Part A.

Part A is not to be handed in. When asked to prove a statement in the notes, try to do so without looking at the proof in the notes; then compare.

1. Prove Proposition 2.5 using Zorn's lemma without assuming countability.

2. Read through section 3 of the notes. Prove 3.4 (upward Löwenheim-Skolem.) This will be similar to the exercise showing existence of a nonstandard model in HW1; but you will need many constant symbols rather than a single one.

3. Prove 3.6 (downward Löwenheim-Skolem.) You may organize your proof as follows:

Definition A theory T admits Skolem functions if for any *n*-tuple of variables $x = (x_1, \ldots, x_n)$ and any formula $\phi(x, y)$, for some term t,

$$
T \models (\forall x)((\exists y)\phi(x,y) \rightarrow \phi(x,t(x)))
$$

The term t is called a Skolem term for ϕ .

a) Assume T admits Skolem functions. Let $\underline{A} \leq \underline{B}$. If $\underline{B} \models T$, show that $A \preccurlyeq B$.

b) Let \underline{M} be an L-structure. Show that there exists an expansion \underline{M}_{sk} of M to a language L_{sk} , $|L_{sk}| = |L|$, such that M_{sk} admits Skolem functions. (You will need the axiom of choice, or to assume that the universe M can be well-ordered.)

Deduce that <u>M</u> in has an elementary submodel of cardinality $\leq |L|$.

4. Let T be a theory in a countable language, and P_1, P_2, \cdots be nonprincipal partial type. Prove that T has a countable model omitting each P_i (2.20).

Part B.

1. Prove part 1 of the Lemma for the omitting types theorem, on p. 31 of the lecture notes for weeks 1-2. I.e. show that adding constants cannot by itself turn a nonprincipal partial type into a principal one.

2. Let T be a theory in a countable language, and P a nonprincipal partial type. Use P to show that T has two countable models M, N that are not isomorphic.

3. Exercise 4.10 of the class notes.

4. Let \underline{A} be a finite L-structure. Assume L has finitely many non-logical symbols.

- 1. Find $\sigma_1 \in Th(\underline{A})$ such that any model of σ_1 has universe of the same cardinality as \underline{A} .
- 2. Let $\underline{B} \models Th_{\exists}(\underline{A})$. If also $\underline{B} \models \sigma_1$, show that $\underline{B} \cong \underline{A}$. In particular, any model of $Th(\underline{A})$ is isomorphic to \underline{A} .
- 3. Show that any model of $Th_{\forall}(\underline{A}) + \sigma_1$ is isomorphic to \underline{A} .
- 4. Find a single existential sentence σ_2 such that any model of $\{\sigma_1, \sigma_2\}$ is isomorphic to \underline{A} .

Part C.

1) Prove problem B4 above, clauses 1-3, without assuming the language is finite.

2) Let L be a countable language, T a theory. Let c_1, \ldots be new constant symbols, $L' = L \bigcup \{c_1, \ldots\}$, and let X be the set of all complete theories t of L' with $T \subseteq t$. Define a metric on X by: $d(t, t') = 0$ if $t = t'$; otherwise, $d(t, t') = 2^{-n}$ where *n* is least such that $\sigma_n \in t \setminus t'$ or $\sigma_n \in t' \setminus t$.

- 1. Show that X is a complete metric space.
- 2. Let $\phi(x)$ be a formula in one variable. Show that the set of theories $t \in$ X such that $\neg(\exists x)\phi \in t$ or ϕ is witnessed in t is dense and open in X. Conclude that the set of self-witnessing theories contains a countable intersection of dense open sets.
- 3. Look up the Baire category theorem. Use it to show that there exists a complete, self-witnessing t containing T .
- 4. If $P(x)$ is a nonprincipal partial type, show similarly that there exists a complete, self-witnessing t containing T , whose canonical model omits P. (In fact 'almost all' t have this property, in the sense of Baire category.)
- 5. Conclude that a countable set of nonprinipal partial types can be simultaneously omitted.