1 Model Theory: Introduction

• Duality:

syntactic description \longleftrightarrow structures.

- Between a universal theory and a complete theory. Quantifier elimination.
- Between a complete theory and a structure. When is a structure determined by its theory (categoricity)? Is there (in some sense) a *smallest* model? Is it unique? Is there a 'biggest' (countable) model?

2 Review of Logic: Languages

Alphabet, variables, terms, formulas.

A language L is specified by its **non-logical** symbols. These are relation symbols, function symbols, and constant symbols of given arities.

(0-place relation symbols: propositional constants. (We will not need them.) 0-place function symbols = constant symbols.) The formulas of L are formed using the non-logical symbols, and the following logical symbols:

- \simeq the equality symbol. (We will allow writing it as =.)
- A (countable) set of *variables*;
- \bot, \land, \neg Boolean connectives;
- \exists the existential quantifier;

We now construct, successively, terms, atomic formulas, quantifier-free formulas, formulas and sentences of a given language L.

L-terms are constructed recursively from the function symbols, and variable symbols.

We write $\tau = \tau(x_1, \ldots, x_n)$ to indicate that the variables occurring in τ are among x_1, \ldots, x_n . Terms with no variables are called **closed terms**

Atomic *L*-formulas have the form

(i) $\tau_1 \simeq \tau_2$ for any *L*-terms τ_1 and τ_2 or

(ii) $P(\tau_1, \ldots, \tau_{\rho})$ for any relational *L*-symbol *P* of arity ρ and *L*-terms $\tau_1, \ldots, \tau_{\rho}$.

Notice, that (i) can be seen as a special case of (ii) if we view \simeq as a relation symbol of arity 2.

An *L*-formula is defined by the following recursive definition:

(i) any atomic *L*-formula is an *L*-formula;

(ii) if φ is an *L*-formula, so are $\neg \varphi$ and \bot ;

(iii) if φ , ψ are *L*-formulas, so is $(\varphi \land \psi)$;

(iv) if φ is an *L*-formula, so is $\exists v\varphi$ for any variable v;

The set of formulas obtained using (i),(ii), (iii) along are called *quantifier-free* (qf).

Some abbreviations

 $\begin{array}{ll} \lor,\rightarrow,\leftrightarrow,\forall, \, \text{as defined in the Logic class, e.g.:} \\ (\phi\rightarrow\psi) \quad \text{is an abbreviation for} \quad \neg(\phi\wedge\neg\psi); \\ \forall v\psi \quad \text{for} \quad \neg\exists v\neg\psi. \\ x\neq y \quad \text{for} \quad \neg(x\simeq y) \end{array}$

 $\bigwedge_{i=1}^4 \phi_i \quad \text{for} \quad \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$

$$\exists^{\geq 4} x \phi(x) \quad \text{for} (\exists x_1) \cdots (\exists x_4) (\bigwedge_{i=1}^4 \phi(x_i) \land \bigwedge_{1 \leq i < j \leq 4} x_i \neq x_j)$$

It is typical of logic that formulas in *n*-variables are discussed, and *n*-tuples of elements of a structure occur more frequently than single elements. We will thus often use 'vector notation', writing *a* for (a_1, \ldots, a_n) and *x* for (x_1, \ldots, x_n) when possible. Formulas that can be formed without quantifiers (Boolean combinations of atomic formulas) are called *quantifier-free*, abbreviated qf.

A formula is *universal* if it has the form $(\forall x_1) \cdots (\forall x_n) \psi$, where ψ is quantifierfree.

Similarly one of the form $(\exists x_1) \cdots (\exists x_n) \psi$ is called *existential*.

Writing $\varphi(x_1, \ldots, x_n)$ means: φ is a formula and (x_1, \ldots, x_n) is a tuple of variables, including all the free variables of φ .

Free variables For an atomic formula $\varphi(v_{i_1}, \ldots, v_{i_n})$, all variables occurring in (the terms of) φ are said to be free. For more complex formulas, the set of free variables $FV(\phi)$ is defined recursively: $FV(\perp) = \emptyset$, $FV(\neg \psi) = FV(\phi)$, $FV(\phi \land \psi) = FV(\phi) \cup FV(\psi)$, $FV((\exists x)\phi) = FV(\phi) \setminus \{x\}$.

An L-formula with no free variables is called an L-sentence.

We write |L| for the cardinality of the set of L-formulas.

Exercise Show that $L = \max\{\aleph_0, |Symb(L)|\}$ where Symb(L) is the set of non-logican symbols of L.

Proof. We have $|L| \ge \aleph_0$ since we always have, for instance, the countably many sentences: $(\exists^{\ge n} x)(x = x)$.

Also $|L| \ge |Symb(L)|$.

To see that $|L| \leq \max(\aleph_0, |Sym(L)|)$: a formula can be viewed as a finite string of characters, taken from among the non-logical symbols of L, the finitely many logical symbols including \simeq , and parentheses.

So it suffices to show that the set $\cup_n X^n$ of finite sequences from a set X, itself has cardinality $\leq \max(|X|, \aleph_0)$.

If X is finite, we have $|X^n| = |X|^n < \aleph_0$ and so $|\bigcup_n X_n| \le \aleph_0$. If X is infinite, $|X^n| = |X|$ and so $|\bigcup_n X_n| \le \aleph_0 |X| = |X|$.

Proof systems

A major part of the Logic class was devoted to *proof systems*. A relation was defined between sets of sentences, and a sentence:

 $\Gamma \vdash \psi$ iff there exists a formal proof of ψ , under hypotheses taken from Γ . Formal proofs play no role in model theory, and will provide no more than silent background intuition.

But we do record the following observation:

Proposition. If $\Gamma \vdash \psi$, then there exists a finite $\Gamma_0 \subset \Gamma$ such that $\Gamma_0 \vdash \psi$.

This is immediate, since a formal proof has by definition a finite sequence of steps, and at each step only one hypothesis can be quoted.

3 Review of Logic: Structures

Let L be a language, consisting of relation symbols P_i $(i \in I)$, function symbols for $j \in J$, and constant symbols $c_k (k \in K)$. An L-structure is an object of the form

$$\underline{A} = \left\langle A; \{P_i^{\underline{A}}\}_{i \in I}; \{f_j^{\underline{A}}\}_{j \in J}; \{c_k^{\underline{A}}\}_{k \in K} \right\rangle.$$

consisting of:

(i) a set A called the *domain* or *universe* of the L-structure;

(ii) an assignment of an r-ary relation (subset) $P^{\underline{A}} \subseteq A^r$ to each relation symbol P of L of arity r;

(iii) an assignment of an *m*-ary function $f^{\underline{A}} : A^m \to A$ to any function symbol f of L of arity m;

(iv) an assignment of an element $c^{\underline{A}} \in A$ to any constant symbol c of L.

 $\{P_i^{\underline{A}}\}_{i \in I}, \{f_j^{\underline{A}}\}_{j \in J}$ and $\{c_k^{\underline{A}}\}_{k \in K}$ are called the *interpretations in* \underline{A} of the predicate, function and constant symbols correspondingly.

Writing $\langle A; \{P_i^A\}_{i \in I}; \{f_j^A\}_{j \in J}; \{c_k^A\}_{k \in K} \rangle$ implicitly specifies the language L. For instance, $(\mathbb{R}, 0, +, -)$ is a structure for the *language of groups*, a language with a constant symbol, a unary function symbol and a binary function symbol. Similarly, $(\mathbb{R}, 0, 1, +, -, \cdot)$ is a structure for the *language of rings*; they have the same domain, but are structures for different languages.

Embeddings and isomorphisms

Fix a language L. We have defined L-structures; we will now define the notion of an *embedding* of L-structures. It is a straightforward generalization of the various cases you have seen in algebra, such as an embedding of groups, rings, or ordered fields.

Let $\underline{A}, \underline{B}$ be L-structures, with universes A, B respectively.

An embedding (or L-embedding) of \underline{A} in \underline{B} is a one-to-one function $\pi : A \to B$ which preserves corresponding relation, function and constant symbols, i.e. for any relation symbol P, function symbol F, constant symbol c of L we have:

(i) $\bar{a} \in P^{\underline{A}}$ iff $\pi(\bar{a}) \in P^{\underline{B}}$; (ii) $\pi(F^{\underline{A}}(\bar{a})) = F^{\underline{B}}(\pi(\bar{a}))$; As a special case of (ii) we have: (iii) $\pi(c^{\underline{A}}) = c^{\underline{B}}$. We write in this case $\pi : \underline{A} \to \underline{B}$.

An important case occurs when $A \subseteq B$, and π is the inclusion map, i.e. $\pi(a) = a$ for $a \in A$. In this case we write $\underline{A} \leq \underline{B}$, and say \underline{A} is a substructure of \underline{B} . The definition of an embedding can be rewritten as follows: (i) $P^{\underline{A}} = P^{\underline{B}} \cap A^k$ where P is a k-place relation symbol. (ii) $F^{\underline{A}} = F^{\underline{B}} | A^k$ where F is a k-place function symbol. (iii) $c^{\underline{A}} = c^{\underline{B}}$ where c is a constant symbol. (iii) $c^{\underline{A}} = c^{\underline{B}}$ where c is a constant symbol. Given \underline{B} , note that to specify \underline{A} it suffices to give the universe A; the inter-

Given \underline{B} , note that to specify \underline{A} it suffices to give the universe A; the interpretation of the relation and function symbols is then completely determined by being a substructure. Moreover, a subset of B is the universe of a substructure of \underline{B} if and only if it is closed under the basic functions, including the 0-place ones; more precisely:

Exercise 3.1. A is the universe of a substructure of \underline{B} if and only if $c^{\underline{B}} \in A$ for each constant symbol c, and $F^{\underline{B}}(A^k) \subset A$ for each k-place function symbol of $L, k \geq 1$.

An isomorphism $\underline{A} \to \underline{B}$ is an embedding $\pi : \underline{A} \to \underline{B}$ such that $\pi : A \to B$ is bijective. In this case the inverse map $\pi^{-1} : B \to A$ is also an isomorphism from \underline{B} to \underline{A} .

An isomorphism $\pi : \underline{A} \to \underline{A}$ of the structure onto itself is called an **auto-morphism** of \underline{A} .

4 Review of Logic: Interpretation of a formula in a structure.

Let \underline{A} be an *L*-structure with domain *A*.

Then <u>A</u> includes an interpretation of the basic function symbols. This is extended recursively to an interpretation of *terms*, assigning to a term $\tau(v_1, \ldots, v_n)$ a function

$$\tau^{\underline{A}}: A^n \to A$$

<u>A</u> also includes interpretation of the basic relation symbols of L. In addition, the logical symbol \simeq is interpreted as the *diagonal* on A, i.e. the set $\{(a, a) : a \in A\}$, a subset of A^2 . We thus have an interpretation of all relation symbols, and extend this recursively to an interpretation of *formulas*; for each assignment $x_i \mapsto c_i$ of elements of A to the free variagles of $\phi = \phi(x_1, \ldots, x_n)$, we defined the *truth value* $\phi(c_1, \ldots, c_n)^{\underline{A}}$ of the formula ϕ under the given assignment. We write $\underline{A} \models \phi(c_1, \ldots, c_n)$ in case this truth value is *true*. The interpretation of ϕ is then, by definition, the set of all tuples (c_1, \ldots, c_n) such that $\underline{A} \models \phi(c_1, \ldots, c_n)$. Thus if $\phi = \phi(x_1, \ldots, x_n)$, then $\phi^{\underline{A}} \subset A^n$. (Strictly speaking, $A^{\{x_1, \ldots, x_n\}}$.)

In case φ is a sentence, no assignment is needed. We have thus defined the truth value of φ in <u>A</u>. If this value is **true**, we say that φ holds in <u>A</u>, or that <u>A</u> is a model of φ .

Consider an *L*-structure \underline{A} and an *L*-formula $\varphi(v_1, \ldots, v_n)$. Write

$$\varphi^{\underline{A}} = \{ \bar{a} \in A^n : \underline{A} \vDash \varphi(\bar{a}) \}.$$

The notation $\varphi(A)$ is also used. This is called a *definable set*, namely the set defined by ϕ . It is a subset of A^n , not of A! If we want to emphasize this, we refer to it as a *definable relation*.

Geometric viewpoint of the interpretation of formulas:

$$\begin{array}{l} \perp^{\underline{A}} = \emptyset \\ (\neg \phi)^{\underline{A}} = A^n \setminus \phi^{\underline{A}} \\ (\phi \wedge \psi)^{\underline{A}} = \phi^{\underline{A}} \cap \psi^{\underline{A}} \end{array}$$

 $(\exists x_n)\phi^{\underline{A}}$ is the *projection* of $\phi^{\underline{A}}$ from *n*-space to n-1-space.

Maps between structures

Let $\underline{A}, \underline{B}$ be *L*-structures, and let $f : A \to B$ be a function. We say that f preserves a formula ϕ if for any $\bar{a} \in A^n$

(*)
$$\underline{A} \vDash \varphi(\overline{a})$$
 iff $\underline{B} \vDash \varphi(\pi(\overline{a}))$.

Equivalently, writing $f(a_1, \ldots, a_n) := (fa_1, \ldots, fa_n)$, we have:

$$f^{-1}(\phi^{\underline{B}}) = \phi^{\underline{A}}$$

f is an embedding iff it preserves all qf formulas.

f is an isomorphism if it is a bijective embedding.

f is *elementary* if it preserves all formulas.

Exercise: (1) f is an embedding iff it preserves all atomic formulas;

(2) If f is an isomorphism, it is elementary.

Example

1. Let $\mathcal{Z} = \langle \mathbb{Z}; +, -, 0 \rangle$ be the additive group of integers. Then, given an integer m > 1, the embedding

$$[m]: \mathcal{Z} \to \mathcal{Z},$$

defined as $[m](z) = m \cdot z$, is not elementary.

2. Let $\underline{\mathbb{Q}} = \langle \mathbb{Q}; +, -, 0 \rangle$ be the additive group of rational numbers. Then, given an integer m > 1, the embedding

$$[m]: \mathcal{Z} \to \mathcal{Z},$$

defined as $[m](z) = m \cdot z$, is elementary. In fact, it is an isomorphism.

3. The *inclusion* embedding of $(\mathbb{Q}, +, -, 0)$ in $(\mathbb{R}, +, -, 0)$ is also elementary; this is not obvious, but will be proved later on.

Review of Logic: Logical implication and the completeness theorem

Let Γ be a set of sentences, and σ a sentence of a language L. We say $\underline{A} \models \Gamma$ if $\underline{A} \models \phi$ for any $\phi \in \Gamma$.

A sentence σ is called **logically valid**, written $\vDash \sigma$, if $\emptyset \vDash \sigma$, i.e. $\underline{A} \vDash \sigma$ for every *L*-structure \underline{A} .

 σ is a *logical consequence* of Γ (written $\Gamma \models \sigma$) if for all *L*-structures <u>A</u>, if <u>A</u> $\models \sigma$ then <u>A</u> $\models \sigma$.

A set S of sentences is called *satisfiable* if it has a model, i.e. a structure <u>A</u> such that the truth value of each sentence $\sigma \in S$ is **true**. A set S is *finitely* satisfiable if every finite subset of S is satisfiable.

Theorem (Completeness). If Γ is a consistent set of sentences of L, then it has a model of size $\leq |L|$.

Theorem (Completeness along with Soundness). $\Gamma \models \sigma$ *iff* $\Gamma \vdash \sigma$.

The structural consequence that we will use is the Compactness theorem. We state it in two versions.

Theorem. If $\Gamma \models \psi$, then there exists a finite $\Gamma_0 \subset \Gamma$ such that $\Gamma_0 \models \psi$.

This follows immediately from the Soundness and Completeness theorem, along with the previously noted fact: if $\Gamma \vdash \psi$, then there exists a finite $\Gamma_0 \subset \Gamma$ such that $\Gamma_0 \vdash \psi$.

Theorem (Compactness Theorem). Any finitely satisfiable set of L-sentences Σ is satisfiable. Moreover, Σ has a model of cardinality less or equal to |L|.

5 The compactness theorem

Here will give a direct proof of the compactness theorem. It really just involves reviewing the proof of the completeness theorem, but using the notion of *finite satisfiability* in place of *consistency*.

Fix a language L. Let Σ be a set of L-sentences. Σ is said to be **complete** if, for any L-sentence $\sigma, \sigma \in \Sigma$ or $\neg \sigma \in \Sigma$.

 Σ is witnessing (by constants) if for any formula $\phi = \phi(x)$ of L, if $(\exists x)\phi \in \Sigma$ then $\phi(c)$ belongs to Σ for some constant symbol c.

Theorem (Compactness). Let Σ be a set of L-sentences. Assume Σ is finitely satisfiable. Then Σ has a model

Strategy of proof: We must build a model of Σ . We will gradually enlarge Σ , keeping it finitely satisfiable, and ensuring it is also *complete* and *witnessing*. Once we obtain a complete, witnessing set of sentences, a model can be pointed to explicitly.

N.B.: To obtain witnesses, we will have to expand the language by constant symbols. We will discard them again when the proof is done.

Lemma (1). Let Σ be a finitely satisfiable set of sentences of L. Then at least one of $\Sigma \cup \{\sigma\}$ and $\Sigma \cup \{\neg\sigma\}$ is finitely satisfiable.

Lemma (2). Assume Σ is a (finitely) satisfiable set of sentences of L. Let σ be a sentence. Let c be a new constant symbol, $L' = L \cup \{c\}$. Let $\phi = \phi(x)$ be a formula of L. Then either $\Sigma \cup \neg(\exists x)\phi$ is (finitely) satisfiable, or

 $\Sigma \cup \phi(c)$

is (finitely) satisfiable.

Lemma (3). A complete, witnessing set of sentences has a model.

The proof constructs a canonical model where *every element is the interpretation of some closed term.* Such models are minimal as *L*-structures; they have no proper substructures. Proof of the compactness theorem, for countable L: Preliminaries:

- 1. Expand L to $L' = L \cup \{c_1, c_2, \cdots\}$. So $|L'| = \aleph_0$.
- 2. Enumerate all sentences of L' as $\sigma_1, \sigma_2, \cdots$.
- 3. Fix a variable x; enumerate all formulas $\phi = \phi(x)$ of L as ϕ_1, ϕ_2, \cdots .

Construction: Let $T_0 = \Sigma$.

We will recursively define sentences P_n of L'. and let $T_n = \Sigma \cup \{P_1, \ldots, P_n\}$. We will make sure that T_n remains finitely satisfiable.

Claim. Assuming each T_n is finitely satisfiable, $T' := \bigcup_n T_n = \Sigma \cup \{P_1, P_2, \ldots\}$ is finitely satisfiable.

Definition of T_{n+1} for $n\geq 1$

At stage 2n + 1: T_{2n} has been defined, and we know inductively that it is finitely satisfiable. Using the first lemma, either $T_{2n} \cup \sigma_n$ or $T_{2n} \cup \neg \sigma_n$ is finitely satisfiable. Let $P_{2n+1} = \sigma_n$ in the first case, or if both hold; otherwise let $P_{2n+1} = \neg \sigma_n$. Note that $T_{2n+1} := T_n \cup \{P_{2n+1}\}$ is finitely satisfiable in any case; and T_{2n+1} decides σ_n .

At stage 2n + 2: If $T_{2n+1} \cup \{\neg(\exists x)\phi_n)\}$ is finitely satisfiable, let $P_{2n+2} = \neg(\exists x)\phi_n$, so $T_{2n+2} = T_{2n+1} \cup \{\neg(\exists x)\phi_n)\}$. Otherwise, let k be least such that c_k does not occur in T_n . Let $P_{2n+2} = \phi_n(c_k)$. By Lemma 2, $T_{2n+2} := T_{2n+1} \cup \{\phi_n(c_k)\}$ remains finitely satisfiable.

Claim. T' is complete.

Claim. T' is witnessing.

By Lemma 3, T' has a countable model M'. Let M = M'|L. Then $M \models \sigma$ for any sentence σ of L such that $\sigma \in T'$. In particular, for any $\sigma \in T_0 = \Sigma$. So $M \models T$.

M' is a minimal L' -structure, hence countable, and so M is countable. \Box

(N.B. M may not be a minimal L-structure!).

Example: $T = Th((\mathbb{Z}, +, -, 0))$. Show some model of T has an element divisible by all odd primes, but not by 2.

A set of *L*-sentences Σ is said to be **deductively closed** if

 $\Sigma \vDash \sigma$ implies $\sigma \in \Sigma$.

A theory is a finitely satisfiable, deductively closed set of sentences of L. Though we allow the empty structure, we will not be interested in its theory. We will only consider theories T such that $T \models (\exists x)(x = x)$ (i.e. the empty structure is not a model of T.)

Remark: In practice, we often give only a subset of T. For example the axioms of the theory of groups consist of four universal sentences, namely the associate law and the axioms on the unit and inverses. The *theory of groups* is the (infinite) set of logical consequences of these; for instance

$$(\forall x, y, z, w)((xy)(zw) = x(y(zw)))$$

Since these two sets - the axioms, and the consequences of the axioms - have the same class of models, the distinction will not be important for us. **Definition** Let T be a theory, $x = (x_1, \ldots, x_n)$ a tuple of variables. A *partial* type P(x) of a theory T in variables x is a finitely satisfiable set P of formulas in the variables x, containing T and closed under logical deduction.

Here finitely satisfiable means: for any $\phi_1, \ldots, \phi_k \in P$, there exists a model $\underline{A} \models T$ and $c \in A^n$ such that $\underline{A} \models \phi_i(a)$ for each $i \leq k$. (Equivalently, there exists a model of $T \cup (\exists x) (\bigwedge_{i=1}^k \phi_i(x))$.)

An *n*-tuple *c* from a model \underline{A} of *T* is said to *realise P* if $\underline{A} \models \phi(a)$ for each $\phi \in P$.

 \underline{A} is said to *realise* P if some n-tuple from A does.

 \underline{A} is said to *omit* P otherwise.

We saw that any partial type is *realised* in some model. When does there exist a model *omitting* P?

Example: Let $L = \{\cdot, ^{-1}, 1\}$ be the language of abelian groups. Let P(x) be the partial type: $x \neq 1, x^2 \neq 1, x^3 \neq 1, \cdots$. Let <u>A</u> be the Abelian \mathbb{C}^* (nonzero complex numbers with the usual multiplication.)

Does $Th(\underline{A})$ have a model omitting P?

I.e. is there a model of $Th(\underline{A})$ where every element has finite order?

(We will later have tools to give a positive answer; indeed to show that the subgroup of \mathbb{C}^* whose universe consists of roots of unity, is an elementary substructure. For now we are interested in the question; it is an omitting types question.

Definition A set of formulas P(x) is *principal* if there exists a formula θ such that $T \cup \exists x \theta(x)$ is satisfiable, and for any $\phi \in P$ $T \models \forall x(\theta(x) \to \phi(x))$. If T is a complete theory, a principal partial type is realised in *every* model.

Example. For $Th(\mathbb{Z}, +, -, 0)$, the partial type: $2|x, 3|x, 4|x, \cdots$ is principal. The formula x = 0 implies all of these!

We now show that the property of being nonprincipal cannot be destroyed by adding finitely many sentences consistent with T, or by adding new constants.

Lemma. L be a language, T a theory in L, P = P(x) a set of formulas L in the variables x. Assume P is nonprincipal for T.

- 1. Let $L' = L \cup \{c\}$, where c is a new constant symbol. Let T' be the set of logical consequences of T in L'. Then P' is nonprincipal for T'
- 2. Let L' be obtained from L by adding some new constant symbols, and let c be any constant of L'. Assume $T \cup \{\sigma\}$ is satisfiable. Then for some $\phi \in P$, $T \cup \{\sigma\} \cup \{\neg\phi(c)\}$ is satisfiable.

Proof. (1) Left as an exercise. Hint: any *L*'-formula $\theta'(x)$ can be written as $\theta(c, x)$, where $\theta(y, x)$ is a formula of *L*. Show that if $T \cup \theta'(x) \models P$ then $T \cup (\exists y)\theta(y, x) \models P$.

(2) We may assume L' is L augmented with the finite number of constant symbols mentioned in σ , along with c. By applying (1) finitely many times, we see that P remains nonprincipal for T in L'.

Let θ be the formula $\sigma \wedge (x = c)$. Certainly $T \cup \{\exists x\theta\}$ is satisfiable. Since P is not principal, there exists $\phi \in P$ such that $T \cup \{\theta(x)\}$ does not imply $\phi(x)$. So $T \cup \{\theta(x)\} \cup \{\neg \phi(x)\}$ is satisfiable. Equivalently, $T \cup \{\sigma, \neg \phi(c)\}$ is satisfiable.

_	_	_	-	
			Т	
			L	
			L	
-	_	-		

Theorem 5.1 (Omitting a partial type). Assume L is a countable language, T a theory, P a partial type for T. If P(x) is non-principal, there exists a countable model M omitting P.

Proof. Preliminaries:

- 1. Expand L to $L' = L \cup \{c_1, c_2, \cdots\}$; these are distinct constant symbols, not in L. So $|L'| = \aleph_0$.
- 2. Enumerate all sentences of L' as $\sigma_1, \sigma_2, \cdots$.
- 3. Fix a variable x; enumerate all formulas $\phi = \phi(x)$ of L as ϕ_1, ϕ_2, \cdots .

We will recursively define sentences P_n of L'. and let $T_n = \Sigma \cup \{P_1, \ldots, P_n\}$. We will make sure that T_n remains finitely satisfiable. Assuming each T_n is finitely satisfiable, $T' := \bigcup_n T_n = \Sigma \cup$ Claim. $\{P_1, P_2, \ldots\}$ is finitely satisfiable. Construction: Let $T_0 = \Sigma$. At stage *n* we will define T_n . At stages 3n + 1 we assure $\sigma_n \in T_n$ or $\neg \sigma_n \in T_n$. At stages 3n + 2 we assure $\neg(\exists x)\phi_n(x) \in T_n$ or some $\phi_n(c_k) \in T_n$. So far, all is as in the proof of completeness/compactness. At stage 3n (with $n \ge 1$): Note that T_{3n-1} was obtained by adding constants to L, and then adding finitely many sentences. By the Lemma, T_{3n-1} is consistent with $\neg \phi(c_n)$, for some $\phi \in P$. Let $P_n = \neg \phi(c_n)$ and let $T_{3n} = T_{3n-1} \cup \{P_n\}$.

Now T' is complete and witnessing. By Lemma 3, T' has a countable model M'. Let M = M'|L. Then $M \models \sigma$ for any sentence σ of L such that $\sigma \in T'$. In particular, for any $\sigma \in T_0 = \Sigma$. So $M \models T$. By construction, each element a of M has the form $a = c_n^{M'}$ for some $n \ge 1$; and (for some $\phi \in P$),

$$\neg \phi(c_n) \in T_{3n}.$$

So $M \models \neg \phi(a)$. Hence no *a* from *M* can realise *P*.