k_{p}^{2} c_{1}+k k_{s} c_{2}\right]=0 \\
\therefore\left(\begin{array}{cc}
k & -k_{s} \\
k_{p}\left[k^{2}\left(\sigma c^{2}-B k^{2}\right)-\rho c_{p}^{2} k_{p}^{p}\right] \quad k\left[\rho\left(c_{p}^{2} k_{s}-k^{2}\left(\sigma c_{1}^{2}-B k^{2}\right)\right]\right.
\end{array}\right)\left(i_{1}\right) \\
c_{2}
\end{array}\right)
$$

Noutial shatos \Leftrightarrow retermint of this ratrix is tero, is.

$$
k^{2}\left[k^{2}\left(\sigma c^{2}-B k^{2}\right)-\rho c_{p}^{2} K_{s}\right]=k_{s} K_{p}\left[k^{2}\left(\sigma c^{2}-B k^{2}\right)-\rho c_{p}^{2} k_{p}\right]
$$

Rearraye:

$$
\begin{aligned}
& \left(\sigma c^{2}-B k^{2}\right)\left[1-\frac{k_{s} k_{p}}{k^{2}}\right]=\frac{\rho C_{p}^{2}}{k}\left[\frac{k_{1}}{k}-\frac{k_{s} k_{p}^{2}}{k^{3}}\right] \\
\therefore & \left(\sigma c^{2}-B c^{2}\right)\left[1-\frac{\sqrt{C_{s}^{2}-c_{p}^{2}} \sqrt{C_{p}^{2}-c^{2}}}{C_{s} C_{p}}\right]=\frac{\rho C_{p}^{2}}{k} \frac{\sqrt{C_{s}^{2}-c^{2}}}{c_{s}}\left[1-1^{2}+\frac{c^{2}}{C_{p}^{2}}\right]
\end{aligned}
$$

Noble: $H^{\prime}(c)=\frac{c c_{s}}{\left(c_{1}^{2}-c^{3}\right)^{3 / 2}}+\frac{c}{c_{p} \sqrt{c_{p}^{2}-c^{2}}}>0$ far $c \in(0,(1)$
with $H(0)=0$ ar $H(r) \rightarrow \infty$ as $c \rightarrow C_{s}$ ie. $H(L)>0$ for $c \in\left(0, C_{s}\right)$
So the eq = hes real posing oles org if
(3)

$$
\begin{equation*}
c>k \sqrt{\frac{B}{\sigma}} \tag{po}
\end{equation*}
$$

Also consiver $f(k)=k\left(\sigma c^{2}-B k^{2}\right)$
for $0<k<c \sqrt{\sigma / B}$

F is raximiled at

$$
\begin{aligned}
& \sigma c^{2}=3 B h^{2} \\
& \text { ie. } k=\sqrt{\frac{\sigma^{2}}{3 B}},
\end{aligned}
$$

$$
\text { is. } F_{\text {max }}=\frac{\frac{2 c^{3} \sigma^{3 / 2}}{3^{3 / 2} B^{1 / 2}}}{\text { so } F(k) H(c)=\rho c^{2} \frac{2 c^{3} \sigma^{3 / 2}}{3^{3 / 2} B^{1 / 2}} \cdot H(c)}
$$

Eiter (i) beam is at g contat: teen $w^{\prime \prime \prime}=0$ (given graily is regligile) \& $w<f$

Or (ii) Leam is in conturt: ten $w=f$.
Also reactirn fare R in coutat rejim mist be downads, so

$$
B \omega^{\prime \prime \prime \prime}=-R \leqslant 0
$$

(2) put it tgeter.

$$
\begin{aligned}
& w^{\prime \prime \prime \prime}(v-f)=0 \\
& w \leqslant f, \quad w^{\prime \prime \prime} \leq 0
\end{aligned}
$$

$$
\text { Force exeted on obstacce } \begin{aligned}
& =\int_{\substack{\text { comtat } \\
\text { set }}} R d x=-B \int_{\substack{\text { coubet }}} \omega^{\prime \prime \prime \prime}(x) d x \\
& =-B \int_{-L}^{L} \omega^{\prime \prime \prime \prime}(x) d x \quad\left(\text { she } \omega^{\prime \prime \prime \prime}=0\right. \text { in } \\
& =B\left(W^{\prime \prime \prime}(-C)-\omega^{\prime \prime \prime}(C)\right)
\end{aligned}
$$

(2) $\quad \therefore F=-2 B W^{\prime \prime \prime}(L)$
(wiy symurty of w)
[4 - generalising string calculations done in lectures]

Wen obstacle first rabes coutht, wit $\delta=0$, we hove $w=f, w!=f^{\prime}$ at $x=0$, but $w^{\prime \prime}=0<f^{\prime \prime}=k$. These is coutht at the sigle poit $x=0$ until te corntures ratch - then te cathet zet stats to spreas.
so initay sole

$$
\begin{aligned}
& w^{\prime \prime \prime \prime}(x)=0 \quad x>0 \\
& w(L)=w^{\prime \prime}(L)=0 \\
& w(0)=-\delta, \quad w^{\prime}(0)=0
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad & \omega^{\prime \prime}(x)
\end{aligned}=A(L-11) \quad \text { sole coshat } A
$$

$\& \omega(l)=0$ giles $A=\frac{3 \delta}{L^{3}}$, is.
(3)

$$
\omega(\Lambda)=\delta\left[-1+\frac{3 x^{2}}{2 L^{2}}-\frac{x^{3}}{2 L^{3}}\right]
$$

$\omega^{\prime \prime}(0)=\frac{3 \delta}{L^{2}}$ which reares he curnte $k, 2$
(2) te obsticle wen $\delta=\frac{K L^{2}}{3}$

For futue reterence, the fore on le osstacle M thi, regive is

$$
F=-2 B W^{\prime \prime \prime}(1)=\frac{6 B \delta}{L^{3}}
$$

Nite $0=\int_{-L}^{L} w^{\prime \prime \prime \prime}(x)(w(x)-f(x)) d x$

$$
=\int_{-L}^{L} \underbrace{w^{\prime \prime \prime \prime}(x)}_{\leq 0} \frac{(v(x)-f(x))}{\left(\int_{-L}^{L \leq 0} w^{\prime \prime \prime} / x\right)(w(x)-v(x)) d x} d x
$$

ie. $\left.0 \geqslant \int_{-c}^{c} w^{\prime \prime \prime \prime}(x)(w \mid x)-v(x)\right) d x \quad$ fov $v, w \in V$

$$
=\left[w^{\prime \prime \prime}(x)(w(x)-v(x))\right]_{-L}^{l}+\int_{-L}^{l} w^{\prime \prime \prime}(x)\left(v^{\prime}(x)-w^{\prime}(x)\right) d x
$$

[NB $W^{\prime \prime \prime}$ is piecemse smooth-ouxubutas frim pors whe $W^{\prime \prime \prime}$ is discolexhvons dijappeen becare $W=V$ the $]$
(2)

$$
\begin{aligned}
& =\left[w^{\prime \prime}(x)\left(v^{\prime}(x)-w^{\prime \prime}(x)\right)\right]_{-L}^{L}-\int_{-L}^{L} w^{\prime \prime}(x)\left(V^{\prime \prime}(x)-w^{\prime \prime}(x)\right) d x \\
& \therefore O \geqslant \int_{-L}^{L}\left[-\frac{1}{2} V^{\prime \prime}(x)^{2}+\frac{1}{2} w^{\prime \prime}(x)^{2}+\frac{1}{2}\left(V^{\prime \prime}(x)-w^{\prime \prime}(x)\right)^{2}\right] d x
\end{aligned}
$$

(2) $\left.\quad \int_{-c}^{c} \frac{1}{2} B V^{\prime \prime}(x)^{2} d x \geq \int_{-c}^{L} \frac{1}{2} B \omega^{\prime \prime}(x)^{2} d x \right\rvert\, \forall V \in V$

Mis is te elostic badigevergy: w is ke
(1) lleken y V Rat minimises Mis elegy. [5 is generndisimenstrimegtionlondatione:done in lectures]

For $\delta>\frac{K L^{2}}{3}$, in traluee a coliter set

$$
-5<x<s
$$

By symuety, ist foch on $s<x<L$.

So solve

$$
\begin{aligned}
& w^{\prime \prime \prime}(x)=0 \\
& w(l)=w^{\prime \prime}(l)=0 \\
& w(s)=-\delta+\frac{n s^{2}}{2} \\
& w^{\prime}(s)=k s \\
& w^{\prime \prime}(s)=k
\end{aligned}
$$

(2) Intyn+5: $\quad w^{\prime \prime}(x)=\frac{K(L-x)}{L-s}$
use de hut:

$$
\begin{aligned}
& \quad \int_{8}^{L}(L-1) w^{\prime \prime}(x) d x=\left[(L-x) w^{\prime}(x)+w(x)\right]_{s}^{L} \\
& \therefore \frac{K}{(L-s)} \cdot \frac{(L-s)^{3}}{3}=-(L-s) \cdot K s+\delta-\frac{K s^{2}}{2} \\
& \therefore \delta+\delta=K=\frac{K s^{2}}{2}-K L s=\delta+\frac{K}{2}(L-s)^{2}-\frac{K L^{2}}{2} \\
& \left.\therefore-\frac{A L}{3} L \frac{s^{2}}{3}+M s+\frac{s^{2}}{2}\right]^{2} \\
& \text { ie. } \quad \frac{K L^{2}}{2}-\delta=\frac{K}{6}(L-s)^{2}
\end{aligned}
$$

(2) $\quad \therefore \quad L-S=\sqrt{\frac{G}{K}} \cdot \frac{\text { Wh2N}}{\sqrt{\frac{L^{2}}{2}-\delta}}$

So face $F=-L B \omega^{\prime \prime \prime}(L)=\frac{2 B K}{L-S}$
(1)
ie. $F=\sqrt{\frac{2}{3}} \frac{B K^{3 / L}}{\sqrt{K L^{2} / L-\delta}}$
[10 - new but quite familiar calculations]

Necloris in law for the projecite:
$M \ddot{\delta}+F(\delta)=0$ with $\dot{\delta} \rightarrow 0$ when $\delta \rightarrow \frac{k L^{2}}{2}$
(2)

$$
\therefore \frac{1}{2} M \dot{\delta}^{2}=\int_{\delta}^{K L^{2} / 2} F(\delta) d \delta
$$

Find velouty is gree by $\frac{1}{2} M v^{2}=\int_{0}^{u c^{2} / L} F(\delta) d \delta$

$$
\begin{aligned}
& \frac{1}{2} M V^{2}=\int_{0}^{K L^{2} / 3} \cdot \frac{6 B \delta}{L^{3}} d \delta+\int_{K L^{2} / 3}^{k L^{2} / 2} \sqrt{\frac{2}{3}} \cdot \frac{B \cdot K^{3 / 2}}{\sqrt{K L^{2} / 2}-\delta} d \delta \\
& \quad=\frac{3 B}{L^{3}} \cdot \frac{K^{2} L^{4}}{9}+\sqrt{\frac{2}{3} B K^{3 / L}}\left[-2 \sqrt{\frac{K L^{2}}{2}-\delta}\right]_{K L^{2} / 3} \\
& \quad=\frac{B K^{2} L}{3}+\sqrt{\frac{2}{3} B K^{3 / 2} \cdot 2 \sqrt{\frac{K L^{2}}{6}}} \\
& \frac{1}{2} M V^{2}=B K^{2} L
\end{aligned}
$$

(3)
i.. $V=K \sqrt{\frac{2 B L}{M}}$

NB form (b), laskic every in bleam wen its frilly peretaled is
(1)

$$
E=\frac{1}{2} B \int_{-L}^{L} W^{\prime \prime}(x)^{2} d x=\frac{1}{2} B \cdot 2 L \cdot K^{2}=B L K^{2}
$$

which is equat t de Kine Xic eneyy of te porientle when it Makes the beam.
[6|1-now]

Molur circle

We see fiom basictiy that the entre cincle sativies $|F| \leq(A-N)$ 保 ϕ iff
(2)

$$
\text { siv } \phi \geqslant \frac{\sqrt{\frac{1}{4}\left(\tau_{i x}-\tau_{y y}\right)^{2}+\tau_{x y}}}{A-\frac{1}{2}\left(\tau_{1 x}+\tau_{y y}\right)}
$$

and $A-\frac{1}{2}\left(\tau_{1 m}+\tau_{n y}\right)>0$
ie. $f \leqslant c_{y}$ whe $c_{y}=$ Asp
(2) and $f=\frac{1}{2} \operatorname{sic} 4\left(\tau_{m x}+\tau_{y j}\right)+\sqrt{\frac{1}{4}\left(\tau_{1 x}-\tau_{y y}\right)^{2}+\tau_{1 y}^{2}}$
[Gelealisily Methre notes]
[4 - adhesion is new]

While ratevinl is Clask:
we have $\tau_{r r}+\tau_{\theta t}=2(\lambda+\mu)\left(e_{r r+} e_{\sigma t}\right)$

$$
\begin{aligned}
& =2(\lambda+\mu)\left(\frac{\partial u}{w}+\frac{u}{r}\right) \\
T_{1 r}-T_{\theta \epsilon} & =2 \mu\left(e_{r r}-l_{\theta \epsilon}\right) \\
& =2 \mu\left(\frac{\partial u}{\partial r}-\frac{u}{r}\right)
\end{aligned}
$$

S Naver eq = gives $\frac{\partial}{\partial r}\left[\lambda\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+2 \mu \frac{\partial u}{\partial r}\right]$

$$
\begin{array}{r}
+\frac{2 \mu}{r}\left(\frac{\partial u}{\partial r}-\frac{u}{r}\right)=0 \\
\therefore(\lambda+2 \mu) \frac{\partial}{\partial}\left(\frac{\partial u}{w}+\frac{u}{r}\right)=0 \\
\frac{\partial}{w}\left(\tau_{r r}+\tau_{\sigma E}\right)=0 \quad \frac{\text { copaxibiliy }}{\text { candixu }}
\end{array}
$$

Gilen stess $\rightarrow 0$ at ∞, he have

$$
\begin{aligned}
& \operatorname{Trr}+\tau_{\theta t}=0 \\
& \therefore \frac{\partial \tau_{r r}}{\partial r}+\frac{2 \tau r}{r}=0 \\
& \Rightarrow \quad \operatorname{Tr}=-\frac{A}{r^{2}}, \tau_{\theta t}=\frac{A}{r^{2}} \quad \text { for sme } \\
& \text { A(t). }
\end{aligned}
$$

Gien $\operatorname{tr}=-p$ on $r=9$ we bere
(3) $\operatorname{Trrr}_{r r}=-\frac{P_{a^{2}}}{r^{2}}, T_{\theta t}=\frac{P_{a}^{2}}{r^{2}}$ is elastic rate is.

In tens of mail cordintes, with Pro $=0$, yield fricta records

$$
f=\frac{1}{2} \sin \psi\left(T_{r r}+\tau_{\theta \epsilon}\right)+\frac{1}{2}\left|T_{r r}-T_{\theta \in}\right|
$$

Since Tot $>$ Cir lee

$$
f=\frac{1}{2}(1+\sin \phi) \tau_{\theta t}-\frac{1}{2}(1-\sin \phi) \operatorname{trr}_{r}
$$

Here he lave $f=\frac{P a^{2}}{r^{2}}$ while rateal is elastic This is a devensiy frectur of r, so yield fist occas at $r=4$ when $P=r_{y}$
[5 - familiar]

For $P>T_{y}$, solve elastic post lem in $r>s$ to get $T_{r r}=-\frac{A}{r^{2}}, T_{0 t}=\frac{A}{r^{2}}$ again. $f=t_{-1}$ at $r=s$ (yield cold x_{n}) gives

$$
\begin{equation*}
\frac{A}{s^{2}}=\tau_{1} \quad \therefore \quad \tau_{1 r}=-\frac{\tau_{y} s^{2}}{r^{2}}, \tau_{\theta t}=\frac{\tau_{y} s^{2}}{r^{2}} \tag{2}
\end{equation*}
$$

In res rated satoxes vied criterion

$$
\begin{aligned}
& 2 \tau_{y}=(1+\sin -\phi) T_{\theta t}-(1-\sin \phi) \operatorname{Trr}_{r} \\
& \therefore \quad \tau_{\theta t}=\frac{2 \tau_{y}}{1+\sin \phi}+\frac{(1-\sin \psi)}{(1+\sin \psi)} \operatorname{tir}
\end{aligned}
$$

So Navier eq z Heads

$$
\begin{align*}
& \frac{\partial \tau_{r r}}{\partial r}+\frac{\beta}{r} \tau_{r r}=\frac{2 \tau_{-1}}{r(1+\sin \phi)}=\frac{(2-\beta) \tau_{y}}{r} \\
& \text { with } \beta=\frac{2 \text { sild }}{1+\operatorname{sing}} \\
& \therefore \quad \operatorname{Trr}=\frac{C_{1}}{r^{\beta}}+\frac{(2-\beta) T_{-1}}{\beta} \text { and } \begin{array}{c}
C_{r}=-p \\
a r r=a
\end{array} \\
& \tau_{r r}=\frac{(2-\beta) T_{y}}{\beta}+\left(\frac{q}{r}\right)^{\beta}\left[c_{y}-\rho-\frac{2 T_{y}}{\beta}\right] \tag{2}
\end{align*}
$$

canthuit (shers balavee) at $r=s$:

$$
\begin{gathered}
\frac{(2-\beta) r_{y}}{\beta}+\left(\frac{a}{s}\right)^{\beta}\left[r_{y}-p-\frac{2 r_{y}}{\beta}\right]=-r_{y} \\
\therefore\left(\frac{s}{a}\right)^{\beta}=\frac{\beta}{2 \tau_{y}}\left[\frac{2 r_{y}}{\beta}+\rho-r_{y}\right] \\
\therefore \frac{s}{a}=\left[1+\frac{\beta}{2}\left(\frac{\beta}{\tau_{y}}-1\right)\right] / \beta
\end{gathered}
$$

(2)
[6 - generalising lecture notes]

Associtcel flow me:

$$
\begin{gathered}
\dot{e}_{s r}=\frac{\partial \dot{u}}{\partial r}=\Lambda \frac{\partial f}{\partial \tau_{r r}}=-\frac{\Lambda}{2}(1-\sin \phi) \\
\dot{e}_{\sigma t}=\frac{\dot{u}}{r}=\Lambda \frac{\partial f}{\partial \tau_{t c}}=\frac{\Lambda}{2}(1+\sin \psi) \\
\therefore \frac{\dot{i}_{i}}{\partial r}+\frac{(1-\sin \phi)}{(1+\sin \phi)} \frac{\dot{i}}{r}=0
\end{gathered}
$$

(3) ie. $\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial r}+(1-\beta) \frac{u}{r}\right)=0$

In elastl vegion $r>s$

$$
\begin{aligned}
& \tau_{r r}=-\frac{r y s^{2}}{r^{2}}=\lambda\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+2 \mu \frac{\partial u}{\partial r} \\
& \tau_{\sigma}=\frac{c_{-} s^{2}}{r^{2}}=\lambda\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+2 \mu \frac{u}{r} \\
\therefore & \frac{\partial u}{\partial r}+\frac{u}{r}=0 \quad \text { is. u}=\frac{c_{2}}{r}
\end{aligned}
$$

bten real y

$$
u=\frac{t_{y} s^{2}}{2 \mu r} \quad \mu r>s .
$$

$$
\therefore \quad \frac{\partial u}{\partial r}+(1-\beta) \frac{4}{r}=-\frac{\beta c_{-} s^{2}}{2 \mu r^{2}}=\frac{-\beta C_{y}}{2 \mu} \text { at } r=s
$$

So in yideded resim, $\frac{\partial u}{\partial r}+(1-\beta) \frac{u}{r}$ stings fited at this costut whe.
(3) $\quad \therefore u=C_{3} r^{-1+\beta} \frac{-\beta r-1 r}{2 \mu(2-\beta)}$
cathurb of u at $r=s$:

$$
\begin{gathered}
C_{3} s^{-1+\beta}-\frac{\beta C y s}{2 \mu(2-\beta)}=\frac{t y s}{2 \mu} \\
i \therefore \quad c_{3}=\frac{t y s^{2-\beta}}{(2-\beta) \mu}
\end{gathered}
$$

(2)
is. $u=\frac{\tau y r}{2(2-\beta) \mu}\left[2\left(\frac{s}{r}\right)^{2-\beta}-\beta\right]$
in $a<r<S$

$$
[10-\text { new }]
$$

