Exercise sheet 1. Chapters 1-4.

Part A

Question 1.1. (1) Describe the Zariski topology of k.

(2) Show that the Zariski topology of k^2 is not the product topology of $k \times k = k^2$.

Solution. (1) The non empty closed sets of k are the vanishing sets of polynomials in one variable, so the non empty closed sets are precisely the finite subsets of k.

(2) Let $W \subseteq k^2$ the vanishing set of the polynomial P(x,y) := xy - 1. We will show that if U and V are open sets in k, then $U \times V \cap W \neq \emptyset$. This shows that the open subset $k^2 \setminus W$ is not a union of open subsets of the type $U \times V$, and so the Zariski topology on k^2 is not the product topology. By (1), we have $U = k \setminus A$, where A is finite (resp. $V = k \setminus B$, where B is finite). We need to show that xy - 1 vanishes at some point of $U \times V$. For any $a \neq 0$, we have P(a, 1/a) = 0. As a runs through $U \setminus \{0\}$, the function 1/a takes infinitely many values (since U is infinite), so for some $a_0 \in U$ we have $1/a_0 \in V$. We then have $(a_0, 1/a_0) \in W$ and $(a_0, 1/a_0) \in U \times V$. Hence $W \cap U \times V \neq \emptyset$.

Question 1.2. Let $V \subseteq k^n$ be an algebraic set. Show that V is the disjoint union of two non empty algebraic sets in k^n iff there are two non-zero finitely generated reduced k-algebras T_1 and T_2 and an isomorphism of k-algebras $T_1 \oplus T_2 \simeq \mathcal{C}(V)$.

Solution. Suppose that V is the disjoint union of two non empty algebraic sets V_1 and V_2 in k^n . Let $I_1 := \mathcal{I}(V_1) \subseteq \mathcal{C}(V)$ and let $I_2 := \mathcal{I}(V_1) \subseteq \mathcal{C}(V)$ be the radical ideals in $\mathcal{C}(V)$ corresponding to V_1 and V_2 . The intersection $I_1 \cap I_2$ consists of the regular functions on V which vanish on both V_1 and V_2 and thus on all of V. Thus $I_1 \cap I_2 = 0$. On the other hand, if $f: V \to k$ is a regular function, then the function f_1 which is 0 on V_2 and equal to f on V_1 is a regular function by Proposition 4.5. Similarly, the function f_2 which is 0 on V_1 and equal to f on V_2 is a regular function. By construction, we have $f_1 \in I_2$, $f_2 \in I_1$ and $f_1 + f_2 = f$. We conclude that $I_1 + I_2 = \mathcal{C}(V)$. We might now apply the Chinese remainder theorem to conclude that $\mathcal{C}(V) \simeq \mathcal{C}(V)/I_1 \oplus \mathcal{C}(V)/I_2$.

Conversely, suppose that $C(V) \simeq R_1 \oplus R_2$, where R_1 and R_2 are finitely generated reduced k-algebras. Let $I_1 := \{(a,0) \mid a \in R_1\}$ and $I_2 := \{(0,a) \mid a \in R_2\}$. We clearly have $I_1 \cap I_2 = 0$ and $I_1 + I_2 = C(V)$. Also, I_1 and I_2 are easily seen to be radical. Hence V is the disjoint union of $Z(I_1)$ and $Z(I_2)$ by Lemma 2.8 and the following discussion.

Part B

Question 1.3. Let $V \subseteq k^3$ be the set

$$V:=\{(t,t^2,t^3)\,|\,t\in k\}.$$

Show that V is an algebraic set and that it is isomorphic to k as an algebraic set. Provide generators for $\mathcal{I}(V)$.

Solution. We have $V = \mathbb{Z}((x_2 - x_1^2, x_3 - x_1^3))$ so V is an algebraic set. If we let $A: k \to k^3$ be the polynomial map such that $A(t) := (t, t^2, t^3)$ and $B: k^3 \to k$ be the polynomial map such that $B(x_1, x_2, x_3) = x_1$, then $A(k) \subseteq V$, $B|_V \circ A = \mathrm{Id}_k$, $A \circ B|_V = \mathrm{Id}_V$ so A and $B|_V$ are regular maps from k to V and from V to k

respectively, which are inverse to each other. So they gives an isomorphism between V and k. We still have to provide generators for $\mathcal{I}(V)$. For this, consider the map of k-algebras $\phi: k[x] \to k[x_1, x_2, x_3]/(x_2 - x_1^2, x_3 - x_1^3)$ sending $x \to x_1$ (resp. the map of k-algebras $\psi: k[x_1, x_2, x_3]/(x_2 - x_1^2, x_3 - x_1^3) \to k[x]$ sending x_1 to x, x_2 to x^2, x_3 to x^3). By construction, these maps are inverse to each other and thus the ideal $(x_2 - x_1^2, x_3 - x_1^3)$ is prime and in particular radical. So $\mathcal{I}(V) = (x_2 - x_1^2, x_3 - x_1^3)$.

Question 1.4. (1) Let $V \subseteq k^2$ be the set of solutions of the equation $y = x^2$. Show that V is isomorphic to k as an algebraic set.

- (2) Let $V \subseteq k^2$ be the set of solutions of the equation xy = 1. Show that V is not isomorphic to k as an algebraic set.
- (3) [difficult] (optional) Let $P(x,y) \in k[x,y]$ be an irreducible quadratic polynomial and let $V \subseteq k^2$ be the set of zeroes of P(x,y). Show that V is isomorphic to one of the algebraic sets defined in (1) and (2).

Solution. (1) This is similar to question 1.3, with $\{(t, t^2) | t \in k\}$ instead of V.

- (2) If V is isomorphic to k then $k[x,y]/(xy-1) \simeq k[t]$ by Theorem 3.7. Now note that x is a unit in k[x,y]/(xy-1) by construction and that x is not in the image of k in k[x,y]/(xy-1). Since the only units of k[t] lie in the image of k, there is thus no isomorphism $k[x,y]/(xy-1) \simeq k[t]$.
- (3) See

 $\verb|math.stack| exchange.com/questions/3577406/affine-conics-over-an-algebraically-closed-field-of-char-2006/affine-conics-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an-algebraically-closed-field-over-an$

Question 1.5. Let $V \subseteq k^n$ and $W \subseteq k^t$ be two algebraic sets. Let $\psi: V \to W$ be a regular map.

- (1) Show that $\psi(V)$ is dense in W iff the map of rings $\psi^* : \mathcal{C}(W) \to \mathcal{C}(V)$ is injective.
- (2) Show that ψ^* is surjective iff $\psi(V)$ is closed and the induced map $V \to \psi(V)$ is an isomorphism of algebraic sets.

Solution. (1) By definition of the closure of a set, $\psi(V)$ is dense in W iff any closed subset of W containing $\psi(V)$ is W. In view of Lemma 2.8 (and the following discussion) and Lemma 3.4, we thus see that $\psi(V)$ is dense in W iff I is any radical ideal of $\mathcal{C}(W)$ contained in $\psi^*(\mathfrak{m})$ for all $\mathfrak{m} \in \mathrm{Spm}(\mathcal{C}(V))$ then I is the 0 ideal. Since $\bigcap_{\mathfrak{m} \in \mathrm{Spm}(\mathcal{C}(V))} \psi^*(\mathfrak{m})$ is a radical ideal by construction, we thus see that $\psi(V)$ is dense in W iff $\bigcap_{\mathfrak{m} \in \mathrm{Spm}(\mathcal{C}(V))} \psi^*(\mathfrak{m}) = 0$. Now we have

$$\bigcap_{\mathfrak{m}\in \mathrm{Spm}(\mathcal{C}(V))} \psi^*(\mathfrak{m}) = \psi^*(\bigcap_{\mathfrak{m}\in \mathrm{Spm}(\mathcal{C}(V))} \mathfrak{m}) = \psi^*(0) = \ker(\psi^*)$$

where the equality before last holds because $\mathcal{C}(V)$ is a reduced Jacobson ring. The equivalence follows.

(2) Suppose that ψ^* is surjective. Then ψ^* induces an isomorphism $\mathcal{C}(W)/\ker(\psi^*) \simeq \mathcal{C}(V)$ and thus the map $\mathrm{Spm}(\psi^*)$ is injective and its image is the set of maximal ideals of $\mathcal{C}(W)$ which contain $\ker(\psi^*)$. This proves that $\psi(V)$ is closed and that the induced map $V \to \psi(V)$ is bijective. Furthermore, its shows that $\mathcal{I}(\psi(V)) = \ker(\psi^*)$ (note that $\ker(\psi^*)$ is radical since $\mathcal{C}(V)$ is reduced). To summarise, the maps of algebraic sets $\psi(V) \to V$ and $V \to W$ give a diagram of surjective maps of k-algebras

$$\begin{array}{ccc}
\mathcal{C}(W) & \xrightarrow{\psi^*} & \mathcal{C}(V) \\
\downarrow & & \\
\mathcal{C}(\psi(V)) & & \\
\end{array}$$

where the kernels of the two maps are equal. Hence $\mathcal{C}(\psi(V))$ is isomorphic to $\mathcal{C}(V)$ as a $\mathcal{C}(W)$ -algebra. In particular there is an isomorphism of k-algebras $\mathcal{C}(\psi(V)) \to \mathcal{C}(V)$ making the diagram commutative. Using Theorem 3.7, this gives an isomorphism $V \xrightarrow{\sim} \psi(V)$ which is compatible with the maps $V \to W$ and $\psi(V) \to W$.

Now suppose that $\psi(V)$ is closed and that the induced map $V \to \psi(V)$ is an isomorphism of algebraic sets. Let $I := \mathcal{I}(\psi(V)) \subseteq \mathcal{C}(W)$. By Theorem 3.7 the map ψ^* factors through $\mathcal{C}(W)/I$ and the induced map $\mathcal{C}(W)/I \to \mathcal{C}(V)$ is an isomorphism. In particular ψ^* is surjective.

Question 1.6. Let $V \subseteq k^3$ be the algebraic set described by the ideal $(x^2 - yz, xz - x)$. Show that V has three irreducible components. Find generators for the radical (actually prime) ideals associated with these components.

Solution. Treat x, y, z as variable elements of k. If $x \neq 0$, then z = 1 and $y = x^2$. Also we have $\langle 0, 0, 1 \rangle \in V$ and hence $Z((x^2 - yz, xz - x)) \supseteq \{\langle x, x^2, 1 \rangle \mid x \in k\}$. We have $\{\langle x, x^2, 1 \rangle \mid x \in k\} = Z((y - x^2, z - 1))$ and the first projection gives an isomorphism between this algebraic set and k. Hence $\{\langle x, x^2, 1 \rangle \mid x \in k\}$ is an irreducible algebraic set in k^3 , which is contained in V. If x = 0, then the simultaneous solutions of the equation $x^2 = yz$ and xz = x are precisely the solutions of the equation yz = 0. The simultaneous solutions of yz = 0 and z = 0 consist of the union of the z-axis and the z-axis. So z = 0 is the union of the z-axis, the z-axis and z = 0 and z = 0 consist of the union of the z-axis and z

Question 1.7. Let $V \subseteq k^n$ and $W \subseteq k^t$ be algebraic subsets. Let $V_0 \subseteq V$ and $W_0 \subseteq W$ be open subsets. View V_0 and W_0 as open subvarieties of V and W respectively. For $i \in \{1, ..., t\}$ let $\pi_i : k^t \to k$ be the projection on the i-coordinate. Let $\psi : V_0 \to W_0$ be a map. Show that ψ is a morphism of varieties iff $\pi_i \circ \psi$ is a regular function on V_0 for all $i \in \{1, ..., t\}$.

Solution. The direction \Rightarrow of the stated equivalence is clear, since compositions of regular maps are regular and the projections π_i are polynomial maps (and regular functions are regular maps with target k). For the direction \Leftarrow of the stated equivalence, recall that by Proposition 4.5 a function is regular on V_0 iff it is regular when restricted to any member of an open covering of V_0 . Now choose an open covering of V_0 by open subsets of the form $V \setminus Z(f)$, where $f \in \mathcal{C}(V)$ (this exists by Lemma 4.1). The set $V \setminus Z(f)$ is the image of a regular injective map of algebraic sets $T \to V$, such that a function on $V \setminus Z(f)$ is regular iff its composition with the map $T \to V$ is regular (by Lemma 4.3). Hence we may suppose wrog that $V_0 = V$ (effectively replacing V_0 by T). If $V_0 = V$ and $\pi_i \circ \psi$ is a regular function on V for all $i \in \{1, \ldots, t\}$, then the induced map $V \to W$ is by definition the restriction of a polynomial map $k^n \to k^t$ and is thus a regular map. Since $W_0 \subseteq W$ is open, the map ψ is thus automatically regular.

Part C

Question 1.8. Show that the open subvariety $k^2 \setminus \{0\}$ of k^2 is not affine.

Solution. Let $f: k^2 \setminus \{0\} \to k$ be a regular function. Then the restriction of f to the complement of the x-axis is of the form $P(x,y)/x^n$ by Corollary 4.4. Similarly, the restriction to the complement of the y-axis is of the form $Q(x,y)/y^m$. Dividing by powers of x (resp. y), we may assume that P is not divisible by x (resp. Q is not divisible by y). Now we have $P(x,y)/x^n = Q(x,y)/y^m$ for all $x,y \neq 0$ and thus $Q(x,y)x^n = P(x,y)y^m$ (as polynomials) since k is infinite. Since k[x,y] is a UFD, we deduce that m=0

and that n=0 and hence that Q=P. Thus f(a,b)=P(a,b) for all a,b. In other words, the regular maps $k^2\setminus\{0\}\to k$ are all restrictions of polynomial maps $k^2\to k$. Now suppose for contradiction that $k^2\setminus 0$ is affine. We have just seen that the natural map $\mathcal{C}(k^2)\to\mathcal{C}(k^2\setminus\{0\})$ is surjective and so $k^2\setminus\{0\}$ is closed in k^2 by question 1.5 (2). But this is a contradiction, so $k^2\setminus\{0\}$ is not affine.