
1 Model Theory: Introduction

• Duality:
syntactic description ←→ structures.

• Between a universal theory and a complete theory. Quantifier elimina-
tion.

• Between a complete theory and a structure. When is a structure deter-
mined by its theory (categoricity)? Is there (in some sense) a smallest
model? Is it unique? Is there a ‘biggest’ (countable) model?



2 Review of Logic: Languages

Alphabet, variables, terms, formulas.
A language L is specified by its non-logical symbols. These are relation
symbols, function symbols, and constant symbols of given arities.
( 0-place relation symbols: propositional constants. (We will not need them.)
0-place function symbols = constant symbols. )



The formulas of L are formed using the non-logical symbols, and the following
logical symbols:

• l - the equality symbol. (We will allow writing it as =.)

• A (countable) set of variables;

• ⊥,∧, ¬ - Boolean connectives;

• ∃ - the existential quantifier;

We now construct, successively, terms, atomic formulas, quantifier-free for-
mulas, formulas and sentences of a given language L.



L-terms are constructed recursively from the function symbols, and variable
symbols.
We write τ = τ(x1, . . . , xn) to indicate that the variables occurring in τ are
among x1, . . . , xn. Terms with no variables are called closed terms

Atomic L-formulas have the form
(i) τ1 l τ2 for any L-terms τ1 and τ2
or
(ii) P (τ1, . . . , τρ) for any relational L-symbol P of arity ρ and L-terms τ1, . . . , τρ.

Notice, that (i) can be seen as a special case of (ii) if we view l as a relation
symbol of arity 2.

An L-formula is defined by the following recursive definition:
(i) any atomic L-formula is an L-formula;
(ii) if ϕ is an L-formula, so are ¬ϕ and ⊥;
(iii) if ϕ, ψ are L-formulas, so is (ϕ ∧ ψ);
(iv) if ϕ is an L-formula, so is ∃vϕ for any variable v;
The set of formulas obtained using (i),(ii), (iii) along are called quantifier-free
(qf).



Some abbreviations
∨,→,↔,∀, as defined in the Logic class, e.g.:
(φ→ ψ) is an abbreviation for ¬(φ ∧ ¬ψ);
∀vψ for ¬∃v¬ψ.
x 6= y for ¬(x l y)∧4
i=1 φi for φ1 ∧ φ2 ∧ φ3 ∧ φ4

∃≥4xφ(x) for
(∃x1) · · · (∃x4)(

∧4
i=1 φ(xi) ∧

∧
1≤i<j≤4 xi 6= xj)



It is typical of logic that formulas in n-variables are discussed, and n-tuples
of elements of a structure occur more frequently than single elements.
We will thus often use ’vector notation’, writing a for (a1, . . . , an) and x for
(x1, . . . , xn) when possible.



Formulas that can be formed without quantifiers (Boolean combinations of
atomic formulas) are called quantifier-free, abbreviated qf.
A formula is universal if it has the form (∀x1) · · · (∀xn)ψ, where ψ is quantifier-
free.
Similarly one of the form (∃x1) · · · (∃xn)ψ is called existential.



Writing ϕ(x1, . . . , xn) means: ϕ is a formula and (x1, . . . , xn) is a tuple of
variables, including all the free variables of ϕ.

Free variables For an atomic formula ϕ(vi1 , . . . , vin), all variables occurring
in (the terms of) ϕ are said to be free. For more complex formulas, the set of
free variables FV (φ) is defined recursively: FV (⊥) = ∅, FV (¬ψ) = FV (φ),
FV (φ ∧ ψ) = FV (φ) ∪ FV (ψ), FV ((∃x)φ) = FV (φ) \ {x}.

An L-formula with no free variables is called an L-sentence.

We write |L| for the cardinality of the set of L-formulas.



Exercise Show that L = max{ℵ0, |Symb(L)|} where Symb(L) is the set of
non-logican symbols of L.

Proof. We have |L| ≥ ℵ0 since we always have, for instance, the countably
many sentences: (∃≥nx)(x = x).
Also |L| ≥ |Symb(L)|.
To see that |L| ≤ max(ℵ0, |Sym(L)|): a formula can be viewed as a finite
string of characters, taken from among the non-logical symbols of L, the
finitely many logical symbols including l, and parentheses.
So it suffices to show that the set ∪nXn of finite sequences from a set X,
itself has cardinality ≤ max(|X|,ℵ0).
If X is finite, we have |Xn| = |X|n < ℵ0 and so | ∪n Xn| ≤ ℵ0.
If X is infinite, |Xn| = |X| and so | ∪n Xn| ≤ ℵ0|X| = |X|.

Proof systems

A major part of the Logic class was devoted to proof systems. A relation was
defined between sets of sentences, and a sentence:
Γ ` ψ iff there exists a formal proof of ψ, under hypotheses taken from Γ.
Formal proofs play no role in model theory, and will provide no more than
silent background intuition.
But we do record the following observation:

Proposition. If Γ ` ψ, then there exists a finite Γ0 ⊂ Γ such that Γ0 ` ψ.

This is immediate, since a formal proof has by definition a finite sequence of
steps, and at each step only one hypothesis can be quoted.



3 Review of Logic: Structures

Let L be a language, consisting of relation symbols Pi (i ∈ I), function
symbols for j ∈ J , and constant symbols ck(k ∈ K).
An L-structure is an object of the form

A =
〈
A; {PA

i }i∈I ; {f
A
j }j∈J ; {cAk }k∈K

〉
.

consisting of:
(i) a set A called the domain or universe of the L-structure;
(ii) an assignment of an r-ary relation (subset) PA ⊆ Ar to each relation
symbol P of L of arity r;
(iii) an assignment of an m-ary function fA : Am → A to any function symbol
f of L of arity m;
(iv) an assignment of an element cA ∈ A to any constant symbol c of L.

{PA
i }i∈I , {f

A
j }j∈J and {cAk }k∈K are called the interpretations in A of the

predicate, function and constant symbols correspondingly.

Writing
〈
A; {PA

i }i∈I ; {f
A
j }j∈J ; {cAk }k∈K

〉
implicitly specifies the language L.

For instance, (R, 0,+,−) is a structure for the language of groups, a language
with a constant symbol, a unary function symbol and a binary function
symbol. Similarly, (R, 0, 1,+,−, ·) is a structure for the language of rings;
they have the same domain, but are structures for different languages.

Embeddings and isomorphisms

Fix a language L. We have defined L-structures; we will now define the
notion of an embedding of L-structures. It is a straightforward generalization
of the various cases you have seen in algebra, such as an embedding of groups,
rings, or ordered fields.
Let A,B be L-structures, with universes A,B respectively.
An embedding (or L-embedding) of A in B is a one-to-one function π : A→ B
which preserves corresponding relation, function and constant symbols, i.e.
for any relation symbol P , function symbol F , constant symbol c of L we
have:
(i) ā ∈ PA iff π(ā) ∈ PB;
(ii) π(FA(ā)) = FB(π(ā));
As a special case of (ii) we have: (iii) π(cA) = cB.



We write in this case π : A→ B.
An important case occurs when A ⊆ B, and π is the inclusion map, i.e.
π(a) = a for a ∈ A. In this case we write A ≤ B, and say A is a substructure
of B. The definition of an embedding can be rewritten as follows:
(i) PA = PB ∩ Ak where P is a k-place relation symbol.
(ii) FA = FB|Ak where F is a k-place function symbol.
(iii) cA = cB where c is a constant symbol.
Given B, note that to specify A it suffices to give the universe A; the inter-
pretation of the relation and function symbols is then completely determined
by being a substructure. Moreover, a subset of B is the universe of a sub-
structure of B if and only if it is closed under the basic functions, including
the 0-place ones; more precisely:

Exercise 3.1. A is the universe of a substructure of B if and only if cB ∈ A
for each constant symbol c, and FB(Ak) ⊂ A for each k-place function symbol
of L, k ≥ 1.

An isomorphism A→ B is an embedding π : A→ B such that π : A→ B is
bijective. In this case the inverse map π−1 : B → A is also an isomorphism
from B to A.
An isomorphism π : A → A of the structure onto itself is called an auto-
morphism of A.

4 Review of Logic: Interpretation of a for-

mula in a structure.

Let A be an L-structure with domain A.
Then A includes an interpretation of the basic function symbols. This
is extended recursively to an interpretation of terms, assigning to a term
τ(v1, . . . , vn) a function

τA : An → A

.
A also includes interpretation of the basic relation symbols of L. In addition,
the logical symbol l is interpreted as the diagonal on A, i.e. the set {(a, a) :
a ∈ A}, a subset of A2. We thus have an interpertation of all relation
symbols, and extend this recursively to an interpretation of formulas; for each



assignment xi 7→ ci of elements of A to the free variagles of φ = φ(x1, . . . , xn),
we defined the truth value φ(c1, . . . , cn)A of the formula φ under the given
assignment.We write A |= φ(c1, . . . , cn) in case this truth value is true.
The interpretation of φ is then, by definition, the set of all tuples (c1, . . . , cn)
such that A |= φ(c1, . . . , cn). Thus if φ = φ(x1, . . . , xn), then φA ⊂ An.
(Strictly speaking, A{x1,...,xn}.)
In case ϕ is a sentence, no assignment is needed. We have thus defined the
truth value of ϕ in A. If this value is true, we say that ϕ holds in A, or that
A is a model of ϕ.



Consider an L-structure A and an L-formula ϕ(v1, . . . , vn). Write

ϕA = {ā ∈ An : A � ϕ(ā)}.

The notation ϕ(A) is also used. This is called a definable set, namely the set
defined by φ. It is a subset of An, not of A! If we want to emphasize this,
we refer to it as a definable relation.



Geometric viewpoint of the interpretation of formulas:

⊥A= ∅

(¬φ)A = An \ φA

(φ ∧ ψ)A = φA ∩ ψA

(∃xn)φA is the projection of φA from n-space to n− 1-space.



Maps between structures

Let A,B be L-structures, and let f : A → B be a function. We say that f
preserves a formula φ if for any ā ∈ An

(∗) A � ϕ(ā) iff B � ϕ(π(ā)).

Equivalently, writing f(a1, . . . , an) := (fa1, . . . , fan), we have:

f−1(φB) = φA

f is an embedding iff it preserves all qf formulas.
f is an isomorphism if it is a bijective embedding.
f is elementary if it preserves all formulas.
Exercise: (1) f is an embedding iff it preserves all atomic formulas;
(2) If f is an isomorphism, it is elementary.



Example

1. Let Z = 〈Z; +,−, 0〉 be the additive group of integers. Then, given an
integer m > 1, the embedding

[m] : Z → Z,

defined as [m](z) = m · z, is not elementary.

2. Let Q = 〈Q; +,−, 0〉 be the additive group of rational numbers. Then,
given an integer m > 1, the embedding

[m] : Z → Z,

defined as [m](z) = m · z, is elementary. In fact, it is an isomorphism.

3. The inclusion embedding of (Q,+,−, 0) in (R,+,−, 0) is also elemen-
tary; this is not obvious, but will be proved later on.



Review of Logic: Logical implication and the complete-
ness theorem

Let Γ be a set of sentences, and σ a sentence of a language L. We say A |= Γ
if A |= φ for any φ ∈ Γ.
A sentence σ is called logically valid, written � σ, if ∅ � σ, i.e. A � σ for
every L-structure A.

σ is a logical consequence of Γ (written Γ |= σ) if for all L-structures A, if
A |= σ then A |= σ.
A set S of sentences is called satisfiable if it has a model, i.e. a structure A
such that the truth value of each sentence σ ∈ S is true. A set S is finitely
satisfiable if every finite subset of S is satisfiable.

Theorem (Completeness). If Γ is a consistent set of sentences of L, then it
has a model of size ≤ |L|.

Theorem (Completeness along with Soundness). Γ |= σ iff Γ ` σ.



The structural consequence that we will use is the Compactness theorem.
We state it in two versions.

Theorem. If Γ |= ψ, then there exists a finite Γ0 ⊂ Γ such that Γ0 |= ψ.

This follows immediately from the Soundness and Completeness theorem,
along with the previously noted fact: if Γ ` ψ, then there exists a finite
Γ0 ⊂ Γ such that Γ0 ` ψ.

Theorem (Compactness Theorem). Any finitely satisfiable set of L-sentences
Σ is satisfiable. Moreover, Σ has a model of cardinality less or equal to |L|.



5 The compactness theorem

Here will give a direct proof of the compactness theorem. It really just in-
volves reviewing the proof of the completeness theorem, but using the notion
of finite satisfiability in place of consistency.
Fix a language L. Let Σ be a set of L-sentences.
Σ is said to be complete if, for any L-sentence σ, σ ∈ Σ or ¬σ ∈ Σ.

Σ is witnessing (by constants) if for any formula φ = φ(x) of L, if (∃x)φ ∈
Σ then φ(c) belongs to Σ for some constant symbol c.



Theorem (Compactness). Let Σ be a set of L-sentences. Assume Σ is
finitely satisfiable. Then Σ has a model

Strategy of proof: We must build a model of Σ. We will gradually enlarge Σ,
keeping it finitely satisfiable, and ensuring it is also complete and witnessing.
Once we obtain a complete, witnessing set of sentences, a model can be
pointed to explicitly.
N.B.: To obtain witnesses, we will have to expand the language by constant
symbols. We will discard them again when the proof is done.



Lemma (1). Let Σ be a finitely satisfiable set of sentences of L. Then at
least one of Σ ∪ {σ} and Σ ∪ {¬σ} is finitely satisfiable.

Lemma (2). Assume Σ is a (finitely) satisfiable set of sentences of L. Let
σ be a sentence. Let c be a new constant symbol, L′ = L∪{c}. Let φ = φ(x)
be a formula of L. Then either Σ ∪ ¬(∃x)φ is (finitely) satisfiable, or

Σ ∪ φ(c)

is (finitely) satisfiable.



Lemma (3). A complete, witnessing set of sentences has a model.

The proof constructs a canonical model where every element is the interpre-
tation of some closed term. Such models are minimal as L-structures; they
have no proper substructures.



Proof of the compactness theorem, for countable L:
Preliminaries:

1. Expand L to L′ = L ∪ {c1, c2, · · ·}. So |L′| = ℵ0.

2. Enumerate all sentences of L′ as σ1, σ2, · · ·.

3. Fix a variable x; enumerate all formulas φ = φ(x) of L as φ1, φ2, · · ·.

Construction: Let T0 = Σ.
We will recursively define sentences Pn of L′. and let Tn = Σ∪ {P1, . . . , Pn}.
We will make sure that Tn remains finitely satisfiable.
Claim. Assuming each Tn is finitely satisfiable, T ′ := ∪nTn = Σ ∪
{P1, P2, . . .} is finitely satisfiable.



Definition of Tn+1 for n ≥ 1

At stage 2n + 1: T2n has been defined, and we know inductively that it is
finitely satisfiable. Using the first lemma, either T2n ∪ σn or T2n ∪ ¬σn is
finitely satisfiable. Let P2n+1 = σn in the first case, or if both hold; otherwise
let P2n+1 = ¬σn . Note that T2n+1 := Tn ∪ {P2n+1} is finitely satisfiable in
any case; and T2n+1 decides σn.

At stage 2n + 2: If T2n+1 ∪ {¬(∃x)φn)} is finitely satisfiable, let P2n+2 =
¬(∃x)φn), so T2n+2 = T2n+1 ∪ {¬(∃x)φn)}. Otherwise, let k be least such
that ck does not occur in Tn. Let P2n+2 = φn(ck). By Lemma 2, T2n+2 :=
T2n+1 ∪ {φn(ck)} remains finitely satisfiable.



Claim. T ′ is complete.
Claim. T ′ is witnessing.
By Lemma 3, T ′ has a countable model M ′. Let M = M ′|L. Then M |= σ
for any sentence σ of L such that σ ∈ T ′. In particular, for any σ ∈ T0 = Σ.
So M |= T .
M ′ is a minimal L′-structure, hence countable, and so M is countable.

(N.B. M may not be a minimal L-structure!).



Example: T = Th((Z,+,−, 0)). Show some model of T has an element
divisible by all odd primes, but not by 2.



A set of L-sentences Σ is said to be deductively closed if

Σ � σ implies σ ∈ Σ.

A theory is a finitely satisfiable, deductively closed set of sentences of L.
Though we allow the empty structure, we will not be interested in its theory.
We will only consider theories T such that T |= (∃x)(x = x) (i.e. the empty
structure is not a model of T .)
Remark: In practice, we often give only a subset of T . For example the
axioms of the theory of groups consist of four universal sentences, namely
the associate law and the axioms on the unit and inverses. The theory of
groups is the (infinite) set of logical consequences of these; for instance

(∀x, y, z, w)((xy)(zw) = x(y(zw)))

Since these two sets - the axioms, and the consequences of the axioms - have
the same class of models, the distinction will not be important for us.



Definition Let T be a theory, x = (x1, . . . , xn) a tuple of variables. A partial
type P (x) of a theory T in variables x is a finitely satisfiable set P of formulas
in the variables x, containing T and closed under logical deduction.
Here finitely satisfiable means: for any φ1, . . . , φk ∈ P , there exists a model
A |= T and c ∈ An such that A |= φi(a) for each i ≤ k. (Equivalently, there
exists a model of T ∪ (∃x)(

∧k
i=1 φi(x)).)

An n-tuple c from a model A of T is said to realise P if A |= φ(a) for each
φ ∈ P .
A is said to realise P if some n-tuple from A does.
A is said to omit P otherwise.
We saw that any partial type is realised in some model.
When does there exist a model omitting P?



Example: Let L = {·,−1 , 1} be the language of abelian groups.
Let P (x) be the partial type: x 6= 1, x2 6= 1, x3 6= 1, · · ·.
Let A be the Abelian C∗ (nonzero complex numbers with the usual multipli-
cation.)
Does Th(A) have a model omitting P?
I.e. is there a model of Th(A) where every element has finite order?
(We will later have tools to give a positive answer; indeed to show that the
subgroup of C∗ whose universe consists of roots of unity, is an elementary
substructure. For now we are interested in the question; it is an omitting
types question.



Definition A set of formulas P (x) is principal if there exists a formula θ such
that T ∪ ∃xθ(x) is satisfiable, and for any φ ∈ P T |= ∀x(θ(x)→ φ(x)).
If T is a complete theory, a principal partial type is realised in every model.

Example. For Th(Z,+,−, 0), the partial type: 2|x, 3|x, 4|x, · · · is principal.
The formula x = 0 implies all of these!



We now show that the property of being nonprincipal cannot be destroyed by
adding finitely many sentences consistent with T , or by adding new constants.

Lemma. L be a language, T a theory in L, P = P (x) a set of formulas L
in the variables x. Assume P is nonprincipal for T .

1. Let L′ = L ∪ {c}, where c is a new constant symbol. Let T ′ be the set
of logical consequences of T in L′. Then P ′ is nonprincipal for T ′

2. Let L′ be obtained from L by adding some new constant symbols, and
let c be any constant of L′. Assume T ∪ {σ} is satisfiable. Then for
some φ ∈ P , T ∪ {σ} ∪ {¬φ(c)} is satisfiable.

Proof. (1) Left as an exercise. Hint: any L’-formula θ′(x) can be written as
θ(c, x), where θ(y, x) is a formula of L. Show that if T ∪ θ′(x) |= P then
T ∪ (∃y)θ(y, x) |= P .
(2) We may assume L′ is L augmented with the finite number of constant
symbols mentioned in σ, along with c. By applying (1) finitely many times,
we see that P remains nonprincipal for T in L′.
Let θ be the formula σ ∧ (x = c). Certainly T ∪ {∃xθ} is satisfiable. Since
P is not principal, there exists φ ∈ P such that T ∪ {θ(x)} does not imply
φ(x). So T ∪ {θ(x)} ∪ {¬φ(x)} is satisfiable. Equivalently, T ∪ {σ,¬φ(c)} is
satisfiable.



Theorem 5.1 (Omitting a partial type). Assume L is a countable language,
T a theory, P a partial type for T . If P (x) is non-principal, there exists a
countable model M omitting P .

Proof. Preliminaries:

1. Expand L to L′ = L∪{c1, c2, · · ·}; these are distinct constant symbols,
not in L. So |L′| = ℵ0.

2. Enumerate all sentences of L′ as σ1, σ2, · · ·.

3. Fix a variable x; enumerate all formulas φ = φ(x) of L as φ1, φ2, · · ·.

We will recursively define sentences Pn of L′. and let Tn = Σ∪ {P1, . . . , Pn}.
We will make sure that Tn remains finitely satisfiable.
Claim. Assuming each Tn is finitely satisfiable, T ′ := ∪nTn = Σ ∪
{P1, P2, . . .} is finitely satisfiable.
Construction: Let T0 = Σ. At stage n we will define Tn.
At stages 3n+ 1 we assure σn ∈ Tn or ¬σn ∈ Tn.
At stages 3n+ 2 we assure ¬(∃x)φn(x) ∈ Tn or some φn(ck) ∈ Tn.
So far, all is as in the proof of completeness/compactness.
At stage 3n (with n ≥ 1):
Note that T3n−1 was obtained by adding constants to L, and then adding
finitely many sentences. By the Lemma, T3n−1 is consistent with ¬φ(cn), for
some φ ∈ P . Let Pn = ¬φ(cn) and let T3n = T3n−1 ∪ {Pn}.

Now T ′ is complete and witnessing. By Lemma 3, T ′ has a countable model
M ′. Let M = M ′|L. Then M |= σ for any sentence σ of L such that σ ∈ T ′.
In particular, for any σ ∈ T0 = Σ. So M |= T . By construction, each element
a of M has the form a = cM

′
n for some n ≥ 1; and (for some φ ∈ P ),

¬φ(cn) ∈ T3n.

So M |= ¬φ(a). Hence no a from M can realise P .
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