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1 Introduction

Classical algebraic geometry is the study of the sets of of simultaneous solutions of collections of polynomial

equations in several variables with coefficients in an algebraically closed field. Such sets are called algebraic

varieties. So eg the set of simultaneous solutions of the equations x2 + y2 − 1 = 0, xy = 0 in C2 is an

algebraic variety.

Because they are so easy to define, algebraic varieties appear in almost every area of mathematics. They

play a crucial role in number theory, in topology, in differential geometry and complex geometry (ie the

theory of complex manifolds). When the base field is C, an algebraic variety defines a complex manifold

provided it has ”no kinks” (we shall give a precise definition later).

A basic reference for classical algebraic geometry is chap. I of D. Mumford’s book The Red Book of Varieties

and Schemes (Springer Lecture Notes in Mathematics 1358). Another reference is chap. I of R. Hartshorne’s

book Algebraic Geometry (Springer). One might also consult the book by M. Reid Undergraduate algebraic

geometry (London Mathematical Society Student Texts 12, Cambridge University Press 1988). An updated

free online version of M. Reid’s lectures can be found under

https://homepages.warwick.ac.uk/staff/Miles.Reid/MA4A5/UAG.pdf

The natural generalisation of classical algebraic geometry is the theory of schemes, which will be taught in

Hilary Term. In Grothendieck’s theory of schemes, the base field can be replaced by any commutative ring

but the absence of Hilbert’s Nullstellensatz, which is at the root of the material presented here, means that

different techniques have to be used.

There are three important tools, which will not be presented in this course:

• The theory of sheaves

• Cohomological techniques

• The technique of base change

These tools are very powerful but there will not be enough time to present them in these lectures . Also,

the best framework for them is the theory of schemes (although they could also be used in the restricted

setting of this text).

There is also a tool from Commutative Algebra, which will not be used here but which is very useful in

Algebraic Geometry: the tensor product of modules over a ring. Tensor products are ubiquitous in the

theory of schemes.

The prerequisites for this course are the part A course Rings and Modules and the part B course Commutative

Algebra. It is assumed that the reader is familiar with the terminology used in the notes of the commutative

algebra course. We shall often quote results proven in that course, referring to it as ”CA”. I have put the

CA notes on the web page of the present course for easy reference.

Throughout the course, we shall work over a fixed algebraically closed field k. As in the CA course, a ring

will be a commutative ring with unit, unless stated otherwise. The reader may assume that for any n > 1,

the ring of polynomials k[x1, . . . , xn] is a UFD (Unique Factorisation Domain). It can also be assumed that

the localisation k[x1, . . . , xn]S is a UFD for any multiplicative set S ⊆ k[x1, . . . , xn].
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2 Hilbert’s Nullstellensatz and algebraic sets

Let n > 0 and let Rn := k[x1, . . . , xn]. Let Σ ⊆ Rn. The algebraic set associated with Σ is

Z(Σ) = zero set of Σ := {(t1, . . . , tn) ∈ kn | ∀P ∈ Σ : P (t1, . . . , tn) = 0}

Note the following simple fact. Let ΣRn be the ideal generated by Σ in Rn. Then we have Z(Σ) = Z(ΣRn).

We now recall two basic results in commutative algebra.

Theorem 2.1 (Hilbert’s basis theorem; see Th. 7.6 in CA). The ring k[x1, . . . , xn] is noetherian.

Recall that a noetherian ring is a ring all of whose ideals are finitely generated. In particular, by the remark

above any algebraic set in kn is the zero set of a finite number of polynomials.

Theorem 2.2 (Hilbert’s strong Nullstellensatz; see Cor. 9.5 in CA). For any ideal I ⊆ Rn we have

r(I) = {P ∈ Rn | ∀(t1, . . . , tn) ∈ Z(I) : P (t1, . . . , tn) = 0}

Recall that r(I) is the radical (or nilradical) of I, ie the intersection of all the prime ideals of Rn containing

I. One can show that r(I) consists of all the elements Q of Rn, such that Ql ∈ I for some l = l(Q) (see

Prop. 3.2 in CA). Recall also that a radical ideal is an ideal which coincides with its own radical.

If A ⊆ kn is subset, we shall write

I(A) := {P ∈ Rn | ∀(t1, . . . , tn) ∈ A : P (t1, . . . , tn) = 0}.

The set I(A) is clearly and ideal in Rn. Note that in terms of the operator I(·), the strong HNS implies

that I(Z(I)) = r(I) for any ideal of Rn.

We may now prove the basic

Proposition 2.3. Let V ⊆ kn be an algebraic set and let I ⊆ Rn be an ideal. Then the identities

Z(I) = Z(r(I)), I(Z(I)) = r(I) and Z(I(V )) = V hold.

In particular, the two maps

{algebraic sets in kn}
I
�
Z
{radical ideals in Rn}

are inverse to each other. Note that in this correspondence, we have V1 ⊆ V2 iff Z(V1) ⊇ Z(V2) for any two

algebraic sets V1 and V2 (why?).

Proof. (of Proposition 2.3) The identity Z(I) = Z(r(I)) follows from the definitions and the identity

I(Z(I)) = r(I) was noted just before the statement of the proposition. We thus only have to prove that

Z(I(V )) = V . To see this, note that by definition we have V ⊆ Z(I(V )). On the other hand, by definition

V = Z(J) for some ideal J in k[x1, . . . , xn]. By construction, we have J ⊆ I(V ), so Z(J) = V ⊇ Z(I(V )).

Hence V = Z(I(V )).

We also note the following identities, whose proof is left as an exercise for the reader:

(1) I(V1 ∪ V2) = I(V1) ∩ I(V2)
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(2) I(∩iVi) = r(
∑
i I(Vi))

(3) Z(I1 ∩ I2) = Z(I1) ∪ Z(I2)

(4) Z(
∑
i Ii) = ∩iZ(Ii)

(where the Vi are algebraic sets, the Ii are ideals and the symbol
∑

refers to the sum of ideals).

In view of the properties (4) and (3) above, the algebraic sets in kn can be viewed as the closed sets of a

topology on kn, called the Zariski topology. If V ⊆ kn is an algebraic set, we endow V with the topology

induced by the Zariski topology of kn. This topology is called the Zariski topology of V .

We can refine the correspondence above as follows.

Say that an algebraic set V ⊆ kn is reducible if V = V1 ∪ V2, where V1, V2 ⊆ kn are non empty algebraic

sets, V1 6⊆ V2 and V2 6⊆ V1. An algebraic set V ⊆ kn is said to be irreducible if it is not reducible. One

verifies from the definition that an algebraic set is irreducible iff all its non empty open subsets are dense.

For the following two lemmata, we shall need the following result from CA:

Theorem 2.4. Let R be a noetherian commutative ring and let I ⊆ R be a radical ideal. Then there is

unique finite set of prime ideals {pl} such that I = ∩lpl and such that for all indices l we have pl 6⊇ ∩j 6=lpj .
Furthermore, the pl are the prime ideals of R, which are minimal for the inclusion relation among the prime

ideals containing I.

Proof. This follows from the Lasker-Noether theorem (see Prop. 7.8 in CA) and the remark after Th. 6.7

in CA.

Lemma 2.5. Let V ⊆ kn be an algebraic subset. Then V is irreducible iff I(V ) is a prime ideal.

Proof. ”⇐”: Suppose that V is reducible. Then V = V1∪V2, where V1 and V2 are two algebraic subsets not

contained in each other (and in particular not empty). By property (1) above, we have I(V ) = I(V1)∩I(V2),

where I(V1) and I(V2) are two ideals not contained in each other. In particular, there is a1 ∈ I(V1) such

that a1 6∈ I(V2) and a2 ∈ I(V2) such that a2 6∈ I(V1). In particular a1, a2 6∈ I(V ). On the other hand

a1a2 ∈ I(V ) so that I(V ) is not prime.

”⇒”: Suppose that I(V ) is not prime. Let {pl}l∈Λ be the set of prime ideals in R, which are minimal

among the prime ideals containing I(V ). By Theorem 2.4 we know that Λ is finite and that I(V ) = ∩lpl.
Hence #Λ > 1 since I(V ) is not prime. Let l1 be any element of Λ. By Theorem 2.4 again (or Prop. 6.1 (ii)

in CA and the minimality of the pl) we have pl1 6⊇ ∩l 6=l1pl. On the other hand, we also have pl1 6⊆ ∩l 6=l1pl
by minimality. Hence Z(pl1) 6⊆ Z(∩l 6=l1pl) and Z(pl1) 6⊇ Z(∩l 6=l1pl). Finally, we have Z(I(V )) = V =

Z(pl1) ∪ Z(∩l 6=l1pl) by (3) above and Proposition 2.3 so that V is reducible.

Lemma 2.6. Let V ⊆ kn be an algebraic set. Then there is a unique finite collection {Vl}l∈Λ of irreducible

algebraic subsets of kn such that

(1) V = ∪lVl;

(2) ∀l : Vl 6⊆ ∪j 6=lVj .

Furthermore, the Vl are the irreducible algebraic sets in kn, which are maximal among the irreducible alge-

braic sets contained in V .
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Proof. In view of the remark after Prop. 2.3, the properties (1)...(4) above and Lemma 2.5, this is

equivalent to Theorem 2.4 for R = Rn.

Example. The algebraic set defined by the equation x1x2 = 0 in k2 has the irreducible components x1 = 0

and x2 = 0. Indeed, the two components are clearly not contained in each other and xi = 0 defines an

irreducible algebraic set because k[x1, x2]/(xi) ' k[x] and thus the ideal (xi) is prime in k[x1, x2] (use

Lemma 2.5).

Proposition 2.7. Let V ⊆ kn be an algebraic set defined by a radical ideal I. Let v̄ = 〈v1, . . . , vn〉 ∈ V and

let m be a maximal ideal of Rn. Suppose that m ⊇ I. Then

(1) I({v̄}) ⊇ I and I({v̄}) is a maximal ideal of Rn;

(2) Z(m) consists of one point ū = 〈u1, . . . , un〉 ∈ V and ū ∈ V ;

(3) m = (x1 − u1, . . . , xn − un) where ū is as in (2).

Proof. Unravel the definitions and apply Proposition 2.3.

The last proposition in particular provides a correspondence between the points of V and the maximal ideals

of Rn containing I(V ), or equivalently with the maximal ideals of Rn/I(V ). In other words, if we write for

any ring R

Spm(R) := {maximal ideals of R}

then there is a natural bijection Spm(Rn/I(V )) ' V .

Lemma 2.8. Let V ⊆ kn be an algebraic set. Under the bijection Spm(Rn/I(V )) ' V , the closed subsets

of V correspond the subsets of Spm(Rn/I(V )) of the form

Z(S) := {m ∈ Spm(Rn/I(V )) |m ⊇ S}

where S ⊆ Rn/I(V ). The closed subsets of V are in one to one correspondence with the radical ideals of

Rn/I(V ) via Z(·).

Proof. Left to the reader. Unroll the definitions.

Note that the set {m ∈ Spm(Rn/I(V )) |m ⊇ S} corresponds in V to the set Z(S′) ∩ V for any lifting

of S to Rn. So the notation Z(S) will not lead to any confusion. Also, if C ⊆ V is a closed subset,

then we have C = Z(I(C) (mod I(V ))) = Z(I(C)) ∩ V . So we will sometimes use the shorthand I(C) for

I(C) (mod I(V )) ⊆ Rn/I(V ) if C is a closed subset of V . With this notation, the properties (1),. . . , (4)

listed above are also valid for the correspondence described in Lemma 2.8.

3 Regular maps between algebraic sets

Let n, t > 0. A map φ : kn → kt is said to be polynomial if there are elements P1(x1, . . . , xn), . . . , Pt(x1, . . . , xn) ∈
Rn = k[x1, . . . , xn], such that

φ(a1, . . . , an) = 〈P1(a1, . . . , an), . . . , Pt(a1, . . . , an)〉

for all 〈a1, . . . , an〉 ∈ kn.
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Note that the polynomials Pi define a map of k-algebras φ∗ : Rt → Rn by the formula

φ∗(Q(y1, . . . , yt)) := Q(P1(x1, . . . , xn), . . . , Pt(x1, . . . , xn))

and on the other hand, if we are given a map of k-algebras Φ : k[y1, . . . , yt] = Rt → Rn = k[x1, . . . , xn],

then we can define polynomials T1(x1, . . . , xn), . . . , Tt(x1, . . . , xn) ∈ Rn by the formula

Ti(x1, . . . , xn) := Φ(yi)

and these two processes are obviously inverse to each other. So to give polynomials Pi as above is equivalent

to giving a map of k-algebras Rt → Rn. Note that from definitions we see that the composition of two

polynomials maps is a polynomial map.

If Φ : Rt → Rn is a map of k-algebras, we shall write Spm(Φ) : kn → kt for the corresponding polynomial

map (defined as above from the polynomials arising from Φ).

Lemma 3.1. The map

Spm : {maps of k-algebras Rt → Rn} → {polynomial maps kn → kt}

is bijective.

Proof. The surjectivity of Spm is a tautology so we only have to prove injectivity. Let Φ1,Φ2 : Rt →
Rn be two maps of k-algebras. Suppose that Spm(Φ1) = Spm(Φ2). We have to prove that Φ1 =

Φ2. Suppose that Φ1 (resp. Φ2) is defined by polynomials P11(x1, . . . , xn), . . . , P1t(x1, . . . , xn) (resp.

P21(x1, . . . , xn), . . . , P2t(x1, . . . , xn)). Let i ∈ {1, . . . , t}. If Spm(Φ1) = Spm(Φ2) then the polynomial

P1i − P2i vanishes for all the values of its variables. This implies that P1i = P2i (why?). Since i was

arbitrary, we conclude that Φ1 = Φ2.

In view of the lemma, for any polynomial map φ : kn → kt, there is a unique map of k-algebras φ∗ : Rt → Rn

such that Spm(φ∗) = φ. Note that the operation (·)∗ (resp. Spm(·)) is compatible with composition of

polynomial maps (resp. composition of maps of k-algebras). This follows from the definitions.

Let now V ⊆ kn and W ⊆ kt be algebraic sets in kn and kt, respectively. A map ψ : V → W is said to be

regular if there is a polynomial map φ : kn → kt such that φ(V ) ⊆ W and such that ψ(v) = φ(v) for all

v ∈ V . Note that if ψ is given, there might be several different φ inducing ψ (what is an obvious example

of this phenomenon?). Note also that a regular map is continuous for the Zariski topology (why?). Also, a

composition of regular maps is regular (unroll the definitions).

We shall attempt to generalise Lemma 3.1 to algebraic sets.

For this, we make the following definition.

Definition 3.2. Let V ⊆ kn be an algebraic set. The coordinate ring C(V ) of V is the ring

C(V ) := Rn/I(V ).

Note that since I(V ) is a radical ideal (see above - this also follows directly from the definitions), the ring

C(V ) is a reduced ring, ie the only nilpotent element of C(V ) is the zero element. We also recall that any

finitely generated algebra over a field is a Jacobson ring (see Cor. 9.4 in CA). In particular, C(V ) is a

Jacobson ring. Recall that a Jacobson ring R is a ring such that for any ideal I ⊆ R, we have

∩m∈Spm(R),m⊇I = ∩p∈Spec(R),p⊇I =: r(I)
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where Spec(R) is the set of prime ideals of R (see section 4 in CA).

Let again V ⊆ kn and W ⊆ kt be algebraic sets in kn and kt, respectively. Let ψ : V → W be a regular

map and let φ : kn → kt be a polynomial map inducing ψ, as above. Suppose that φ = Spm(Φ) for the map

of k-algebras Φ : Rt → Rn.

Lemma 3.3. We have Φ(I(W )) ⊆ I(V ).

Proof. I am grateful to one of the members of the audience for pointing out a simplified proof of this

lemma. Suppose Φ is given by elements P1(x1, . . . , xn), . . . , Pt(x1, . . . , xn) ∈ Rn = k[x1, . . . , xn], as above.

By assumption, for all v̄ ∈ V , we have

〈P1(v̄), . . . , Pt(v̄)〉 ∈W

and so for any Q(y1, . . . , tt) ∈ I(W ) and any v̄ ∈ V , we have Q(P1(v̄), . . . , Pt(v̄)) = 0. In other words,

Φ(Q) = Q(P1(x1, . . . , xn), . . . , Pt(x1, . . . , xn)) ∈ I(V )

as required.

From the lemma, we see that Φ induces a map of k-algebras ΦV,W : C(W )→ C(V ).

The next lemma is needed in the next proposition.

Lemma 3.4. If v̄ := 〈v1, . . . , vn〉 ∈ V then the maximal ideal of C(W ) corresponding to ψ(v̄) is the ideal

Φ−1
V,W ((x1 − v1, . . . , xn − vn) (mod I(V ))) = Φ−1((x1 − v1, . . . , xn − vn)) (mod I(W )).

In particular, Φ−1
V,W sends maximal ideals to maximal ideals and ΦV,W entirely determines ψ : V →W .

Proof. Note first that Φ−1((x1 − v1, . . . , xn − vn)) is maximal in Rt because there is by construction an

injection of k-algebras

Rt/Φ
−1((x1 − v1, . . . , xn − vn)) ↪→ Rn/(x1 − v1, . . . , xn − vn) ' k

so that Rt/Φ
−1((x1 − v1, . . . , xn − vn)) ' k (isomorphism of k-algebras). On the other hand, any maximal

ideal in Rt = k[y1, . . . , yt] is likewise of the form (y1 − u1, . . . , yt − ut) by Proposition 2.7. So in order to

determine the ideal Φ−1((x1 − v1, . . . , xn − vn)) we only need to find u1, . . . , ut ∈ k such that

Φ(yi − ui) ∈ (x1 − v1, . . . , xn − vn). (1)

By the correspondence between algebraic sets and radical ideals, condition (1) is equivalent to the condition

that the polynomial Φ(yi − ui) vanishes on 〈v1, . . . , vn〉. We compute

Φ(yi − ui)(〈v1, . . . , vn〉) = Φ(yi)(〈v1, . . . , vn〉)− ui = φi(〈v1, . . . , vn〉)− ui

where φi is the projection of the map φ : kn → kt to the i-th coordinate. We thus see that Φ(yi − ui)
vanishes on 〈v1, . . . , vn〉 for all i ∈ {1, . . . , t} iff φ(〈v1, . . . , vn〉) = 〈u1, . . . , ut〉. Hence

Φ−1((x1 − v1, . . . , xn − vn)) = (y1 − φ1(v̄), . . . , yt − φt(v̄)).

In particular, the maximal ideal of C(W ) corresponding to ψ(v̄) is the ideal Φ−1
V,W ((x1 − v1, . . . , xn − vn) (mod I(V ))).

We now have the
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Proposition 3.5. The map ΦV,W : C(W )→ C(V ) depends only on ψ.

Proof. Suppose that ψ is also induced by another polynomial map φ′ : kn → kt, associated with a map

of k-algebras Φ′ : Rt → Rn. Let Φ′V,W : C(W ) → C(V ) be the map of k-algebras induced by φ′ via

Lemma 3.3. Let r ∈ C(W ) and let m ∈ Spm(V )). By the above remark and the assumptions, we have

(Φ′)−1
V,W (m) = Φ−1

V,W (m) ∈ Spm(C(W )). Let n := (Φ′)−1
V,W (m) = Φ−1

V,W (m). We have commutative diagrams

C(W )

��

ΦV,W
// C(V )

��

C(W )/n // C(V )/m

k

'

OO

= // k

'

OO

and also

C(W )

��

Φ′V,W
// C(V )

��

C(W )/n // C(V )/m

k

'

OO

= // k

'

OO

In particular, we see that ΦV,W (r) (modm) = Φ′V,W (r) (modm). Since m was an arbitrary maximal ideal of

C(V ), we conclude that ΦV,W (r)− Φ′V,W (r) lies in the Jacobson radical of C(V ). Since C(V ) is a Jacobson

ring and is reduced, we thus see that ΦV,W (r) = Φ′V,W (r). Since r ∈ C(W ) was arbitrary, we conclude that

ΦV,W = Φ′V,W .

From the last lemma, we see that we may write ΦV,W =: ψ∗.

Lemma 3.6. Let Λ : C(W )→ C(V ) be a map of k-algebras. Then there is a regular map λ : V → W such

that λ∗ = Λ.

Proof. Let Λ0 : Rt → Rn be a map of k-algebras such that the diagram

Rt = k[y1, . . . , yt]
Λ0 //

��

Rn = k[x1, . . . , xn]

��

C(W )
Λ // C(V )

commutes. We may obtain such a map by choosing representatives in Rn of Λ(yi (mod I(W ))) for each

i ∈ {1, . . . , xt}. By construction, we then have Λ0(I(W )) ⊆ I(V ). Applying Lemma 3.4, Lemma 3.1

and Proposition 2.7, we conclude that Λ0 arises from a polynomial map Spm(Λ0) : kn → kt such that

Spm(Λ0)(V ) ⊆W . By construction, we have (Spm(Λ0)|V )∗ = Λ so we may choose λ = Spm(Λ0)|V .

From the last lemma, Lemma 3.4 and Proposition 3.5, we see that given a map of k-algebras Λ : C(W ) →
C(V ), there is a unique regular map Spm(Λ) : V → W such that Spm(Λ)∗ = Λ (note that this generalises

the operator Spm(·) defined before Lemma 3.1). On the other hand, by Proposition 3.5, Lemma 3.4 and the

previous lemma, given a regular map λ : V → W , the map of k-algebras λ∗ : C(W ) → C(V ) is the unique

one such that Spm(λ∗) = λ.
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We conclude that there is a bijection from the set of regular maps V →W to the set of maps of k-algebras

C(W )→ C(V ), which sends λ : V →W to λ∗ and who inverse is given by Spm(·).

Finally note that any finitely generated reduced k-algebra is isomorphic as a k-algebra to the coordinate

ring of some algebraic set (why?).

All this leads to an intrinsic characterisation of algebraic sets and regular maps between them. We may

view algebraic sets as a category whose objects are pairs (V, n) (n > 0), where V is the zero set in kn of a

set of k-polynomials in n variables, and where the arrows from (V, n) to (W, t) are the maps from V to W

which are restrictions of polynomial maps from kn to kt.

The following theorem summarises the previous discussion.

Theorem 3.7. The category of algebraic sets is antiequivalent to the category of finitely generated reduced

k-algebras.

Note that in this antiequivalence, a finitely reduced k-algebra R is not naturally associated with an algebraic

set. However if V1 ⊆ kn1 and V2 ⊆ kn2 are two algebraic sets such that C(V1) ' C(V2), then the algebraic sets

V1 ⊆ kn1 and V2 ⊆ kn2 are isomorphic, and any such isomorphism corresponds to precisely one isomorphism

of k-algebras C(V1) ' C(V2). Also, if V ⊆ kn is an algebraic set, there is a canonical identification between

the set V and the set Spm(C(V )). Finally, we see from Lemma 2.8 that the topology induced on Spm(C(V ))

by this identification is determined by C(V ) only.

4 Varieties

Let V ⊆ kn be an algebraic set. Note that from Theorem 3.7, there is a natural identification between the

regular maps from V to k (where k is viewed as an algebraic set) and the elements of C(V ). Indeed the

elements of C(V ) are in one-to-one correspondence with the morphisms of k-algebras k[x] → C(V ) and in

turn these morphisms correspond to regular maps V → k. More concretely, let f ∈ C(V ) = Rn/I(V ) and

let f̃ be an arbitrary lifting of f to Rn = k[x1, . . . , xn]. The regular function V → k corresponding to f is

then the restriction of the map kn → k given by the polynomial f̃ .

We would also like to make sense of regular maps from open subsets of V to k.

We first note the

Lemma 4.1. Any open set in V is a union of open subsets of the form V \Z(f), for f ∈ C(V ).

Proof. Left to the reader. Unroll the definitions.

Definition 4.2. Let U ⊆ V be an open subset. A function u : U → k is said to be regular if for any regular

map of algebraic sets τ : T → V such that τ(T ) ⊆ U , the function τ ◦ u is regular on T (ie corresponds to

an element of C(T )).

To show that this definition is useable, we shall need the following

Lemma 4.3. Suppose that the regular map h : V ′ → V makes C(V ′) isomorphic to C(V )[f−1] as a C(V )-

algebra for some f ∈ C(V ). Then

(1) h is injective and h is a homeomorphism onto V \Z(f);
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(2) if g : V ′′ → V is a regular map such that g(V ′′) ⊆ V \Z(f), then there is a unique regular map

g′ : V ′′ → V ′ such that g = h · g′.

Proof. (1) The injectivity follows from the fact that for any maximal ideal m of C(V )[f−1], m is generated

by the image of m∩ C(V ) = (h∗)−1(m) in C(V )[f−1] (recall that (h∗)−1(m) is maximal by Lemma 3.4 - one

could also appeal to Cor. 10.4 in CA). See Lemma 5.6 in CA for this.

Next, we show that h(V ′) ⊆ V \Z(f). In terms of maximal ideals, this translates to the statement that

f 6∈ (h∗)−1(m) = m∩C(V ) for all the maximal ideals of C(V )[f−1]. By the general properties of localisations

(see Lemma 5.6 in CA), m ∩ C(V ) does not meet the multiplicative set generated by f , so in particular

f 6∈ m ∩ C(V ). This shows that h(V ′) ⊆ V \Z(f).

We now show that h|V ′ : V ′ → V \Z(f) is surjective. For this, note that if n is a maximal ideal of C(V ) such

that f 6∈ n then there is a unique prime ideal n0 of C(V )[f−1] such that n0 ∩ C(V ) = (h∗)−1(n0) = n (again

use Lemma 5.6 in CA). The ideal n0 is also maximal. To see this, let n′0 ⊇ n0 be a maximal ideal. Since we

have (h∗)−1(n′0) ⊇ n, we thus have (h∗)−1(n′0) = n. Since as before n0 (resp. n′0) is generated by the image

of n (resp. (h∗)−1(n′0)) in C(V )[f−1], we see that n0 = n′0, ie n0 is maximal.

To show that h is a homeomorphism onto V \Z(f), it is sufficient to show that image of any closed subset

of V ′ maps to a closed subset of V \Z(f). In terms of ideals, this translates to the statement that for any

ideal J of C(V )[f−1], there exists an ideal I = I(J) of C(V ) such that m ⊇ J iff m ∩ C(V ) ⊇ I for all

m ∈ Spm(C(V )[f−1]). Letting J be an ideal of C(V )[f−1], define I := J ∩ C(V ). If m ⊇ J we clearly have

m∩C(V ) ⊇ I. On the other hand, if m∩C(V ) ⊇ I, we have m = (m∩C(V )) · C(V )[f−1] ⊇ I · C(V )[f−1] = J

(again use Lemma 5.6 in CA, in particular (ii) in the proof of Lemma 5.6). So for any ideal J of C(V )[f−1],

we may choose I = I(J) = J ∩ C(V ).

(2) We first translate this into a statement of commutative algebra. We are given a map of k-algebras

g∗ : C(V )→ C(V ′′) such that for any maximal ideal m of C(V ′′), we have f 6∈ (g∗)−1(m). We would like to

show that there is a map of C(V )-algebras from C(V )[f−1] to C(V ′′). In view of the universal property of

localisation (see Lemma-Definition 5.1 in CA), it is sufficient for this to show that g∗(f) is a unit in C(V ′′).
Now suppose for contradiction that g∗(f) is not a unit in C(V ′′). Then g∗(f) is contained in a maximal ideal

m of C(V ′′). Hence f ∈ (g∗)−1(m), which is a contradiction.

We give a description of regular functions in terms of the ambient space in the next corollary.

Corollary 4.4. Let f ∈ C(V ). The regular functions on V \Z(f) are the restrictions of the functions kn → k

which are of the form P (x1,...,xn)
(F (x1,...,xn))l

( l > 0 ), where P (x1, . . . , xn) ∈ Rn and F (x1, . . . , xn) ∈ Rn is any lifting

of f to Rn.

Proof. Note first that C(V )[f−1] ' C(V )[t]/(tf − 1) as a C(V )-algebra (see Lemma 5.3 in CA). Hence

C(V )[f−1] corresponds to the algebraic set Z in kn+1 given by the ideal generated by the sets I(V ) and

tF (x1, . . . , xn) − 1 in k[x1, . . . , xn, t]. The polynomial map φ : kn+1 → kn inducing the map of k-algebras

C(V ) → C(V )[t]/(tf − 1) is simply given by the formula φ(〈v1, . . . , vn, z〉) = 〈v1, . . . , vn〉. The inverse of

the map Z
φ|Z→ V \Z(f) is given by the formula 〈v1, . . . , vn〉 7→ 〈v1, . . . , vn, F (v1, . . . , vn)−1〉 (it must be this

map since the map Z
φ|Z→ V \Z(f) is bijective and (v1, . . . , vn, F (v1, . . . , vn)−1) ∈ Z by construction). Hence

a regular map on V \Z(f) is given by the evaluation of a polynomial in the variables x1, . . . , xn, t on the

vector 〈v1, . . . , vn, F (v1, . . . , vn)−1〉 (for 〈v1, . . . , vn〉 ∈ V \Z(f)). This is the conclusion of the corollary.

Note that the last lemma implies that the regular functions on V \Z(f) are all quotients of restrictions of
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regular functions on V by powers of f . Also, Lemma 4.3 implies that if h ∈ C(V ) is a regular function on

V and h|V \Z(f) = 0, then f · h = 0 (by the definition of localisation and the fact that C(V ) is reduced).

Proposition 4.5. Let U be an open subset of the algebraic set V ⊆ kn. A function a : U → k is regular iff

for any point ū ∈ U , there is a polynomial F ∈ Rn, such that F (ū) 6= 0 and a polynomial P ∈ Rn such that

a coincides with P/F in a neighbourhood of ū.

This implies in particular that if a function a : U → k is regular and nowhere vanishing, then 1/a : U → k

is also a regular function. In other words, the units in the ring of regular functions U → k are the nowhere

vanishing regular functions.

Proof. (of Proposition 4.5). We first show the following.

Let W ⊆ kt be an algebraic set. Let f1, . . . , fl ∈ C(W ) and suppose that (f1, . . . , fl) = C(W ). Let h : W → k

be a function (not assumed regular) and suppose that for each i ∈ {1, . . . , l} there is an integer ni > 0 and

an element ci ∈ C(W ) such that h|W\Z(fi) = ci/f
ni
i . We claim that the function h is then regular on W (ie

arises from an element of C(W ), or in other words by restriction to W of a polynomial map kt → k).

To prove this, note first that we may assume that all the ni are equal to some m > 1. Indeed, if we let

m := 1+supi ni then we may write h|W\Z(fi) = cif
m−ni
i /fmi for all i. Now notice that for all i, j ∈ {1, . . . , l}

we have

h|W\Z(fifj) = ci/f
m
i = cj/f

m
j

so that (fifj)
m(ci/f

m
i − cj/fmj ) = fmj ci − cjfmi = 0 on W\Z(fifj). We deduce from the remark preceding

the proposition that

(fifj)f
m
j ci = (fifj)cjf

m
i

on V. Now let bi ∈ C(W ) be functions such that∑
i

bif
2m
i = 1

(note that we also have (f2m
1 , . . . , f2m

l ) = C(W ) - prove this or see Lemma 12.2 in CA). Let

h̃ :=
∑
i

bif
m
i ci.

We compute

h̃f2m
j =

∑
i

bif
m
i f

2m
j ci =

∑
i

bi(fifj)
mfmj ci =

∑
i

bi(fifj)
mfmi cj = (

∑
i

bif
2m
i )fmj cj = fmj cj

so that h̃|W\Z(fj) = cj/f
m
j . Hence h̃ = h. This completes the proof of the claim.

Coming back to the proposition, note that the ”⇒” direction of the equivalence stated in the proposition is

clear from Lemma 4.1 and Corollary 4.4. Thus we only have to prove the ”⇐” direction of the equivalence.

Since the topology of U is quasi-compact (this will be proven in exercise sheet 2, question 2.5 (4) - you

can also prove this directly), we may reword this implication as follows. Let g1, . . . , gl ∈ C(V ) and suppose

that U = ∪i(V \Z(gi)). Let V ′ ⊆ kn
′

be an algebraic set and let H : V ′ → V be a regular map such

that H(V ′) ⊆ U . Suppose that for all i ∈ {1, . . . , l} we have a|V \Z(gi) = di/gi for some ni > 0 and some

di ∈ C(V ). The ”⇐” direction of the equivalence of the proposition is then the statement that a◦H = H∗(a)

is a regular function on V ′. So we only have to prove this last statement under the just stated assumptions.
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Note first that by construction, for all i ∈ {1, . . . , l} we have

H∗(a)|V ′\Z(H∗(gi)) = H∗(di)/H
∗(gi).

Also, since H(V ′) ⊆ U , we have (H∗(g1), . . . ,H∗(gl)) = C(V ′). Hence we may apply the preceding claim to

W = V ′, fi = H∗(gi) and h = H∗(a) to conclude that H∗(a) is regular on V ′.

Note that in view of the previous proposition, the following property holds trivially: if U ′ ⊆ U is an inclusion

of open subsets of V , then the restriction to U ′ of a regular function on U is also regular. We encapsulate

this property in the following

Definition 4.6. Let T be a topological space. A sheaf of functions OT on T with values in k is an as-

signement, which associates with each open subset O of T a sub k-algebra OT (O) of Maps(O, k), with the

following property: for any open covering {Oi} of an open subset O, a function f : O → k lies in OT (O) iff

f |Oi
∈ OT (Oi) for all i.

Here Maps(O, k) is the set of functions from O to k, with its natural k-algebra structure (given by pointwise

multiplication and addition).

Note that if O is an open subset of topological space endowed with a sheaf of k-valued functions, O inherits

a sheaf of k-valued functions from T .

Proposition 4.5 implies that for any algebraic set V ⊆ kn, the regular functions on Zariski open subsets of

V define a sheaf of functions OV with values in k on V .

There is a natural notion of mapping between topological spaces endowed with sheaves of k-valued functions:

Definition 4.7. Let (T,OT ) and (T ′,OT ′) be two topological spaces endowed with sheaves of functions with

values in k. A morphism (sometimes loosely called a map) from (T,OT ) to (T ′,OT ′) is a continuous map

a : T → T ′ such that for any open subset U ′ ⊆ T ′ and any element f ∈ OT ′(U ′), the function f ◦ a|a−1(U ′)

on a−1(U ′) lies in OT (a−1(U ′)).

We will also need the following definition.

Let T be a topological space endowed with a sheaf of functions OT with values in k. Let t ∈ T . Let

ÔT,t := ∪O open, t∈OOT (O) (where all the OT (O) are considered to be disjoint from each other). Define an

equivalence relation on ÔT,t by declaring two functions in ÔT,t equivalent if they coincide in some open

neighbourhood of t. The set of equivalence classes in ÔT,t has a natural k-algebra structure and we denote it

by OT,t. The k-algebra OT,t is called the local ring at t. Note that by definition, for any open neighbourhood

O of t, there is a natural map of k-algebras OT (O) → OT,t. Also, there is a natural map of k-algebras

OT,t → k, which is given by evaluation at t.

If we are given a morphism from (T,OT ) to (T ′,OT ′) as in the last definition, the pull-back of functions

gives a map of k-algebras OT,a(t) → OT,t for any t ∈ T .

From the very definition of regularity, we see that any regular map from an algebraic set to another induces

a morphism between the associated topological spaces with sheaves of k-valued functions.

We are now ready to define a general variety.

Definition 4.8. Let T be a topological space endowed with a sheaf of functions with values in k. We say

that T is a variety if there is a finite open covering {Ui} of T , such that Ui with its induced sheaf of k-valued
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functions is isomorphic to an algebraic set endowed with its sheaf of regular functions. A morphism of

varieties is a morphism of the corresponding topological spaces with sheaves of k-valued functions.

Lemma 4.9. Let V ⊆ kn be an algebraic set and let (V,OV ) be the associated topological space with sheaf

of k-valued functions. Let v̄ ∈ V . Then the natural map of k-algebras C(V ) = OV (V ) → OV,v̄ extends

(necessarily uniquely) to an isomorphism of k-algebras C(V )v̄ ' OV,v̄.

Here we identified v̄ with the corresponding maximal ideal I({v̄}) when writing C(V )v̄ (so that C(V )v̄ is the

localisation of C(V ) at the multiplicative set C(V )\I({v̄})).

Proof. We first show that the map C(V )→ OV,v̄ extends to a map of k-algebras C(V )v̄ → OV,v̄.

To show this, we have to show that a regular function f ∈ C(V ), which does not vanish at v̄, maps to a

unit in OV,v̄. Now by definition a unit in OV,v̄ is represented by a regular function in a neighbourhood of

v̄, which vanishes nowhere in that neighbourhood (see the remark before Definition 4.6). Now since f does

not vanish at v̄, it is nowhere vanishing in the set V \Z(f), which is a neighbourhood of v̄. So the image of

f in OV,v̄ is a unit.

So we have a unique extension of the map C(V ) → OV,v̄ to a map of k-algebras C(V )v̄ → OV,v̄. We still

have to show that this last map is injective and surjective.

We first show injectivity. Let f/s ∈ C(V )v̄ (where s ∈ C(V )\I({v̄})). Suppose that the image of f/s in OV,v̄
vanishes. By definition, this means that the function f vanishes in a neighbourhood of v̄. In particular,

there exists an h ∈ C(V ) such that f vanishes in V \Z(h), where h does not vanish at v̄ (use Lemma 4.1). In

other words, the image of f in C(V )[h−1] vanishes (use Lemma 4.4 and the commentary thereafter). Since

h 6∈ I({v̄}), the natural map C(V )→ C(V )v̄ factors through C(V )[h−1] and hence the image of f in C(V )v̄

also vanishes. This settles injectivity.

Now for surjectivity. By Lemma 4.1, an element ẽ ∈ OV,v̄ is represented by a regular function on V \Z(h),

for some h which does not vanish at v̄. Such a function corresponds to an element of C(V )[h−1] and again

since the natural map C(V ) → C(V )v̄ factors through C(V )[h−1], we see that ẽ lies in the image of C(V )v̄.

Since ẽ ∈ OV,v̄ was arbitrary, the natural map C(V )v̄ → OV,v̄ is surjective.

Note the following consequences of the last lemma. With the terminology of the lemma, the ring OV,v̄ is

local. Also, note that the natural evaluation map OV,v̄ → k is surjective, because all constant functions

are regular on V . Hence the kernel of the map OV,v̄ → k is maximal. Hence this kernel coincides with the

unique maximal ideal of OV,v̄.

For Definition 4.8 to be coherent, we need to check that we can recover an algebraic set from its associated

topological space with sheaf of k-valued functions:

Lemma 4.10. Let V ⊆ kn and W ⊆ kt be two algebraic sets. Let (V,OV ) and (W,OW ) be the associated

topological spaces with sheaves of k-valued functions. Let g be a morphism from (V,OV ) to (W,OW ). Then

g is induced by a regular map ψ : V →W .

Proof. By definition, the morphism g provides a map of k-algebras C(W ) → C(V ). Furthermore, for any

v̄ ∈ V , we have a commutative diagram of k-algebras
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C(W )
g∗
//

��

C(V )

��

OW,g(v̄)
g∗
// OV,v̄

From the remark after Lemma 4.9, the ring OV,v̄ is a local ring and its maximal ideal consists of the

elements represented by the regular functions h defined in a neighbourhood of v̄ such that h(v̄) = 0. A

similar statement is true for OW,g(v̄) and g(v̄) in place of v̄. In particular, the map g∗ : OW,g(v̄) → OV,v̄
sends the maximal ideal of OW,g(v̄) into the maximal ideal of OV,v̄. Since the involved rings are local, this

implies that the inverse image by g∗ of the maximal ideal of OV,v̄ is the maximal ideal of OW,g(v̄). Using

standard properties of localisations and Lemma 4.9, we conclude that the inverse image of I({v̄}) ⊆ C(V )

by g∗ : C(V )→ C(W ) is I({ḡ(v̄)}). In particular, g(v̄) = Spm(g∗)(v̄) (use Lemma 3.4). Hence g is induced

by the map of k-algebras g∗ : C(W )→ C(V ) and hence by a regular map V →W (by Theorem 3.7).

In categorical terms, this implies that the category of algebraic sets embeds in the category of topological

spaces with sheaves of k-valued functions by a fully faithful functor. We shall from now on call affine variety

a variety isomorphic to a variety associated with an algebraic set.

We shall often abbreviate ”topological space with sheaf of k-valued functions” as ”Topskf” from now on.

5 Open and closed subvarieties

Proposition 5.1. Let (V,OV ) be a variety. Let U ⊆ V be an open subset and let OU be the sheaf of k-valued

functions induced by OV . Then (U,OU ) is a variety and the inclusion map is a morphism of varieties.

Proof. Let {Vi} be an open covering of V such that each Vi is isomorphic as a Topskf to an affine variety

(where Vi is endowed with the sheaf of k-valued functions induced by V ). Then {Vi∩U} is an open covering

of U . Since Vi ∩ U is open in Vi, there is for each i a subset Ei ⊆ C(Vi) such that ∪e∈Ei
(Vi\Z(e)) = Vi ∩ U

(use Lemma 4.1). Hence we only have to show that the open subset Vi\Z(e) of Vi is isomorphic as a Topskf

to an affine variety. But this follows from Lemma 4.3.

An open subset of a variety is called an open subvariety if it is endowed with the structure of Topskf described

in the last Proposition.

Let (V,OV ) be a variety. Let Z ⊆ V be a closed subset. Endow Z with the topology induced by V . For

any open subset O of Z, define a function f : O → k to be regular if there is collection of open subsets {Ui}
of V and regular functions gi : Ui → k such that

- (∪iUi) ∩ Z = O;

- gi|O∩Ui = f |O∩Ui .

In words, f : O → k is regular iff in the neighbourhood of every point of O the function f is the restriction

of a regular function on some open subset of V . This endows Z with a structure of topological space with

k-valued functions. We shall write OZ for the corresponding sheaf of k-valued functions. The sheaf of

k-valued functions OZ on Z is said to be induced by OV .

Proposition 5.2. The topological space Z with sheaf of k-valued functions OZ is a variety. The inclusion

map Z → V is a morphism of varieties.
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Proof. The inclusion map Z → V provides us with a morphism (Z,OZ)→ (V,OV ) of Topskf by construc-

tion. Hence we only have to show that (Z,OZ) is a variety (see Definition 4.8). Let {Vi} be a covering of

V by open subsets such that (Vi,OVi
) is isomorphic as a Topskf to an affine variety. By definition, it is

sufficient to show that for each i, the Topskf Z ∩Vi is isomorphic to an affine variety. Hence we may assume

that V is affine to begin with. Hence we are reduced to the situation where V ⊆ kn is an algebraic set and

Z ⊆ kn is another algebraic set such that Z ⊆ V . Endow Z with the sheaf of functions OZ induced by

OV . We would like to show that (Z,OZ) is isomorphic to an affine variety as a Topskf. Now note that by

Proposition 4.5 the sheaf OZ is precisely the sheaf of regular functions on Z viewed as an algebraic subset

of kn. So (Z,OZ) is isomorphic to an affine variety as a Topskf.

An closed subset of a variety V is called a closed subvariety if it is endowed with the structure of Topskf

induced by V .

Lemma 5.3. Let (W,OW ) and (V,OV ) be two varieties. Let Z (resp. O) be a closed subset (resp. open

subset) of V . Endow Z (resp. O) with its structure of closed (resp. open) subvariety. Let λ : W → V

be a morphism of Topskf such that λ(W ) ⊆ Z (resp. λ(W ) ⊆ O). Then the induced map W → Z (resp.

W → O) is a morphism of Topskf.

Proof. Left to the reader. Unroll the definitions.

We also record a consequence of the proof of Proposition 5.2:

Lemma 5.4. Let V ⊆ W ⊆ kn, where V and W are algebraic sets in kn. Let (V,OV ) → (W,OW ) be the

corresponding morphism of topological spaces with sheaves of k-valued functions. Then OV is induced by

OW .

6 Projective space

Projective varieties arise when one tries to find an algebraic counterpart of the topological notion of com-

pactness. We will revisit this later when we consider complete varieties.

Let n > 0. A line through the origin of kn+1 is by definition the vector subspace [v̄] of kn+1 generated by

a vector v̄ ∈ kn+1\{0}. We define projective space of dimension n to be the set Pn(k) of lines through the

origin of kn+1. If v̄ = 〈v0, . . . , vn〉 ∈ kn+1\{0}, we shall write [v0, . . . , vn] for [〈v0, . . . , vn〉].

We shall endow Pn(k) with a variety structure. For i ∈ {0, . . . n}, define

Ui = {[v0, . . . , vn] ∈ Pn(k) | vi 6= 0}.

In the following, we shall write the symbol q over a term that is to be omitted. The map ui : kn → Ui such

that

ui(〈v0, . . . , qvi, . . . , vn〉) := [v0, . . . , vi−1, 1, vi+1, . . . vn]

is clearly a bijection and we have

u−1
i ([v0, . . . , vn]) = 〈v0

vi
, . . . ,

|vi
vi
, . . . ,

vn
vi
〉.

if [v0, . . . , vn] ∈ Ui.
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If j < i and vj 6= 0, we compute

(u−1
j ◦ ui)(〈v0, . . . , qvi, . . . , vn〉) = u−1

j ([v0, . . . , vi−1, 1, vi+1, . . . vn]) = 〈v0

vj
, . . . ,

|vj
vj
, . . . ,

1

vj
,
vi+1

vj
, . . . ,

vn
vj
〉

and if j > i and vj 6= 0, we have similarly

(u−1
j ◦ ui)(〈v0, . . . , qvi, . . . , vn〉) = 〈v0

vj
, . . . ,

vi−1

vj
,

1

vj
, . . . ,

|vj
vj
, . . . ,

vn
vj
〉

Hence, if i 6= j, the map u−1
j ◦ ui gives a map from the open subset of kn

Uij := {〈v0, . . . , qvi, . . . , vn〉 ∈ kn | vj 6= 0}

into the open subset of kn

Uji := {〈v0, . . . , qvj , . . . , vn〉 ∈ kn | vi 6= 0}

and ui(Uij) = Ui ∩ Uj = uj(Uji). Let uij := u−1
j ◦ ui : Uij → Uji.

Note that if one sees Uij as an open subvariety of kn, then Uij is an affine variety associated with the

coordinate ring

k[x0, . . . , qxi, . . . , xn][x−1
j ] ' k[x0, . . . , qxi, . . . , xn][t]/(txj − 1)

and similarly, Uji is an affine variety associated with the coordinate ring

k[y0, . . . , qyj , . . . , yn][y−1
i ] ' k[y0, . . . , qyj , . . . , yn][t]/(zyi − 1)

One checks from the definitions that uij arises from the polynomial map which sends z to xj and yl to xl · t
if l 6= i and to t if l = i. Hence uij defines a morphism of varieties from Uij to Uji. One checks from the just

given formula that uij and uji are inverse to each other, so uij is an isomorphism of varieties.

Now we define a topology on Pn(k) by declaring a subset O ⊆ Pn(k) to be open iff u−1
i (O) is open in kn

for all i ∈ {0, . . . , n} (why does this define a topology?). Furthermore, if O ⊆ Pn(k) is open, we define

a k-valued function f : O → k to be regular iff f ◦ ui|u−1
i (O) is a regular function on u−1

i (O) for all i.

Since (kn,Okn) is a Topskf, we see that with this definition, Pn(k) becomes a Topskf (why? - unroll the

definitions). We shall write OPn(k) for the just defined sheaf of k-valued functions on Pn(k).

Proposition 6.1. The sets Ui are open in Pn(k) for all i ∈ {0, . . . , n} and the maps ui : kn → Pn(k)

restrict to isomorphisms of Topskf between kn and (Ui,OUi), where OUi is the sheaf of k-valued functions

induced on Ui by OPn(k). In particular, the Topskf (Pn(k),OPn(k)) is a variety.

The Ui are called the standard coordinate charts of Pn(k). We shall sometimes write Uni for Ui to emphasise

the dependence on n.

Proof. To show that Ui is open, we have to show that u−1
j (Ui) is open in kn for all j. We have shown

above that u−1
j (Ui) = Uji is open, so Ui is open.

Next, we have to show that the map ui is a homeomorphism onto its image. The map ui is continuous and

injective by definition so we only have to show that ui is an open map. So let O ⊆ kn be an open set. We

have to show that ui(O) is open, or in other words that u−1
j (ui(O)) is open for all j. Now we have

u−1
j (ui(O)) = u−1

j (ui(O) ∩ (Ui ∩ Uj)) = u−1
j (ui(O ∩ Uij)) = uij(O ∩ Uij)
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and uij(O ∩ Uij) is open in Uji since uij : Uij → Uji is a homeomorphism by the above. On the other hand

Uji is open in Uj , so uij(O ∩ Uij) is also open in Uj . So ui is a homeomorphism onto its image.

Finally, we have to show that if O ⊆ Ui is an open set then f : O → k is a regular function iff f ◦ ui|u−1
i (O)

is a regular function on the open subset u−1
i (O) of kn. By definition, if f : O → k is a regular function,

then f ◦ ui|u−1
i (O) is regular. So suppose that f ◦ ui|u−1

i (O) is regular. We have to show that for all j the

function f ◦ uj |u−1
j (O) is regular on u−1

j (O) viewed as an open subset of kn. Now we have by definition

uj |Uji = ui|Uij ◦ uji

and since u−1
j (O) ⊆ Uji we thus have

uj |u−1
j (O) = ui|Uij∩u−1

i (O) ◦ uji|u−1
j (O)

where uji|u−1
j (O) is viewed as a map from u−1

j (O) to Uij ∩ u−1
i (O). The map uji|u−1

j (O) is a morphism of

Topskf since uji is a morphism of Topskf by the above. Also, the function f ◦ ui|Uij∩u−1
i (O) is a regular

function by the definition of a sheaf of k-valued functions. Hence

f ◦ uj |u−1
j (O) = (f ◦ ui|Uij∩u−1

i (O)) ◦ uji|u−1
j (O)

is a regular function. This completes the proof.

Example. The space P1(k) only has two coordinate charts, the charts U0 and U1. By inspection, we see

that P1(k)\Ui consists of only one point. So one can see P1(k) as the ”compactification” of k obtained

by adding a ”point at ∞” to k. If k = C, the space P1(k) can be naturally identified (as a set) with the

Riemann sphere of complex analysis.

7 Projective varieties

What are the closed subsets of projective space? To answer this question, we shall need the following

definitions.

A polynomial P (x0, . . . , xn) ∈ k[x0, . . . , xn] is said to be homogenous if it is a sum of monomials of the same

degree. Any polynomial P (x0, . . . , xn) has a canonical decomposition

P =

deg(P )∑
i=0

P[i]

where P[i] is the sum of the monomials of degree i appearing in P (so that in particular P[i] is homogenous).

Example. The polynomials x0, x2
0 + x0x1 are homogenous but x2

0 + x1 is not.

We have a decomposition of k[x0, . . . , xn] as an internal direct sum

k[x0, . . . , xn] =
⊕
l>0

k[x0, . . . , xn][l]

where k[x0, . . . , xn][l] is the k-vector space of homogenous polynomials of degree l. In particular, we have

k[x0, . . . , xn][0] = k. This decomposition into a direct sum makes k[x0, . . . , xn] into a graded ring in the

sense of section 11.2 of CA.
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Example. We have (x2
0 + x1)[2] = x2

0, (x2
0 + x1)[1] = x1, (x2

0 + x1)[0] = 0.

Note the following elementary fact. If P (x0, . . . , xn) ∈ k[x0, . . . , xn] is homogenous then P (s·x0, . . . , s·xn) =

sdeg(P )P (x0, . . . , xn) for all s ∈ k.

We thus see that if P (x0, . . . , xn) ∈ k[x0, . . . , xn] is a homogenous polynomial and v̄ ∈ kn+1 is non zero, we

have P (v̄) = 0 iff P (s · v̄) = 0 for all s ∈ k∗. This gives rise to the following definition. Let S ⊆ k[x0, . . . , xn]

be a set of homogenous polynomials. We define

Z(S) := {[v̄] ∈ Pn(k) | v̄ ∈ kn+1\{0},∀P ∈ S : P (v̄) = 0}.

A projective algebraic set in Pn(k) is a subset of the form Z(S), where S ⊆ k[x0, . . . , xn] is a set of homogenous

polynomials.

For convenience, we shall extend the operator Z(·) to non homogenous polynomials. For any set S ⊆
k[x0, . . . , xn] (not necessarily consisting of homogenous polynomials), we set

Z(S) := {[v̄] | v̄ ∈ kn+1\{0}, P[i](v̄) = 0∀i > 0}.

Just as in the affine case, we have Z(S) = Z(S · k[x0, . . . , xn]) (why?). Hence the projective algebraic sets in

Pn(k) are the sets of the type Z(I), where I ⊆ k[x0, . . . , xn] is an ideal generated by homogenous elements.

We shall say that an ideal of k[x0, . . . xn] is homogenous if it is generated by homogenous elements.

Lemma 7.1. Let I ⊆ k[x0, . . . xn] be an ideal. Then I is homogenous iff for all P ∈ I and all i > 0, we

have P[i] ∈ I. If I is homogenous then its radical r(I) is also homogenous.

In other words, a homogenous ideal is a graded ideal in k[x0, . . . , xn] (ie a graded k[x0, . . . , xn]-submodule

of k[x0, . . . , xn]).

Proof. See exercises.

Proposition 7.2. Projective algebraic sets are closed in Pn(k). Furthermore, if C ⊆ Pn(k) is a closed

subset and J is the ideal generated by the homogenous polynomials which vanish on C, then Z(J) = C. In

particular, the closed subsets of Pn(k) are precisely the projective algebraic sets.

Proof. Let S := {Pl} be a set of homogenous polynomials in k[x0, . . . , xn]. By construction, we have

u−1
i (Z(S)) = Z({Pl(x0, . . . , xi−1, 1, xi+1, . . . , xn)})

so that u−1
i (Z(S)) is closed in kn. By Proposition 6.1, the set Z(S)∩Ui is thus closed in Ui (for the induced

topology). Since the Ui cover Pn(k), we thus see that Z(S) is closed in Pn(k).

As to the second assertion, we clearly have Z(J) ⊇ C. So we need to prove that Z(J) ⊆ C. In other words,

we have to prove that if [v̄] 6∈ C, then there is a homogenous polynomial H ∈ J , such that H([v̄]) 6= 0. Now

let j ∈ {0, . . . , n} and suppose that [v̄] ∈ Uj . We then have [v̄] 6∈ C ∩ Uj . Since u−1
j (C) is the zero set of

an ideal in k[x0, . . . qxj , . . . , xn], there is a polynomial P (x0, . . . , qxj , . . . xn) ∈ k[x0, . . . qxj , . . . , xn] such that

P (u−1
j ([v̄])) 6= 0 and such that P ∈ I(u−1

j (C)). Let

βj(P ) := x
deg(Pj)
j P (

x0

xj
, . . . ,

xj−1

xj
,
xj+1

xj
. . . ,

xn
xj

).
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This is a homogenous polynomial (the ”homogenisation” of P with respect of the variable xj) such that

(βj(P ))(x0, . . . , xj−1, 1, xj , . . . , xn) = Pj .

In particular we have Z(βj(P )) ⊇ C ∩Uj and (βj(P ))([v̄]) = P (u−1
j ([v̄])) 6= 0. Now let Qj = xjβj(P ). Then

Qj is still homogenous and we have Qj([v̄]) 6= 0 and Z(Qj) ⊇ C (because xj vanishes on Pn(k)\Uj). Hence

we may set H = Qj . This completes the proof.

If A ⊆ Pn(k) is a subset, we shall write I(A) ⊆ k[x0, . . . , xn] for the ideal generated by the homogenous

polynomials vanishing on A. This notation clashes with the notation in the affine case but the context

should make it clear which definition of I(·) we use.

Now we have the analogue of Proposition 2.3:

Proposition 7.3. Let C ⊆ Pn(k) be a closed subset and let J ⊆ k[x0, . . . , xn] be a homogenous radical ideal.

Suppose that Z(J) 6= ∅. Then I(C) is a (by definition homogenous) radical ideal and we have Z(I(C)) = C

and I(Z(J)) = J .

Proof. We first show that I(C) is a radical ideal. To see this, let H ⊆ r(I(C)) be the subset of r(I(C))

consisting of the homogenous elements of r(I(C)). By the definition of the nilradical of an ideal, all the

elements of H vanish on C. On the other hand, r(I(C)) is a homogenous ideal by Lemma 7.1 and so H

generates r(I(C)). Hence r(I(C)) ⊆ I(C). Hence r(I(C)) = I(C).

The equality Z(I(C)) = C is contained in Proposition 7.2. For the second equality, note first that the

inclusion J ⊆ I(Z(J)) follows from the definitions. We thus only have to prove that J ⊇ I(Z(J)). So let

Q be a non zero homogenous polynomial vanishing on Z(J). We need to show that Q ∈ J . Note that

deg(Q) > 0. Indeed, if deg(Q) = 0 then Q is a non zero constant polynomial and then Z(Q) = ∅, which

implies that Z(J) = ∅. This is not possible by assumption. Also, note that J does not contain any constant

polynomial, for otherwise Z(J) = ∅. Now consider the map

q : kn+1\{0} → Pn(k)

given by the formula q(v̄) := [v̄]. Note that q−1(Z(J)) is by construction the set of zeroes of J in kn+1\{0}.
Hence the set of zeroes of J in kn is the set q−1(Z(J))∪{0} (since every non constant homogenous polynomial

vanishes at the 0 vector). Now Q also vanishes on q−1(Z(J)) ∪ {0} and so by the strong Nullstellensatz we

have Q ∈ r(J) = J.

Lemma 7.4. Let J ⊆ k[x0, . . . , xn] be a homogenous radical ideal. Then the subset Z(J) of Pn(k) is empty

iff J = k[x0, . . . , xn] or J = k[x0, . . . , xn]+.

Here k[x0, . . . , xn]+ is the homogenous ideal of k[x0, . . . , xn] generated by all the non constant homogenous

polynomials.

Proof. We first prove the ⇐ direction of the equivalence. So let v̄ = 〈v1, . . . , vn〉 ∈ kn+1\{0}. Suppose

that vi0 6= 0 for some i0 ∈ {0, . . . , n}. The homogenous polynomial xi0 ∈ k[x0, . . . , xn]+ does not vanish at

[v̄]. Since v̄ ∈ kn+1\{0} was arbitrary, we see that Z(J) is empty if J = k[x0, . . . , xn]+ or J = k[x0, . . . , xn].

We now prove the ⇒ direction. So suppose that Z(J) = ∅. To avoid notational confusion, write Zaff(I) for

the set of common zeroes in kn+1 of the elements of a (not necessarily homogenous) ideal I ⊆ k[x0, . . . , xn].

By using the map q : kn+1\{0} → Pn(k) described in the proof of Proposition 7.3, we see that

Zaff(J) ∩ (kn+1\{0}) = ∅.
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Now suppose first that J does not contain any non zero constant polynomials. Then 0 ∈ Zaff(J) (because

J is generated by non constant homogenous polynomials) so that Zaff(J) = {0}. Using the correspondence

described after Proposition 2.3, we conclude that J is the radical ideal of k[x0, . . . , xn] associated with the

point 0, which is k[x0, . . . , xn]+ . If J contains a non zero constant polynomial then J = k[x0, . . . , xn]

(because J contains a unit). So we conclude that if Z(J) = ∅ then either J = k[x0, . . . , xn]+ or J =

k[x0, . . . , xn].

We shall call the ideal k[x0, . . . , xn]+ the irrelevant ideal of k[x0, . . . , xn].

We conclude from Lemma 7.4 and Proposition 7.3 that there is a correspondence

{closed sets in Pn(k)}
I
�
Z
{non irrelevant homogenous radical ideals in Rn}

where the maps Z(·) and I(·) are inverse to each other.

A projective variety is a variety isomorphic (as a variety) to a closed subvariety of Pn(k) (for some n > 0).

A quasi-projective variety is a variety isomorphic to an open subvariety of a projective variety.

8 Dimension

Let T be a topological space. Then T is said to be noetherian if for any descending sequence

C1 ⊇ C2 ⊇ C3 ⊇ . . .

of closed subsets of T , there is an i0 > 0 such that Ci0 = Ci0+1 = . . . . In this situation, we say that

the sequence stabilises at i0. Note that any subset of a noetherian topological space is also noetherian (in

the induced topology) (why?). Finally, note that a noetherian topological space is quasi-compact (ie any

covering of the space has a finite subcovering). See exercises.

The topological space T is said to be irreducible if T is not empty and any open subset of T is dense in T .

Example. The Zariski topology on kn is noetherian. Indeed any descending sequence

C1 ⊇ C2 ⊇ C3 ⊇ . . .

of closed subsets of kn corresponds uniquely to a sequence

I(C1) ⊆ I(C2) ⊆ I(C3) ⊆ . . .

(see the first section) and such a sequence stabilises for some index because k[x1, . . . , xn] is a noetherian

ring (by Hilbert’s basis theorem). Consequently, the topology of any algebraic set is noetherian. A closed

subspace Z of kn is irreducible iff Z is irreducible as an algebraic set (why?).

Lemma 8.1. Let T be a non empty noetherian topological space. Then there is a unique finite collection

{Ti} of irreducible closed subsets of T such that

(1) T = ∪iTi

(2) Ti 6⊆ ∪j 6=iTj for all i.
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Note that a consequence of the lemma is that the Ti are the irreducible closed subsets of T which are

maximal for the relation of inclusion among all the irreducible closed subsets contained in T (why?).

Proof. See exercises.

The closed subsets Ti described in Lemma 8.1 are called the irreducible components of T . If T is an algebraic

set, the decomposition of T into irreducible components coincides with the decomposition given by Lemma

2.6 (why?).

Lemma 8.2. A variety is noetherian.

Proof. Let V be a variety. Let

C1 ⊇ C2 ⊇ C3 ⊇ . . .

be a descending sequence of closed subsets of V . Let {Ui} be a finite covering of V by open affine subvarieties.

Since the Ui are noetherian (as topological spaces) by the remark above and since there are only finitely

many Ui, there is an integer l > 1 such that Cl ∩ Ui = Cl+1 ∩ Ui = . . . for all i. Since the Ui cover V , this

implies that Cl = Cl+1 = . . .

Now consider again a non empty topological space T . The dimension dim(T ) of T is

dim(T ) := sup{t | there are irreducible closed subsets C0, . . . , Ct ⊆ T such thatC0 ( C1 ( · · · ( Ct}.

Note that dim(T ) might be infinite. Dimension is not defined for the empty topological space (note that

some authors define the dimension of the empty topological space to be −1).

Lemma 8.3. Let V ⊆ kn be an algebraic set. Then dim(V ) = dim(C(V )).

Here dim(C(V )) is the dimension of C(V ) as a ring (see Def. 11.1 in CA). Recall that by definition we have

dim(R) := sup{n | ∃ p0, . . . , pn ∈ Spec(R) : p0 ) p1 ) · · · ) pn}

for any ring R.

Proof. We have already seen that irreducible closed subsets of V correspond to prime ideals of C(V )

(see Lemma 2.5). Hence the definition of dim(C(V )) corresponds with the definition of dim(V ) under the

correspondence between radical ideals of C(V ) and closed subsets of V described at the beginning of section

one.

Theorem 8.4. (1) The dimension of kn is n.

(2) The dimension of Pn(k) is n.

Proof. (1) We saw in CA that dim(k[x1, . . . , xn]) = n (see Cor. 11.27 in CA). Hence dim(kn) = n by

Lemma 8.3. (2) Apply question 2.7 to the open covering of Pn(k) by its standard coordinate charts and use

(1).

Definition 8.5. Let T be a topological space. Let C ⊆ T be a closed irreducible subspace. The codimension,

or height of C is

cod(C, T ) = ht(C, T ) := sup{t | there are irreducible closed subsets C1, . . . , Ct ⊆ T such that C ( C1 ( · · · ( Ct}
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We shall sometimes write cod(C) and ht(C) instead of cod(C, T ) and ht(C, T ), respectively, when the

ambient topological space T is clear from the context.

Note that from the definitions, we have

dim(T ) = sup
C closed irreducible subset of T

ht(C, T ).

Suppose that C, V ⊆ kn are algebraic sets in kn and that C ⊆ V . Suppose that C is irreducible. Then the

height of C in V is the height of the prime ideal I(C) (mod I(V )) of C(V ) (in the sense of section 11 of

CA). The proof is similar to the proof of Lemma 8.3 (we leave the details to the reader).

Proposition 8.6. Let V be a variety. Let C ⊆ V be an irreducible closed subset. Then dim(V ) and

cod(C, V ) are finite.

Proof. See question 2.7 (4).

Finally, we also have the following difficult result of commutative algebra, which justifies the use of the word

”codimension”.

Theorem 8.7. Let R be a finitely generated k-algebra. Suppose that R is an integral domain. Let p ⊆ R

be a prime ideal. Then we have

ht(p) + dim(R/p) = dim(R)

The proof of this theorem is given in the Appendix. The proof is in several steps and is structured as

an exercise with model solution. We suggest the reader go through the steps by themselves first without

looking at the model solution. Note that the proof of Theorem 8.7 is not examinable.

Corollary 8.8. Let V be an irreducible variety. Let C ⊆ V be an irreducible closed subset. Then

cod(C, V ) + dim(C) = dim(V )

Note first that from the definitions, we have

cod(C, V ) + dim(C) 6 dim(V )

(why?). So we only have to to prove that cod(C, V ) + dim(C) > dim(V ).

Proof. Let {Vi} be a finite open covering of V . We suppose that each Vi is isomorphic to an affine variety

when viewed as an open subvariety of V . Note that since V is irreducible, each Vi is irreducible as well

(why?). We use question 2.7 and we obtain

sup
i,C∩Vi 6=∅

cod(C ∩ Vi, Vi) = cod(C, V )

and

sup
i,C∩Vi 6=∅

dim(C ∩ Vi) = dim(C)
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Let Ri be the coordinate ring associated with Vi (so that Vi ' Spm(Ri) as a set). Then Ri is integral by

question 2.5 (3). Hence we may apply Theorem 8.7 and we compute

cod(C ∩ Vi, Vi) + dim(C ∩ Vi) = dim(Vi)

if C ∩ Vi 6= ∅. Applying supi,C∩Vi 6=∅(·) to both sides of this equality and using question 2.7 again, we see

that there is an index i0 such that C ∩ Vi0 6= ∅ and such that

cod(C ∩ Vi0 , Vi0) + dim(C ∩ Vi0) = dim(V )

and hence

cod(C, V ) + dim(C) > cod(C ∩ Vi0 , Vi0) + dim(C ∩ Vi0) = dim(V ).

which is what we wanted to prove.

Here is another fundamental result from the CA course, which is relevant to the theory of dimension.

Theorem 8.9. Let n > 0 and let V,W ⊆ kn be algebraic sets. Suppose that V ⊆ W . Suppose that

I ⊆ k[x1, . . . , xn] is such that Z(I) = V .

Let l > 1 and suppose that the ideal I (mod I(W )) ⊆ C(W ) is generated by l elements.

Then every irreducible component of V has codimension 6 l in W .

Furthermore, if C is an irreducible component of V then there is an ideal J ⊆ I(C) ⊆ C(W ) which is

generated by cod(C,W ) elements and such that C is an irreducible component of Z(J) ⊆W (in other words

I(C) is a prime ideal, which is minimal among the prime ideals which contain J).

See Cor. 11.15 and Cor. 11.17 in CA for the proof. This is a consequence of Krull’s principal ideal theorem.

9 Rational maps

Let V,W be varieties. Consider the set H = HV,W whose elements are morphisms f : U → W , where U

is a non empty open subvariety of V . Let ∼ = ∼V,W be the relation on H, such that f : U → W and

g : O →W are related by ∼ iff there is a open subvariety UO of U∩O, which is dense in V and which is such

that f |UO = g|UO. The relation ∼ is easily seen to be an equivalence relation. We shall write Rat(V,W )

for the set of equivalences classes of H under the relation ∼. We call elements of Rat(V,W ) rational maps

from V to W . Beware that rational maps are not actual maps but equivalence classes of maps. We will use

the notation f : V 99KW to denote a rational map f from V to W .

Suppose now until further notice that V is irreducible.

Note the following. Let f : U →W be a representative of a rational map from V to W . If f is dominant, then

any other representative of the same rational map is dominant as well. Indeed, let g : O → W be another

representative of the rational map defined by f . Then f |UO = g|UO for some open subset UO ⊆ U ∩ O
(which is automatically dense in V ). Suppose for contradiction that g is not dominant. Then W\g(O)

contains a non empty open subset W1. Since f : U → W is dominant, we know that f−1(W1) 6= ∅. Thus,

since V is irreducible, we have f−1(W1)∩UO = g−1(W1)∩UO 6= ∅. In particular g−1(W\g(O)) 6= ∅, which

is a contradiction. So g is also dominant.
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We thus see from the discussion in the last paragraph that it makes sense to speak of a dominant rational

map from V to W : it is a rational map all of whose representative are dominant (or equivalently, it is

a rational map with one dominant representative). We shall write Ratdom(V,W ) for the set of dominant

rational maps from V to W .

We shall write κ(V ) as a shorthand for Rat(V, k). If f : U → k and g : O → k are two elements of HV,k,

one may define a new element f + g : U ∩ O → k of HV,k by declaring that (f + g)(u) = f(u) + g(u) for

all u ∈ U ∩ O (note that U ∩ O is not empty because V is irreducible). Note that f + g : U ∩ O → k is a

morphism of varieties (use Proposition 4.5). Similarly, one may define an element fg = f · g : U ∩ O → k

by declaring that (f · g)(u) = f(u) · g(u) for all u ∈ U ∩ O. Again, f · g : U ∩ O → k is a morphism (same

reasoning as before). Finally, if f : U → k does not vanish on all of U , then we may define f−1 : U\Z(f)→ k

by the formula f−1(u) = 1/f(u). Here again, f−1 : U\Z(f) → k is a morphism (reason as before and use

the remark after Proposition 4.5). It is again easily verified that these operations are compatible with ∼V,k
and we thus obtain a structure of field on κ(V ). This field is called the function field of V . There is an

obvious injection k ↪→ κ(V ) which makes κ(V ) into a k-algebra. Note finally that for any v ∈ V , there

is a natural injection OV,v ↪→ κ(V ), which sends any representative of an equivalence class in OV,v to its

equivalence class in κ(V ). So κ(V ) naturally contains the local rings at all the points of V .

Now suppose that we are given a dominant morphism of irreducible varieties a : V → W . Then we may

define a map HW,k → HV,k by the recipe

(f : O → k) 7→ (f ◦ a|f−1(O) : f−1(O)→ k)

where O is a non empty open subvariety of W and f : O → k is an element of HW,k. This definition makes

sense because f−1(O) 6= ∅ as f is dominant. One checks (we skip te details) that this map is compatible

with the relations ∼W,k and ∼V,k and also with the operations +, (·)−1 and ·. One thus obtains a map of

rings

a∗,rat : κ(W )→ κ(V ).

Note that since κ(W ) is a field, the map a∗,rat is injective. Also, if a : V → W is the inclusion of an

open subvariety of V into W , it follows from the definitions that the map a∗,rat is a bijection (check!).

Finally, the construction of a∗,rat is clearly compatible with compositions of dominant morphisms (ie if

b : W → W1 is another dominant morphism of irreducible varieties, then (b ◦ a)∗,rat = a∗,rat ◦ b∗,rat). We

conclude from all this that the homomorphism a∗,rat only depends on the element of Rat(V,W ) defined by

a. In turn, any dominant representative g : O →W of an element of Rat(V,W ) defines a map of k-algebras

g∗,rat : κ(W ) → κ(V ) ' κ(O) and again it follows from the definitions that this map only depends on the

class of g in Rat(V,W ). So all in all, any dominant rational map ρ ∈ Ratdom(V,W ) gives rise to an injection

of fields ρ∗,rat : κ(W )→ κ(V ).

Lemma 9.1. Let X be an irreducible affine variety. Let V ⊆ kn be an algebraic set giving rise to X. Then

there is a canonical isomorphism of k-algebras κ(X) → Frac(C(V )). This isomorphism is compatible with

dominant regular maps between irreducible algebraic sets and the corresponding morphisms of varieties.

Note that by question 2.5, the fact that V irreducible implies that the ring C(V ) is an integral domain. So

it makes sense to talk about the fraction field Frac(C(V )) of C(V ).

Proof. Define a map

τ : C(V )→ κ(X)
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by sending an element of C(V ) to the equivalence class of the corresponding morphism X → k. By construc-

tion, this is a map of k-algebras. Now suppose that f : V → k is a regular map and suppose that τ(f) = 0.

Then by definition f vanishes on an open subset of V . However the vanishing set of f is equal to Z(f) and

so is closed. Hence Z(f) contains the closure in V of an open subset of V and thus Z(f) = V (because V is

irreducible). Hence f is the map with constant value 0 and thus τ(f) = 0. We thus see that h is injective.

Hence τ extends to a (necessarily injective) map of fields Frac(C(V ))→ κ(X) by the universal property of

localisation (see Lemma-Definition 5.1 in CA). We have to show that this last map is surjective. To see

this, let O be an open subset of V and let g : O → k be a representative of an element of κ(X). By Lemma

4.1, we may assume without restriction of generality that O = V \Z(f), where f ∈ C(V ). By Corollary 4.4,

we know that g = g1
g2
|O, where g1, g2 ∈ C(V ). Hence τ(g1/g2) = g. Since g was arbitrary, we have shown

that the map Frac(C(V ))→ κ(X) is surjective, and thus an isomorphism.

The fact that this isomorphism is compatible with dominant regular maps between irreducible algebraic

sets follows directly from the definition of τ .

Proposition 9.2. Let V be an irreducible variety. Then κ(V ) is finitely generated over k as a field and the

dimension of V is equal to the transcendence degree of κ(V ) over k.

Recall that the transcendence degree of κ(V ) over k is the largest integer n > 0 such that there exists an

injection of k-algebras

k[x1, . . . , xn] ↪→ κ(V )

See section 11.1 of CA for details.

Proof. (of Proposition 9.2) Let {Vi} be a finite open covering of V and suppose that each Vi is an affine

variety. By a remark at the beginning of this section, the function field of Vi is isomorphic to the function

field of V as a k-algebra. On the other hand, we have dim(V ) = supi dim(Vi)) by question 2.7. Hence it

is sufficient to show that the transcendence degree of κ(Vi) over k is equal to dim(Vi) for all i. So we may

suppose without restriction of generality that V is affine. In that case, the statement is a consequence of

Lemma 8.3, Lemma 9.1 and Cor. 11.28 in CA (which follows from the computation of the dimension of

polynomial rings and the Noether normalisation lemma).

Proposition 9.3. Let a : V → W be a dominant morphism of irreducible subvarieties. Then a∗,rat :

κ(W )→ κ(V ) is an isomorphism iff there exist open subvarieties V0 ⊆ V and W0 ⊆W such that a(V0) ⊆W0

and such that the induced morphism a|V0 : V0 →W0 is an isomorphism.

Proof. The ⇐ direction of the equivalence is clear (why?) so we only have to establish the ⇒ direction.

Let W00 ⊆W be an open affine subvariety and let V00 be an open affine subvariety of a−1(W0) (this exists

by Proposition 5.1). We claim that the map V00 →W00 induced by a is also dominant. To prove this claim,

suppose for contradiction that the map V00 → W00 is not dominant. Then there is a non empty subset O

of W00 such that O ⊆ W00\a(V00). Hence a−1(O) ∩ V00 = ∅. Now a−1(O) 6= ∅ since a is dominant, so this

contradicts the irreducibility of V . We have thus established the claim. Since the inclusions V00 → V and

W00 →W induce isomorphisms of function fields, we may thus assume without restriction of generality that

V and W are affine to begin with. In view of Lemma 9.1 and question 2.5 (3), it is thus sufficient to prove

the following statement of commutative algebra.

Let φ : A→ B be a homomorphism of finitely generated integral k-algebras. Suppose that Spm(φ)(Spm(B))

is dense in Spm(A) and suppose that the induced map Frac(φ) : Frac(A) → Frac(B) is an isomorphism.

Then there is an element f ∈ A such that the induced map A[f−1]→ B[φ(f)−1] is an isomorphism.
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To prove this assertion, note that by question 1.5 we already know that under the given assumptions, φ

must be injective. Note also that since we have a commutative diagram

Frac(A)
Frac(φ)

// Frac(B)

A

OO

φ
// B

OO

all whose maps are injective, the induced map A[f−1]→ B[φ(f)−1] is injective for any choice of f ∈ A\{0}
(remember that A and B are integral domains). Thus we only have to show that there is f ∈ A\{0} such

that the induced map A[f−1]→ B[φ(f)−1] is surjective. Now let b1, . . . , bl be generators of B as a k-algebra.

Let a1/c1, . . . , al/cl ∈ Frac(A) such that

bi/1 = φ(ai)/φ(ci) =: Frac(φ)(ai/ci)

for all i ∈ {1, . . . , l}. Let f :=
∏
i ci. Then bi/1 = Frac(φ)(ai(

∏
j 6=i cj)/f). Hence the image of

A[f−1]→ B[φ(f)−1]

contains bi/1 for all i ∈ {1, . . . , l} and also contains 1/φ(f) = Frac(φ)(1/f). Since B[φ(f)−1] is generated as

a k-algebra by 1/φ(f) and by the elements bi/1 (use Lemma 5.3 in CA), we see that A[f−1] → B[φ(f)−1]

is surjective.

If V and W are irreducible varieties, and V0 ⊆ V and W0 ⊆ W are open subvarieties such that V0 ' W0,

we shall say that V and W are birational, or birationally isomorphic.

A birational map from V to W is a rational map from V to W which has a representative f : O →W , such

that f(O) is open and such that the induced map O → f(O) is an isomorphism (where f(O) is endowed

with its structure of open subvariety of W ). A birational morphism from V to W is a morphism V → W

which induces a birational map.

Proposition 9.3 implies that a dominant rational map ρ ∈ Ratdom(V,W ) is birational iff a∗,rat : κ(W )→ κ(V )

is bijective.

Proposition 9.4. Let V,W be irreducible varieties. Let κ(W ) ↪→ κ(V ) be a field extension compatible with

the k-algebra structures. Then there is an open subvariety V0 of V and a dominant morphism a : V0 → W

such that the extension a∗,rat : κ(W )→ κ(V0) is isomorphic to κ(W ) ↪→ κ(V ) as a κ(W )-extension.

A different wording of the conclusion of the proposition is that there is an isomorphism of rings between

κ(V ) and κ(V0) compatible with the given κ(W )-algebra structures.

Proof. We may suppose without restriction of generality that V and W are affine varieties (why?). Let B

(resp. A) be the coordinate ring of V (resp. W ). Let ι : Frac(A) ' κ(W ) ↪→ κ(V ) ' Frac(B) be the given

field extension.

We claim that there is an g ∈ B\{0} such that ι(A) ⊆ B[g−1] ⊆ Frac(B) (where A is identified with its

image in Frac(A)). To prove this, let a1, . . . , al be generators of A as a k-algebra. For all i ∈ {1, . . . , l}
let bi, ci ∈ B be such that bi/ci = ι(ai/1). Let g :=

∏
i ci. We then have ι(ai/1) ∈ B[g−1] and thus

ι(A) ⊆ B[g−1], proving the claim.

Now let V0 be the open affine subvariety associated with B[g−1]. Let ι0 : A→ B[g−1] be the map induced

by ι and the natural map from A to Frac(A). Since the map ι0 is injective, it induces a dominant map

V0 →W by question 1.5. Hence V0 and the map V0 →W satisfy the requirements of the proposition.
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Finally, note the following. Let V and W be irreducible varieties. Consider the map

Ratdom(V,W )→ homomorphisms of k-algebras κ(W )→ κ(V ) (∗)

which sends a ∈ Ratdom(V,W ) to a∗,rat : κ(W )→ κ(V ). Proposition 9.4 implies that this map is surjective.

On the other hand we have

Lemma 9.5. The map (∗) is injective.

Proof. Let a1, a2 ∈ Ratdom(V,W ) and suppose that a∗,rat
1 = a∗,rat

2 . We have to show that a1 = a2.

Now there is a by construction an open subset O ⊆ V and morphisms α1, α2 : O → W which represent a1

and a2, respectively. Replacing W by one of its open affine subvarieties O′ and replacing V by an open affine

subvariety of α−1
1 (O′), we may assume that both V and W are affine and that a1 (resp. a2) is represented

by a morphism. Recycling notation, call α1 : V → W (resp. α2 : V → W ) a morphism representing a1

(resp. a2).

Now let B (resp. A) be the coordinate ring of V (resp. W ).

Let ι : Frac(A) ' κ(W ) ↪→ κ(V ) ' Frac(B) be the field extension given by a∗,rat
1 = a∗,rat

2 . We have by

construction a commutative diagram

Frac(A)
ι // Frac(B)

A

OO

α∗i // B

OO

for i ∈ {1, 2}. Since the vertical maps are injective we thus have α∗1 = α∗2.

In view of the last lemma and the comment preceding it, we thus see that the map (∗) is bijective. In

particular, there is a one-to-one correspondence between dominant rational maps from V to W and κ(W )-

algebra structures on the field κ(V ).

We shall from now on often write a∗ for a∗,rat when V and W are irreducible varieties and a ∈ Ratdom(V,W ).

This is justified by the proof of Lemma 9.5.

10 Products

We wish to endow the cartesian product of two varieties with the structure of a variety. We shall do this

for quasi-projective varieties.

Definition 10.1. Let V and W be varieties. A product of V and W is a triple (V
∏
W,πV , πW ), where

V
∏
W is a variety and πV : V

∏
W → V and πW : V

∏
W → W are morphisms of varieties. This triple

is required to have the following property (PROD).

(PROD) If X is a variety and a : X → V and b : X →W are morphisms of varieties, then there is a unique

morphism of varieties a
∏
b : X → V

∏
W such that πV ◦ (a

∏
b) = a and πW ◦ (a

∏
b) = b.

Note that property (PROD) in Definition 10.1 characterises the triple (V
∏
W,πV , πW ) uniquely up to

unique isomorphism of triples (an isomorphism of triples is an isomorphism of the underlying varieties

which is compatible with the morphisms in play). This is an example of categorical product. Note that if
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V and W are varieties, it is not clear a priori that they have a product. However, if the product of V and

W exists, it is uniquely defined. Abusing language, we shall often say that V
∏
W is the product of V and

W without writing the associated morphisms πV and πW . We first show

Theorem 10.2. Let m,n > 0. The product Pm(k)
∏

Pn(k) exists.

Before starting with the proof, we make a construction. We shall consider the projective space Pmn+m+n.

The space Pmn+m+n is by definition the set of lines through the origin in the vector space kmn+m+n+1=(m+1)(n+1)

and we shall index its standard basis using double indices.

Let b1, . . . , bmn+m+n+1 be the standard basis of kmn+m+n+1, indexed in the usual manner. If i ∈ {0, . . . ,m}
and j ∈ {0, . . . , n}, we shall write bij for the element bj(m+1)+i+1. With this convention, each bl corresponds

to precisely one bij . Since we shall exclusively work with double indices, this formula for bij is actually not

important. One only needs to know that the bij form a basis of kmn+m+n+1.

Let σ : Pm(k)× Pn(k)→ Pmn+m+n be the map given by the formula

σ(([X0, . . . , Xm], [Y0, . . . Yn])) = [(XiYj)ij ]

where (·)ij means that we put (·) in the coordinate ij (corresponding to bij). We will write Zij for a quantity

in the coordinate ij and we shall write zij for the homogenous variables of Pmn+m+n.

Lemma 10.3. The map σ is injective and its image is closed in Pmn+m+n.

Proof. (of Lemma 10.3). For each [Zij ] ∈ σ(Pm(k)×Pn(k)) let i0j0 = i0([Zij ])j0([Zij ]) be a pair of indices

such that Zi0j0 6= 0. The map τ : σ(Pm(k)× Pn(k))→ Pm(k)× Pn(k) sending [Zij ] to

([Z0j0 , Z1j0 , . . . , Zmj0 ], [Zi00, Zi01, . . . Zi0n])

has the property that τ ◦ σ = IdPm(k)×Pn(k) (why?). Hence σ is injective. To show that σ(Pm(k) × Pn(k))

is closed, consider the subvariety of Pmn+m+n described by the homogenous equations ZijZrs−ZisZrj (for

all i, r ∈ {0, . . . ,m} and j, s ∈ {0, . . . , n}. We clearly have

XiXjXrXs = XiXsXrXj

and so Z((ZijZrs−ZisZrj)) ⊇ σ(Pm(k)×Pn(k)). On the other hand, if we let [Zij ] ∈ Z((ZijZrs−ZisZrj))
and Zi0j0 6= 0 (say) then

σ(([Z0j0 , Z1j0 , . . . , Zmj0 ], [Zi00, Zi01, . . . Zi0n])) = [(Zij0Zi0j)ij ] = [(ZijZi0j0)ij ] = [Zij ]

so we also have Z((ZijZrs − ZisZrj)) ⊆ σ(Pm(k)× Pn(k)).

We record one output of the proof of the last lemma: the image of the map σ is the zero set of the set of

quadratic equations zijzrs = ziszrj . The map σ is called the Segre embedding. Its image is called the Segre

variety (which is a closed subvariety of Pmn+m+n).

Proof. (of Theorem 10.2). Endow Pm(k) × Pn(k) with the variety structure inherited from the Segre

variety via the Segre embedding. We will show that Pm(k) × Pn(k) has the properties listed in Definition

10.1. We first show that the projections π1 : Pm(k) × Pn(k) → Pm(k) and π2 : Pm(k) × Pn(k) → Pn(k)

are morphisms of varieties. For any i0 ∈ {0, . . . ,m} and any j0 ∈ {0, . . . , n}, let Ui0j0 ⊆ Pmn+m+n be the
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open subset of the elements [Zij ] such that Zi0j0 6= 0 (this is a standard coordinate chart of Pmn+m+n). Let

πi0j0,1 : Ui0j0 → Pm(k) be given by the formula

πi0j0,1([Zij ]) := [Z0j0 , Z1j0 , . . . , Zmj0 ]

By question 2.3, this defines a morphism from Ui0j0 to Pm(k). Now suppose that

σ(([X0, . . . , Xm], [Y0, . . . Yn])) = [(XiYj)ij ] ∈ Ui0j0

In other words, Xi0 , Yj0 6= 0. Then

πi0j0,1(σ(([X0, . . . , Xm], [Y0, . . . Yn]))) = πi0j0,1([(XiYj)ij ]) = [X0Yj0 , X1Yj0 , . . . , XmYj0 ]

= [X0, X1, . . . , Xm] = π1(([X0, . . . , Xm], [Y0, . . . Yn]))

Hence π1 is a morphism on the open subset σ−1(Ui0j0) of Pm(k)×Pn(k). Now if we vary the indices i0 and

j0, the open subsets σ−1(Ui0j0) cover all of Pm(k) × Pn(k) and hence π1 is a morphism (by Definition 4.7

and the fact that functions on open subsets of varieties are regular iff there are regular locally (see Definition

4.6]). Similarly π2 is a morphism.

Choosing πPm(k) := π1 and πPn(k) := π2, we shall now verify (PROD) in Definition 10.1. So let X be a

variety and a : X → Pm(k) and b : X → Pn(k) be morphisms of varieties. We have to show that there

is a unique morphism of varieties c : X → Pm(k) × Pn(k) such that π1 ◦ c = a and π2 ◦ c = b. Now note

that the set Pm(k) × Pn(k) is the cartesian product of the sets Pm(k) and Pn(k). Hence, if the morphism

c exists, it must be given by the formula c(x) = (a(x), b(x)) for all x ∈ X. Hence we only have to verify

that c is a morphism of varieties. Since by the definition of a Topskf, a morphism is a morphism iff it is

every locally a morphism, we may assume that X is affine and that a(X) ⊆ UPm(k),i0 and b(X) ⊆ UPn(k),j0

for some indices i0 and j0. Here UPm(k),i0 is the i0-th standard coordinate chart of Pm(k) (resp. UPn(k),j0 is

the j0-th standard coordinate chart of Pn(k)). So let us suppose that X is associated with an algebraic set

V ⊆ kt. The map a is then the restriction to V of a map kt → UPm(k),i0 of the form

v̄ ∈ kt 7→ [P0(v̄), . . . , Pi0−1(v̄), 1, Pi0+1(v̄), . . . Pm(v̄)]

where the Ph are polynomials in the entries v1, . . . , vt of the vector v̄. Similarly, the map b is the restriction

to V of a map kt → UPn(k),j0 of the form

v̄ ∈ kt 7→ [Q0(v̄), . . . , Qj0−1(v̄), 1, Qj0+1(v̄), . . . Qn(v̄)]

where the Pl are polynomials in the entries v1, . . . , vt of the vector v̄. We now compute

σ(c(v̄)) = [(Pi(v̄)Qj(v̄))ij ]

and since Pi0(v̄)Qj0(v̄)) = 1, we see that σ ◦ c factors through a morphism V → Ui0j0 and in particular is

a morphism from V to Pmn+m+n. We conclude from Lemma 5.3 that the morphism c is a morphism of

varieties.

In the proof above, we have shown that Pm(k)
∏

Pn(k) can be realised as the Cartesian product Pm(k) ×
Pn(k) endowed with a certain variety structure. Furthermore, the projections πPm(k) and πPm(k) are then

simply the ordinary projections on the two factors. We shall thus often write Pm(k) × Pn(k) instead of

Pm(k)
∏

Pn(k).

We shall now use Theorem 10.2 to prove that any two quasi-projective varieties have a product.

We start with the
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Lemma 10.4. Let C1 ⊆ Pm(k) and C2 ⊆ Pn(k) be closed subsets. Let V1 ⊆ Pm(k) and V2 ⊆ Pn(k) be open

subsets. Then the Cartesian product C1×C2 is closed in Pm(k)
∏

Pn(k) and the Cartesian product V1× V2

is open in Pm(k)
∏

Pn(k).

Proof. Note that the second statement is a consequence of the first, because the complement of V1 × V2 is

(Pm(k)\V1)× Pn(k) ∪ Pm(k)× (Pn(k)\V2), which is closed according to the first statement.

For the proof of the first statement, suppose that C1 (resp. C2) is defined by homogenous polynomials

P1(x0, . . . , xm), . . . , Pa(x0, . . . , xm) (resp. Q1(y0, . . . , yn), . . . , Qb(y0, . . . , yn)). Then we have

σ(C1 × C2) = σ(Pm(k)× Pn(k))
⋂

⋂
i=0,...,m j=0,...,n Z

(
P1(z0j , . . . , zmj), . . . , Pa(z0j , . . . , zmj), Q1(zi0, . . . , zin), . . . , Qb(zi0, . . . , zin))

)
and thus C1 × C2 is closed in Pm(k)

∏
Pn(k).

Corollary 10.5. Let V and W be two quasi-projective varieties. Then the product V
∏
W exists.

Proof. By assumption, there are integers m,n > 0 and open subvarieties O1 ⊆ Pm(k) and O2 ⊆ Pm(k)

such that V is isomorphic to a closed subvariety of O1 and W is isomorphic to a closed subvariety of O2.

We may thus assume that V is a closed subvariety of O1 and that W is a closed subvariety of O2, where

O1 and O2 are as above. Let C1 ⊆ Pm(k) and C2 ⊆ Pn(k) be closed subsets such that C1 ∩ O1 = V and

C2 ∩ O2 = W . We then have V ×W = (C1 × C2) ∩ (O1 × O2) and hence V ×W is closed in the open

set O1 ×O2 by Lemma 10.4. We endow the set V ×W with the structure of variety which comes from its

inclusion into O1×O2 as a closed subset. We now claim that V ×W is a product of V and W . To see this,

let X be a variety and let a : X → V , b : X →W be two morphisms of varieties. Since the set V ×W is the

Cartesian product of V and W , we see as before that if the morphism a
∏
b exists, it must be given by the

unique map a× b : X → V ×W sending x ∈ X to (a(x), b(x)). So we only have to verify that this map is

a morphism. To see this, let a′ : X → O1 be the map obtained by composing a with the inclusion V → O1

(resp. b′ : X → O1 be the map obtained by composing b with the inclusion W → O2). Let a′′ : X → Pm(k)

be the map obtained by composing a′ with the inclusion O1 → Pm(k) (resp. b′′ : X → Pn(k) be the map

obtained by composing b′ with the inclusion O2 → Pn(k)). We know that a′′×b′′ is a morphism by Theorem

10.2. Next, we know that a′ × b′ is a morphism because (a′ × b′)(X) ⊆ O1 × O2 and because O1 × O2 is

open in Pm(k) × Pn(k) by Lemma 10.4. Finally, by Lemma 5.3, we know that a × b is a morphism, as

(a × b)(X) ⊆ V ×W , and V ×W is closed in O1 × O2 by the above reasoning. So we have verified that

a× b is a morphism. This completes the proof.

An outcome of the proof of Corollary 10.5 is the following. Let m,n > 0 and let O1 ⊆ Pm(k) and O2 ⊆ Pn(k)

be open subvarieties. Suppose that V is a closed subvariety of O1 and that W is a closed subvariety of

O2. Then O1 × O2 is open in Pm(k) × Pn(k), the Cartesian product V ×W is closed in O1 × O2 and the

product of V and W is the set V ×W endowed with the variety structure it inherits from O1 × O2 as a

closed subvariety. The projections πV and πW are then the ordinary projections on the two factors.

Again, this justifies simply writing V ×W instead of V
∏
W .

Corollary 10.6. Let V1, V2 be quasi-projective varieties. Let C1 ⊆ V1 and C2 ⊆ V2 be closed subsets. Let

U1 ⊆ V1 and U2 ⊆ V2 be open subsets. Then the set theoretic product C1×C2 (resp. the set theoretic product

U1×U2) is closed (resp. open) in V ×W = V
∏
W . If C1×C2 (resp. U1×U2) is endowed with its structure
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of closed (resp. open) subvariety of V1

∏
V2 and with the natural projection maps on the two factors, then

C1 × C2 (resp. U1 × U2) is a product of C1 and C2 (resp. U1 and U2).

Proof. Left to the reader. The proof is completely similar to the proof of Corollary 10.5.

The next lemma is needed for the following proposition.

Lemma 10.7. Let I ⊆ k[x1, . . . , xn] (resp. J ⊆ k[y1, . . . , yt]) be an ideal. Let Ī (resp. J̄) be the ideal

generated by I (resp. J) in k[x1, . . . , xn, y1, . . . , yt]. If I and J are radical (resp. prime) then Ī + J̄ is

radical (resp. prime).

Proof. Suppose first that I and J are prime. Let P,Q ∈ k[x1, . . . , xn, y1, . . . , yt]. Suppose that P ·Q ∈ Ī+J̄ .

Suppose for contradiction that P 6∈ Ī+ J̄ and Q 6∈ Ī+ J̄ . Note that we may without restriction of generality

replace P (resp. Q) by P + P1, where P1 ∈ Ī + J̄ (resp. by Q + Q1, where Q1 ∈ Ī + J̄) without affecting

the conclusion. Write

P =
∑
i

Ai(x1, . . . , xn)Bi(y1, . . . , yt)

and

Q =
∑
j

Cj(x1, . . . , xn)Dj(y1, . . . , yt)

where both sums are finite. We may assume the elements Bi (mod J) (resp. the elements Dj (mod J)) are

linearly independent over k. Indeed, if Bi0 = R+
∑
i 6=i0 λiBi where R ∈ J and λi ∈ k, then we have

P =
∑
i 6=i0

AiBi +Ai0(R+
∑
i 6=i0

λiBi) =
∑
i 6=i0

(Ai + λiAi0)Bi +Ai0R

where Ai0R ∈ J̄ . By the preceding remark, we may thus replace P by
∑
i 6=i0(Ai+λiAi0)Bi and thus assume

that Bi0 = 0. We can now repeat this process until all the elements Bi (mod J) are linearly independent

over k. The same construction applies to the elements Dj (mod J).

Further, note that we may suppose that for some Ai, we have Ai 6∈ I, otherwise P ∈ Ī and there is nothing

to prove. Similarly, we may suppose that for some Cj , we have Cj 6∈ I. So choose indices i1, j1 such that

Ai1 , Cj1 6∈ I.

Now let m0 ⊆ k[x1, . . . , xn]/I be a maximal ideal such that Ai1 (mod I) 6∈ m and Cj1 (mod I) 6∈ m.

Such a maximal ideal exists. Indeed, suppose there is no such ideal. Then every maximal ideal of

k[x1, . . . , n]/I contains (Ai1 (mod I) · (Cj1 (mod I)) and hence (Ai1 (mod I) · (Cj1 (mod I)) is contained in

the Jacobson radical of k[x1, . . . , n]/I. But k[x1, . . . , n]/I is Jacobson since it is finitely generated over k.

Since k[x1, . . . , n]/I is a domain we thus conclude that (Ai1 (mod I) · (Cj1 (mod I)) = 0. This implies that

that either Ai1 (mod I) = 0 or Cj1 (mod I) = 0, which is a contradiction.

Now let m ∈ Spm(k[x1, . . . , xn]) be the maximal ideal corresponding to m0. By the weak Nullstellentsatz,

we have an isomorphism of k-algebras k[x1, . . . , xn]/m ' k and thus we obtain a map of k-algebras

φ : k[x1, . . . , xn]→ k whose kernel is m. Let Φ : k[x1, . . . , xn, y1, . . . , yt] → k[y1, . . . , yt] be the induced

map. The map Φ sends any polynomial in the y variable on itself and any polynomial H in the x variable

on φ(H) ∈ k. In particular, we have Φ(J̄) ⊆ J and Φ(Ai1) = φ(Ai1) 6= 0 and Φ(Cj1) = φ(Cj1) 6= 0.

Note also that the kernel of Φ contains m̄ := m · k[x1, . . . , xn, y1, . . . , yt] and that m̄ ⊇ Ī. Thus we have

Φ(PQ) ∈ J .
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Now we compute

0 = Φ(PQ) (mod J) =
(∑

i

φ(Ai(x1, . . . , xn))(Bi(y1, . . . , yt) (mod J))
)(∑

j

φ(Cj(x1, . . . , xn))(Dj(y1, . . . , yt) (mod J))
)
.

Since the elements Bi(y1, . . . , yt) (mod J) are linearly independent over k and φ(Ai0) 6= 0 we see that∑
i

φ(Ai(x1, . . . , xn))Bi(y1, . . . , yt) 6∈ J.

Similarly ∑
j

φ(Cj(x1, . . . , xn))Dj(y1, . . . , yt) 6∈ J.

This is a contradiction, since J is prime.

The proof that Ī + J̄ is radical if I and J are radical is completely similar and is left to the reader.

Proposition 10.8. Let V and W be irreducible quasi-projective varieties. Then V ×W = V
∏
W is also

irreducible.

Proof. We first prove the result in the situation where V and W are affine. So suppose that V ⊆ kn and

W ⊆ kt are algebraic sets in kn and kt, respectively. By question 3.4, we know that the subset V ×W of

kn×kt = kn+t is an algebraic subset in kn+t and is a product of V and W . So we have to show that V ×W
is irreducible, when endowed with the topology induced from kn+t. Write k[x1, . . . , xn] for the coordinate

ring of kn and k[y1, . . . , yt] for the coordinate ring of kt. Let

Ī(V ) = I(V ) · k[x1, . . . , xn, y1, . . . , yt]

and

Ī(W ) = I(W ) · k[x1, . . . , xn, y1, . . . , yt].

By construction we have Z(Ī(V ) + Ī(W )) = V ×W . Furthermore, by Lemma 10.7 the ideal Ī(V ) + Ī(W )

is prime. Hence I(V ×W ) = Ī(V ) + Ī(W ) and thus V ×W is irreducible.

Now suppose that V and W are quasi-projective. Suppose for contradiction that V ×W is not irreducible.

Let T1, . . . , Tl be the irreducible components of V ×W . By assumption, we have l > 2. Let (v1, w1) ∈ T1

and (v2, w2) ∈ T2. Let Uv1 be an open affine neighbourhood of v1 in V and let Uw1
be an open affine

neighbourhood of w1 in W . Define Uv2 and Uw2 similarly. Then we have (v1, w1) ∈ Uv1 × Uw1 and

(v2, w2) ∈ Uv2 × Uw2 . Now from the first part and Lemma 10.6, we know that Uv1 × Uw1 and Uv2 × Uw2

are open irreducible subsets of V × W . Hence Uv1 × Uw1
⊆ T1 and Uv2 × Uw2

⊆ T2 (why?). Also, we

have Uv1 × Uw1
∩ Uv2 × Uw2

= ∅, for otherwise T1\(T1 ∩ T2) is not dense in T1. However, since V and

W are irreducible there is a point zv ∈ Uv1 ∩ Uv2 and a point zw ∈ Uw1
∩ Uw2

. We have (zv, zw) ∈
Uv1 × Uw1 ∩ Uv2 × Uw2 , which is a contradiction. So V ×W is irreducible.

In the next proposition, we shall need Noether’s normalisation lemma. This says the following: if R

is a non zero finitely generated algebra over a field L, then there exists an injective map of L-algebras

L[x1, . . . , xl] ↪→ R for some l > 0, such that R is finite as a L[x1, . . . , xl]-module. See Theor. 9.1 in CA.

Proposition 10.9. Let V and W be irreducible quasi-projective varieties. Then

dim(V ×W ) = dim(V ) + dim(W ).
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Proof. First suppose that V and W are affine. So we may suppose that V (resp. W ) is an algebraic set

in kn (resp. kt). Let I := I(V ) ⊆ k[x1, . . . , xn] (resp. J := I(W ) ⊆ k[y1, . . . , yt]). We saw in the proof of

Proposition 10.8 that the product of V and W can be realised as the closed subset V ×W of kn+t and that

the ideal of V ×W in k[x1, . . . , xn, y1, . . . , yt] is Ī + J̄ , where

Ī = I(V ) · k[x1, . . . , xn, y1, . . . , yt]

and

J̄ = I(W ) · k[x1, . . . , xn, y1, . . . , yt].

Now use Noether’s normalisation lemma to obtain an injective map of k-algebras

φV : k[X1, . . . , Xv] ↪→ C(V ) = k[x1, . . . , xn]/I

making C(V ) into a finite k[X1, . . . , Xv]-module. This corresponding map of algebraic sets Spm(φV ) : V → kn,

is then surjective. This follows from Theorem 8.8 and Cor. 8.10 in CA. Incidentally, Proposition 8.12 in

CA also implies that the map Spm(φV ) has finite fibres. Similarly let

φW : k[Y1, . . . , Yw] ↪→ C(W ) = k[y1, . . . , yt]/J.

be an injective map of k-algebras making C(W ) into a finite k[Y1, . . . , Yw]-module.

Now let

φVW : k[X1, . . . , Xv, Y1, . . . , Yw]→ k[x1, . . . , xn, y1, . . . , yt]/(Ī + J̄)

be the map of k-algebras sending Xi to φV (Xi) and Yj to φW (Yj).

We claim that the map ΦVW is injective. To see this, notice that by unrolling the definitions, we have that

ΦVW = (Spm(φV )× Spm(φW ))∗, where

Spm(φV )× Spm(φW ) : V ×W → kn × kt = kn+t

is the map given by the formula (Spm(φV )×Spm(φW ))(a× b) = Spm(φV )(a)×Spm(φW )(b). In particular,

the map Spm(ΦVW ) is surjective. Thus ΦVW is injective by question 1.5 (1).

We also claim that ΦVW makes k[x1, . . . , xn, y1, . . . , yt]/(Ī+J̄) into a finite k[X1, . . . , Xv, Y1, . . . , Yw]-module.

To see this, note that by definition, each xi is integral over k[X1, . . . , Xv] via φV (see section 8 in CA). This

means that there are polynomials P0,i(X1, . . . , Xv), P1,i(X1, . . . , Xv), . . . , Pδ(i)−1,i(X1, . . . , Xv) such that

xδii +

δ(i)−1∑
s=0

φV (Ps,i)x
s
i = 0

in k[x1, . . . , xn]/I. In particular, we have

xδii +

δ(i)−1∑
s=0

φVW (Ps,i)x
s
i = 0

in k[x1, . . . , xn, y1, . . . , yt]/(Ī + J̄). So xi is also integral over k[X1, . . . , Xv, Y1, . . . Yw] via φVW . The same

reasoning applies to each yj . Since the xi and the yj generate k[x1, . . . , xn, y1, . . . , yt]/(Ī+ J̄) as a k−algebra

and hence as a k[X1, . . . , Xv, Y1, . . . , Yw]-algebra, we deduce that k[x1, . . . , xn, y1, . . . , yt]/(Ī + J̄) is finitely

generated as a k[X1, . . . , Xv, Y1, . . . , Yw]-module (about this see the discussion after Corollary 8.5 in CA).
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Appealing to Lemma 11.29 in CA, we deduce that

dim(k[x1, . . . , xn, y1, . . . , yt]/(Ī + J̄)) = dim(V ×W ) = dim(k[X1, . . . , Xv, Y1, . . . , Yw]) = v + w

On the other hand, by Lemma 11.29 again, we have

v = dim(C(V )) = dim(V )

and

w = dim(C(W )) = dim(W ).

Hence dim(V ×W ) = dim(V ) + dim(W ).

Now we turn to the general case. Let V1 (resp. W1) be an open affine subvariety of V (resp. W ). The set

V1 ×W1 is open in V ×W and is a product of V1 and W1 when considered as an open subvariety of V ×W
(by Lemma 10.6). Also, V1×W1 and V ×W are irreducible by Proposition 10.8. Now we apply Proposition

9.2 and the above to obtain

dim(V ×W ) = tr. deg. of κ(V ×W ) over k = tr. deg. of κ(V1 ×W1) over k

= dim(V1 ×W1) = dim(V1) + dim(W1) = (tr. deg. of κ(V1) over k) + (tr. deg. of κ(V1) over k)

= (tr. deg. of κ(V ) over k) + (tr. deg. of κ(V ) over k) = dim(V ) + dim(W ).

We end with the following important remark. One can show that for any varieties V , W the product V
∏
W

exists. The proof uses different methods. It proceeds roughly as follows. One covers V and W with open

affine varieties Vi and Wj , respectively. It can be shown using commutative algebra that the products

Vi
∏
Wj exist (see question 3.5). One then constructs the product V

∏
W by glueing the varieties Vi

∏
Wj .

The advantage of the above construction of the product of quasi-projective varieties is that it bypasses the

need for such a glueing procedure, which is combinatorially cumbersome.

11 Intersections in affine and projective space

Proposition 11.1 (affine dimension theorem). Let n > 0 and let V,W ⊆ kn be irreducible algebraic sets.

Then every irreducible component of V ∩W has dimension > dim(V ) + dim(W )− n.

Proof. Note that the Cartesian product V ×W ⊆ k2n is closed and is a product of V and W (see question

3.4). Let

∆ := {(a1, . . . , an, a1, . . . , an) | a1, . . . , an ∈ k}

be the diagonal of k2n. Note that we have

∆ = Z(x1 − y1, x2 − y2, . . . , xn − yn)

where we write C(k2n) = k[x1, . . . , xn, y1, . . . , yn]. We have a k-algebra map

φ : k[x1, . . . , xn, y1, . . . , yn]/(x1 − y1, x2 − y2, . . . , xn − yn)→ k[z1, . . . , zn]
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such that φ(xi) = φ(yi) = zi for all i ∈ {1, . . . , n}. The map φ has an inverse given by the map sending zi

to xi (mod (x1 − y1, x2 − y2, . . . , xn − yn)). In particular Spm(φ) : kn → ∆ is an isomorphism of algebraic

sets. By construction, we have

Spm(φ)−1(V ×W ∩∆) = V ∩W.

Thus we only have to prove that every irreducible component of V×W∩∆ has dimension> dim(V ) + dim(W )− n.

Now by construction we have

V ×W ∩∆ = Z(x1 − y1) ∩ Z(x2 − y2) ∩ · · · ∩ Z(xn − yn) ∩ V ×W.

Applying Theorem 8.9, we see that for any irreducible component C of V ×W ∩∆ we have

cod(C, V ×W ) 6 n

and by Corollary 8.8, Proposition 10.8 and Proposition 10.9, this translates as

dim(V ×W )− dim(C) = dim(V ) + dim(W )− dim(C) 6 n

which is equivalent to the conclusion of the proposition.

Proposition 11.2 (projective dimension theorem). Let n > 0 and let V,W ⊆ Pn(k) be closed irreducible

subvarieties. Then every irreducible component of V ∩W has dimension > dim(V ) + dim(W )−n. Further-

more, we have V ∩W 6= ∅ if dim(V ) + dim(W )− n > 0.

Proof. We first prove the first assertion. Let C be an irreducible component of V ∩ W . Let Ui be a

standard coordinate chart of Pn(k) such that C ∩ Ui 6= ∅.

We claim that C ∩ Ui is an irreducible component of (V ∩W ) ∩ Ui. To see this, note that since C ∩ Ui is

irreducible (because C∩Ui is non empty and open in C), there is an irreducible component T of (V ∩W )∩Ui,
which contains C ∩ Ui. Write T̄ for the closure of T in V ∩W . Then T̄ is also irreducible by question 2.5

(1) and hence T̄ ⊆ C. On the other hand, by construction, we also have T̄ ⊇ C so that C = T̄ . Hence

T = T̄ ∩ Ui = C ∩ Ui so that C ∩ Ui is an irreducible component of V ∩W .

Now by Proposition 11.1, we have

dim(C ∩ Ui) > dim(V ∩ Ui) + dim(W ∩ Ui)− n

and by Proposition 9.2, we have dim(V ∩Ui) = dim(V ), dim(W ∩Ui) = dim(W ) and dim(C∩Ui) = dim(C).

This proves the first assertion.

For the second assertion, consider again the map q : kn+1\{0} → Pn(k) such that q(v̄) = [v̄] for all

v̄ ∈ kn+1\{0}. Let V0 ( V1 ( · · · ( Vdim(V ) = V be an ascending sequence of irreducible closed subsets of

V , which is of maximal length. The closed subvarieties q−1(Vi) of kn+1\{0} are all irreducible by question

3.6 (2). Write q−1(Vi) for the closure of q−1(Vi) in kn+1. The closed subsets q−1(Vi) of kn+1 are then all

irreducible by question 3.6 (2) and question 2.5 (1). We thus get an ascending sequence

q−1(V0) ( q−1(V1) ( · · · ( q−1(Vdim(V )) = q−1(V )

of closed irreducible subsets of kn+1. Now note that by maximality the variety V0 is a point (otherwise one

could extend the sequence V0 ( V1 ( · · · ( Vdim(V ) one step further). We thus have

q−1(V0) = {λv̄0 |λ ∈ k} ∩ (kn+1\{0})
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for some v̄0 ∈ kn+1\{0}.

We claim that the closure of {λv̄0 |λ ∈ k}∩(kn+1\{0}) in kn+1 is {λv̄0 |λ ∈ k}. To see this, let P (x0, . . . , xn)

be some (not assumed to be homogenous) polynomial such that P (λv0) = 0 for all λ ∈ k\{0}. We then

have

P (λv̄0) =
∑
i

P[i](λv̄0) =
∑
i

λiP[i](v̄0) = 0

for all λ 6= 0. Considering deg(P ) + 1 different values of λ we obtain a system of linear equations with the

unique solution 0 (arising from a Vandermonde matrix). In other words, we have P[i](v0) = 0 for all i and in

particular P[0] = P (0) = 0. Now note that for all i ∈ {1, . . . ,deg(P )}, the polynomial P[i] is a non constant

homogenous polynomial and hence vanishes at 0. We conclude that P also vanishes at 0. In particular, the

closure of {λv̄0 |λ ∈ k} ∩ (kn+1\{0}) in kn contains 0 and is thus equal to {λv̄0 |λ ∈ k}.

We thus obtain an ascending sequence of irreducible closet subsets

{0} ( {λv̄0 |λ ∈ k} = q−1(V0) ( q−1(V1) ( · · · ( q−1(Vdim(V )) = q−1(V )

and we thus see that q−1(V ) has dimension > dim(V ) + 1. Similarly, q−1(W ) is irreducible in kn+1 and

has dimension > dim(W ) + 1. We conclude from Proposition 11.1 that every irreducible component of

q−1(V ) ∩ q−1(W ) has dimension larger or equal to

dim(q−1(V )) + dim(q−1(W ))− (n+ 1) > dim(V ) + dim(W ) + 2− (n+ 1) = dim(V ) + dim(W )− n+ 1.

Hence, if dim(V ) + dim(W )− n > 0 then every irreducible component of q−1(V ) ∩ q−1(W ) has dimension

> 1. On the other hand, both q−1(V ) and q−1(W ) contain the point 0, so q−1(V )∩q−1(W ) is not empty. We

conclude that q−1(V )∩ q−1(W ) contains points other than 0, or in other words that q−1(V )∩ q−1(W ) 6= ∅.
This implies that V ∩W 6= ∅.

Corollary 11.3. Let n > 0 and let V ⊆ Pn(k) be a closed irreducible subset. Let H be a closed irreducible

subset such that cod(H,Pn(k)) = 1. If dim(V ) > 1 then H ∩ C 6= ∅.

Proof. Left to the reader.

12 Separatedness and completeness

Separatedness is an algebraic analogue of the Hausdorff property in topology. Completeness is an algebraic

analogue of the notion of compactness in topology.

If X is a quasi-projective variety. Write δX : X → X
∏
X for the map IdX

∏
IdX . We shall write

∆X ⊆ X
∏
X for the image of δX . We call it the diagonal in X

∏
X.

Definition 12.1. Let X be a quasi-projective variety. We say that X is separated if the diagonal in X
∏
X

is closed.

Note that if ∆X is closed in X
∏
X then δX induces an isomorphism between X and ∆X , where ∆X is seen

as a closed subvariety of X
∏
X. Indeed, the map δX induces a morphism X → ∆X by Lemma 5.3 and this

map has an inverse, given by the projection on the first factor.
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To understand this definition, note that if T is a topological space and T × T is endowed with the product

topology, then T is Hausdorff iff the diagonal ∆T ⊆ T × T is closed. Indeed, let a, b ∈ T and a 6= b. Then

(a, b) 6∈ ∆T . If ∆T is closed then there are open subsets U, V ⊆ T such that U × V ∩∆T = ∅ and such that

(a, b) ∈ U × V . In particular, a ∈ U , b ∈ V and U ∩ V = ∅. So a and b have disjoint neighbourhoods. On

the other hand, if a and b have disjoint neighbourhoods U and V , respectively, then U × V ∩∆T = ∅ and

(a, b) ∈ U × V . So (T × T )\∆T is open, ie ∆T is closed.

Note that in the definition of separatedness given above, the variety X
∏
X does not in general carry the

product topology induced by its natural identification with the Cartesian product X×X so that the algebraic

definition differs significantly from the topological one (but serves the same purpose from a structural point

of view).

Remark. As remarked at the end of section 10, any two varieties have a product. It is therefore possible

to extend to definition of separatedness to all varieties. We shall see below that all quasi-projective are

separated, but it is possible to give examples of non quasi-projective varieties, which are not separated.

Lemma 12.2. Let X be a separated quasi-projective variety. Let V be a closed (resp. open) subvariety of

X. Then V is separated.

Proof. Suppose that V is a closed subvariety of X. The Cartesian product V × V ⊆ X × X is closed

and represents the product of V with itself as a closed subvariety of X × X (by Corollary 10.6). On the

other hand, we have ∆V = ∆X ∩ V × V so ∆V is closed in V × V since ∆X is closed. In other words, V is

separated. The proof in the situation where V is an open subvariety of X is similar.

Lemma 12.3. Affine varieties are separated.

Proof. We first prove that the varieties kt are separated for t > 0. Recall that by question 3.5, kt
∏
kt ' k2t.

Write C(k2t) = k[x1, . . . , xt, y1, . . . , yt]. Now note that

∆kt = Z(x1 − y1, x2 − y2, . . . , xt − yt).

Hence ∆kt is closed. The general case now follows from Lemma 12.2.

Lemma 12.4. Let X be a quasi-projective variety. Suppose that for any two points a, b ∈ X there exists

an open affine subvariety U ⊆ X such that a, b ∈ U . Then X is separated.

Proof. Let (a, b) ∈ X ×X\∆X (ie a, b ∈ X and a 6= b). Let Ua,b be an open affine subvariety of X such

that a, b ∈ Ua,b. Then (a, b) ∈ Ua,b × Ua,b. Furthermore, ∆Ua,b
= ∆X ∩ (Ua,b × Ua,b) and the Cartesian

product Ua,b × Ua,b is a product of Ua,b with itself as an open subvariety of X × X (by Corollary 10.6).

Hence ∆Ua,b
is closed as a subset of Ua,b×Ua,b by Lemma 12.3. In particular, (a, b) is contained in an open

subset of X ×X, which is disjoint from (a, b). Since (a, b) ∈ X ×X\∆X was arbitrary, we conclude that

X ×X\∆X is open, ie ∆X is closed.

Proposition 12.5. Any quasi-projective variety is separated.

Proof. Suppose first that X = Pn(k) for some n > 0. Then X is separated by Lemma 12.4 and question

2.8. The general case follows from this and Lemma 12.2.
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Proposition-Definition 12.6 (The graph of a morphism). Let X and Y be quasi-projective varieties. Let

γ : X → Y be a morphism. Let

Γγ := {(x, γ(x)) |x ∈ X} ⊆ X × Y

be the graph of γ. Then Γγ is closed in X × Y .

Proof. Let γ̃ : X × Y → Y × Y be the morphism such that γ̃(x, y) := (γ(x), y) for all (x, y) ∈ X × Y (this

is a morphism by the definition of products). We have

Γγ = γ̃−1(∆Y )

and so Γγ is closed since ∆Y is closed by Proposition 12.5.

Definition 12.7. Let X be a quasi-projective variety. We say that X is complete if for any quasi-projective

variety B and any closed subset C ⊆ X ×B, the set πB(C) is closed.

Here πB : X ×B → B is the projection on the second factor.

Lemma 12.8. Let X be a complete quasi-projective variety. Then any closed subvariety of X is also

complete.

Proof. Left to the reader. Unroll the definitions and use Corollary 10.6.

Theorem 12.9. Projective varieties are complete.

Proof. By Lemma 12.8, we only need to prove this for X = Pn(k).

So let B be a quasi-projective variety and let {Bi} be an open affine covering of B. Let C ⊆ Pb(k)×B be

a closed subset. By Corollary 10.6, the Cartesian product Pb(k)×Bi is open in Pb(k)×B and if Pb(k)×Bi
is viewed as an open subvariety of Pb(k) × B it is a product of Pn(k) and Bi. Now πB(C) is closed iff

πB(C)∩Bi is closed in Bi for all i and we have πB(C)∩Bi = πBi
(C∩ (Pn(k)×Bi)). Hence we may suppose

from the start that B is affine. In that case B is a closed subvariety of kt for some t > 0. By Corollary 10.6

again, the subset Pn(k)×B ⊆ Pn(k)× kt is closed and is a product of Pn(k) and B if Pn(k)×B is viewed

as a closed subvariety of Pn(k)× kt. Furthermore, πB(C) is closed in B iff it is closed in kt. Some we might

suppose that B = kt.

Now let i ∈ {0, . . . , n} and let Ui ⊆ Pn(k) be the well-known coordinate chart. Recall that there is an

isomorphism ui : kn → Ui given by the formula

ui(〈X0, . . . , |Xi, . . . , Xn〉) = [X0, . . . , Xi−1, 1, Xi+1, . . . , Xn] ∈ Pn(k).

By question 3.5, the variety Ui × kt is affine and we have

C(kn × kt) = k[x0, . . . , qxi, . . . , xn, y1, . . . , yt]

where the xj are the coordinates of kn and the yj are the coordinates of kt.

Write

φi : k[x0, . . . xn, y1, . . . , yt]→ k[x0, . . . , qxi, . . . , xn, y1, . . . , yt]

for the map of k-algebras such that φ(xj) = xj for all j 6= i, φ(xi) = 1 and φ(yj) = yj for all j.
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Let Ii := I((ui × Idkt)
−1(C)) ⊆ k[x0, . . . , qxi, . . . , xn, y1, . . . , yt].

Note the following. Suppose that H ∈ k[x0, . . . xn, y1, . . . , yt] and that H is homogenous in the x-variables.

Then H ∈ φ−1
i (Ii) iff H(X0, . . . , Xn, Y1, . . . , Yt) = 0 for all [X0, . . . , Xn]× 〈Y1, . . . , Yt〉 ∈ C ∩ (Ui× kt). This

follows directly from the definitions.

In particular a polynomial H ∈ k[x0, . . . xn, y1, . . . , yt] which is homogenous in the x-variables lies in

∩iφ−1
i (Ii) iff H(X0, . . . , Xn, Y1, . . . , Yt) = 0 for all [X0, . . . , Xn]× 〈Y1, . . . , Yt〉 ∈ C.

For any N > 0, write SN ⊆ k[x0, . . . xn, y1, . . . , yt] for the polynomials, which are homogenous in the

x-variable and which are of degree N in the x-variable. This gives k[x0, . . . xn, y1, . . . , yt] the struc-

ture of a graded ring with S0 = k[y1, . . . , yt]. In particular SN is a S0 = k[y1, . . . , yt]-submodule of

k[x0, . . . xn, y1, . . . , yt]. We also write AN = SN ∩ (∩iφ−1
i (Ii)). It follows from the definitions that ⊕l≥0Al is

then a graded ideal in (= graded sub-k[x0, . . . xn, y1, . . . , yt]-module of) k[x0, . . . xn, y1, . . . , yt]. In particular,

AN is a S0 = k[y1, . . . , yt]-submodule of SN .

Now let w̄ = 〈W1, . . .Wt〉 ∈ kt and suppose that w̄ 6∈ πB(C). Let m̄ = (y1−W1, . . . , yt−Wt) ⊆ k[y1, . . . , yt]

be the maximal ideal associated with w̄. Let i ∈ {0, . . . , n}. By assumption, we have

Ii + m · k[x0, . . . , qxi, . . . , xn, y1, . . . , yt] = k[x0, . . . , qxi, . . . , xn, y1, . . . , yt]

(since the zero set of m · k[x0, . . . , qxi, . . . , xn, y1, . . . , yt] is kn × {w} and by assumption u−1
i (C) = Z(Ii),

which does not meet kn × {w}). In particular, there is a polynomial Pi ∈ Ii and polynomials Mil ∈ m and

Gil ∈ k[x0, . . . , qxi, . . . , xn, y1, . . . , yt] such that

1 = Pi +
∑
l

Mil ·Gil

Hence, for any N > 0 we have

xNi = x
N−degx(Pi)
i

(
x

degx(Pi)
i Pi(x0/xi, . . . , qxi, . . . , xn/xi, y1, . . . , yt)

)
+

∑
l

Mil(y1, . . . , yt)
[
x
N−degx(Gil)
i

(
x

degx(Gil)
i Gil(x0/xi, . . . , qxi, . . . , xn/xi, y1, . . . , yt)

)]
Now note that the polynomial x

degx(Pi)
i Pi(x0/xi, . . . , qxi, . . . , xn/xi, y1, . . . , yt) is by construction homogenous

in the x-variable and of x-degree degx(Pi); the same polynomial also lies in φ−1
i (Ii) since

φi(x
degx(Pi)
i Pi(x0/xi, . . . , qxi, . . . , xn/xi, y1, . . . , yt)) = Pi.

Furthermore, by definition, the polynomial

x
degx(Pi)+1
i Pi(x0/xi, . . . , qxi, . . . , xn/xi, y1, . . . , yt)

vanishes when evaluated on 〈X0, . . . , Xn, Y1, . . . , Yt〉 whenever [X0, . . . , Xn] × 〈Y1, . . . , Yt〉 ∈ C (remember

that xi vanishes on (Pn(k)\Ui)× kt). Hence

x
degx(Pi)+1
i Pi(x0/xi, . . . , qxi, . . . , xn/xi, y1, . . . , yt) ∈ Adegx(Pi)+1

by the above discussion.

Similarly, the polynomial x
degx(Gil)
i Gil(x0/xi, . . . , qxi, . . . , xn/xi, y1, . . . , yt) is also homogenous in the x-

variable and is of x-degree degx(Gil).
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So if N is larger than degx(Pi) + 1 and also larger than degx(Gil) for all l, we have an equality

xNi = Ti +
∑
l

MilHil

where Ti ∈ AN and Hil ∈ SN . Since there is only a finite number of indices i, there is thus a natural number

N0 such that

xNi ∈ AN + mSN

for all N > N0 and all i ∈ {0, . . . , n}.

Now note that if N1 is sufficiently large, any monomial of degree > N1 in the xi becomes divisible by xN0
j

for some xj . So if N1 is sufficiently large then for all N > N1 we have

SN ⊆ (⊕s>0Ss)(AN0
+ mSN0

)

Since ⊕s>0As is a graded ideal, we then have

SN ⊆ SN−N0(AN0 + mSN0) ⊆ AN + mSN .

In particular, we have (SN/AN ) = m(SN/AN ) where the quotient SN/AN is quotient of k[y1, . . . , yt]-

modules.

We conclude from the generalised form of Nakayama’s lemma (see Q4 in Sheet 1 of CA) that there is

Q ∈ 1 + m such that Q · (SN/AN ) = 0. In particular Q · xNi ∈ AN for all i ∈ {0, . . . , n}. In other words, for

any i we have

XN
i Q(X0, . . . , Xn, Y1, . . . , Yt) = XN

i Q(Y1, . . . , Yt) = 0

for all [X0, . . . , Xn]×〈Y1, . . . , Yt〉 ∈ C (see the discussion above). In particular, whenever Q(Y1, . . . , Yt) 6= 0

the set C∩(Ui×{〈Y1, . . . , Yt〉}) is empty. Since this holds for all i ∈ {0, . . . , n}, the set C ∩ (Pn(k)× {〈Y1, . . . , Yt〉})
is empty whenever Q(Y1, . . . , Yt) 6= 0. Said differently, if 〈Y1, . . . , Yt〉 ∈ kt\Z(Q) then 〈Y1, . . . , Yt〉 6∈ πB(C).

Finally, we have Q(w̄) 6= 0 since Q ∈ 1 + m, so kt\Z(Q) is a neighbourhood of w̄. Since w̄ ∈ kt\πB(C) was

arbitrary, we conclude that kt\πB(C) is open, ie πB(C) is closed.

Remark. Let n, t > 0 and consider the variety Pn(k)× kt.

Suppose given polynomials H1, . . . ,Hl ∈ k[x0, . . . , xn, y1, . . . , yt]. Suppose that the Hj are homogenous in

the variable x. Let

C := {[X0, . . . , Xn]× 〈Y1, . . . , Yt〉 ∈ Pn(k)× kt | ∀j ∈ {1, . . . , l} : Hj(X0, . . . , Xn, Y1, . . . , Yt) = 0}.

It can be shown that C is a closed subset of Pn(k)× kt (prove this!). By Theorem 12.9, the set

πkt(C) := {〈Y1, . . . , Yt〉 ∈ kt | ∃[X0, . . . , Xn] ∈ Pn(k) : ∀j ∈ {1, . . . , l} : Hj(X0, . . . , Xn, Y1, . . . , Yt) = 0}

is then closed. In other words, there are polynomials Q1, . . . , Qa ∈ k[y1, . . . , yt] such that

Q1(Y1, . . . , Yt) = Q2(Y1, . . . , Yt) = · · · = Qa(Y1, . . . , Yt) = 0

iff there is X0, . . . , Xn ∈ kn+1\{0} such that

H1(X0, . . . , Xn, Y1, . . . , Yt) = H2(X0, . . . , Xn, Y1, . . . , Yt) = · · · = Hl(X0, . . . , Xn, Y1, . . . , Yt) = 0.

Writing R = k[y1, . . . , yt], one can rephrase this result in terms of commutative algebra:
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Theorem. LetH1, . . . ,Hl ∈ R[x0, . . . , xn] be homogenous polynomials. Then there are elementsQ1, . . . , Qa ∈ R
with the following property. If φ : R → L is a ring homomorphism from R to an algebraically closed field

L, then the equations

φ(H1)(X0, . . . , Xn) = φ(H2)(X0, . . . , Xn) = · · · = φ(Hl)(X0, . . . , Xn) = 0

have a non vanishing solution in L iff Q1, . . . , Qa ∈ ker(φ). The radical of the ideal (Q1, . . . , Qa) depends

only on the polynomials H1, . . . ,Hl.

This theorem is called the main theorem of elimination theory. If t = 1, the unique monic generator of

r((Q1, . . . , Qa))) is called the resultant of the polynomials H1, . . . ,Hl.

One can show that the theorem holds for any noetherian commutative ring R. Theorem 12.9 proves this

when R = k[y1, . . . , yt] (and more generally if R is any finitely generated reduced k-algebra). The scheme-

theoretic generalisation of Theorem 12.9 implies the general form of the main theorem of elimination theory.

Corollary 12.10 (of Theorem 12.9). Let X,Y be quasi-projective varieties and suppose that X is complete.

Let φ : X → Y is a morphism. Then φ(X) is closed.

Proof. The image of φ(X) is the projection of the graph Γφ ⊆ X × Y by the projection to Y . Hence

Proposition-Definition 12.6 implies the result.

Proposition 12.11. A complete quasi-projective variety is projective.

Proof. Let X be a quasi-projective complete variety. By definition, we may suppose that there is an open

subvariety U of Pn(k) such that X is a closed subvariety of U . By Corollary 12.10, X is closed in Pn(k).

Hence, from the definition of subvarieties, X is a closed subvariety of Pn(k). Hence X is projective.

Lemma 12.12. Let X be an affine complete variety. Then X consists of a finite number of points.

Proof. By question 3.3, C(X) is a finite dimensional k vector space. In particular, C(X) is finite over k.

We deduce from Prop. 8.12 in CA that C(X) has only finitely maximal ideals. Hence X has only finitely

many points by the discussion before Lemma 2.8. Alternatively, we can reason as follows. We see from

Lemma 12.8 that all the irreducible components of X are complete. Let V be an irreducible component of

X. Then C(V ) is an integral domain by Lemma 2.5 and it is finite over k by question 3.3. Hence C(V ) is a

field by the (elementary) Lemma 8.9 in CA. Hence V is a point. Since X has only finitely many irreducible

components, we conclude again that X only has a finite number of points.

13 Smoothness

A variety is smooth if it has ”no kinks”. For a curve C in the plane given by one equation f(x, y) = 0, this

can analysed by looking at its gradient grad(f) = 〈 ∂∂xf,
∂
∂yf〉. The curve will be smooth if grad(f) does not

vanish for any point of C. The general definition has a similar flavour.

Definition 13.1. Let V ⊆ kn be an algebraic set. Suppose that I(V ) = (P1, . . . , Pt) ⊆ k[x1, . . . , xn]. Let

v̄ ∈ V . We say that V is nonsingular at v̄ if the matrix [( ∂
∂xj

Pi)(v̄)]ij has rank n − cod({v}, V ). If V is

irreducible then cod({v}, V ) = dim(V ) so that in that case V is nonsingular at v̄ iff the matrix [( ∂
∂xj

Pi)(v̄)]ij

has rank n− dim(V ).
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Note that when C is a curve in the plane, we recover the definition given above. To make sense of this

definition, we need to show that it does not depend on the polynomials Pi. In fact, we will show that the

definition only depends on the coordinate ring C(V ).

On the way to this result, we first make another definition.

Definition 13.2. Let R be a noetherian local ring with maximal ideal m and residue field k0 := R/m. We

say that R is a regular local ring if dim(R) = dimk0 m/m
2.

A few comments are in order. Note that with the notation of the last definition, we have dim(R) = ht(m)

(this follows from the definition of dimension and the fact that R is local). On the other hand, by Nakayama’s

lemma (see Cor. 3.6 in CA), the ideal m can be generated by dimk0 m/m
2 elements. Hence by a corollary

of Krull’s theorem (see CA Cor. 11.15), we have

dim(R) = ht(m) 6 dimk0 m/m
2.

The local ring R is regular iff this last inequality is an equality.

Proposition 13.3. Let V ⊆ kn be an algebraic set. Then V is nonsingular at v̄ ∈ V (for some and hence

any choice of generators Pi of I(V )) iff the local ring OV,v ' C(V )I({v̄}) is regular.

For the proof, we shall need the

Lemma 13.4. Let R be a ring and let m ⊆ R be a maximal ideal. Let φ : R → Rm be the natural

map of rings. Let n > 0. Then the unique maximal ideal m of Rm is the ideal of Rm generated by φ(m).

Furthermore, we have φ−1(mn) = mn and the map of R-modules induced by φ

mn/mn+1 → mn/mn+1

is an isomorphism.

Note that the lemma is obviously false if m is not maximal (look eg at the case n = 0).

Proof. (of Lemma 13.4) The first assertion is contained in Lemma 5.6 in CA (standard properties of

localisations - you can also prove this directly). This also implies that mn is the ideal generated by φ(mn).

In particular, any element of mn can be written in the form r/u, where r ∈ mn and u ∈ R\m (prove this

directly or refer to Lemma 5.6 in CA).

We now prove that φ−1(mn) = mn. To see this, note that by the definition of localisation, the ideal φ−1(mn)

is the set of elements r ∈ R, such that for some t ∈ mn and for some u, v ∈ R\m, we have v(ur− t) = 0 (use

the definition of localisation). Hence if r ∈ R and there is u ∈ R\m such that ur ∈ mn then r ∈ φ−1(mn).

On the other hand, if r ∈ R and for some t ∈ mn and u, v ∈ R\m we have vur = vt, then (vu)r ∈ mn. Thus

φ−1(mn) = {r ∈ R | ∃u ∈ R\m : ur ∈ mn}.

Now suppose that r ∈ R and that u ∈ R\m is such that ur ∈ mn. Recall that mn is m-primary (see Lemma

6.4 in CA). Since u 6∈ mn, we deduce that either r ∈ mn or both u (modmn) and r (modmn) are nilpotent

in R/mn. The second possibility cannot occur because all the powers of u lie in R\m (since m is prime).

Hence we must have r ∈ mn. In other words we have φ−1(mn) = mn.

We now show that the natural map mn/mn+1 → mn/mn+1 is an isomorphism. Since φ−1(mn+1) = mn+1,

we see that the map is injective. To prove surjectivity, let r/u ∈ mn, where r ∈ mn and u ∈ R\m. Let
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v ∈ R\m be such that uv = 1 (modm) (such a v exists because R/m is a field). Then there is an a ∈ m such

that

rv/1 = ruv/u = (r + ra)/u = r/u+ (a/1)(r/u) = r/u (modmn+1)

and thus r/u (modmn+1) is in the image of mn in mn/mn+1.

Proof. (of Proposition 13.3) Let v̄ = 〈v1, . . . , vn〉 ∈ V ⊆ kn. Suppose that I(V ) = (P1, . . . , Pt). Write

m := I({v̄}) = (x1 − v1, . . . , xn − vn)

be the maximal ideal of k[x1, . . . , xn] associated with v̄. Let n = m (mod I(V )) ⊆ C(V ) be the maximal

ideal of C(V ) associated with v̄. Define a map of k-vector space φ : m→ kn by the formula

φ(Q) = 〈( ∂

∂x1
Q)(v̄), . . . , (

∂

∂xn
Q)(v̄)〉.

Since m2 is generated by the elements (xi−vi)(xj−vj), we see that φ(m2) = 0 (apply the Leibniz rule). We

thus obtain a k-linear map m/m2 → kn. This map is surjective because φ(xi−vi) is the i-the element of the

standard basis of kn. On the other hand, m/m2 is generated by n elements as a R/m = k-vector space and

so is of dimension 6 n. Hence the map m/m2 → kn is an isomorphism of k-vector spaces. Now the image

(I(V ) + m2)/m2 of I(V ) ⊆ m in m/m2 is generated by P1 (modm2), . . . , Pt (modm2) as a R/m = k-vector

space. Hence

dimk((I(V ) + m2)/m2) = dimk(φ(I(V ))) = rk


( ∂
∂x1

P1)(v̄) . . . ( ∂
∂xn

P1)(v̄)

( ∂
∂x1

P2)(v̄) . . . ( ∂
∂xn

P2)(v̄)
...

...
...

( ∂
∂x1

Pt)(v̄) . . . ( ∂
∂xn

Pt)(v̄)

 =: rk[(
∂

∂xj
Pi)(v̄)]ij .

On the other hand, we have by construction a complex of R/m = k-vector spaces

0→ (I(V ) + m2)/m2 → m/m2 → n/n2 → 0

We claim that this complex is exact. The second arrow from the left is injective by definition and likewise

it follows from the definitions that the third arrow from the left is surjective. So we only have to show

that the complex is exact at m/m2. To see this, suppose that P ∈ m and that P (mod I(V )) ∈ n2. Since

n2 = (m2 + I(V ))/I(V ), there is Q ∈ m2 + I(V ) such that P (mod I(V )) = Q (mod I(V )). We then have

(P −Q) (mod I(V )) = 0, or in other words P −Q ∈ I(V ). Hence P is the sum of an element of I(V ) and

an element of m2. This shows that the complex is exact at m/m2 and is thus an exact complex.

We conclude that

rk[(
∂

∂xj
Pi)(v̄)]ij + dimk(n/n2) = n. (2)

Now we have cod(V, {v̄}) = ht(n) = dim(C(V )I({v̄})) (follows from the definition of dimension - see Lemma

11.2 in CA). Using Lemma 13.4, we see that the local ring C(V )I({v̄}) is regular iff

rk[(
∂

∂xj
Pi)(v̄)]ij = n− cod(V, {v̄}).

This proves the first assertion.

For the second assertion, note that if V is irreducible, we have cod(V, {v̄}) = dim(V ) by Theorem 8.7 (note

that a point has dimension 0).
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Remark. (1) Keep the notation of the proof of Proposition 13.3. From the remark preceding the proposi-

tion, we have dimk(n/n2) > cod(V, {v̄}) and so we always have

rk[(
∂

∂xj
Pi)(v̄)]ij = n− dimk(n/n2) 6 n− cod(V, {v̄})

even if V is singular at v̄.

(2) Note that equation (2) gives an effective way to compute dimk(n/n2).

We also record the following lemma, which will be useful in calculations.

Lemma 13.5. Keep the assumptions and notation of Proposition 13.3. Let Q1, . . . Qs ∈ I(V ). Suppose

that [( ∂
∂xj

Qi)(v̄)]ij has rank n− cod(V, {v}). Then V is nonsingular at v̄.

This lemma will allow us to check nonsingularity in situations where it is difficult to find generators of I(V ).

Proof. We use the notation of the proof of Proposition 13.3. Let J ⊆ I(V ) be the ideal generated by

Q1, . . . , Qs. It was shown in the proof of Proposition 13.3 that

rk[(
∂

∂xj
Qi)(v̄)]ij = dimk(φ(J))

and in particular that rk[( ∂
∂xj

Pi)(v̄)]ij = dimk(φ(I(V ))). On the other hand, we have dimk(φ(I(V ))) >

dimk(φ(J)) since J ⊆ I(V ). Hence by the remark preceding the lemma, we have

rk[(
∂

∂xj
Qi)(v̄)]ij 6 rk[(

∂

∂xj
Pi)(v̄)]ij 6 n− cod(V, {v̄}).

The assumptions of the lemma now imply that the two last inequalities are equalities, hence the conclusion.

Let now X be any variety. We shall write Sing(X) for the set of points x ∈ X such that the local ring OX,x
is a regular local ring. This clearly specialises to Definition 13.1 when X is an affine variety.

A variety X is nonsingular or smooth if Sing(X) = ∅.

Proposition 13.6. Let X be a non empty irreducible variety. Then the set Sing(X) is closed and Sing(X) 6= X.

For the proof, we shall need the following definition and the subsequent proposition. Let R be a UFD with

fraction field K. If

Q(x) = xm + rm−1x
m−1 + · · ·+ r0 ∈ R[x],

we define the content cont(Q) to be the gcd of the coefficients of Q (note that the gcd is only well-defined up

to multiplication by a unit of R). If Q(x) ∈ K[x], we define the content of Q(x) to be cont(d ·Q)/d, where

d ∈ R is such that d ·Q(x) ∈ R[x]. One can show that this last definition does not depend on the choice of

d. Moreover, one can show that cont(Q1 ·Q2) = cont(Q1) · cont(Q2) for any two Q1, Q2 ∈ K[x]. Note that

if Q(x) ∈ K[x] and cont(Q) is a unit, then Q(x) ∈ R[x] (why?). The all-important result concerning the

content function is the

Lemma (generalisation of Gauss’s lemma). The irreducible elements of R[x] are the irreducible elements

of R and the polynomials P (x) ∈ R[x], whose content is a unit and which are irreducible (and hence non

constant) in K[x].

45



The proofs of all these statements are similar to the ones considered in the Rings and Modules course in

the situation where R = Z (but they are not examinable). See IV, §2 in S. Lang’s book Algebra (Springer)

for more details.

Proposition 13.7. Let X be a non empty irreducible variety. Then X is birational to an algebraic set

V ⊆ kn such that I(V ) ⊆ k[x1, . . . , xn] is prime and principal.

Proof. (of Proposition 13.7) We shall only prove this in the situation where char(k) = 0 (but the result

holds without this assumption). So suppose that char(k) = 0. Restricting to an open affine subset of X, we

may assume wlog that X is an irreducible affine variety. Let K := Frac(C(X)) be the function field of X.

Since the k-algebra C(X) is finitely generated over k, the field K is finitely generated as a field over k. Let

b1, . . . , bt ∈ K be a transcendence basis for K over k. By definition, this means that the bi are algebraically

independent over k (ie the map of k-algebras k[y1, . . . , yt] → K sending yi to bi is injective) and that the

field extension K|k(b1, . . . , bt) is algebraic. A transcendence basis always exists. See Prop. 11.3 in CA for

this. Since char(k) = 0, the extension K|k(b1, . . . , bt) is a separable extension. This extension is also a

finite extension because K is finitely generated as a field over k(b1, . . . , bt) (since K is finitely generated as a

field over k). Hence the extension K|k(b1, . . . , bt) is a simple extension by the ”primitive element theorem”

(see the course on Galois theory) and so there is an element b ∈ K, such that K = k(b1, . . . , bt)(b) and an

irreducible polynomial Q(x) ∈ k(b1, . . . , bt)[x] such that Q(b) = 0.

Now note that every element of k(b1, . . . , bt) can be written as quotient c/d, where c, d ∈ k[b1, . . . , bt] (here

k[b1, . . . , bt] is the k-subalgebra of K generated by the bi). Write

Q(x) = xm +
cm−1

dm−1
xm−1 + · · ·+ c1

d1
x+

c0
d0

where ci, di ∈ k[b1, . . . , bt]. Let d =
∏
i di. Consider the polynomial dQ ∈ k[b1, . . . , bt][x] and let

P := dQ/cont(dQ) ∈ k[b1, . . . , bt][x],

where (abusing language) cont(dQ) ∈ k[b1, . . . , bt] is an arbitrary representative of the content of dQ. By

construction, the polynomial P (x) is irreducible in k(b1, . . . , bt)[x] (since it is a constant multiple of a

minimal polynomial) and its content is a unit. By the generalised Gauss lemma (see the discussion above),

P (x) is thus irreducible in k[b1, . . . , bt][x].

Now let

φ : k[b1, . . . , bt][x]→ K

be the homomorphism of k-algebras sending the bi to themselves and x to b.

The kernel ker(φ) is then a prime ideal (since the image of φ is a domain) and by construction we

have P (x) ∈ ker(φ). Now the ideal (P ) ⊆ k[b1, . . . , bt][x] is also prime, since P is irreducible. Hence

cod((P ), k[b1, . . . , bt][x]) = 1 by Krull’s principal ideal theorem (see Th. 11.13 in CA). On the other hand,

the fraction field of

Im(φ) = k[b1, . . . , bt, b] ' k[b1, . . . , bt][x]/ker(φ)

is the field K and K has transcendence degree t by assumption. Thus

dim(k[b1, . . . , bt][x]/ker(φ)) = t
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by Corollary 11.28 in CA. Using Theorem 8.7, we deduce that

cod(ker(φ), k[b1, . . . , bt][x]) = dim(k[b1, . . . , bt][x])− t = t+ 1− t = 1.

Hence we must have ker(φ) = (P ), for otherwise we would have cod(ker(φ), k[b1, . . . , bt][x]) > 2.

So we conclude that k[b1, . . . , bt][x]/(P ) ' k[b1, . . . , bt, b].

Now the bi are algebraically independent and thus the k-algebra k[b1, . . . , bt][x] can be viewed as the coor-

dinate ring of kt+1. The ring k[b1, . . . , bt][x]/(P ) is thus isomorphic to the coordinate ring of an irreducible

algebraic set V in kt+1, whose (prime) radical ideal is generated by a single irreducible polynomial. Since

the function field of V is isomorphic to K as a K-algebra, it satisfies the conclusion of the proposition (by

Proposition 9.3).

Proof. (of Proposition 13.6) We first show that Sing(X) is closed. Let {Ui} be an open affine covering

of X. By Proposition 13.3, a point x ∈ Ui is nonsingular in X iff it is nonsingular in Ui, ie we have

Sing(X) ∩ Ui = Sing(Ui). On the other hand, the set Sing(X) is closed iff Sing(X) ∩ Ui is closed for all i

(why?). Hence we may assume that X is isomorphic to an algebraic set V ⊆ kn for some n.

Let P1, . . . , Pt be generators of I(V ) ⊆ k[x1, . . . , xn]. From the remark following the proof of Proposition

13.3, we have

Sing(V ) = {v̄ ∈ V | rk[(
∂

∂xj
Pi)(v̄)]ij < n− dim(V )}.

Now recall that

rk[(
∂

∂xj
Pi)(v̄)]ij = max{h ∈ N | there exists a h× h-submatrix M in [(

∂

∂xj
Pi)(v̄)]ij such that det(M) 6= 0}

and hence

Sing(V ) = {v̄ ∈ V |det(M) = 0 for all the (n− dim(V ))× (n− dim(V ))-submatrices M in [(
∂

∂xj
Pi)(v̄)]ij}

and hence Sing(V ) is the zero set of a set of polynomials and is thus closed.

We now prove that Sing(X) 6= X. Again, we only show this when char(k) = 0 (but the statement holds

without that assumption). We may replace wlog X by any of its open subsets and so thanks to Proposition

13.7 we may suppose that X is an algebraic set V ⊆ kn such that I(V ) = (P ), where P ∈ k[x1, . . . , xn] is

an irreducible polynomial. In this situation, we have to show that

Sing(V ) = {v̄ ∈ V | ( ∂

∂x1
P )(v̄) = (

∂

∂x2
P )(v̄) = · · · = (

∂

∂xn
P )(v̄) = 0} 6= V.

Suppose for contradiction that Sing(V ) = V . Then P | ∂∂xi
P for all i since P is irreducible. Now let i0 be such

that P has a monomial divisible by xi0 . This exists since P is irreducible and in particular not constant.

In that case ∂
∂xi0

P 6= 0 (note that we use the fact that char(k) = 0 here) and degxi0
( ∂
∂xi0

P ) < degxi0
(P ).

In particular, ∂
∂xi0

P is not divisible by P . This is a contradiction, so Sing(V ) 6= V .

14 Blowing up

The blow-up construction is a geometric construction, which replaces the ambient variety of a closed subva-

riety by a new variety, which lies over it and such that the inverse image of the closed subvariety is locally
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defined by one equation. This new variety often has better properties than the new one - eg the blow-up of

a variety at a singular point tends to be ”less” singular than the original variety. This construction is best

understood in the language of schemes. In this section, we explain in the language of varieties how to blow

up an affine variety at a point. We can only establish few properties of such blow-ups in our setting.

Let n > 1. Let x1, . . . , xn be variables for kn and let y1, . . . , yn be homogenous variables for Pn−1(k). Note

that contrary to what is customary, the index of the homogenous variables runs between 1 and n here (not

0 and n − 1). Let Z be the subset of kn × Pn−1(k) defined by the equations {xiyj − xjyi = 0}i,j∈{1,...,n}
(note that this makes sense because the polynomials are homogenous in the y-variables). The subset Z of

kn×Pn−1(k) is called the blow-up of kn at the origin of kn. Let φ : Z → kn the map obtained by restricting

the projection kn × Pn−1(k)→ kn to Z.

Proposition 14.1. (1) The set Z is a closed subvariety of kn × Pn−1(k).

(2) The closed subvariety φ−1({0}) of Z is canonically isomorphic to Pn−1(k). The points of φ−1(0) are in

one-to-one correspondence with the lines going through the origin of kn.

(3) The restriction of φ to the open subvariety φ−1(kn\{0}) of Z induces an isomorphism φ−1(kn\{0}) '
kn\{0}.

Proof. (1) On the open affine subset kn × Un−1
j0

, Z is given by the equations

{xiyj − xjyi = 0, xi − xj0yi = 0}i∈{1,...,n},j∈{1,...,j0−1,j0+1,...,n}.

The set Z ∩ kn × Un−1
j0

is thus closed in kn × Un−1
j0

. Since the kn × Un−1
j cover kn × Pn−1(k), we see that

Z is closed.

(2) It follows from the definitions that φ−1({0}) = {0} × Pn−1(k).

(3) Suppose that 〈X1, . . . , Xn〉 6= 0. Then there is an i0 such that Xi0 6= 0. The equations for Z then give

Yj = Xj(Yi0/Xi0) for all j. Up to multiplication of all the Yj by a non zero scalar factor, the only solution

to this set of equations is 〈X1, . . . , Xn〉. In particular, we have

φ−1(〈X1, . . . , Xn〉) = {〈X1, . . . , Xn〉} × {[X1, . . . , Xn]}.

This shows that the morphism φ−1(kn\{0}) → kn\{0} is a bijection. To show that it is an isomorphism,

we shall provide an inverse morphism. For this, consider the morphism q : kn\{0} → Pn−1(k) introduced

in question 3.7. We define a map kn\{0} → Z by the formula g := Idkn\{0}
∏
q. By construction, this gives

an inverse of the morphism φ−1(kn\{0})→ kn\{0}.

Let now X ⊆ kn be a closed subvariety (ie an algebraic set). Let v̄ := 〈v1, . . . , vn〉 ∈ X and suppose that

{v̄} is not an irreducible component of X. Let τv̄ : kn → kn be the map such that

τv̄(〈w1, . . . , wn〉) = 〈w1 + v1, . . . , wn + vn〉

for all w̄ = 〈w1, . . . , wn〉 ∈ kn (note that this is an automorphism of the variety kn). Let Y := τ−v̄(X). Note

that by construction we have 0 ∈ Y .

We define the blow-up Bl(X, v̄) of X at v̄ to be the closure of φ−1(Y \{0}) in Z. Let b : Bl(X, v̄) → X be

the morphism τv̄ ◦ φ|Bl(X,v̄).

Proposition 14.2. (1) We have φ(Bl(X, v̄)) = Y . In particular, b is surjective.
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(2) Suppose that X is irreducible. Then Bl(X, v̄) is an irreducible component of φ−1(Y ) ⊆ kn×Pn−1(k). The

morphism b is birational. If X 6= kn, the irreducible components of φ−1(Y ) are Bl(X, v̄) and {0}×Pn−1(k).

The closed set b−1({v}) = Bl(X, v̄) ∩ ({0} × Pn−1(k)) is called the exceptional divisor of Bl(X, v̄).

Proof. (1) Note first that v̄ lies in the closure of X\{v̄}. To see this, let C be the irreducible component

of X containing v̄. Then C\{v̄} is non-empty (by assumption) and it is open in C (since {v̄} is closed).

Furthermore, C\{v̄} is not closed in C, for otherwise C would be disconnected and hence reducible. Thus

v̄ lies in the closure of C\{0} in C (which must be C) and hence v̄ lies in the closure of X\{v̄} in X.

Now since Pn−1(k) is complete (see Theorem 12.9), we know that φ(Bl(X, v̄)) is closed. By (3) of Proposition

14.1, we know that φ(Bl(X, v̄))\{0} = Y \{0} and thus by the reasoning in the last paragraph, we see that

0 ∈ φ(Bl(X, v̄)). In particular, φ(Bl(X, v̄)) = Y .

(2) From (3) of Proposition 14.1 we know that the natural morphism φ−1(Y \{0}) → Y \{0} is an isomor-

phism. Now if X is irreducible, so is Y and so is Y \{0}. Hence Bl(X, v̄) is irreducible by question 2.5 (1).

On the other hand, Bl(X, v̄) ⊆ φ−1(Y ) since φ−1(Y ) is closed in Z. Since Bl(X, v̄) contains the non empty

open subset set φ−1(Y \{0}) of φ−1(Y ), we see that Bl(X, v̄) is an irreducible component of φ−1(Y ). Since

φ−1(Y \{0})→ Y \{0} is an isomorphism, the morphism b is birational.

On the other hand, we have by construction φ−1(Y ) = Bl(X, v̄) ∪ ({0} × Pn−1(k)). Now suppose that

X 6= kn. We then have {0} × Pn−1(k) 6⊆ Bl(X, v̄) because

dim({0} × Pn−1(k)) = n− 1 > dim(Bl(X, v̄)) = dim(X) 6 n− 1

(use Proposition 9.2, question 2.7 and Theorem 8.7). Since {0}×Pn−1(k) is irreducible (since it is isomorphic

to Pn−1(k)) we see that the irreducible components of φ−1(Y ) are Bl(X, v̄) and {0} × Pn−1(k).

Example. Let C be the curve y2 = x3 in k2. Let b : Bl(C, 0)→ C of C be the blow-up of C at the origin.

(1) We have Bl(C, 0) ' k.

(2) The map b is a homeomorphism but is not an isomorphism.

Use the terminology of the last two propositions, letting n = 2 and X = Z(x2
2 − x3

1) = Y (note that

the point to blow-up is the origin so we do not have to translate X). We first compute φ−1(X). Let

π : kn × P1(k)→ kn be the natural projection. By definition

φ−1(X) = π−1(X) ∩ Z = Z(x1y2 − x2y1, x
2
2 − x3

1)

Let U1 := {[1, Y2] |Y2 ∈ k} ⊂ P1(k). In k2 × U1, we have

φ−1(X) ∩ (k2 × U1) = Z(x1y2 − x2, x
2
2 − x3

1) = Z(x1y2 − x2, x
2
1y

2
2 − x3

1)

= Z(x1y2 − x2, x1) ∪ Z(x1y2 − x2, y
2
2 − x1) = ({0} × U1) ∪ Z(x1y2 − x2, y

2
2 − x1)

The closed set Z(x1y2 − x2, y
2
2 − x1) does not contain {0} × U1. Also φ−1(X) ∩ (k2 × U1) has at most two

irreducible components by Proposition 14.2 (2) so we conclude that

Z(x1y2 − x2, y
2
2 − x1) = Bl(X, 0) ∩ (k2 × U1).

On the other hand, Z(x1y2 − x2, y
2
2 − x1) ∩ ({0} × U1) = {0} × {[1, 0]}.
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We now repeat the above reasoning for U2 := {[Y1, 1] |Y1 ∈ k} ⊆ P1(k) instead of U1. We have

φ−1(X) ∩ (k2 × U2) = Z(x1 − x2y1, x
2
2 − x3

1) = Z(x1 − x2y1, x
2
2 − x3

2y
3
1)

= Z(x1 − x2y1, x2) ∪ Z(x1 − x2y1, 1− x2y
3
2) = ({0} × U2) ∪ Z(x1 − x2y1, 1− x2y

3
2)

As before, we have Z(x1 − x2y1, 1− x2y
3
2))∩ (k2 ×U2) = Bl(X, 0)∩ (k2 ×U2). On the other hand, a simple

calculation shows that Z(x1 − x2y1, 1− x2y
3
2) ∩ ({0} × U2) = ∅.

So we conclude that the exceptional divisor of Bl(X, 0) consists of the one point {0}×{[1, 0]}. In particular,

the map b : Bl(X, 0) → X is bijective. Since P1(k) is complete, the morphism b sends closed sets to closed

sets (see Theorem 12.9 and Corollary 12.10) and thus (since b is bijective), b sends open sets to open sets.

Hence b is a homeomorphism. Taking into account (1), which we will establish below, we see that b is

not an isomorphism because k is smooth whereas X has a singularity at 0. Indeed, X is irreducible and

of dimension 1 (use Theorem 8.4, Corollary 8.8 and Theorem 8.9) and the gradient 〈−3x2
1, 2x2〉 of the

polynomial x2
2 − x3

1 vanishes at 〈0, 0〉 ∈ X. This establishes (2).

We now turn to (1). We have

φ−1(X) ∩ k2 × (P1\U1) = Z(x1y2 − x2y1, x
2
2 − x3

1, y1) = Z(x1, y1, x2) = {0} × {[0, 1]}

and this set is not in Bl(X, 0) by the above. Hence

Bl(X, 0) = Z(x1y2 − x2, y
2
2 − x1) ⊆ {0} × U1 ⊆ k3

We claim that the map A(t) = 〈t2, t3, t〉 gives an isomorphism between k and Z(x1y2 − x2, y
2
2 − x1). Indeed

this map has an inverse, which is the restriction to Z(x1y2 − x2, y
2
2 − x1) of the map B : k3 → k given by

the formula B(X1, X2, Y2) = Y2. To verify this, note first that we clearly have A(t) ∈ Z(x1y2 − x2, y
2
2 − x1)

and B(A(t)) = t. Secondly, for 〈X1, X2, Y2〉 ∈ Z(x1y2 − x2, y
2
2 − x1) we have

A(B(X1, X2, Y2)) = (Y 2
2 , Y

3
2 , Y2)

and we have Y 2
2 = X1, Y 3

2 = X1Y2 = X2. We conclude that Bl(X, 0) ' k. This establishes (1).

15 Appendix. Proof of Theorem 8.7.

The material in this appendix is not examinable.

Let R be a ring and let p be a prime ideal of R. From the definition of dimension and height, we have the

inequality

dim(R/p) + ht(p) 6 dim(R).

This inequality is not an equality in general. However, it is an equality if R is a finitely generated domain

over a field.

If R is a finite-dimensional noetherian ring and n > 0, we shall say that R satisfies DE(n) if

dim(R/p) + ht(p) = dim(R)

for all prime ideals p of R such that ht(p) = n.
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Theorem A( = Theorem 8.7). Let R be a finitely generated domain over k. Then R satisfies DE(n) for all

n > 0.

The assumption that k is algebraically closed will not be used in the proof, so the result holds without that

assumption.

Proceed as follows.

(1) Show that to prove Theorem A, it is sufficient to show that any finitely generated domain over a field

satisfies DE(1). [Hint: induction on n.]

Solution. Suppose that any finitely generated domain over k satisfies DE(1). Let R be a finitely generated

domain over k. We prove that

dim(R/p) + ht(p) = dim(R)

by induction on ht(p). The case ht(p) = 0 is clear, since in that case p = (0) (since R is a domain) so we

may suppose that ht(p) > 1. Let p be a prime ideal and let

p = p0 ) p1 ) · · · ) pδ

be a descending chain of prime ideals of length δ := ht(p). We suppose that any finitely generated domain

over k satisfies DE(0),DE(1), . . . ,DE(δ − 1). Since p0 is minimal over p1, we have ht(p/p1) = 1. We thus

have

ht(p/p1) + dim(R/p) = dim(R/p1)

Also, we have ht(p1) = δ − 1 > 1 by construction. So we have

dim(R/p1) + ht(p1) = dim(R)

We conclude that

1 + dim(R/p) = dim(R)− (δ − 1)

or in other words that

ht(p) + dim(R/p) = dim(R)

as required.

(2) Show that to prove that any finitely generated domain over a field satisfies DE(1), it is sufficient to

prove that any polynomial ring k[x1, . . . , xd] (d > 0) satisfies DE(1). [Hint: apply Noether’s normalisation

lemma and the Going-up theorem.]

Solution. Suppose that any polynomial ring over k satisfies DE(1). Let R be a finitely generated domain

over k. By Noether’s normalisation lemma, there is an injection k[x1, . . . , xd] ↪→ R (d > 0) making R into

a finite k[x1, . . . , xd]-algebra. Let P := k[x1, . . . , xd]. Let p be a prime ideal of height one in R. By the

Going-up theorem and Q1 of Sheet 3 in CA, the height of p and the height of p ∩ P is the same. Hence

1 + dim(P/p ∩ P ) = dim(P ).

By Lemma 11.28 in CA, we have dim(P ) = dim(R). Also R/p is an integral extension of P/p∩ P and thus

dim(R/p) = dim(P/p ∩ P ) by the same lemma. We conclude that 1 + dim(R/p) = dim(R), as required.

(3) Prove that the height of a maximal ideal in k[x1, . . . , xd] is d for any d > 1. [Hint: use the method of

Sheet 3, Q6 in CA.]
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Solution. Let m be a maximal ideal of k[x1, . . . , xd] =: P . In Sheet 3, Q6 of CA it is shown that m is

generated by polynomials P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd). In the course of the proof

(this can be seen in the solution, which is available), it is also shown that the ideals

ai := (P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pi(x1, . . . , xi))

are maximal in k[x1, . . . , xi] for all i = 1, . . . , d. It was shown at the beginning of section 11.4 of CA that

we have aiP = ai[xi+1, . . . , xd]. This implies that aiP 6= ai+1P for otherwise

ai[xi+1] = aiP ∩ k[x1, . . . , xi+1] = ai+1P ∩ k[x1, . . . , xi+1] = ai+1.

This is not possible because ai+1 is maximal in k[x1, . . . , xi+1] and ai[xi+1] is not, because

k[x1, . . . , xi+1]/ai[xi+1] = (k[x1, . . . , xi]/ai)[xi+1],

which is a domain but not a field.

Hence we obtain a chain of prime ideals

m ) ad−1P ) ad−2P ) · · · ) a1P ) (0)

and thus ht(m) > d. Since we also have ht(m) 6 d = dim(P ) (by Corollary 11.26 in CA), we thus have

ht(m) = d.

(4) Prove that the height of a maximal ideal in a finitely generated domain R over k is dim(R). [Hint: apply

Noether’s normalisation lemma and (3). When k is algebraically closed, this is done in [1], Theorem 11.25.]

Solution. Let m be a maximal ideal of R. By Noether’s normalisation lemma, there is an injection

k[x1, . . . , xd] ↪→ R (d > 0) making R into a finite k[x1, . . . , xd]-algebra. Let P := k[x1, . . . , xd]. Let p be a

prime ideal of P , which lies over R (this exists by Th. 8.8). By the Going-down theorem (Q1 of Sheet 4 in

CA) and question 3.2, the height of p and the height of p∩P is the same and by Corollary 8.20 of CA, p is

also a maximal ideal of P . By Lemma 11.28 in CA, we have dim(P ) = dim(R) and thus the height of p is

dim(R) by (3).

(5) Let R be a local noetherian ring with maximal ideal m. Let f ∈ m. Prove that dim(R/(f)) > dim(R)−1.

[Hint: this is a consequence of Krull’s principal ideal theorem; you may follow the proof given in [3], Th.

2.5.15, p. 72.]

Solution. In this case, it is only a matter of reproducing [3], Th. 2.5.15, p. 72.

(6) Show that if R is noetherian and a UFD, then any prime ideal of height 1 is principal. [Hint: this is a

classical statement, which can be deduced from Krull’s principal ideal theorem; you may follow the proof

given in Cor. 10.6, [2], p. 236.]

Solution. The argument is given in the proof of Cor. 10.6, [2], p. 236.

(7) Deduce that any polynomial ring k[x1, . . . , xd] (d > 0) satisfies DE(1). [Hint: localise at a maximal ideal

and apply (4), (5), (6).]

Solution. Let P := k[x1, . . . , xd] and let p ∈ Spec(P ) be a prime ideal of height 1. Let m be a maximal

ideal of P , which contains p. The equality

dim(P ) = 1 + dim(P/p)
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is equivalent to the equality

dim(Pm) = 1 + dim((P/p)m/p)

by (4). Note also that we have (P/p)m/p = Pm/pPm by Lemma 5.5. in CA.

On the other hand, by (6) and the fact that P is a UFD, we have p = (f) for some f ∈ p and so

Pm/pPm = Pm/(f). By (5) and (4), we thus have

dim(Pm/pPm) > dim(Pm)− 1 = dim(P )− 1.

Hence

1 + dim(P/p) > dim(P )

Since we have 1+dim(P/p) 6 dim(P ) by the definition of dimension and height, we thus have 1+dim(P/p) =

dim(P ), as required.

(8) Prove the theorem.

Solution: (7), (2), (1).

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Student economy edition, Addison-Wesley Series

in Mathematics, Westview Press, Boulder, CO, 2016.

[2] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With

a view toward algebraic geometry.

[3] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University

Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications.

53



Exercise sheet 1. Chapters 1-4.

Part A

Question 1.1. (1) Describe the Zariski topology of k.

(2) Show that the Zariski topology of k2 is not the product topology of k × k = k2.

Question 1.2. Let V ⊆ kn be an algebraic set. Show that V is the disjoint union of two non empty algebraic

sets in kn iff there are two non-zero finitely generated reduced k-algebras T1 and T2 and an isomorphism of

k-algebras T1 ⊕ T2 ' C(V ).

Part B

Question 1.3. Let V ⊆ k3 be the set

V := {(t, t2, t3) | t ∈ k}.

Show that V is an algebraic set and that it is isomorphic to k as an algebraic set. Provide generators for

I(V ).

Question 1.4. (1) Let V ⊆ k2 be the set of solutions of the equation y = x2. Show that V is isomorphic

to k as an algebraic set.

(2) Let V ⊆ k2 be the set of solutions of the equation xy = 1. Show that V is not isomorphic to k as an

algebraic set.

(3) [difficult] (optional) Let P (x, y) ∈ k[x, y] be an irreducible quadratic polynomial and let V ⊆ k2 be the

set of zeroes of P (x, y). Show that V is isomorphic to one of the algebraic sets defined in (1) and (2).

Question 1.5. Let V ⊆ kn and W ⊆ kt be two algebraic sets. Let ψ : V →W be a regular map.

(1) Show that ψ(V ) is dense in W iff the map of rings ψ∗ : C(W )→ C(V ) is injective.

(2) Show that ψ∗ is surjective iff ψ(V ) is closed and the induced map V → ψ(V ) is an isomorphism of

algebraic sets.

Question 1.6. Let V ⊆ k3 be the algebraic set described by the ideal (x2 − yz, xz − x). Show that V has

three irreducible components. Find generators for the radical (actually prime) ideals associated with these

components.

Question 1.7. Let V ⊆ kn and W ⊆ kt be algebraic subsets. Let V0 ⊆ V and W0 ⊆ W be open subsets.

View V0 and W0 as open subvarieties of V and W respectively. For i ∈ {1, . . . , t} let πi : kt → k be the

projection on the i-coordinate. Let ψ : V0 →W0 be a map. Show that ψ is a morphism of varieties iff πi ◦ψ
is a regular function on V0 for all i ∈ {1, . . . , t}.

Part C

Question 1.8. Show that the open subvariety k2\{0} of k2 is not affine.
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Exercise sheet 2. Chapters 1-8.

Part A

Question 2.1. Give an example of a noetherian topological space of infinite dimension.

Question 2.2. (1) Let P (x0, . . . , xn) be a homogenous polynomial. Show that all the irreducible factors of

P are also homogenous.

(2) Let D ⊆ Pn(k) be a closed subvariety. Suppose that D is irreducible and that cod(D,Pn(k)) = 1. Show

that there is a homogenous irreducible polynomial P ∈ k[x0, . . . , xn] such that D = Z(P ).

Part B

Question 2.3. Let V (resp. W ) be a closed subvariety of Pn(k) (resp. Pt(k)). Let V0 ⊆ V (resp. W0 ⊆W )

be an open subset of V (resp. and open subset of W ). View V0 (resp. W0) as an open subvariety of V

(resp. W ). Let Q0, . . . , Qt ∈ k[x0, . . . , xn] be homogenous polynomials of the same degree. Suppose that

V0 ∩ Z((Q0, . . . , Qt)) = ∅. Let f : V0 → Pt(k) be the map given by the formula f(v̄) := [Q0(v̄), . . . , Qt(v̄)].

Suppose finally that f(V0) ⊆W0. Show that the induced map V0 →W0 is a morphism of varieties.

Question 2.4. Prove Lemma 7.1.

Question 2.5. Let T be a topological space.

(1) Let S ⊆ T be a subset. Suppose that S is irreducible. Show that the closure of S in T is also irreducible.

(2) Suppose that T is noetherian. Show that T is Hausdorff iff T is finite and discrete.

(3) Let V be a variety. Show that V is irreducible iff the ring OV (U) is an integral domain for all open

subsets U ⊆ V .

(4) Suppose T is noetherian. Show that T is quasi-compact.

Question 2.6. Prove Lemma 8.1.

Question 2.7. Let T be a topological space. Let {Vi} be an open covering of T. Let C ⊆ T be an irreducible

closed subset (hence non empty).

(1) Show that C ∩ Vi is irreducible if C ∩ Vi 6= ∅ and that supi,C∩Vi 6=∅ cod(C ∩ Vi, Vi) = cod(C, T ) and

supi dim(Vi) = dim(T ).

(2) Prove Proposition 8.6.

Question 2.8. (1) Show that any element of GLn+1(k) (= group of (n+ 1)× (n+ 1)-matrices with entries

in k and with non zero determinant) defines an automorphism of Pn(k).

(2) Show that if V is a projective variety, then for any two points v1, v2 ∈ V , there is an open affine

subvariety V0 ⊆ V such that v1, v2 ∈ V0.

Part C

Question 2.9. Let i ∈ {0, . . . , n} and let ui : kn → Pn(k) be the standard map (with image the co-

ordinate chart Ui). Let C ⊆ kn be a closed subvariety of kn (ie an algebraic set in kn). For any
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P ∈ k[x0, . . . , xi−1, qxi, xi+1, . . . , xn] let

βi(P ) := x
deg(P )
i P (

x0

xi
, . . . ,

xi−1

xi
,

|xi
xi
,
xi+1

xi
, . . . ,

xn
xi

) ∈ k[x0, . . . , xn].

(1) Let C̄ be the closure of ui(C) in Pn(k). Show that (βi(I(C))) = I(C̄) (where (βi(I(C))) is the ideal of

k[x0, . . . , xn] generated by all the elements of βi(I(Z))).

(2) Suppose that I(C) = (J) (ie I(C) is a principal ideal with generator J). Show that (βi(J)) = I(C̄).

(3) Suppose that n = 3 and that C is the variety considered in question 1.3. Describe the closure of u0(C)

in P3(k). Find homogenous polynomials (H1, . . . ,Hh) such that Z(H1, . . . ,Hh) is the closure of u0(C) in

P3(k).
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Exercise sheet 3. Chapters 1-12.

Part A

Question 3.1. Show that k2 is not homeomorphic to P2(k).

Part B

Question 3.2. Let V0 = Z(x0x3 − x2
1) ⊆ P3(k) and V1 = Z(x1x3 − x2

2) ⊆ P3(k). Let C := V0 ∩ V1 ⊆ P3(k).

Let U := P3\Z(x0, x1, x2) and endow U with its structure of open subvariety of P3(k). Let g : U → P2(k) be

the morphism such that g([X0, X1, X2, X3]) = [X0, X1, X2] for all [X0, X1, X2, X3] ∈ U (see question 2.3).

(1) Show that the morphism g|C∩U : C ∩ U → P2(k) extends to a morphism f : C → P2(k).

(2) Show that f(C) is closed and that f(C) = Z(z0z
2
2 − z3

1).

(3) Show that the induced map f : C → f(C) is an isomorphism.

Question 3.3. (1) Let f : X → Y be a surjective morphism of quasi-projective varieties. Suppose that X

is complete. Show that Y is also complete.

(2) Show that a noetherian topological space only has finitely many connected components.

(3) Let (V,OV ) be a projective variety. Show that the k-vector space OV (V ) is finite-dimensional.

Question 3.4. Let V and W be quasi-projective varieties. Suppose that V is irreducible. Let Mor(V,W )

be the set of morphisms from V to W and let ρ : Mor(V,W )→ Rat(V,W ) be the natural map (ie ρ sends

a morphism to the rational map it represents). Show that ρ is injective.

Question 3.5. (1) Show that for any m,n > 0, km
∏
kn ' kn+m.

(2) Let V ⊆ km and W ⊆ kn be algebraic sets. Show that V ×W ⊆ kn+m is an algebraic set and describe

I(V ×W ). Show that the affine variety associated with the algebraic set V ×W ⊆ kn+m is a product of

the affines varieties associated with V and W .

Question 3.6. Let a : X → Y be a rational map between two quasi-projective varieties. Suppose that Y

is quasi-projective. Show that there is a unique representative f : O ⊆ X of a (where O ⊆ X is an open

subvariety of X) such that if f : U → Y is a representative of a then U ⊆ O. The open set O is called the

open set of definition of a.

Question 3.7. Let n > 0 and let q : kn+1\{0} → Pn(k) be the map such that q(v̄) = [v̄] for all v̄ ∈ kn+1\{0}.
Let V ⊆ Pn(k) be a closed subset. Endow kn+1\{0} with the structure of variety it inherits from kn+1 as

an open subset.

(1) Show that q is a morphism of varieties.

(2) Show that I(V ) is prime iff V is irreducible.

(3) Show that q−1(V ) is irreducible iff V is irreducible.

Part C

Question 3.8. (1) Let U ⊆ P1(k) be an open subset (for the Zariski topology). Let f : U → P1(k) be a

morphism of varieties. Show that there exists a morphism of varieties g : P1(k)→ P1(k) such g|U = f .
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(2) Show that every automorphism of P1(k) is of the form described in question 2.8.

(3) Show that k is not isomorphic to any of its proper open subvarieties (an open subvariety is proper if it

is not equal to k).
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Exercise sheet 4. All lectures.

Part A.

Question 4.1. Let f : X → Y be a regular map between varieties. Suppose that X is quasi-projective.

Let σ : Y → X be a regular map such that f ◦ σ = IdY (such a map is called a section of f). Show that

σ(Y ) is closed in X.

Part B.

Question 4.2. Suppose in this exercise that char(k) = 0. Find the singularities of the following curves C

in k2. For each singular point P ∈ C compute the dimension of mP /m
2
P as a k-vector space. Here mP is

the maximal ideal of OC,P .

(1) Z(x6 + y6 − xy)

(2) Z(y2 + x4 + y4 − x3)

You may assume that the polynomials x6 + y6 − xy and y2 + x4 + y4 − x3 are irreducible.

Question 4.3. Let C be the plane curve considered in (1) of question 4.2. Consider the blow-up B of C

at each of its singular points in turn. How many irreducible components does the exceptional divisor of B

have? Is B nonsingular?

Question 4.4. Let V ⊆ k2 be the algebraic set defined by the equation x1x2 = 0. Show that Bl(V, 0) has

two disjoint irreducible components and that each of these components is isomorphic to k.

Question 4.5. Let C ⊆ k2 be defined by the equation P (x1, x2) = 0, where P (x1, x2) is an irreducible

polynomial. Suppose that C goes through the origin 0 of k2 and is non singular there. Show that the natural

morphism Bl(C, 0) → C is an isomorphism. [Hint: construct an inverse map directly, without looking at

coordinate charts]

Part C.

Question 4.6. (1) Let f : X → Y be a dominant morphism of varieties. Suppose that Y is irreducible.

Show that dim(X) > dim(Y ).

(2) Let f : X → Y be a dominant morphism of irreducible varieties. Suppose that the field extension

κ(X)|κ(Y ) is algebraic. Show that there are affine open subvarieties U ⊆ X and W ⊆ Y such that

f(U) = W and such that the map of rings OX(U)→ OY (V ) is injective and finite.

(3) Let f : X → Y be a dominant morphism of irreducible quasi-projective varieties. Show that there is

a y ∈ Y such that we have dim(f−1({y})) > dim(X) − dim(Y ). [Hint. Reduce to the situation where Y

is affine and apply Noether’s normalisation lemma to show that you may assume wlog that Y = kn for

some n. Now use the existence of transcendence bases and (2) to show that there is an open subvariety

U ⊆ X and an open subvariety W of kdim(X)−dim(Y ) × kn such that f |U factors as a finite and surjective

morphism U → W , followed by the projection to kn. Now deduce the result from (1) and a computation of

the dimension of the fibres of the projection kdim(X)−dim(Y ) × kn → kn.]

(4) Deduce that in the situation of (3), the set of y ∈ Y such that we have dim(f−1({y})) > dim(X)−dim(Y )

is dense in Y .



Question 4.7. (1) Show that all the morphisms from P2(k) to P1(k) are constant. [Hint: Use question 4.6

and the projective dimension theorem.]

(2) Using (1) or using another method, show that the morphisms from Pn(k) to P1(k) are constant.
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