Probabilistic Combinatorics

These notes are to accompany the lectures in HT 2019 on C8.4 Probabilistic Combinatorics. They are based on Colin McDiarmid's notes from 2015 and earlier notes of mine; the current version is (essentially) the same as in 2017. There may be some changes during the term.

These notes are not intended for distribution, only as a learning/revision aid.
I would be grateful to receive corrections by e-mail (riordan@maths.ox.ac.uk) but please check the course webpage first in case the correction has already been made.

Recommended books: For much of the course The Probabilistic Method (third edition, Wiley, 2008) by Alon and Spencer is the most accessible reference. Very good books containing a lot of material, especially about random graphs, are Random Graphs by Bollobás, and Random Graphs by Janson, Łuczak and Ruciński; but do not expect these books to be easy to read! OMR

Contents

0 What is probabilistic combinatorics? 2
1 First moment method 3
2 Second moment method 11
3 Lovász Local Lemma 16
4 Chernoff bounds 22
5 Phase Transition in $G(n, p)$ 26
5.1 Branching processes 26
5.2 Component exploration 29
5.3 Vertices in small components 30
5.4 The phase transition 33
6 Correlation and concentration 36
6.1 Harris's Lemma 36
6.2 Janson's inequalities 38
7 Clique and chromatic number of $G(n, p)$ 42
8 Postscript: other models 46

0 What is probabilistic combinatorics?

The first question is what is combinatorics! This is hard to define exactly, but should become clearer through examples, of which the main ones are from graph theory.

Roughly speaking, combinatorics is the study of 'discrete structures'. Here 'discrete' means either finite, or infinite but discrete in the sense that the integers are, as opposed to the reals. Usually in combinatorics, there are some underlying objects whose internal structure we ignore, and we study structures built on them: the most common example is graph theory, where we do not care what the vertices are, but study the abstract structure of graphs on a given set of vertices. Abstractly, a graph is just a set of unordered pairs of vertices, i.e., a symmetric irreflexive binary relation on its vertex set. More generally, we might study collections of general subsets of a given vertex set (not just pairs), for example.

Turning to probabilistic combinatorics, this is combinatorics with randomness involved. It can mean two things: (a) the use of randomness (e.g., random graphs) to solve deterministic combinatorial problems, or (b) the study of random combinatorial objects for their own sake. Historically, the main focus was initially on (a), but after a while, the same objects (e.g., random graphs) come up again and again, and one realizes that it is not only important, but also interesting, to study these in themselves, as well as their applications. Random graphs have also been intensively studied as mathematical models for disordered networks in the real world. Probabilistic combinatorics has also led to new developments in probability theory, and interacts strongly with theoretical computer science.

The course will mainly be organized around proof techniques. However, each technique will be illustrated with examples, and one particular example (random graphs) will occur again and again, so by the end of the course we will have covered aim (b) in this special case as well as aim (a) above.

The first few examples will be mathematically very simple; nevertheless, they will show the power of the method in general. Of course, modern applications are often not so simple.

1 First moment method

Perhaps the most basic inequality in probability is the union bound: if A_{1} and A_{2} are two events, then $\mathbb{P}\left(A_{1} \cup A_{2}\right) \leqslant \mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right) .\left(A_{1} \cup A_{2}\right.$ and $A_{1} \vee A_{2}$ both denote the union of the events A_{1} and A_{2}, i.e., the event that A_{1} or A_{2} holds, or both.) More generally,

$$
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{n}\right) \leqslant \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

This trivial fact is already useful.
Example (Ramsey numbers). For positive integers k and ℓ, the Ramsey number $R(k, \ell)$ is the smallest n such that every red/blue colouring of the edges of the complete graph K_{n} contains either a red K_{k} or a blue K_{ℓ}. It's not our focus here, but these numbers exist: it is not too hard to show by induction that $n=\binom{k+\ell-2}{k-1}$ has the required property (and so does any larger n). We are interested in lower bounds.

Theorem 1.1 (Erdős, 1947). If $n, k \geqslant 1$ are integers such that $\binom{n}{k} 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.

Proof. Colour the edges of K_{n} red/blue at random so that each edge is red with probability $1 / 2$ and blue with probability $1 / 2$, and the colours of the edges are independent.

There are $\binom{n}{k}$ copies of K_{k} in K_{n}. Let A_{i} be the event that the i th copy is monochromatic. Then

$$
\mathbb{P}\left(A_{i}\right)=2\left(\frac{1}{2}\right)^{\binom{k}{2}}=2^{1-\binom{k}{2}}
$$

Thus

$$
\mathbb{P}\left(\exists \text { monochromatic } K_{k}\right) \leqslant \sum_{i} \mathbb{P}\left(A_{i}\right)=\binom{n}{k} 2^{1-\binom{k}{2}}<1
$$

Thus, in the random colouring, the probability that there is no monochromatic K_{k} is greater than 0 . Hence it is possible that the random colouring is 'good' (contains no monochromatic K_{k}), i.e., there exists a 'good' colouring.

To deduce an explicit bound on $R(k, k)$ involves a little calculation.
Corollary 1.2. $R(k, k) \geqslant 2^{k / 2}$ for $k \geqslant 3$.
Proof. Set $n=\left\lfloor 2^{k / 2}\right\rfloor$. Then

$$
\binom{n}{k} 2^{1-\binom{k}{2}} \leqslant \frac{n^{k}}{k!} 2^{1-\binom{k}{2}} \leqslant \frac{2^{k^{2} / 2}}{k!} 2^{1-k^{2} / 2+k / 2}=\frac{2^{1+k / 2}}{k!}
$$

which is smaller than 1 if $k \geqslant 3$.

Remark. The result above is very simple, and may seem weak. But the best lower bound proved by non-random methods is roughly $2^{(\log k)^{C}}$ with C constant, which grows only slightly faster than polynomially. This is tiny compared with the exponential lower bound given above. Note that the known upper bounds are roughly 4^{k}, so exponential is the right order: the constant (if it exists) is unknown.

Often, the 'first-moment method' simply refers to using the union bound as above. But it is much more general than that. We recall another basic term from probability.

Definition. The first moment of a random variable X is simply its mean, or expectation, written $\mathbb{E}[X]$.

Recall that expectation is linear. If X and Y are (real-valued) random variables and λ is a (constant!) real number, then $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$, and $\mathbb{E}[\lambda X]=\lambda \mathbb{E}[X]$. Crucially, these ALWAYS hold, irrespective of any relationship (or not) between X and Y.

If A is an event, then its indicator function I_{A} is the random variable which takes the value 1 when A holds and 0 when A does not hold.

Let A_{1}, \ldots, A_{n} be events, let I_{i} denote the indicator function of A_{i}, and set $X=$ $\sum_{i} I_{i}$, so X is the (random) number of the events A_{i} that hold. Then

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[I_{i}\right]=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

We use the following observation about any random variable X with finite mean μ : it cannot be true that X is always smaller than μ, or always larger: $\mathbb{P}(X \geqslant \mu)>0$ and $\mathbb{P}(X \leqslant \mu)>0$.

Example (Ramsey numbers again).
Theorem 1.3. Let $n, k \geqslant 1$ be integers. Then

$$
R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}
$$

Proof. Colour the edges of K_{n} randomly as before. Let X denote the (random) number of monochromatic copies of K_{k} in the colouring. Then

$$
\mu=\mathbb{E}[X]=\binom{n}{k} 2^{1-\binom{k}{2}} .
$$

Since $\mathbb{P}(X \leqslant \mu)>0$, there exists a colouring with at most μ monochromatic copies of K_{k}. Pick one vertex from each of these monochromatic $K_{k} \mathrm{~S}$ - this may involve picking the same vertex more than once. Delete all the selected vertices. Then we have deleted at most μ vertices, and we are left with a 'good' colouring of K_{m} for some $m \geqslant n-\mu$. Thus $R(k, k)>m \geqslant n-\mu$.

The type of argument above is often called a 'deletion argument'. Instead of trying to avoid 'bad things' in our random structure, we first ensure that there are not too many, and then 'fix things' (here by deleting) to get rid of those few.

Corollary 1.4. $R(k, k) \geqslant(1-o(1)) e^{-1} k 2^{k / 2}$.
Here we are using standard asymptotic notation. Explicitly, we mean that for any $\varepsilon>0$ there is a k_{0} such that $R(k, k) \geqslant(1-\varepsilon) e^{-1} k 2^{k / 2}$ for all $k \geqslant k_{0}$. (Theorem 1.1 does not quite yield this.)

Proof. Exercise: take $n=\left\lfloor e^{-1} k 2^{k / 2}\right\rfloor$.
We now give a totally different example of the first-moment method.
Example (Sum-free sets).
Definition. A set $S \subseteq \mathbb{R}$ is sum-free if there do not exist $a, b, c \in S$ such that $a+b=c$.
Note that $\{1,2\}$ is not sum-free, since $1+1=2$. The set $\{2,3,7,8,12\}$ is sum-free, for example.

Theorem 1.5 (Erdős, 1965). Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a set of $n \geqslant 1$ (distinct) non-zero integers. There is some $A \subseteq S$ such that A is sum-free and $|A|>n / 3$.

Proof. We use a trick: we want a prime p such that all s_{i} are distinct and non-zero $\bmod p$. For for example we may take $p>2 \max \left|s_{i}\right|$. There are infinitely many primes of the form $3 k+2$: we fix such a p not dividing any s_{i}. (A prime of the form $3 k+1$ works nearly as well.)

Let $I=\{k+1, \ldots, 2 k+1\}$. Then I is sum-free modulo p : there do not exist $a, b, c \in I$ such that $a+b \equiv c \bmod p$. (For if $a, b \in I$ then $2 k+2 \leqslant a+b \leqslant 4 k+2=(3 k+2)+k$.)

Pick r uniformly at random from $1,2, \ldots, p-1$, and set $t_{i}=r s_{i} \bmod p$. Thus each t_{i} is a random element of $\{1,2, \ldots, p-1\}$. For each fixed i, as r runs from 1 to $p-1$, t_{i} takes each possible value $1,2, \ldots, p-1$ exactly once: to see this note that no value can be repeated, since if $r s_{i} \equiv r^{\prime} s_{i}$ then $p \mid\left(r-r^{\prime}\right) s_{i}$ and so $p \mid\left(r-r^{\prime}\right)$. Hence

$$
\mathbb{P}\left(t_{i} \in I\right)=\frac{|I|}{p-1}=\frac{k+1}{3 k+1}>\frac{1}{3}
$$

We use the first moment method: we have

$$
\mathbb{E}\left[\# i \text { such that } t_{i} \in I\right]=\sum_{i=1}^{n} \mathbb{P}\left(t_{i} \in I\right)>n / 3
$$

It follows that there is some r such that, for this particular r, the number of i with $t_{i} \in I$ is greater than $n / 3$. For this r, let $A=\left\{s_{i}: t_{i} \in I\right\}$, so $A \subseteq S$ and $|A|>n / 3$. If we had $s_{i}, s_{j}, s_{k} \in A$ with $s_{i}+s_{j}=s_{k}$ then we would have $r s_{i}+r s_{j}=r s_{k}$, and hence $t_{i}+t_{j} \equiv t_{k} \bmod p$, which contradicts the fact that I is sum-free modulo p.

The proof above is an example of an averaging argument. This particular example is not so easy to dream up, but it is hopefully easy to follow.

Example (2-colouring hypergraphs). A hypergraph H is simply an ordered pair (V, E) where V is a set of vertices and E is a set of edges (or hyperedges), i.e., a set of subsets of V.

Note that E is a set, so each possible edge (subset of V) is either present or not, just as each possible edge of a graph is either present or not. If we wanted to allow multiple copies of the same edge, we could define multi-hypergraphs in analogy with multigraphs.
H is r-uniform if $|e|=r$ for all $e \in E$, i.e., if every edge consists of exactly r vertices. In particular, a 2-uniform hypergraph is simply a graph.

Figure 1: The Fano plane
An example of a 3-uniform hypergraph is the Fano plane shown in the figure. This has 7 vertices and 7 edges; in the drawing, the 6 straight lines and the circle each represent an edge. (As usual, how they are drawn is irrelevant, all that matters is which vertices each hyperedge contains.)

A (proper) 2-colouring of a hypergraph H is a red/blue colouring of the vertices such that every edge contains vertices of both colours. If H is 2-uniform, this is the same as a proper (vertex) 2-colouring of H as a graph. We say that H is 2-colourable if it has a 2-colouring. (This was once called having property B.)

Let $m(r)$ be the minimum m such that there exists a non 2-colourable r-uniform hypergraph with m edges. The Fano plane is not 2-colourable (exercise), and so $m(3) \leqslant$ 7. It is easy to check that $m(2)=3$. It is harder to check that $m(3)=7$ (there is no need to do this!).

Theorem 1.6. For $r \geqslant 2$ we have $m(r) \geqslant 2^{r-1}$.
Proof. Let $H=(V, E)$ be any r-uniform hypergraph with $m<2^{r-1}$ edges. Colour the vertices red and blue randomly: each red with probability $1 / 2$ and blue with probability $1 / 2$, with different vertices coloured independently. For any $e \in E$, the probability that e is monochromatic is $2(1 / 2)^{r}=1 / 2^{r-1}$. By the union bound, it follows that the probability that there is at least one monochromatic edge is at most $m / 2^{r-1}<1$. Thus there exists a 'good' colouring.

We can also obtain a bound in the other direction; this is harder.
Theorem 1.7 (Erdős, 1964). If r is large enough then $m(r) \leqslant 3 r^{2} 2^{r}$.

Proof. Fix $r \geqslant 3$. Let V be a set of n vertices, where n (which depends on r) will be chosen later. Let $m=3 r^{2} 2^{r}$.

Let e_{1}, \ldots, e_{m} be chosen independently and uniformly at random from all $\binom{n}{r}$ possible hyperedges on V. Although repetitions are possible, the hypergraph

$$
H=\left(V,\left\{e_{1}, \ldots, e_{m}\right\}\right)
$$

certainly has at most m hyperedges.
Let c be any red/blue colouring of V (not a random one this time). Then c has either at least $n / 2$ red vertices, or at least $n / 2$ blue ones. It follows that at least (crudely) $\binom{[n / 2\rceil}{ r}$ of the possible hyperedges are monochromatic with respect to c.

Let $p=p_{c}$ denote the probability that e_{1} (a hyperedge chosen uniformly at random from all possibilities) is monochromatic with respect to c. Then

$$
\begin{aligned}
& p \geqslant \frac{\binom{\lceil n / 2\rceil}{ r}}{\binom{n}{r}} \geqslant \frac{(n / 2)(n / 2-1) \cdots(n / 2-r+1)}{n(n-1) \cdots(n-r+1)} \\
& \qquad \geqslant\left(\frac{n / 2-r+1}{n-r+1}\right)^{r} \geqslant\left(\frac{n / 2-r}{n-r}\right)^{r}=2^{-r}\left(1-\frac{r}{n-r}\right)^{r} .
\end{aligned}
$$

Set $n=r^{2}$. Then $p \geqslant 2^{-r}(1-1 /(r-1))^{r}$. Since $(1-1 /(r-1))^{r} \rightarrow e^{-1}$ as $r \rightarrow \infty$, we see that $p \geqslant p_{0}:=\frac{1}{3 \cdot 2^{r}}$ if r is large enough, which we assume from now on.

The probability that the given, fixed colouring c is a proper 2 -colouring of our random hypergraph H is simply the probability that none of e_{1}, \ldots, e_{m} is monochromatic with respect to c. Since e_{1}, \ldots, e_{m} are independent, this probability is $(1-p)^{m} \leqslant$ $\left(1-p_{0}\right)^{m}$.

By the union bound, the probability that H is 2 -colourable is at most the sum over all possible c of the probability that c is a 2 -colouring, which is at most $2^{n}\left(1-p_{0}\right)^{m}$. Using the standard inequality $1-x \leqslant e^{-x}$, we have

$$
2^{n}\left(1-p_{0}\right)^{m} \leqslant 2^{n} e^{-p_{0} m} \leqslant 2^{r^{2}} e^{-\frac{3 r^{2} 2^{r}}{3 \cdot 2^{r}}}=2^{r^{2}} e^{-r^{2}}<1
$$

Therefore there exists an r-uniform hypergraph H with at most m edges and no 2colouring.

Remark. Why does the first moment method work? Often, there is some complicated event A whose probability we want to know or at least bound. For example, A might be the event that the random colouring c is a 2-colouring of a fixed (complicated) hypergraph H. Often, A is constructed by taking the union or intersection of simple events A_{1}, \ldots, A_{k}. In a few special situations, $\mathbb{P}(A)$ is easy to calculate:

- If A_{1}, \ldots, A_{k} are independent, then

$$
\mathbb{P}\left(A_{1} \cap \cdots \cap A_{k}\right)=\prod_{i} \mathbb{P}\left(A_{i}\right) \quad \text { and } \quad \mathbb{P}\left(A_{1} \cup \cdots \cup A_{k}\right)=1-\prod_{i}\left(1-\mathbb{P}\left(A_{i}\right)\right)
$$

- If A_{1}, \ldots, A_{k} are mutually exclusive, then

$$
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{k}\right)=\sum_{i} \mathbb{P}\left(A_{k}\right)
$$

(For example, these give us the probability $2(1 / 2)^{|e|}$ that a fixed hyperedge e is monochromatic in a random 2-colouring of the vertices.)

In general, the relationship between the A_{i} may be very complicated. However, if X is the number of A_{i} that hold, then we always have $\mathbb{E}[X]=\sum_{i} \mathbb{P}\left(A_{i}\right)$ and

$$
\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\mathbb{P}(X>0) \leqslant \sum_{i} \mathbb{P}\left(A_{i}\right)
$$

The key point is that while the left-hand side is complicated, the right-hand side is simple: we evaluate it by looking at one simple event at a time.

So far we have used the expectation only via the observations that $\mathbb{P}(X \leqslant \mathbb{E}[X])>0$ and $\mathbb{P}(X \geqslant \mathbb{E}[X])>0$, together with the union bound. A slightly more sophisticated (but still simple) way to use it is via Markov's inequality.
Lemma 1.8 (Markov's inequality). If X is a random variable taking only non-negative values and $t>0$, then $\mathbb{P}(X \geqslant t) \leqslant \mathbb{E}[X] / t$.

Proof. The inequality $X \geqslant t I_{X \geqslant t}$ holds always. Take expectations.
We now start on one of our main themes, the study of the random graph $G(n, p)$.
Definition. Given an integer $n \geqslant 1$ and a real number $0 \leqslant p \leqslant 1$, the random graph $G(n, p)$ is the graph with vertex set $[n]=\{1,2, \ldots, n\}$ in which each of the $\binom{n}{2}$ possible edges is present with probability p, independently of the others.

Thus, for any graph H on $[n]$,

$$
\mathbb{P}(G(n, p)=H)=p^{e(H)}(1-p)^{\binom{n}{2}-e(H)} .
$$

For example, if $p=1 / 2$, then all $2\binom{n}{2}$ graphs on $[n]$ are equally likely.
Remark. It is important to remember that we work with 'labelled' graphs. For example, the probability that $G(3, p)$ is a path with three vertices is $3 p^{2}(1-p)$, since there are three (isomorphic) graphs on $\{1,2,3\}$ that are paths.

We use the notation $\mathcal{G}(n, p)$ for the probability space of graphs on $[n]$ with the probabilities above. All of $G \in \mathcal{G}(n, p), G=G(n, p)$ and $G \sim G(n, p)$ mean exactly the same thing, namely that G is a random graph with this distribution. The notation $G_{n, p}$ is also common.

This model of random graphs is often called the Erdős-Rényi model although in fact it was first defined by Gilbert. Erdős and Rényi introduced an essentially equivalent model, and were the real founders of the theory of random graphs, so associating the model with their names is reasonable! Another common name for this model is the binomial model - the number of edges has the binomial distribution $\left.\left.\operatorname{Bin}\binom{n}{2}, p\right)\right)$.

Example (High girth and chromatic number). Let us recall some definitions. The girth $g(G)$ of a graph G is the minimum length of a cycle in G, or ∞ if G contains no cycles. The chromatic number $\chi(G)$ is the least k such that G has a proper k-colouring (i.e., a colouring of the vertices with k colours in which adjacent vertices receive different colours). The independence number $\alpha(G)$ is the maximum number of vertices in an independent set in G, i.e., a set of vertices of G no two of which are joined by an edge.

Since a proper k-colouring partitions the vertex set into k independent sets, $|G| \leqslant$ $k \alpha(G)$, and so

$$
\chi(G) \geqslant|G| / \alpha(G)
$$

Theorem 1.9 (Erdős, 1959). For any k and ℓ there exists a graph G with $\chi(G) \geqslant k$ and $g(G) \geqslant \ell$.

There are non-random proofs of this, but it is not so easy.
The idea of the proof is to consider $G(n, p)$ for suitable n and p. We will show separately that (a) very likely there are few short cycles, and (b) very likely there is no large independent set. Then it is likely that the properties in (a) and (b) both hold, and after deleting a few vertices (to kill the short cycles), we obtain the graph we need.

Proof. Fix $k, \ell \geqslant 3$. For $r \geqslant 3$, there are

$$
\frac{n(n-1) \cdots(n-r+1)}{2 r}
$$

possible cycles of length r in $G(n, p)$: the numerator counts sequences of r distinct vertices, and the denominator accounts for the fact that each cycle corresponds to $2 r$ sequences, depending on the choice of starting point and direction.

Let X_{r} be the number of r-cycles in $G(n, p)$. Then

$$
\mathbb{E}\left[X_{r}\right]=\frac{n(n-1) \cdots(n-r+1)}{2 r} p^{r} \leqslant \frac{n^{r} p^{r}}{2 r} .
$$

Set $p=p(n)=n^{-1+1 / \ell}$, and let X be the number of 'short' cycles, i.e., cycles with length less than ℓ. Then $X=X_{3}+X_{4}+\cdots+X_{\ell-1}$, so

$$
\mathbb{E}[X]=\sum_{r=3}^{\ell-1} \mathbb{E}\left[X_{r}\right] \leqslant \sum_{r=3}^{\ell-1} \frac{(n p)^{r}}{2 r}=\sum_{r=3}^{\ell-1} \frac{n^{r / \ell}}{2 r}=O\left(n^{\frac{\ell-1}{\ell}}\right)=o(n) .
$$

By Markov's inequality it follows that

$$
\mathbb{P}(X \geqslant n / 2) \leqslant \frac{\mathbb{E}[X]}{n / 2} \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

Set $m=m(n)=\left\lfloor n^{1-1 /(2 \ell)}\right\rfloor$. Let Y be the number of independent sets in $G(n, p)$ of size (exactly) m. Then, using bounds from problem sheet 1 ,

$$
\mathbb{E}[Y]=\binom{n}{m}(1-p)^{\binom{m}{2}} \leqslant\left(\frac{e n}{m}\right)^{m} e^{-p\binom{m}{2}}=\left(\frac{e n}{m} e^{-p \frac{m-1}{2}}\right)^{m} .
$$

Now

$$
p \frac{m-1}{2} \sim \frac{p m}{2} \sim \frac{n^{-1+\frac{1}{\ell}} n^{1-\frac{1}{2 \ell}}}{2}=\frac{n^{\frac{1}{2 \ell}}}{2} .
$$

Thus $p(m-1) / 2 \geqslant 2 \log n$ if n is large enough, which we may assume. But then

$$
\mathbb{E}[Y] \leqslant\left(\frac{e n}{m} n^{-2}\right)^{m} \rightarrow 0
$$

and by Markov's inequality we have $\mathbb{P}(Y \geqslant 1) \leqslant \mathbb{E}[Y] \rightarrow 0$, i.e., $\mathbb{P}(\alpha(G) \geqslant m) \rightarrow 0$.
Combining the two results above, by the union bound we have $\mathbb{P}(X \geqslant n / 2$ or $\alpha(G) \geqslant$ $m) \rightarrow 0$. Hence, if n is large enough, there exists some graph G with n vertices, with fewer than $n / 2$ short cycles, and with $\alpha(G)<m$.

Construct G^{*} by deleting one vertex from each short cycle of G. Then $g\left(G^{*}\right) \geqslant \ell$, and $\left|G^{*}\right| \geqslant n-n / 2=n / 2$. Also, $\alpha\left(G^{*}\right) \leqslant \alpha(G)<m$. Thus

$$
\chi\left(G^{*}\right) \geqslant \frac{\left|G^{*}\right|}{\alpha\left(G^{*}\right)} \geqslant \frac{n / 2}{m} \geqslant \frac{n / 2}{n^{1-\frac{1}{2 \ell}}}=\frac{1}{2} n^{\frac{1}{2 \ell}}
$$

which is larger than k if n is large enough.

2 Second moment method

Definition. A counting random variable is a random variable taking non-negative integer values.

Suppose (X_{n}) is a sequence of counting random variables. By Markov's inequality, if $\mathbb{E}\left[X_{n}\right] \rightarrow 0$ as $n \rightarrow \infty$, then we have $\mathbb{P}\left(X_{n}>0\right)=\mathbb{P}\left(X_{n} \geqslant 1\right) \leqslant \mathbb{E}\left[X_{n}\right] \rightarrow 0$. Under what conditions can we show that $\mathbb{P}\left(X_{n}>0\right) \rightarrow 1$? Simply $\mathbb{E}\left[X_{n}\right] \rightarrow \infty$ is not enough: it is easy to find examples where $\mathbb{E}\left[X_{n}\right] \rightarrow \infty$, but $\mathbb{P}\left(X_{n}=0\right) \rightarrow 1$. We want some control on the difference between X_{n} and $\mathbb{E}\left[X_{n}\right]$.
Definition. The variance $\operatorname{Var}[X]$ of a random variable X is defined by

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}
$$

(We assume that $\mathbb{E}[X]$ and $\mathbb{E}\left[X^{2}\right]$ are finite.) We recall a basic fact from probability.
Lemma 2.1 (Chebyshev's Inequality). Let X be a random variable and let $t>0$. Then

$$
\mathbb{P}(|X-\mathbb{E} X| \geqslant t) \leqslant \frac{\operatorname{Var}[X]}{t^{2}}
$$

Proof. By Markov's inequality applied to $Y=(X-\mathbb{E} X)^{2}$ we have

$$
\mathbb{P}(|X-\mathbb{E} X| \geqslant t)=\mathbb{P}\left(Y \geqslant t^{2}\right) \leqslant \frac{\mathbb{E}[Y]}{t^{2}}=\frac{\operatorname{Var}[X]}{t^{2}}
$$

In practice, we usually use this as follows.
Corollary 2.2. Let $\left(X_{n}\right)$ be a sequence of random variables with $\mathbb{E}\left[X_{n}\right]=\mu_{n}>0$ and $\operatorname{Var}\left[X_{n}\right]=o\left(\mu_{n}^{2}\right)$. Then $\mathbb{P}\left(X_{n}=0\right) \rightarrow 0$.

Proof.

$$
\mathbb{P}\left(X_{n}=0\right) \leqslant \mathbb{P}\left(\left|X_{n}-\mu_{n}\right| \geqslant \mu_{n}\right) \leqslant \frac{\operatorname{Var}\left[X_{n}\right]}{\mu_{n}^{2}} \rightarrow 0
$$

In fact, Chebyshev's inequality shows that under the same assumption, for any fixed $\varepsilon>0$,

$$
\mathbb{P}\left((1-\varepsilon) \mu_{n} \leqslant X_{n} \leqslant(1+\varepsilon) \mu_{n}\right) \rightarrow 1 .
$$

Remark. The mean $\mu=\mathbb{E}[X]$ is usually easy to calculate. Since $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mu^{2}$, this means that knowing the variance is equivalent to knowing the second moment $\mathbb{E}\left[X^{2}\right]$. In particular, with $\mu_{n}=\mathbb{E}\left[X_{n}\right]$, the condition $\operatorname{Var}\left[X_{n}\right]=o\left(\mu_{n}^{2}\right)$ is equivalent to $\mathbb{E}\left[X_{n}^{2}\right]=(1+o(1)) \mu_{n}^{2}$, i.e., $\mathbb{E}\left[X_{n}^{2}\right] \sim \mu_{n}^{2}$:

$$
\operatorname{Var}\left[X_{n}\right]=o\left(\mu_{n}^{2}\right) \Longleftrightarrow \mathbb{E}\left[X_{n}^{2}\right] \sim \mu_{n}^{2}
$$

Sometimes the second moment is more convenient to calculate than the variance.

Suppose that $X=I_{1}+\cdots+I_{k}$, where each I_{i} is the indicator function of some event A_{i}. We have seen that $\mathbb{E}[X]$ is easy to calculate; $\mathbb{E}\left[X^{2}\right]$ is not too much harder:

$$
\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\sum_{i} I_{i} \sum_{j} I_{j}\right]=\mathbb{E}\left[\sum_{i} \sum_{j} I_{i} I_{j}\right]=\sum_{i} \sum_{j} \mathbb{E}\left[I_{i} I_{j}\right]=\sum_{i=1}^{k} \sum_{j=1}^{k} \mathbb{P}\left(A_{i} \cap A_{j}\right)
$$

Example $\left(K_{4} \mathrm{~S}\right.$ in $\left.G(n, p)\right)$.
Theorem 2.3. Let $p=p(n)$ be a function of n.

1. If $n^{2 / 3} p \rightarrow 0$ as $n \rightarrow \infty$, then $\mathbb{P}\left(G(n, p)\right.$ contains a $\left.K_{4}\right) \rightarrow 0$.
2. If $n^{2 / 3} p \rightarrow \infty$ as $n \rightarrow \infty$, then $\mathbb{P}\left(G(n, p)\right.$ contains a $\left.K_{4}\right) \rightarrow 1$.

Proof. Let X (really X_{n}, as the distribution depends on n) denote the number of $K_{4} \mathrm{~S}$ in $G(n, p)$. For each set S of 4 vertices from [n], let A_{S} be the event that S induces a K_{4} in $G(n, p)$. Then

$$
\mu=\mathbb{E}[X]=\sum_{S} \mathbb{P}\left(A_{S}\right)=\binom{n}{4} p^{6}=\frac{n(n-1)(n-2)(n-3)}{4!} p^{6} \sim \frac{n^{4} p^{6}}{24}
$$

In case 1 it follows that $\mathbb{E}[X] \rightarrow 0$, so $\mathbb{P}(X>0) \rightarrow 0$, as required.
For the second part of the result, we have $\mathbb{E}\left[X^{2}\right]=\sum_{S} \sum_{T} \mathbb{P}\left(A_{S} \cap A_{T}\right)$. The contributions from all terms where S and T meet in a given number of vertices are as follows:

$$
\begin{aligned}
|S \cap T| & \text { contribution } \\
0 & \binom{n}{4}\binom{n-4}{4} p^{12} \sim \frac{n^{4}}{24} \frac{n^{4}}{24} p^{12} \sim \mu^{2} \\
1 & \binom{n}{4} 4\binom{n-4}{3} p^{12}=\Theta\left(n^{7} p^{12}\right) \\
2 & \binom{n}{4}\binom{4}{2}\binom{n-4}{2} p^{11}=\Theta\left(n^{6} p^{11}\right) \\
3 & \binom{n}{4}\binom{4}{3}\binom{n-4}{1} p^{9}=\Theta\left(n^{5} p^{9}\right) \\
4 & \binom{n}{4} p^{6}=\mu
\end{aligned}
$$

Recall that by assumption $n^{4} p^{6} \rightarrow \infty$, so $\mu \rightarrow \infty$ and the last contribution μ is $o\left(\mu^{2}\right)$. How do the other contributions compare to μ^{2} ? Firstly, since $\mu^{2}=\Theta\left(n^{8} p^{12}\right)$, we have $n^{7} p^{12}=o\left(\mu^{2}\right)$. For the others, we have

$$
\frac{n^{6} p^{11}}{n^{8} p^{12}}=\frac{1}{n^{2} p}=o(1)
$$

and

$$
\frac{n^{5} p^{9}}{n^{8} p^{12}}=\frac{1}{(n p)^{3}}=o(1)
$$

Putting this all together, $\mathbb{E}\left[X^{2}\right]=\mu^{2}+o\left(\mu^{2}\right)$, so $\operatorname{Var}[X]=o\left(\mu^{2}\right)$, and by Corollary 2.2 we have $\mathbb{P}(X=0) \rightarrow 0$.

Definition. Let \mathcal{P} be a property of graphs (e.g., 'contains a K_{4} '). A function $p^{*}(n)$ is called a threshold function for \mathcal{P} in the model $G(n, p)$ if

- $p(n) / p^{*}(n) \rightarrow 0$ implies that $\mathbb{P}(G(n, p(n))$ has $\mathcal{P}) \rightarrow 0$, and
- $p(n) / p^{*}(n) \rightarrow \infty$ implies that $\mathbb{P}(G(n, p(n))$ has $\mathcal{P}) \rightarrow 1$.

Theorem 2.3 says that $n^{-2 / 3}$ is a threshold function for $G(n, p)$ to contain a K_{4}. Note that threshold functions are not quite uniquely defined (e.g., $2 n^{-2 / 3}$ is also one). (Call a property increasing if whenever $G=(V, E)$ has the property then so does each graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $E \subseteq E^{\prime}$. Every increasing property has a threshold function.)

Suppose as usual that $X=I_{1}+\ldots+I_{k}$, with I_{i} the indicator function of A_{i}. When applying the second moment method, our aim is to estimate the variance, showing that it is small compared to the square of the mean, so Corollary 2.2 applies. So far we first calculated $\mathbb{E}\left[X^{2}\right]$, due to the simplicity of the formula $\sum_{i} \sum_{j} \mathbb{P}\left(A_{i} \cap A_{j}\right)$. However, this involves some 'unnecessary' work when many of the events are independent. We can avoid this by directly calculating the variance.

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} \\
& =\sum_{i} \sum_{j} \mathbb{P}\left(A_{i} \cap A_{j}\right)-\left(\sum_{i} \mathbb{P}\left(A_{i}\right)\right)\left(\sum_{j} \mathbb{P}\left(A_{j}\right)\right) \\
& =\sum_{i} \sum_{j}\left(\mathbb{P}\left(A_{i} \cap A_{j}\right)-\mathbb{P}\left(A_{i}\right) \mathbb{P}\left(A_{j}\right)\right) .
\end{aligned}
$$

Write $i \sim j$ if $i \neq j$ and A_{i} and A_{j} are dependent. (More precisely, we ensure that if $i \neq j$ and $i \nsim j$ then A_{i} and A_{j} must be independent.) The contribution from terms where A_{i} and A_{j} are independent is zero by definition, so

$$
\begin{aligned}
\operatorname{Var}[X] & =\sum_{i}\left(\mathbb{P}\left(A_{i}\right)-\mathbb{P}\left(A_{i}\right)^{2}\right)+\sum_{i} \sum_{j \sim i}\left(\mathbb{P}\left(A_{i} \cap A_{j}\right)-\mathbb{P}\left(A_{i}\right) \mathbb{P}\left(A_{j}\right)\right) \\
& \leqslant \mathbb{E}[X]+\sum_{i} \sum_{j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right)
\end{aligned}
$$

Note that the first line is an exact formula for the variance; the second line is just an upper bound, but this upper bound is often good enough.

The bound above gives another standard way of applying the 2 nd moment method. We suppress the dependence on n in the notation here.

Corollary 2.4. If $\mu:=\mathbb{E}[X] \rightarrow \infty$ and $\Delta:=\sum_{i} \sum_{j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right)=o\left(\mu^{2}\right)$, then $\mathbb{P}(X>0) \rightarrow 1$.

Proof. We have

$$
\frac{\operatorname{Var}[X]}{\mu^{2}} \leqslant \frac{\mu+\Delta}{\mu^{2}}=\frac{1}{\mu}+\frac{\Delta}{\mu^{2}} \rightarrow 0 .
$$

Now apply Chebyshev's inequality in the form of Corollary 2.2.
Definition. An isomorphism from a graph G to a graph H is a bijection $\phi: V(G) \rightarrow$ $V(H)$ such that $i j \in E(G)$ if and only if $\phi(i) \phi(j) \in E(H)$. An automorphism of H is an isomorphism from H to itself. We write $\operatorname{aut}(H)$ for the number of automorphisms of H.

For example the path P_{3} with 3 vertices has $\operatorname{aut}\left(P_{3}\right)=2$, and $\operatorname{aut}\left(C_{r}\right)=2 r$. As noted in lectures, if G and H are isomorphic, then there are exactly aut $(G)=\operatorname{aut}(H)$ isomorphisms from G to H.

Example (Appearance of H in $G(n, p)$). Fix a graph H with v vertices and e edges. What is the threshold for copies of H to appear in $G=G(n, p)$?

Let X be the number of copies of H in G, i.e., the number of pairs (W, F) where $W \subseteq V(G), F \subseteq E(G)$, and the graph (W, F) is isomorphic to H. For example, if H is P_{3}, then $\mathbb{E}[X]=n(n-1)(n-2) / 2 p^{2}$.

In general, there are $n(n-1) \cdots(n-v+1)$ injective maps $\phi: V(H) \rightarrow[n]$. Suppose that for $i=1,2$ we have a map $\phi_{i}: V(H) \rightarrow W$ that is an isomorphism between H and $\left(W, F_{i}\right)$. Then $F_{1}=F_{2}$ iff $\phi_{1}^{-1} \circ \phi_{2}$ is an automorphism γ of H; that is, if and only if $\phi_{2}=\phi_{1} \circ \gamma$. Thus if $\gamma_{1}, \ldots, \gamma_{k}$ are the automorphisms of H, then the maps that give the same copy of H as ϕ_{1} are $\phi_{1} \circ \gamma_{1}, \ldots, \phi_{1} \circ \gamma_{k}$. Thus there are

$$
\frac{n(n-1) \cdots(n-v+1)}{\operatorname{aut}(H)}
$$

possible copies of H. It follows that

$$
\mathbb{E}[X]=\frac{n(n-1) \cdots(n-v+1)}{\operatorname{aut}(H)} p^{e} \sim \frac{n^{v} p^{e}}{\operatorname{aut}(H)}=\Theta\left(n^{v} p^{e}\right) .
$$

This suggests that the threshold should be $p=n^{-v / e}$.
This worked for K_{4} but can it be right in general? Consider, for example, H to be a K_{4} with an extra edge hanging off, so $v=5$ and $e=7$. Our proposed threshold is $p=n^{-5 / 7}$, which is much smaller than $p=n^{-2 / 3}$. Consider the range in between, where $p / n^{-5 / 7} \rightarrow \infty$ but $p / n^{-2 / 3} \rightarrow 0$. Then $\mathbb{E}[X] \rightarrow \infty$, but the probability that $G(n, p)$ contains a K_{4} tends to 0 , so the probability that $G(n, p)$ contains a copy of H tends to 0 . The problem is that H contains a subgraph K_{4} which is hard to find, because its e / v ratio is larger than that of H.

Definition. The edge density $d(H)$ of a graph H is $e(H) /|H|$, i.e., $1 / 2$ times the average degree of H.

Definition. H is balanced if each subgraph H^{\prime} of H has $d\left(H^{\prime}\right) \leqslant d(H)$, and strictly balanced if each subgraph $H^{\prime} \neq H$ has $d\left(H^{\prime}\right)<d(H)$.

Examples of strictly balanced graphs are complete graphs, trees, and connected regular graphs.

For balanced graphs, $p=n^{-v / e}$ does turn out to be the threshold.
Theorem 2.5. Let H be a balanced graph with $|H|=v$ and $e(H)=e$. Then $p^{*}(n)=$ $n^{-v / e}$ is a threshold function for the property of containing a copy of H in the model $G(n, p)$.

Proof. Let X denote the number of copies of H in $G(n, p)$, and set $\mu=\mathbb{E} X$, so $\mu=$ $\Theta\left(n^{v} p^{e}\right)$. If $p / n^{-v / e} \rightarrow 0$ then $\mu \rightarrow 0$, so $\mathbb{P}(X \geqslant 1) \rightarrow 0$.

Suppose that $p / n^{-v / e} \rightarrow \infty$, i.e., that $n^{v} p^{e} \rightarrow \infty$. Then $\mu \rightarrow \infty$. We must show that $\mathbb{P}(X \geqslant 1) \rightarrow 1$.

Let H_{1}, \ldots, H_{N} list all possible copies of H with vertices in $[n]$, and let A_{i} denote the event that the i th copy H_{i} is present in $G=G(n, p)$. Let $H_{i} \cap H_{j}$ denote the graph with vertex set $V\left(H_{i}\right) \cap V\left(H_{j}\right)$ (when this is non-empty) and edge set $E\left(H_{i}\right) \cap E\left(H_{j}\right)$. Observe that A_{i} and A_{j} are dependent if and only if $e\left(H_{i} \cap H_{j}\right)>0$. As before, write $i \sim j$ if $i \neq j$ and A_{i} and A_{j} are dependent, and let

$$
\Delta:=\sum_{i} \sum_{j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right)=\sum_{i} \sum_{j \sim i} \mathbb{P}\left(H_{i} \cup H_{j} \subseteq G\right) .
$$

We split the sum by the number r of vertices of $H_{i} \cap H_{j}(2 \leqslant r \leqslant v)$ and the number s of edges of $H_{i} \cap H_{j}$. Note that $H_{i} \cap H_{j}$ is a subgraph of H_{i}, which is isomorphic to the balanced graph H. We thus have

$$
\frac{s}{r}=d\left(H_{i} \cap H_{j}\right) \leqslant d(H)=\frac{e}{v},
$$

so $s \leqslant r e / v$.
Since $H_{i} \cup H_{j}$ has $2 v-r$ vertices and $2 e-s$ edges, the contribution to Δ from terms with given r and s is

$$
\Theta\left(n^{2 v-r} p^{2 e-s}\right)=\Theta\left(\mu^{2} /\left(n^{r} p^{s}\right)\right)
$$

Now

$$
n^{r} p^{s} \geqslant n^{r} p^{r e / v}=\left(n^{v} p^{e}\right)^{r / v}=\Theta\left(\mu^{r / v}\right)
$$

Since $\mu \rightarrow \infty$ and $r / v>0$, it follows that $n^{r} p^{s} \rightarrow \infty$, so the contribution from this pair (r, s) is $o\left(\mu^{2}\right)$.

Since there are only a fixed number of pairs to consider, it follows that $\Delta=o\left(\mu^{2}\right)$. Hence, by Corollary 2.4, $\mathbb{P}(X>0) \rightarrow 1$.

Remark. In general, a threshold is $n^{-1 / d\left(H^{\prime}\right)}$, where H^{\prime} is a densest subgraph of H. The proof is almost the same.
Remark. If H is strictly balanced and $p=c n^{-v / e}$, then μ tends to a constant and the r th factorial moment $\mathbb{E}_{r}[X]=\mathbb{E}[X(X-1) \cdots(X-r+1)]$ satisfies $\mathbb{E}_{r}[X] \sim \mu^{r}$, from which one can show that the number of copies of H has asymptotically a Poisson distribution. We shall not do this.

3 Lovász Local Lemma

Suppose that we have some 'bad' events A_{1}, \ldots, A_{n}, and we want to show that it's possible that no A_{i} holds, no matter how unlikely. If $\sum_{i} \mathbb{P}\left(A_{i}\right)<1$ then the union bound gives what we want. But what if the sum is large? In general, of course, it might be that $\bigcup_{i} A_{i}$ always holds. One trivial case where we can rule this out is when the A_{i} are independent. Then

$$
\mathbb{P}\left(\bigcap_{i} A_{i}^{\mathrm{c}}\right)=\prod_{i} \mathbb{P}\left(A_{i}^{\mathrm{c}}\right)=\prod_{i=1}^{n}\left(1-\mathbb{P}\left(A_{i}\right)\right)>0
$$

provided each A_{i} has probability less than 1.
What if each A_{i} depends only on a few others?
Recall that A_{1}, \ldots, A_{n} are independent if for all disjoint $S, T \subseteq[n]$ we have

$$
\mathbb{P}\left(\bigcap_{i \in S} A_{i} \cap \bigcap_{i \in T} A_{i}^{\mathrm{c}}\right)=\prod_{i \in S} \mathbb{P}\left(A_{i}\right) \prod_{i \in T} \mathbb{P}\left(A_{i}^{\mathrm{c}}\right) .
$$

(If $S=\emptyset$ then $\bigcap_{i \in S} A_{i}$ is the whole probability space Ω, and $\mathbb{P}\left(\bigcap_{i \in S} A_{i}\right)=1$.) This is not the same as each pair of events being independent (see below).

Definition. An event A is independent of a family $\left(B_{1}, \ldots, B_{n}\right)$ of events if for all disjoint $S, T \subseteq[n]$ we have

$$
\mathbb{P}\left(A \mid \bigcap_{i \in S} B_{i} \cap \bigcap_{i \in T} B_{i}^{\mathrm{c}}\right)=\mathbb{P}(A)
$$

i.e., if knowing that certain B_{i} hold and certain others do not does not affect the probability that A holds.

For example, suppose that each of the following four sequences of coin tosses happens with probability $1 / 4$: TTT, THH, HTH and HHT. Let A_{i} be the event that the i th toss is H . Then one can check that any two events A_{i} are independent, but $\left(A_{1}, A_{2}, A_{3}\right)$ is not a family of independent events. Similarly, A_{1} is not independent of $\left(A_{2}, A_{3}\right)$, since $\mathbb{P}\left(A_{1} \mid A_{2} \cap A_{3}\right)=0$.
Remark. If we want to avoid division by zero above, we can rewrite the condition $\mathbb{P}(A \mid E)=\mathbb{P}(A)$ as $\mathbb{P}(A \cap E)=\mathbb{P}(A) \mathbb{P}(E)$. More generally, the defining property of $\mathbb{P}(A \mid E)$ is that $\mathbb{P}(A \cap E)=\mathbb{P}(A \mid E) \mathbb{P}(E)$. In the case where $\mathbb{P}(E)=0$ (and so $\mathbb{P}(A \cap E)=0$) this holds automatically. Taking this view, a statement such as $\mathbb{P}(A \mid E) \geqslant x$ is really short for $\mathbb{P}(A \cap E) \geqslant x \mathbb{P}(E)$, so if $\mathbb{P}(E)=0$ it holds automatically.

Recall that a digraph on a vertex set V is a set of ordered pairs of distinct elements of V, i.e., a 'graph' in which each edge has an orientation, there are no loops, and there is at most one edge from a given i to a given j, but we may have edges in both directions. We write $i \rightarrow j$ if there is an edge from i to j.

Definition. A digraph D on $[n]$ is called a dependency digraph for the events A_{1}, \ldots, A_{n} if for each i the event A_{i} is independent of the family of events $\left(A_{j}: j \neq i, i \nrightarrow j\right)$.

Roughly speaking, A_{i} is 'allowed to depend on A_{j} when $i \rightarrow j$ '. More precisely, A_{i} must be independent of the remaining A_{j} as a family, not just individually.

Theorem 3.1 (Local Lemma, general form). Let D be a dependency digraph for the events A_{1}, \ldots, A_{n}. Suppose that there are real numbers $0 \leqslant x_{i}<1$ such that

$$
\mathbb{P}\left(A_{i}\right) \leqslant x_{i} \prod_{j: i \rightarrow j}\left(1-x_{j}\right)
$$

for each i. Then

$$
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{\mathrm{c}}\right) \geqslant \prod_{i=1}^{n}\left(1-x_{i}\right)>0
$$

Proof. We claim that for any proper subset S of $[n]$ and any $i \notin S$ we have

$$
\begin{equation*}
\mathbb{P}\left(A_{i}^{\mathrm{c}} \mid \bigcap_{j \in S} A_{j}^{\mathrm{c}}\right) \geqslant 1-x_{i} \tag{1}
\end{equation*}
$$

i.e., that

$$
\begin{equation*}
\mathbb{P}\left(A_{i} \mid \bigcap_{j \in S} A_{j}^{\mathrm{c}}\right) \leqslant x_{i} \tag{2}
\end{equation*}
$$

Assuming the claim, then

$$
\begin{aligned}
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{\mathrm{c}}\right) & =\mathbb{P}\left(A_{1}^{\mathrm{c}}\right) \mathbb{P}\left(A_{2}^{\mathrm{c}} \mid A_{1}^{\mathrm{c}}\right) \mathbb{P}\left(A_{3}^{\mathrm{c}} \mid A_{1}^{\mathrm{c}} \cap A_{2}^{\mathrm{c}}\right) \cdots \mathbb{P}\left(A_{n}^{\mathrm{c}} \mid \bigcap_{i=1}^{n-1} A_{i}^{\mathrm{c}}\right) \\
& \geqslant\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right) \cdots\left(1-x_{n}\right) \\
& =\prod_{i=1}^{n}\left(1-x_{i}\right)
\end{aligned}
$$

It remains to prove the claim. For this we use induction on $|S|$.
For the base case $|S|=0$ we have

$$
\mathbb{P}\left(A_{i} \mid \bigcap_{j \in S} A_{j}^{\mathrm{c}}\right)=\mathbb{P}\left(A_{i}\right) \leqslant x_{i} \prod_{j: i \rightarrow j}\left(1-x_{j}\right) \leqslant x_{i}
$$

as required.
Now suppose the claim holds whenever $|S|<r$, and consider S with $|S|=r$, and $i \notin S$. Let $S_{1}=\{j \in S: i \rightarrow j\}$ and $S_{0}=S \backslash S_{1}=\{j \in S: i \nrightarrow j\}$, and consider $B=\bigcap_{j \in S_{1}} A_{j}^{\mathrm{c}}$ and $C=\bigcap_{j \in S_{0}} A_{j}^{\mathrm{c}}$.

In this notation, the inequality (2) simply says that

$$
\mathbb{P}\left(A_{i} \mid B \cap C\right) \leqslant x_{i} .
$$

In proving this we may (as noted above) assume that $\mathbb{P}(B \cap C)>0$. Then

$$
\begin{equation*}
\mathbb{P}\left(A_{i} \mid B \cap C\right)=\frac{\mathbb{P}\left(A_{i} \cap B \cap C\right)}{\mathbb{P}(B \cap C)}=\frac{\mathbb{P}\left(A_{i} \cap B \cap C\right)}{\mathbb{P}(C)} \frac{\mathbb{P}(C)}{\mathbb{P}(B \cap C)}=\frac{\mathbb{P}\left(A_{i} \cap B \mid C\right)}{\mathbb{P}(B \mid C)} . \tag{3}
\end{equation*}
$$

To bound the numerator, note that $\mathbb{P}\left(A_{i} \cap B \mid C\right) \leqslant \mathbb{P}\left(A_{i} \mid C\right)=\mathbb{P}\left(A_{i}\right)$, since A_{i} is independent of the family of events $\left(A_{j}: j \in S_{0}\right)$. Hence, by the assumption of the theorem,

$$
\begin{equation*}
\mathbb{P}\left(A_{i} \cap B \mid C\right) \leqslant \mathbb{P}\left(A_{i}\right) \leqslant x_{i} \prod_{j: i \rightarrow j}\left(1-x_{j}\right) . \tag{4}
\end{equation*}
$$

For the denominator in (3), write S_{1} as $\left\{j_{1}, \ldots, j_{a}\right\}$ and S_{0} as $\left\{k_{1}, \ldots, k_{b}\right\}$. Then

$$
\begin{aligned}
\mathbb{P}(B \mid C) & =\mathbb{P}\left(A_{j_{1}}^{\mathrm{c}} \cap \cdots \cap A_{j_{a}}^{\mathrm{c}} \mid C\right) \\
& =\prod_{t=1}^{a} \mathbb{P}\left(A_{j_{t}}^{\mathrm{c}} \mid C \cap A_{j_{1}}^{\mathrm{c}} \cap \cdots \cap A_{j_{t-1}}^{\mathrm{c}}\right) .
\end{aligned}
$$

In each conditional probability in the product, we condition on the intersection of at most $r-1$ events A_{j}^{c}, and j_{t} is not one of their indices, so the induction hypothesis (1) applies, and thus

$$
\mathbb{P}(B \mid C) \geqslant \prod_{t=1}^{a}\left(1-x_{j_{t}}\right)=\prod_{j \in S_{1}}\left(1-x_{j}\right) \geqslant \prod_{j: i \rightarrow j}\left(1-x_{j}\right)
$$

since $S_{1} \subseteq\{j: i \rightarrow j\}$. Together with (3) and (4) this gives $\mathbb{P}\left(A_{i} \mid B \cap C\right) \leqslant x_{i}$, which is exactly (2). This completes the proof by induction.

Dependency digraphs are slightly slippery. First recall that given the events A_{1}, \ldots, A_{n}, we cannot construct D simply by taking $i \rightarrow j$ if A_{i} and A_{j} are dependent. Considering three events such that each pair is independent but $\left(A_{1}, A_{2}, A_{3}\right)$ is not, a legal dependency digraph must have at least one edge from vertex 1 (since A_{1} is not independent of the family $\left(A_{2}, A_{3}\right)$), and similarly from each other vertex.

The same example shows that (even minimal) dependency digraphs are not unique: in this case there are 8 minimal dependency digraphs.

There is an important special case where dependency digraphs are easy to construct; we state it as a simple lemma.

Lemma 3.2. Suppose that $\left(X_{\alpha}\right)_{\alpha \in F}$ is a family of independent random variables, and that A_{1}, \ldots, A_{n} are events where A_{i} is determined by $\left(X_{\alpha}: \alpha \in F_{i}\right)$ for some $F_{i} \subseteq F$. Then the (di)graph in which, for distinct i and $j, i \rightarrow j$ (and so also $j \rightarrow i$) if and only if $F_{i} \cap F_{j} \neq \emptyset$ is a dependency digraph for A_{1}, \ldots, A_{n}.

Proof. For each i, the events $\left(A_{j}: j \neq i, i \nrightarrow j\right)$ are (jointly) determined by the variables ($X_{\alpha}: \alpha \in F \backslash F_{i}$), and A_{i} is independent of this family of variables.

We now turn to a more user-friendly version of the local lemma. The out-degree of a vertex i in a digraph D is simply the number of vertices j such that $i \rightarrow j$.

Theorem 3.3 (Local Lemma, Symmetric version). Let A_{1}, \ldots, A_{n} be events having a dependency digraph D with all out-degrees at most d. If $\mathbb{P}\left(A_{i}\right) \leqslant p$ for all i and $e p(d+1) \leqslant 1$, then $\mathbb{P}\left(\bigcap_{i} A_{i}^{c}\right)>0$.
Proof. Set $x_{i}=1 /(d+1)$ for all i and apply Theorem 3.1. We have $|\{j: i \rightarrow j\}| \leqslant d$, and $(1+1 / d)^{d} \leqslant e$, so

$$
x_{i} \prod_{j: i \rightarrow j}\left(1-x_{j}\right) \geqslant \frac{1}{d+1}\left(\frac{d}{d+1}\right)^{d} \geqslant \frac{1}{e(d+1)} \geqslant p \geqslant \mathbb{P}\left(A_{i}\right)
$$

and Theorem 3.1 applies.
Remark. Considering $d+1$ disjoint events each with probability $1 /(d+1)$ shows that the constant (here e) must be >1. In fact, the constant e is best possible for large d.
Example (Hypergraph colouring).
Theorem 3.4. Let H be an r-uniform hypergraph in which each edge meets at most d other edges. If $d+1 \leqslant 2^{r-1}$ /e then H has a 2-colouring.

Proof. Colour the vertices randomly in the usual way, each red/blue with probability $1 / 2$, independently of the others. Let A_{i} be the event that the i th edge e_{i} is monochromatic, so $\mathbb{P}\left(A_{i}\right)=2^{1-r}=p$.

By Lemma 3.2 we may form a dependency digraph for the A_{i} by joining i to j (both ways) if e_{i} and e_{j} share one or more vertices. The maximum out-degree is at most d by assumption, and

$$
e p(d+1) \leqslant e 2^{1-r}\left(2^{r-1} / e\right)=1
$$

Now Theorem 3.3 gives $\mathbb{P}\left(\cap_{i} A_{i}^{\mathrm{c}}\right)>0$, so there exists a good colouring.
Example (Ramsey numbers again).
Theorem 3.5. If $k \geqslant 3$ and $e 2^{1-\binom{k}{2}}\binom{k}{2}\binom{n}{k-2} \leqslant 1$ then $R(k, k)>n$.
Proof. Colour the edges of K_{n} as usual, each red/blue with probability $1 / 2$, independently of the others. For each $S \subseteq[n]$ with $|S|=k$, let A_{S} be the event that the complete graph on S is monochromatic, so $\mathbb{P}\left(A_{S}\right)=2^{1-\binom{k}{2}}$.

For the dependency digraph, by Lemma 3.2 we may join S and T if they share an edge, i.e., if $|S \cap T| \geqslant 2$. The maximum degree d is

$$
d=|\{T:|S \cap T| \geqslant 2\}|<\binom{k}{2}\binom{n}{k-2} .
$$

By assumption $e p(d+1) \leqslant 1$, so Theorem 3.3 applies, giving the result.

Corollary 3.6. $R(k, k) \geqslant(1+o(1)) \frac{k \sqrt{2}}{e} 2^{k / 2}$.
Proof. Straightforward(ish) calculation; you won't be asked to do it!
Note: this improves the bound from the first moment method by a factor of $\sqrt{2}$. This is not much, but this is the best lower bound known!

Example $(R(3, k))$. In the previous example, the local lemma didn't make so much difference, because each event depended on very many others. If we consider off-diagonal Ramsey numbers the situation changes, but we can't use the symmetric form. The point here is to understand how to apply the lemma when we have 'two types' of events; the details of the calculation are not important.

Colour the edges of K_{n} red with probability p and blue with probability $1-p$, independently of each other, where $p=p(n) \rightarrow 0$.

For each $S \subseteq[n]$ with $|S|=3$ let A_{S} be the event that S spans a red triangle, and for each $T \subseteq[n]$ with $|T|=k$ let B_{T} be the event that T spans a blue K_{k}. Note that

$$
\mathbb{P}\left(A_{S}\right)=p^{3} \quad \text { and } \quad \mathbb{P}\left(B_{T}\right)=(1-p)^{\binom{k}{2}}
$$

As usual, we can form the dependency digraph by joining two events if they involve one or more common edges. Each A event is joined to

- at most $3 n$ other A events, and
- at most $\binom{n}{k} \leqslant n^{k} B$ events (as there are only $\binom{n}{k} B$ events in total).

Also, each B event is joined to

- at most $\binom{k}{2} n A$ events, and
- at most $n^{k} B$ events.

Our aim is to apply Theorem 3.1 with $x_{i}=x$ for all A events and $x_{i}=y$ for all B events, to conclude that the probability that none of the A_{S} or B_{T} holds is positive, which gives $R(3, k)>n$. The conditions are satisfied provided we have

$$
\begin{equation*}
p^{3} \leqslant x(1-x)^{3 n}(1-y)^{n^{k}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-p)^{\binom{k}{2}} \leqslant y(1-x)^{\binom{k}{2} n}(1-y)^{n^{k}} . \tag{6}
\end{equation*}
$$

It turns out that

$$
p=\frac{1}{6 \sqrt{n}} \quad x=\frac{1}{12 n^{3 / 2}} \quad k \sim 30 \sqrt{n} \log n \quad y=n^{-k}
$$

satisfies (5) and (6) if n is large enough. This gives the following result.

Theorem 3.7. There exists a constant $c>0$ such that $R(3, k) \geqslant c k^{2} /(\log k)^{2}$ if k is large enough.

Proof. The argument above shows that, for sufficiently large n, we have $R(3, k)>n$ if $k \sim 30 \sqrt{n} \log n$, that is, if $n \sim \frac{k^{2}}{(60 \log k)^{2}}$.
Remark. This bound is best possible apart from one factor of $\log k$. Removing this factor was not easy, and was a major achievement of J.H. Kim. We now (2016) know that

$$
\left(\frac{1}{4}+o(1)\right) \frac{k^{2}}{\log k} \leqslant R(3, k) \leqslant(1+o(1)) \frac{k^{2}}{\log k} .
$$

4 Chernoff bounds

Often we are interested in whether a random graph $G(n, p)$ has some property almost always (with probability tending to one as $n \rightarrow \infty$), or almost never. For example, this is enough to allow us to show the existence of graphs with various combinations of properties, using the fact that if two or three properties individually hold almost always, then their intersection holds almost always. Sometimes, however, we need to consider a number k of properties (events) that tends to infinity as $n \rightarrow \infty$. This means that we would like tighter bounds on the probability that individual events fail to hold.

For example, let $G=G(n, p)$ and consider its maximum degree $\Delta(G)$. For any d we have $\mathbb{P}(\Delta(G) \geqslant d) \leqslant n \mathbb{P}\left(d_{v} \geqslant d\right)$, where d_{v} is the degree of a given vertex v. In turn this is at most $n \mathbb{P}(X \geqslant d)$ where $X \sim \operatorname{Bin}(n, p)$. To show that $\mathbb{P}(\Delta(G) \geqslant d) \rightarrow 0$ for some $d=d(n)$ we would need a bound of the form

$$
\begin{equation*}
\mathbb{P}(X \geqslant d)=o(1 / n) \tag{7}
\end{equation*}
$$

Recall that if $X \sim \operatorname{Bin}(n, p)$ then $\mu=\mathbb{E}[X]=n p$ and $\sigma^{2}=\operatorname{Var}[X]=n p(1-p)$. For example, if $p=1 / 2$ then $\mu=n / 2$ and $\sigma=\sqrt{n} / 2$. Chebyshev's inequality gives $\mathbb{P}(X \geqslant \mu+\lambda \sigma) \leqslant \lambda^{-2}$; to use this for (7) we need $\lambda \gg \sqrt{n}$ (that is, $\lambda / \sqrt{n} \rightarrow \infty$ as $n \rightarrow \infty)$. If $p=1 / 2$ this gives $\lambda \sigma \gg n$, which is useless.

On the other hand, the central limit theorem suggests that as $n \rightarrow \infty$

$$
\mathbb{P}(X \geqslant \mu+\lambda \sigma)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \geqslant \lambda\right) \rightarrow \mathbb{P}(N(0,1) \geqslant \lambda) \approx e^{-\lambda^{2} / 2}
$$

where $N(0,1)$ is the standard normal distribution. But the \rightarrow here is valid only for λ constant, so again it is no use for (7) (and the final \approx should really be $\approx \lambda^{-1} e^{-\lambda^{2} / 2}$, valid for large λ).

Our next aim is to prove a bound similar to the above, but valid no matter how λ depends on n.

Theorem 4.1. Suppose that $n \geqslant 1$ and $p, x \in(0,1)$. Let $X \sim \operatorname{Bin}(n, p)$. Then

$$
\mathbb{P}(X \geqslant n x) \leqslant\left[\left(\frac{p}{x}\right)^{x}\left(\frac{1-p}{1-x}\right)^{1-x}\right]^{n} \quad \text { if } x \geqslant p
$$

and

$$
\mathbb{P}(X \leqslant n x) \leqslant\left[\left(\frac{p}{x}\right)^{x}\left(\frac{1-p}{1-x}\right)^{1-x}\right]^{n} \quad \text { if } x \leqslant p
$$

Note that the exact expression is in some sense not so important; what matters is (a) the proof technique, and (b) that it is exponential in n if x and p are fixed.

Proof. The idea is simply to apply Markov's inequality to the random variable $e^{t X}$ for some number t that we will choose so as to optimize the bound.

Consider X as a sum $X_{1}+\ldots+X_{n}$ where the X_{i} are independent with $\mathbb{P}\left(X_{i}=1\right)=p$ and $\mathbb{P}\left(X_{i}=0\right)=1-p$. Then

$$
\begin{aligned}
\mathbb{E}\left[e^{t X}\right] & =\mathbb{E}\left[e^{t X_{1}} e^{t X_{2}} \cdots e^{t X_{n}}\right] \\
& =\mathbb{E}\left[e^{t X_{1}}\right] \cdots \mathbb{E}\left[e^{t X_{n}}\right] \\
& =\left(p e^{t}+(1-p) e^{0}\right)^{n}
\end{aligned}
$$

where we used independence for the second equality.
For any $t>0$, using the fact that $y \mapsto e^{t y}$ is increasing and Markov's inequality, we have

$$
\begin{align*}
\mathbb{P}(X \geqslant n x) & =\mathbb{P}\left(e^{t X} \geqslant e^{t n x}\right) \tag{8}\\
& \leqslant \mathbb{E}\left[e^{t X}\right] / e^{t n x} \\
& =\left[\left(p e^{t}+1-p\right) e^{-t x}\right]^{n}
\end{align*}
$$

To get the best bound we minimize over t (by differentiating and equating to zero).
For $x>p$, the minimum occurs when

$$
e^{t}=\frac{x}{p} \frac{1-p}{1-x}>1,
$$

so $t>0$ and we can use this value: we obtain

$$
\mathbb{P}(X \geqslant n x) \leqslant\left[\left(x \frac{1-p}{1-x}+1-p\right)\left(\frac{p}{x}\right)^{x}\left(\frac{1-x}{1-p}\right)^{x}\right]^{n}=\left[\left(\frac{p}{x}\right)^{x}\left(\frac{1-p}{1-x}\right)^{1-x}\right]^{n}
$$

proving the first part of the theorem. (The case $x=p$ is trivial since the bound is 1.)
For the second part, let $Y=n-X$, so $Y \sim \operatorname{Bin}(n, 1-p)$. Then $\mathbb{P}(X \leqslant n x)=$ $\mathbb{P}(Y \geqslant n(1-x))$, and apply the first part.

Remark. Theorem 4.1 gives the best possible bound among bounds of the form $\mathbb{P}(X \geqslant$ $n x) \leqslant g(x, p)^{n}$ where $g(x, p)$ is some function of x and p.

In the form above, the bound is a little hard to use. Here are some more practical forms.

Corollary 4.2. Let $X \sim \operatorname{Bin}(n, p)$. Then for $h, t>0$

$$
\mathbb{P}(X \geqslant n p+n h) \leqslant e^{-2 h^{2} n}
$$

and

$$
\mathbb{P}(X \geqslant n p+t) \leqslant e^{-2 t^{2} / n}
$$

Also, for $0 \leqslant \varepsilon \leqslant 1$ we have

$$
\mathbb{P}(X \geqslant(1+\varepsilon) n p) \leqslant e^{-\varepsilon^{2} n p / 4}
$$

and

$$
\mathbb{P}(X \leqslant(1-\varepsilon) n p) \leqslant e^{-\varepsilon^{2} n p / 2}
$$

Proof. Fix p with $0<p<1$. For $x>p$ or $x<p$ Theorem 4.1 gives $\mathbb{P}(X \geqslant n x) \leqslant e^{-f(x) n}$ or $\mathbb{P}(X \leqslant n x) \leqslant e^{-f(x) n}$, where

$$
f(x)=x \log \left(\frac{x}{p}\right)+(1-x) \log \left(\frac{1-x}{1-p}\right)
$$

We aim to bound $f(x)$ from below by some simpler function. Note that $f(p)=0$. Also,

$$
f^{\prime}(x)=\log x-\log p-\log (1-x)+\log (1-p)
$$

so $f^{\prime}(p)=0$ and

$$
f^{\prime \prime}(x)=\frac{1}{x}+\frac{1}{1-x} .
$$

If $f^{\prime \prime}(x) \geqslant a$ for all x between p and $p+h$ then (e.g., by Taylor's Theorem) we get $f(p+h) \geqslant a h^{2} / 2$.

Now for any x we have $f^{\prime \prime}(x) \geqslant \inf _{x>0}\{1 / x+1 /(1-x)\}=4$, so $f(p+h) \geqslant 2 h^{2}$, giving the first bound; the second is the same bound in different notation, setting $t=n h$.

For the third bound, if $p \leqslant x \leqslant p(1+\varepsilon) \leqslant 2 p$ then $f^{\prime \prime}(x) \geqslant 1 / x \geqslant 1 /(2 p)$, giving $f(p+\varepsilon p) \geqslant \frac{\varepsilon^{2} p^{2}}{2} \frac{1}{2 p}$, which gives the result.

For the final bound, if $0<x \leqslant p$ then $f^{\prime \prime}(x) \geqslant 1 / x \geqslant 1 / p$, giving $f(p-\varepsilon p) \geqslant$ $\frac{\varepsilon^{2} p^{2}}{2} \frac{1}{p}$.

Remark. Recall that $\sigma=\sqrt{n p(1-p)}$, so when p is small then $\varepsilon n p \sim \varepsilon \sqrt{n p} \sigma$. The central limit theorem suggests that the probability of a deviation this large should be around $e^{-\varepsilon^{2} n p / 2}$ as in the final bound above. The third bound is weaker (and can be improved by replacing the 4 by a 3 , but not by a 2).

In general, think of the bounds as of the form $e^{-c \lambda^{2}}$ for the probability of being λ standard deviations away from the mean. Alternatively, deviations on the scale of the mean are exponentially unlikely.

The Chernoff bounds apply more generally than just to binomial distributions; they apply to other sums of independent variables where each variable has bounded range.
Example (The maximum degree of $G(n, p)$).
Theorem 4.3. Let $p=p(n)$ satisfy $n p \geqslant 10 \log n$, and let Δ be the maximum degree of $G(n, p)$. Then

$$
\mathbb{P}(\Delta \geqslant n p+3 \sqrt{n p \log n}) \rightarrow 0
$$

as $n \rightarrow \infty$.
Proof. Let $d=n p+3 \sqrt{n p \log n}$. As noted at the start of the section,

$$
\mathbb{P}(\Delta \geqslant d) \leqslant n \mathbb{P}\left(d_{v} \geqslant d\right) \leqslant n \mathbb{P}(X \geqslant d)
$$

where $d_{v} \sim \operatorname{Bin}(n-1, p)$ is the degree of a given vertex, and $X \sim \operatorname{Bin}(n, p)$. Applying the third bound in Corollary 4.2 with $\varepsilon=3 \sqrt{ } \log n /(n p) \leqslant 1$, we have

$$
n \mathbb{P}(X \geqslant d) \leqslant n e^{-\varepsilon^{2} n p / 4}=n e^{-9(\log n) / 4}=n n^{-9 / 4}=n^{-5 / 4} \rightarrow 0
$$

giving the result.

Note that for large n there will be some vertices with degrees any given number of standard deviations above the average. The result says however that all degrees will be at most $C \sqrt{\log n}$ standard deviations above. This is best possible, apart from the constant.

5 Phase Transition in $G(n, p)$

[Summary of what we know about $G(n, p)$ in various ranges; most interesting near $p=1 / n$.]

5.1 Branching processes

Let Z be a probability distribution on the non-negative integers. The Galton-Watson branching process with offspring distribution Z is defined as follows:

- Generation 0 consists of a single individual.
- Each individual in generation t has a (possibly empty) set of children. These sets are disjoint and between them make up generation $t+1$.
- The number of children of each individual has distribution Z, and is independent of everything else, i.e., of the history so far, and of other individuals in the same generation.

We write X_{t} for the number of individuals in generation t, and $\mathbf{X}=\left(X_{0}, X_{1}, \ldots\right)$ for the random sequence of generation sizes. Note that $X_{0}=1$, and given the values of X_{0}, \ldots, X_{t} with $X_{t}=k$, the conditional distribution of X_{t+1} is the sum of k independent copies of Z.

Let $\lambda=\mathbb{E}[Z]$. Then $\mathbb{E}\left[X_{0}\right]=1$. Also $\mathbb{E}\left[X_{t+1} \mid X_{t}=k\right]=k \lambda$. Thus

$$
\begin{aligned}
\mathbb{E}\left[X_{t+1}\right] & =\sum_{k} \mathbb{P}\left(X_{t}=k\right) \mathbb{E}\left[X_{t+1} \mid X_{t}=k\right] \\
& =\sum_{k} \mathbb{P}\left(X_{t}=k\right) k \lambda=\lambda \mathbb{E}\left[X_{t}\right] .
\end{aligned}
$$

Hence $\mathbb{E}\left[X_{t}\right]=\lambda^{t}$ for all t.
The branching process survives if $X_{t}>0$ for all t, and dies out or goes extinct if $X_{t}=0$ for some t.

If $\lambda=\mathbb{E}[Z]<1$, then for any t we have

$$
\mathbb{P}(\mathbf{X} \text { survives }) \leqslant \mathbb{P}\left(X_{t}>0\right) \leqslant \mathbb{E}\left[X_{t}\right]=\lambda^{t} .
$$

Letting $t \rightarrow \infty$ shows that $\mathbb{P}(\mathbf{X}$ survives $)=0$.
What if $\lambda>1$? Note that any branching process with $\mathbb{P}(Z=0)>0$ may die out the question is, can it survive?

We recall some basic properties of probability generating functions.
Definition. If Z is a random variable taking non-negative integer values, the probability generating function of Z is the function $f_{Z}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f_{Z}(x)=\mathbb{E}\left[x^{Z}\right]=\sum_{k=0}^{\infty} \mathbb{P}(Z=k) x^{k}
$$

The following facts are easy to check, say for the case $\mathbb{E}[Z]<\infty$ which is all we need:

- $f_{Z}(0)=\mathbb{P}(Z=0)$ and $f_{Z}(1)=1$.
- f_{Z} is continuous on $[0,1]$.
- f_{Z} is increasing.
- $f_{Z}^{\prime}(1)=\mathbb{E}[Z]$.
- If $\mathbb{P}(Z \geqslant 2)>0$, then f_{Z}^{\prime} is strictly increasing.

For the last three observations, note that for $0<x \leqslant 1$ we have

$$
f_{Z}^{\prime}(x)=\sum_{k=1}^{\infty} k \mathbb{P}(Z=k) x^{k-1} \geqslant 0
$$

and

$$
f_{Z}^{\prime \prime}(x)=\sum_{k \geqslant 2} k(k-1) \mathbb{P}(Z=k) x^{k-2} \geqslant 0,
$$

with strict inequality if $\mathbb{P}(Z \geqslant 2)>0$.
Let $\eta_{t}=\mathbb{P}\left(X_{t}=0\right)$. Then $\eta_{0}=0$ and

$$
\eta_{t+1}=\sum_{k} \mathbb{P}\left(X_{1}=k\right) \mathbb{P}\left(X_{t+1}=0 \mid X_{1}=k\right)=\sum_{k} \mathbb{P}(Z=k) \eta_{t}^{k}=f_{Z}\left(\eta_{t}\right),
$$

since, given the number of individuals in the first generation, the descendants of each of them form an independent copy of the branching process.

Let \mathbf{X}_{Z} denote the Galton-Watson branching process with offspring distribution Z. Let $\eta=\eta(Z)$ denote the extinction probability of \mathbf{X}_{Z}, i.e., the probability that the process dies out.

Theorem 5.1. For any probability distribution Z on the non-negative integers, $\eta(Z)$ is equal to the smallest solution $x \in[0,1]$ to $f_{Z}(x)=x$.

Proof. Note that $f_{Z}(1)=1$ so there is a solution; continuity implies that there is a smallest solution.

As above, let $\eta_{t}=\mathbb{P}\left(X_{t}=0\right)$, so $0=\eta_{0} \leqslant \eta_{1} \leqslant \eta_{2} \cdots$. Since the events $\left\{X_{t}=0\right\}$ are nested and their union is the event that the process dies out, we have $\eta_{t} \rightarrow \eta$ as $t \rightarrow \infty .{ }^{1}$

As shown above, $\eta_{t+1}=f_{Z}\left(\eta_{t}\right)$. Since f_{Z} is continuous, taking the limit of both sides gives $\eta=f_{Z}(\eta)$, so $\eta \in[0,1]$ is a solution to $f_{Z}(x)=x$.

[^0]Let x_{0} be the smallest solution in $[0,1]$ to $f_{Z}(x)=x$, so $x_{0} \leqslant \eta$. Then $0=\eta_{0} \leqslant x_{0}$. Since f_{Z} is increasing, this gives

$$
\eta_{1}=f_{Z}\left(\eta_{0}\right) \leqslant f_{Z}\left(x_{0}\right)=x_{0} .
$$

Similarly, by induction we obtain $\eta_{t} \leqslant x_{0}$ for all t, so taking the limit, $\eta \leqslant x_{0}$, and hence $\eta=x_{0}$.

Corollary 5.2. If $\mathbb{E}[Z]>1$ then $\eta(Z)<1$, i.e., the probability that \mathbf{X}_{Z} survives is positive. If $\mathbb{E}[Z]<1$, or if $\mathbb{E}[Z]=1$ and $\mathbb{P}(Z=1)<1$, then $\eta(Z)=1$.

Proof. The question is simply whether the curves $f_{Z}(x)$ and x meet anywhere in $[0,1]$ other than at $x=1$; sketch the graphs!

For the first statement, suppose for convenience that $\mathbb{E}[Z]<\infty$. Then $f_{Z}^{\prime}(1)>1$, so there exists $\varepsilon>0$ such that $f_{Z}(1-\varepsilon)<1-\varepsilon$. Since $f_{Z}(0) \geqslant 0$, applying the Intermediate Value Theorem to $f_{Z}(x)-x$, there must be some $x \in[0,1-\varepsilon]$ for which $f_{Z}(x)=x$. But then $\eta \leqslant x \leqslant 1-\varepsilon<1$.

We have already proved the second statement, so let us focus on the third, with $\mathbb{E}[Z]=1$ and $\mathbb{P}(Z=1) \neq 1$. Note that $\mathbb{P}(Z \geqslant 2)>0$, so $f_{Z}(x)$ has strictly increasing derivative. Since $f_{Z}^{\prime}(1)=1$, it follows that $f_{Z}^{\prime}(x)<1$ for $0<x<1$. Since $f_{Z}(1)=1$, it follows by the Mean Value Theorem that $f_{Z}(x)>x$ for all $x \in[0,1)$.

Note that when $\mathbb{E}[Z]>1$, there is a unique solution to $f_{Z}(x)=x$ in $[0,1)$; this follows from the strict convexity of f_{Z}.

Definition. For $c>0$, a random variable Z has the Poisson distribution with mean c, written $Z \sim \operatorname{Po}(c)$, if

$$
\mathbb{P}(Z=k)=\frac{c^{k}}{k!} e^{-c}
$$

for $k=0,1,2, \ldots$.
Lemma 5.3. Suppose $n \rightarrow \infty$ and $p \rightarrow 0$ with $n p \rightarrow c$, where $c>0$ is constant. Let Z_{n} have the binomial distribution $\operatorname{Bin}(n, p)$, and let $Z \sim \operatorname{Po}(c)$. Then Z_{n} converges in distribution to Z, i.e., for each fixed $k, \mathbb{P}\left(Z_{n}=k\right) \rightarrow \mathbb{P}(Z=k)$ as $n \rightarrow \infty$.

Proof. For k fixed,

$$
\mathbb{P}\left(Z_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \sim \frac{n^{k}}{k!} p^{k}(1-p)^{n}=\frac{(n p)^{k}}{k!} e^{-n p+O\left(n p^{2}\right)} \rightarrow \frac{c^{k}}{k!} e^{-c},
$$

since $n p \rightarrow c$ and $n p^{2} \rightarrow 0$.
As we shall see shortly, there is a very close connection between components in $G(n, c / n)$ and the Galton-Watson branching process $\mathbf{X}_{\mathrm{Po}(c)}$ where the offspring distribution is Poisson with mean c. The extinction probability of this process will be especially important.

Theorem 5.4. Let $c>0$. Then the extinction probability $\eta=\eta(c)$ of the branching process $\mathbf{X}_{\mathrm{Po}(c)}$ satisfies the equation

$$
\eta=e^{-c(1-\eta)} .
$$

Furthermore, $\eta<1$ if and only if $c>1$.
Proof. The probability generating function of the Poisson distribution with mean c is given by

$$
f(x)=\sum_{k=0}^{\infty} \frac{c^{k}}{k!} e^{-c} x^{k}=e^{c x} e^{-c}=e^{c(x-1)}=e^{-c(1-x)} .
$$

The result now follows from Theorem 5.1 and Corollary 5.2.

5.2 Component exploration

In the light of Lemma 5.3, we may hope that the Poisson branching process gives a good 'local' approximation to the neighbourhood of a vertex of $G(n, c / n)$. To make this precise, we shall 'explore' the component of a vertex in a certain way. First we describe the (simpler) exploration for the branching process.

Exploration process for branching process.

Start with $Y_{0}^{b p}=1$, meaning one live individual (the root). In step t, select a live individual if there is one (otherwise nothing happens); this individual has Z_{t} children and then dies. Let $Y_{t}^{b p}$ be the number of individuals alive after t steps. Then

$$
Y_{t}^{b p}= \begin{cases}Y_{t-1}^{b p}+Z_{t}-1 & \text { if } Y_{t-1}^{b p}>0 \\ 0 & \text { if } Y_{t-1}^{b p}=0\end{cases}
$$

The process dies out if and only if $Y_{m}^{b p}=0$ for some m; in this case the total number of individuals is $\min \left\{m: Y_{m}^{b p}=0\right\}$.

Until it hits zero, the sequence $\left(Y_{t}^{b p}\right)$ is a random walk with i.i.d. increments $Z_{1}-$ $1, Z_{2}-1, \ldots$ taking values in $\{-1,0,1,2, \ldots\}$. Each increment has expectation $\mathbb{E}[Z-$ $1]=\lambda-1$. Thus $\lambda<1$ implies negative drift and we can expect that with probability 1 the walk will hit 0 , i.e., the process will die. (We have proved this by a different method already.) If $\lambda>1$ then the drift is positive, and with positive probability the walk never hits 0 , i.e., the process survives.
Component exploration in $G(n, p)$.
Let v be a fixed vertex of a graph G. At each stage, each vertex u of G will be 'live', 'unreached', or 'processed'. Y_{t} will be the number of live vertices after t steps; there will be exactly t processed vertices, and $U_{t}=n-t-Y_{t}$ unreached vertices.

At $t=0$, mark v as live and all other vertices as unreached, so $Y_{0}=1$ and $U_{0}=n-1$.
At each step t, pick a live vertex w, if there is one. For each unreached w^{\prime}, check whether $w w^{\prime} \in E(G)$; if so, make w^{\prime} live. After completing these checks, set w to be processed.

Let R_{t} be the number of w^{\prime} which become live during step t. (Think of this as the number of vertices Reached in step t.) Then

$$
Y_{t}= \begin{cases}Y_{t-1}+R_{t}-1 & \text { if } Y_{t-1}>0 \\ 0 & \text { if } Y_{t-1}=0\end{cases}
$$

The process stops at the first m for which $Y_{m}=0$. At this point we have reached all vertices in the component C_{v} of G containing v, since each vertex of C_{v} must have become live at some step, and then been processed. In particular, $\left|C_{v}\right|=m$.

So far, G could be any graph. Now suppose that $G=G(n, p)$. Then each edge is present with probability p independently of the others. No edge is tested twice (we only check edges from live to unreached vertices, and then one end becomes processed). It follows that conditional on the event $Y_{0}=y_{0}, \ldots, Y_{t-1}=y_{t-1}$, the number R_{t} of vertices reached in step t has the distribution

$$
\begin{equation*}
R_{t} \sim \operatorname{Bin}\left(u_{t-1}, p\right) \quad \text { where } \quad u_{t-1}=n-(t-1)-y_{t-1} \tag{9}
\end{equation*}
$$

5.3 Vertices in small components

Let $\rho_{k}(c)$ denote the probability that $\left|\mathbf{X}_{\mathrm{Po}(c)}\right|=k$, where $|\mathbf{X}|=\sum_{t \geqslant 0} X_{t} \leqslant \infty$ denotes the total number of individuals in all generations of the branching process \mathbf{X}.

Lemma 5.5. Suppose that $p=p(n)$ satisfies $n p \rightarrow c$ where $c>0$ is constant. Let v be a given vertex of $G(n, p)$. For each constant k we have

$$
\mathbb{P}\left(\left|C_{v}\right|=k\right) \rightarrow \rho_{k}(c) \quad \text { as } n \rightarrow \infty .
$$

Proof. The idea is simply to show that the random walks $\left(Y_{t}\right)$ and $\left(Y_{t}^{b p}\right)$ have almost the same probability of first hitting zero at $t=k$. We do this by comparing the probabilities of individual trajectories.

Define $\left(Y_{t}\right)$ and $\left(R_{t}\right)$ as in the graph exploration above. Then $\left|C_{v}\right|=k$ if and only if $Y_{k}=0$ and $Y_{t}>0$ for all $t<k$. Let \mathcal{S}_{k} be the set of all possible corresponding sequences $\mathbf{y}=\left(y_{0}, \ldots, y_{k}\right)$ of values for $\mathbf{Y}=\left(Y_{0}, \ldots, Y_{k}\right)$, i.e., all sequences such that $y_{0}=1, y_{k}=0, y_{t}>0$ for $t<k$, and each y_{t} is an integer with $y_{t} \geqslant y_{t-1}-1$. Then

$$
\mathbb{P}\left(\left|C_{v}\right|=k\right)=\sum_{\mathbf{y} \in \mathcal{S}_{k}} \mathbb{P}(\mathbf{Y}=\mathbf{y})
$$

Similarly,

$$
\rho_{k}(c)=\mathbb{P}\left(\left|\mathbf{X}_{\operatorname{Po}(c)}\right|=k\right)=\sum_{\mathbf{y} \in \mathcal{S}_{k}} \mathbb{P}\left(\mathbf{Y}^{b p}=\mathbf{y}\right)
$$

Fix any sequence $\mathbf{y} \in \mathcal{S}_{k}$. For each t let $r_{t}=y_{t}-y_{t-1}+1$, so $\left(r_{t}\right)$ is the sequence of R_{t} values corresponding to $\mathbf{Y}=\mathbf{y}$. From (9) we have

$$
\mathbb{P}(\mathbf{Y}=\mathbf{y})=\prod_{t=1}^{k} \mathbb{P}\left(\operatorname{Bin}\left(n-(t-1)-y_{t-1}, p\right)=r_{t}\right)
$$

In each factor, $t-1, y_{t-1}$ and r_{t} are constants. As $n \rightarrow \infty$ we have $n-(t-1)-y_{t-1} \sim n$, so $\left(n-(t-1)-y_{t-1}\right) p \rightarrow c$. Applying Lemma 5.3 to each factor in the product, it follows that

$$
\mathbb{P}(\mathbf{Y}=\mathbf{y}) \rightarrow \prod_{t=1}^{k} \mathbb{P}\left(\operatorname{Po}(c)=r_{t}\right)
$$

But this is just $\mathbb{P}\left(\mathbf{Y}^{b p}=\mathbf{y}\right)$, from the exploration for the branching process. Summing over the finite number of possible sequences $\mathbf{y} \in \mathcal{S}_{k}$ gives the result.

We write $N_{k}(G)$ for the number of vertices of a graph G in components with k vertices. (So $N_{k}(G)$ is k times the number of k-vertex components of G.)

Corollary 5.6. Suppose that $n p \rightarrow c$ where $c>0$ is constant. For each fixed k we have $\mathbb{E} N_{k}(G(n, p)) \sim n \rho_{k}(c)$ as $n \rightarrow \infty$.

Proof. The expectation is simply $\sum_{v} \mathbb{P}\left(\left|C_{v}\right|=k\right)=n \mathbb{P}\left(\left|C_{v}\right|=k\right) \sim n \rho_{k}(c)$.
Lemma 5.5 tells us that the branching process 'predicts' the expected number of vertices in components of each fixed size k. It is not hard to use the second moment method to show that in fact this number is concentrated around its mean.

Definition. Let $\left(X_{n}\right)$ be a sequence of real-valued random variables and a a (constant) real number. Then X_{n} converges to a in probability, written $X_{n} \xrightarrow{\mathrm{p}} a$, if for all (fixed) $\varepsilon>0$ we have $\mathbb{P}\left(\left|X_{n}-a\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 5.7. Suppose that $\mathbb{E}\left[X_{n}\right] \rightarrow a$ and $\mathbb{E}\left[X_{n}^{2}\right] \rightarrow a^{2}$. Then $X_{n} \xrightarrow{\mathrm{p}} a$.
Proof. Note that $\operatorname{Var}\left[X_{n}\right]=\mathbb{E}\left[X_{n}^{2}\right]-\left(\mathbb{E} X_{n}\right)^{2} \rightarrow a^{2}-a^{2}=0$, and apply Chebyshev's inequality.

In fact, whenever we showed that some quantity X_{n} was almost always positive by using the second moment method, we really showed more, that $X_{n} / \mathbb{E}\left[X_{n}\right] \xrightarrow{\mathrm{p}}$ 1, i.e., that X_{n} is 'concentrated around its mean'.

Lemma 5.8. Let $c>0$ and $k \geqslant 1$ be constant, and let $N_{k}=N_{k}(G(n, c / n))$. Then $N_{k} / n \xrightarrow{\mathrm{p}} \rho_{k}(c)$.

Proof. We have already shown that $\mathbb{E}\left[N_{k} / n\right] \rightarrow \rho_{k}(c)$.
Let I_{v} be the indicator function of the event that $\left|C_{v}\right|=k$, so $N_{k}=\sum_{v} I_{v}$ and

$$
N_{k}^{2}=\sum_{v} \sum_{w} I_{v} I_{w}=A+B
$$

where

$$
A=\sum_{v} \sum_{w} I_{v} I_{w} I_{\left\{C_{v}=C_{w}\right\}}
$$

is the part of the sum from vertices in the same component, and

$$
B=\sum_{v} \sum_{w} I_{v} I_{w} I_{\left\{C_{v} \neq C_{w}\right\}}
$$

is the part from vertices in different components. [Note that we can split the sum even though it's random whether a particular pair of vertices are in the same component or not.]

If $I_{v}=1$, then $\left|C_{v}\right|=k$, so $\sum_{w} I_{w} I_{\left\{C_{v}=C_{w}\right\}}=k$. Hence $A=k N_{k} \leqslant k n$, and $\mathbb{E}[A]=o\left(n^{2}\right)$.

Since all vertices v are equivalent, we can rewrite $\mathbb{E}[B]$ as

$$
n \mathbb{P}\left(\left|C_{v}\right|=k\right) \mathbb{E}\left[\sum_{w} I_{w} I_{\left\{C_{v} \neq C_{w}\right\}}| | C_{v} \mid=k\right]
$$

where v is any fixed vertex. Now $\sum_{w} I_{w} I_{\left\{C_{v} \neq C_{w}\right\}}$ is just $N_{k}\left(G-C_{v}\right)$, the number of vertices of $G-C_{v}$ in components of size k. Exploring C_{v} as before, given that $\left|C_{v}\right|=k$ we have not examined any of the edges among the $n-k$ vertices not in C_{v}, so $G-C_{v}$ has the distribution of $G(n-k, c / n)$. Hence

$$
\mathbb{E}[B]=n \mathbb{P}\left(\left|C_{v}\right|=k\right) \mathbb{E}\left[N_{k}(G(n-k, c / n))\right] .
$$

Since $n-k \sim n$, Lemma 5.5 gives

$$
\mathbb{E}[B] \sim n \mathbb{P}\left(\left|C_{v}\right|=k\right)(n-k) \rho_{k}(c) \sim\left(n \rho_{k}(c)\right)^{2}
$$

Hence, $\mathbb{E}\left[N_{k}^{2}\right]=\mathbb{E}[A]+\mathbb{E}[B] \sim\left(n \rho_{k}(c)\right)^{2}$, i.e., $\mathbb{E}\left[\left(N_{k} / n\right)^{2}\right] \rightarrow \rho_{k}(c)^{2}$.
Lemma 5.7 now gives the result.
Let $N_{\leqslant K}(G)$ denote the number of vertices v of G with $\left|C_{v}\right| \leqslant K$, and let $\rho_{\leqslant K}(c)=$ $\mathbb{P}\left(\left|\mathbf{X}_{\mathrm{Po}(c)}\right| \leqslant K\right)$.

With $G=G(n, c / n)$, we have seen that for k fixed, $N_{k}(G) / n \xrightarrow{\mathrm{p}} \rho_{k}(c)$. Summing over $k=1, \ldots, K$, it follows that if K is fixed, then

$$
\begin{equation*}
\frac{N_{\leqslant K}(G)}{n} \xrightarrow{\mathrm{p}} \rho_{\leqslant K}(c) . \tag{10}
\end{equation*}
$$

What if we want to consider components of sizes growing with n ? Then we must be more careful.

Recall that $\eta(c)$ denotes the extinction probability of the branching process $\mathbf{X}_{\mathrm{Po}(c)}$, so $\sum_{k=1}^{\infty} \rho_{k}(c)=\eta(c)$. In other words,

$$
\rho_{\leqslant K}(c)=\sum_{k=1}^{K} \rho_{k}(c) \rightarrow \eta(c) \text { as } K \rightarrow \infty
$$

If $c>1$, then $N_{\leqslant n}(G) / n=1$, while $\rho_{\leqslant n}(c) \rightarrow \eta(c)<1$, so we cannot extend the formula (10) to arbitrary $K=K(n)$. But we can allow K to grow at some rate.

Lemma 5.9. Let $c>0$ be constant, and suppose that $k^{-}=k^{-}(n)$ satisfies $k^{-} \rightarrow \infty$ and $k^{-} \leqslant n^{1 / 4}$. Then the number $N_{\leqslant k^{-}}$of vertices of $G(n, c / n)$ in components with at most k^{-}vertices satisfies $N_{\leqslant k^{-}} / n \xrightarrow{\mathrm{p}} \eta(c)$.

Proof. [Sketch; non-examinable] The key point is that since $k^{-} \rightarrow \infty$, we have $\mathbb{P}\left(\left|\mathbf{X}_{\mathrm{Po}(c)}\right| \leqslant\right.$ $\left.k^{-}\right) \rightarrow \eta(c)$.

To complete the proof, simply redo the calculations above (i.e., repeat the proofs of Lemmas 5.5 and 5.8 with the following changes. Firstly, consider the set \mathcal{S} of all possible trajectories \mathbf{y} that first hit zero at or before step k^{-}. (Rather than ones hitting 0 at a specific time.)

Secondly, to deal with the problem that our trajectories now have length growing with n, we need to be more careful in the calculations. For example, use the fact that $\mathbb{P}(\operatorname{Bin}(n-m, c / n)=r)$ and $\mathbb{P}(\operatorname{Po}(c)=r)$ agree within a factor $1 \pm O\left((r+m+1)^{2} / n\right)$ when $r, m \leqslant n / 4$, say, to show that all trajectories in \mathcal{S} have essentially the same probability in the graph and branching process explorations.

For each fixed k, we know almost exactly how many vertices are in components of size k. Does this mean that we know the whole component structure? Not quite: if $c>1$, so $\eta=\eta(c)<1$, then Lemma 5.9 tells us that there are whp around $(1-\eta) n$ vertices in components of size at least $n^{1 / 4}$, say. But are these components really of around that size, or much larger? Also, for $c \leqslant 1$, whp there are $o(n)$ vertices in components of size at least $n^{1 / 4}$, say. But are there any such vertices? How large is the largest component?

To answer these questions, we return to the exploration process.

5.4 The phase transition

We say that an event (formally a sequence of events) holds with high probability or whp if its probability tends to 1 as $n \rightarrow \infty$.

Theorem 5.10. Let $0<c<1$ be constant. There is a constant $A>0$ (which depends on c) such that whp every component of $G(n, c / n)$ has size at most $A \log n$.

Proof. Recall that our exploration of the component C_{v} of $G(n, c / n)$ containing a given vertex v leads to a random walk $\left(Y_{t}\right)_{t=0}^{m}$ with $Y_{0}=1, Y_{m}=0$, and at each step $Y_{t}=Y_{t-1}+R_{t}-1$ where, conditional on the process so far, R_{t} has the binomial distribution $\operatorname{Bin}\left(u_{t-1}, c / n\right)$, where $u_{t-1}=n-(t-1)-y_{t-1}$ depends on the value y_{t-1} of Y_{t-1}. Here $m=\left|C_{v}\right|$ is the (random, of course) first time the random walk hits 0 .

Since $u_{t-1} \leqslant n$, the conditional distribution of R_{t} is always dominated by a $\operatorname{Bin}(n, c / n)$ distribution. More precisely, we can define independent variables $R_{t}^{+} \sim \operatorname{Bin}(n, c / n)$ so that $R_{t} \leqslant R_{t}^{+}$holds for all t for which R_{t} is defined. To see this, construct the random variables step-by-step. At step t, we want (the conditional distribution of) R_{t} to be $\operatorname{Bin}(x, c / n)$ for some $x \leqslant n$ that depends what has happened so far. Toss x biased coins to determine R_{t}, and then $n-x$ further coins, taking the total number of heads to be R_{t}^{+}; each coin has probability p of landing heads.

Let $\left(Y_{t}^{+}\right)$be the walk with $Y_{0}^{+}=1$ and increments $R_{t}^{+}-1$, so $Y_{t} \leqslant Y_{t}^{+}$for all t until our exploration in $G(n, c / n)$ stops. Then for any k we have

$$
\begin{aligned}
\mathbb{P}\left(\left|C_{v}\right|>k\right) & =\mathbb{P}\left(Y_{0}, \ldots, Y_{k}>0\right) \\
& \leqslant \mathbb{P}\left(Y_{0}^{+}, \ldots, Y_{k}^{+}>0\right) \\
& \leqslant \mathbb{P}\left(Y_{k}^{+}>0\right)
\end{aligned}
$$

But Y_{k}^{+}has an extremely simple distribution:

$$
Y_{k}^{+}+k-1=\sum_{t=1}^{k} R_{t}^{+} \sim \operatorname{Bin}(n k, c / n),
$$

so

$$
\begin{aligned}
& \mathbb{P}\left(Y_{k}^{+}>0\right)=\mathbb{P}\left(Y_{k}^{+}+k-1 \geqslant k\right)=\mathbb{P}(\operatorname{Bin}(n k, c / n) \geqslant k) \\
&=\mathbb{P}(\operatorname{Bin}(n k, c / n) \geqslant c k+(1-c) k) .
\end{aligned}
$$

Since the mean of the binomial is $c k$, setting $\varepsilon=\min \{(1-c) / c, 1\}$, the Chernoff bound gives that this final probability is at most $e^{-\varepsilon^{2} c k / 4}$. If we set $k=A \log n$ (ignoring the rounding to integers) with $A=8 /\left(\varepsilon^{2} c\right)$, then we have $\mathbb{P}\left(\left|C_{v}\right|>k\right) \leqslant e^{-2 \log n}=1 / n^{2}$.

By the union bound, the probability that there is any vertex in a component of size $>k$ is at most $n \mathbb{P}\left(\left|C_{v}\right|>k\right) \leqslant 1 / n=o(1)$, so whp there are no such vertices, i.e., no components with more than k vertices.

We now turn to the supercritical case. Given a graph G, let $L_{i}(G)$ denote the number of vertices in the i th largest component. Note that which component is the i th largest may be ambiguous, if there are ties, but the value of $L_{i}(G)$ is unambiguous.

Theorem 5.11. Let $c>1$ be constant, and let $G=G(n, c / n)$. Then $L_{1}(G) / n \xrightarrow{\mathrm{p}}$ $1-\eta(c)$. Also, there is a constant $A=A(c)$ such that $L_{2}(G) \leqslant A \log n$ holds whp.

Proof. Since $c>1$ our random walk has positive drift, at least to start with. Once the number $n-t-Y_{t}$ of unreached vertices becomes smaller than n / c, this is no longer true.

Fix any $\delta>0$, and let $k^{+}=(1-1 / c-\delta) n$. Now let R_{t}^{-}be independent random variables with the distribution $\operatorname{Bin}(n / c+\delta n, c / n)$, defined so that $R_{t}^{-} \leqslant R_{t}$ whenever $u_{t-1} \geqslant n-k^{+}=n / c+\delta n$, i.e., whenever we have 'reached' at most k^{+}vertices. It is possible to construct such R_{t}^{-}step-by-step as before. Let $\left(Y_{t}^{-}\right)$be the random walk starting with $Y_{0}^{-}=1$ and with increments $R_{t}^{-}-1$. For any $k \leqslant k^{+}$we have

$$
\mathbb{P}\left(\left|C_{v}\right|=k\right) \leqslant \mathbb{P}\left(Y_{1}, \ldots, Y_{k-1}>0, Y_{k}=0\right) \leqslant \mathbb{P}\left(Y_{k}^{-} \leqslant 0\right)
$$

Once again, Y_{k}^{-}has a simple distribution: it is $\operatorname{Bin}\left(n k\left(c^{-1}+\delta\right), c / n\right)-k+1$. Hence

$$
\mathbb{P}\left(Y_{k}^{-} \leqslant 0\right) \leqslant \mathbb{P}\left(Y_{k}^{-} \leqslant 1\right)=\mathbb{P}\left(\operatorname{Bin}\left(n k\left(c^{-1}+\delta\right), c / n\right) \leqslant k\right)
$$

The binomial has mean $\mu=k+\delta c k$, so $k=\mu(1-\varepsilon)$ for $\varepsilon=\delta c /(1+\delta c)$, which is a positive constant. By a Chernoff bound, the probability above is thus at most $e^{-\varepsilon^{2} \mu / 2} \leqslant e^{-\varepsilon^{2} k / 2}$.

Let $k^{-}=A \log n$ where $A=6 / \varepsilon^{2}$. Then for $k^{-} \leqslant k \leqslant k^{+}$we have

$$
\mathbb{P}\left(\left|C_{v}\right|=k\right) \leqslant e^{-\varepsilon^{2} k / 2} \leqslant e^{-\varepsilon^{2} k^{-} / 2} \leqslant e^{-3 \log n}=1 / n^{3}
$$

Applying the union bound over $k^{-} \leqslant k \leqslant k^{+}$and over all n vertices v, it follows that whp there are no vertices at all in components of size between k^{-}and k^{+}. In other words, whp all components are either small, i.e., of size at most $k^{-}=O(\log n)$, or large, i.e., of size at least $k^{+}=(1-1 / c-\delta) n$.

From Theorem 5.9, we know that whp there almost exactly ηn vertices in small components; hence there are almost exactly $(1-\eta) n$ vertices in large components. To finish the proof, all we need to do is to show that whp there is just one large component.

The simplest way to show this is just to choose $\delta>0$ so that $(1-1 / c-\delta)>(1-\eta) / 2$. Then whp there are $<2(1-1 / c-\delta) n=2 k^{+}$vertices in large components, so we simply don't have enough vertices in large components to have two or more large components. But is this possible? Such a δ exists if and only if $(1-1 / c)>(1-\eta) / 2$, i.e., if and only if $\eta>2 / c-1$.

Recall that $\eta=\eta(c)$ is the smallest solution to $\eta=e^{-c(1-\eta)}$. Furthermore (drawing the graphs), for $x<\eta$ we have $x<e^{-c(1-x)}$ and for $\eta<x<1$ we have $x>e^{-c(1-x)}$. So what we have to show is that $x=2 / c-1$ falls into the first case, i.e., that $2 / c-1<$ $e^{-c(1-(2 / c-1))}=e^{2-2 c}$.

Multiplying by c, let $f(c)=c e^{2-2 c}+c-2$, so our task is to show that $f(c)>0$ for $c>1$. This is easy by calculus: we have $f(1)=0, f^{\prime}(1)=0$ and $f^{\prime \prime}(c)>0$ for $c>1$. (In fact $f^{\prime \prime}(c)=4(c-1) e^{2-2 c}$.)

6 Correlation and concentration

6.1 Harris's Lemma

In this section we turn to the following simple question and its generalizations. Does conditioning on $G=G(n, p)$ containing a triangle make G more or less likely to be connected? Note that if we condition on a fixed set E of edges being present, then this is the same as simply adding E to $G(n, p)$, which does increase the chance of connectedness. But conditioning on at least one triangle being present is not so simple.

Let X be any finite set, the ground set. For $0 \leqslant p \leqslant 1$ let X_{p} be a random subset of X obtained by selecting each element independently with probability p. A property of subsets of X is just some collection $\mathcal{A} \subseteq \mathcal{P}(X)$ of subsets of X. For example, the property 'contains element 1 or element 3 ' may be identified with the set \mathcal{A} of all subsets A of X with $1 \in A$ or $3 \in A$.

We write $\mathbb{P}_{p}^{X}(\mathcal{A})$ for

$$
\mathbb{P}\left(X_{p} \in \mathcal{A}\right)=\sum_{A \in \mathcal{A}} p^{|A|}(1-p)^{|X|-|A|}
$$

Most of the time, we omit X from the notation, writing $\mathbb{P}_{p}(\mathcal{A})$ for $\mathbb{P}_{p}^{X}(\mathcal{A})$. When $|X|=n$ and $p=\frac{1}{2}$ we have $\mathbb{P}_{p}(\mathcal{A})=|\mathcal{A}| / 2^{n}$.

We say that $\mathcal{A} \subseteq \mathcal{P}(X)$ is an up-set, or increasing property, if $A \in \mathcal{A}$ and $A \subseteq B \subseteq X$ implies $B \in \mathcal{A}$. Similarly, \mathcal{A} is a down-set or decreasing property if $A \in \mathcal{A}$ and $B \subseteq A$ implies $B \in \mathcal{A}$. Note that \mathcal{A} is an up-set if and only if $\mathcal{A}^{c}=\mathcal{P}(X) \backslash \mathcal{A}$ is a down-set.

To illustrate the definitions, consider the (for us) most common special case. Here X consists of all $\binom{n}{2}$ edges of K_{n}, and X_{p} is then simply the edge-set of $G(n, p)$. Then a property of subsets of X is just a set of graphs on $[n]$, e.g., all connected graphs on $[n]$. A property is increasing if it is preserved by adding edges, and decreasing if it is preserved by deleting edges.

Lemma 6.1 (Harris's Lemma). If $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(X)$ are up-sets and $0 \leqslant p \leqslant 1$ then

$$
\begin{equation*}
\mathbb{P}_{p}(\mathcal{A} \cap \mathcal{B}) \geqslant \mathbb{P}_{p}(\mathcal{A}) \mathbb{P}_{p}(\mathcal{B}) \tag{11}
\end{equation*}
$$

In other words, $\mathbb{P}\left(X_{p} \in \mathcal{A}\right.$ and $\left.X_{p} \in \mathcal{B}\right) \geqslant \mathbb{P}\left(X_{p} \in \mathcal{A}\right) \mathbb{P}\left(X_{p} \in \mathcal{B}\right)$, i.e., $\mathbb{P}\left(X_{p} \in \mathcal{A} \mid\right.$ $\left.X_{p} \in \mathcal{B}\right) \geqslant \mathbb{P}\left(X_{p} \in \mathcal{A}\right)$, i.e., 'increasing properties are positively correlated'.

Proof. We use induction on $n=|X|$. The base case $n=0$ makes perfect sense and holds trivially, though you can start from $n=1$ if you prefer.

Now suppose that $|X|=n \geqslant 1$ and that the result holds for smaller sets X. Without loss of generality, let $X=[n]=\{1,2, \ldots, n\}$.

For any $\mathcal{C} \subseteq \mathcal{P}(X)$ let

$$
\mathcal{C}_{0}=\{C \in \mathcal{C}: n \notin C\} \subseteq \mathcal{P}([n-1])
$$

and

$$
\mathcal{C}_{1}=\{C \backslash\{n\}: C \in \mathcal{C}, n \in C\} \subseteq \mathcal{P}([n-1])
$$

Thus \mathcal{C}_{0} and \mathcal{C}_{1} correspond to the subsets of \mathcal{C} not containing and containing n respectively, except that for \mathcal{C}_{1} we delete n from every set to obtain a collection of subsets of [$n-1$].

Note that

$$
\begin{equation*}
\mathbb{P}_{p}(\mathcal{C})=(1-p) \mathbb{P}_{p}\left(\mathcal{C}_{0}\right)+p \mathbb{P}_{p}\left(\mathcal{C}_{1}\right) \tag{12}
\end{equation*}
$$

More precisely,

$$
\mathbb{P}_{p}^{[n]}(\mathcal{C})=(1-p) \mathbb{P}_{p}^{[n-1]}\left(\mathcal{C}_{0}\right)+p \mathbb{P}_{p}^{[n-1]}\left(\mathcal{C}_{1}\right)
$$

Suppose now that \mathcal{A} and $\mathcal{B} \subseteq \mathcal{P}([n])$ are up-sets. Then $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{B}_{0}$ and \mathcal{B}_{1} are all up-sets in $\mathcal{P}([n-1])$. Also, $\mathcal{A}_{0} \subseteq \mathcal{A}_{1}$ and $\mathcal{B}_{0} \subseteq \mathcal{B}_{1}$. Let $a_{0}=\mathbb{P}_{p}\left(\mathcal{A}_{0}\right)$ etc, so certainly $a_{0} \leqslant a_{1}$ and $b_{0} \leqslant b_{1}$.

Since $(\mathcal{A} \cap \mathcal{B})_{i}=\mathcal{A}_{i} \cap \mathcal{B}_{i}$, by (12) and the induction hypothesis we have

$$
\begin{aligned}
\mathbb{P}_{p}(\mathcal{A} \cap \mathcal{B}) & =(1-p) \mathbb{P}_{p}\left((\mathcal{A} \cap \mathcal{B})_{0}\right)+p \mathbb{P}_{p}\left((\mathcal{A} \cap \mathcal{B})_{1}\right) \\
& =(1-p) \mathbb{P}_{p}\left(\mathcal{A}_{0} \cap \mathcal{B}_{0}\right)+p \mathbb{P}_{p}\left(\mathcal{A}_{1} \cap \mathcal{B}_{1}\right) \\
& \geqslant(1-p) a_{0} b_{0}+p a_{1} b_{1}=x,
\end{aligned}
$$

say. On the other hand

$$
\mathbb{P}_{p}(\mathcal{A}) \mathbb{P}_{p}(\mathcal{B})=\left((1-p) a_{0}+p a_{1}\right)\left((1-p) b_{0}+p b_{1}\right)=y
$$

say. So it suffices to show that $x \geqslant y$. But

$$
\begin{aligned}
x-y & =\left((1-p)-(1-p)^{2}\right) a_{0} b_{0}-p(1-p) a_{0} b_{1}-p(1-p) a_{1} b_{0}+\left(p-p^{2}\right) a_{1} b_{1} \\
& =p(1-p)\left(a_{1}-a_{0}\right)\left(b_{1}-b_{0}\right) \geqslant 0,
\end{aligned}
$$

recalling that $a_{0} \leqslant a_{1}$ and $b_{0} \leqslant b_{1}$.
Harris's Lemma has an immediate corollary concerning two down-sets, or one upand one down-set.

Corollary 6.2. If \mathcal{U} is an up-set and \mathcal{D}_{1} and \mathcal{D}_{2} are down-sets, then

$$
\mathbb{P}_{p}\left(\mathcal{U} \cap \mathcal{D}_{1}\right) \leqslant \mathbb{P}_{p}(\mathcal{U}) \mathbb{P}_{p}\left(\mathcal{D}_{1}\right)
$$

and

$$
\mathbb{P}_{p}\left(\mathcal{D}_{1} \cap \mathcal{D}_{2}\right) \geqslant \mathbb{P}_{p}\left(\mathcal{D}_{1}\right) \mathbb{P}_{p}\left(\mathcal{D}_{2}\right)
$$

Proof. Exercise, using the fact that \mathcal{D}_{i}^{c} is an up-set.

6.2 Janson's inequalities

We have shown (e.g., from the Chernoff bounds) that, roughly speaking, if we have many independent events and the expected number that hold is large, then the probability that none holds is very small. What if our events are not quite independent, but each 'depends on' only a few others?

As in the last section, let X be a finite set, let $0 \leqslant p \leqslant 1$, and consider the random subset X_{p} of X. Let E_{1}, \ldots, E_{k} be subsets of X, and let A_{i} be the event that $X_{p} \supseteq E_{i}$. Note that each A_{i} is an up-set; up-sets of this particular type are called principal upsets. Let Z be the number of A_{i} that hold. [For example, we could take X as the set of all $\binom{n}{2}$ possible edges of $G(n, p)$. Then X_{p} is the actual set of edges. If the E_{i} list all $\binom{n}{3}$ possible edge sets of triangles, then Z is the number of triangles in $G(n, p)$.]

As usual, let $\mu=\mathbb{E}[Z]=\sum_{i} \mathbb{P}\left(A_{i}\right)$. As in Chapter 2, write $i \sim j$ if $i \neq j$ and A_{i} and A_{j} are dependent, i.e., if $i \neq j$ and $E_{i} \cap E_{j} \neq \emptyset$, and let

$$
\Delta=\sum_{i} \sum_{j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right) .
$$

Theorem 6.3. In the setting above, we have $\mathbb{P}(Z=0) \leqslant e^{-\mu+\Delta / 2}$.
Before turning to the proof, note that

$$
\begin{aligned}
\mathbb{P}(Z=0) & =\mathbb{P}\left(A_{1}^{\mathrm{c}} \cap \cdots \cap A_{k}^{\mathrm{c}}\right) \\
& =\mathbb{P}\left(A_{1}^{\mathrm{c}}\right) \mathbb{P}\left(A_{2}^{\mathrm{c}} \mid A_{1}^{\mathrm{c}}\right) \cdots \mathbb{P}\left(A_{k}^{\mathrm{c}} \mid A_{1}^{\mathrm{c}} \cap \cdots \cap A_{k-1}^{\mathrm{c}}\right) \\
& \geqslant \prod_{i=1}^{k} \mathbb{P}\left(A_{i}^{\mathrm{c}}\right)=\prod_{i=1}^{k}\left(1-\mathbb{P}\left(A_{i}\right)\right),
\end{aligned}
$$

where we used Harris's Lemma and the fact that the intersection of two or more downsets is again a down-set. In the (typical) case that all $\mathbb{P}\left(A_{i}\right)$ are small, the final bound is roughly $e^{-\sum \mathbb{P}\left(A_{i}\right)}=e^{-\mu}$, so (if Δ is small), Theorem 6.3 is saying that the probability that $Z=0$ is not much larger than the minimum it could possibly be.

Proof. Let $r_{i}=\mathbb{P}\left(A_{i} \mid A_{1}^{\mathrm{c}} \cap \cdots \cap A_{i-1}^{\mathrm{c}}\right)$. Note that

$$
\begin{equation*}
\mathbb{P}(Z=0)=\mathbb{P}\left(A_{1}^{\mathrm{c}} \cap \cdots \cap A_{k}^{\mathrm{c}}\right)=\prod_{i=1}^{k}\left(1-r_{i}\right) \leqslant \prod_{i=1}^{k} e^{-r_{i}}=\exp \left(-\sum_{i=1}^{k} r_{i}\right) . \tag{13}
\end{equation*}
$$

Our aim is to show that r_{i} is not much smaller than $\mathbb{P}\left(A_{i}\right)$.
Fix i, and let D_{1} be the intersection of those A_{j}^{c} where $j<i$ and $j \sim i$. Let D_{0} be the intersection of those A_{j}^{c} where $j<i$ and $j \nsim i$. Then D_{0} depends only on the presence of elements in $\bigcup_{j \nsim i} E_{j}$, which is disjoint from E_{i}, and it follows that $\mathbb{P}\left(A_{i} \mid D_{0}\right)=\mathbb{P}\left(A_{i}\right)$.

Therefore

$$
\begin{aligned}
r_{i} & =\mathbb{P}\left(A_{i} \mid D_{0} \cap D_{1}\right)=\frac{\mathbb{P}\left(A_{i} \cap D_{0} \cap D_{1}\right)}{\mathbb{P}\left(D_{0} \cap D_{1}\right)} \\
& \geqslant \frac{\mathbb{P}\left(A_{i} \cap D_{0} \cap D_{1}\right)}{\mathbb{P}\left(D_{0}\right)}=\mathbb{P}\left(A_{i} \cap D_{1} \mid D_{0}\right) \\
& =\mathbb{P}\left(A_{i} \mid D_{0}\right)-\mathbb{P}\left(A_{i} \cap D_{1}^{\mathrm{c}} \mid D_{0}\right) \\
& =\mathbb{P}\left(A_{i}\right)-\mathbb{P}\left(A_{i} \cap D_{1}^{\mathrm{c}} \mid D_{0}\right) .
\end{aligned}
$$

Next we want an upper bound for $\mathbb{P}\left(A_{i} \cap D_{1}^{\mathrm{c}} \mid D_{0}\right)$. Since D_{1} is a down-set, D_{1}^{c} and $A_{i} \cap D_{1}^{\mathrm{c}}$ are up-sets. But now, since D_{0} is a down-set, Corollary 6.2 gives

$$
\begin{aligned}
\mathbb{P}\left(A_{i} \cap D_{1}^{\mathrm{c}} \mid D_{0}\right) & \leqslant \mathbb{P}\left(A_{i} \cap D_{1}^{\mathrm{c}}\right) \\
& =\mathbb{P}\left(A_{i} \cap \bigcup_{j<i, j \sim i} A_{j}\right) \\
& =\mathbb{P}\left(\bigcup_{j<i, j \sim i}\left(A_{i} \cap A_{j}\right)\right) \\
& \leqslant \sum_{j<i, j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right) .
\end{aligned}
$$

Putting this result together with the previous one gives

$$
r_{i} \geqslant \mathbb{P}\left(A_{i}\right)-\sum_{j<i, j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right) .
$$

By (13) we thus have

$$
\begin{aligned}
\mathbb{P}(Z=0) & \leqslant \exp \left(-\sum_{i=1}^{k} \mathbb{P}\left(A_{i}\right)+\sum_{i} \sum_{j \sim i, j<i} \mathbb{P}\left(A_{i} \cap A_{j}\right)\right) \\
& =\exp (-\mu+\Delta / 2)
\end{aligned}
$$

When Δ is much larger than μ, Theorem 6.3 is not very useful. But there is a trick to deduce something from it in this case.

Theorem 6.4. Under the assumptions of Theorem 6.3, if $\Delta \geqslant \mu$ then $\mathbb{P}(Z=0) \leqslant$ $e^{-\frac{\mu^{2}}{2 \Delta}}$.

Proof. For any $S \subseteq[k]$, by Theorem 6.3 we have

$$
\begin{equation*}
\mathbb{P}(Z=0)=\mathbb{P}\left(\bigcap_{i=1}^{k} A_{i}^{\mathrm{c}}\right) \leqslant \mathbb{P}\left(\bigcap_{i \in S} A_{i}^{\mathrm{c}}\right) \leqslant e^{-\mu_{S}+\Delta_{S} / 2} \tag{14}
\end{equation*}
$$

where

$$
\mu_{S}=\sum_{i \in S} \mathbb{P}\left(A_{i}\right)=\sum_{i=1}^{k} I_{\{i \in S\}} \mathbb{P}\left(A_{i}\right)
$$

and

$$
\Delta_{S}=\sum_{i \in S} \sum_{j \in S, j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right)=\sum_{i} \sum_{j \sim i} I_{\{i, j \in S\}} \mathbb{P}\left(A_{i} \cap A_{j}\right) .
$$

Suppose now that $0 \leqslant r \leqslant 1$, and let S be the random subset of [k] obtained by selecting each element independently with probability r. Then μ_{S} and Δ_{S} become random variables. By linearity of expectation we have

$$
\mathbb{E}\left[\mu_{S}\right]=\sum_{i} r \mathbb{P}\left(A_{i}\right)=r \mu
$$

and

$$
\mathbb{E}\left[\Delta_{S}\right]=\sum_{i} \sum_{j \sim i} \mathbb{P}\left(A_{i} \cap A_{j}\right) \mathbb{P}(i, j \in S)=r^{2} \Delta
$$

Thus $\mathbb{E}\left[\mu_{S}-\Delta_{S} / 2\right]=r \mu-r^{2} \Delta / 2$.
Since a random variable cannot always be smaller than its expectation, there exists some set S such that $\mu_{S}-\Delta_{S} / 2 \geqslant r \mu-r^{2} \Delta / 2$. Applying (14) to this particular set S it follows that

$$
\mathbb{P}(Z=0) \leqslant e^{-r \mu+r^{2} \Delta / 2}
$$

This bound is valid for any $0 \leqslant r \leqslant 1$; to get the best result we optimize, which simply involves setting $r=\mu / \Delta \leqslant 1$. Then we obtain

$$
\mathbb{P}(Z=0) \leqslant e^{-\frac{\mu^{2}}{\Delta}+\frac{\mu^{2}}{2 \Delta}}=e^{-\frac{\mu^{2}}{2 \Delta}} .
$$

Together Theorems 6.3 and 6.4 give the following.
Corollary 6.5. Under the assumptions of Theorem 6.3

$$
\mathbb{P}(Z=0) \leqslant \exp \left(-\min \left\{\mu / 2, \mu^{2} /(2 \Delta)\right\}\right)
$$

Proof. For $\Delta<\mu$ apply Theorem 6.3; for $\Delta \geqslant \mu$ apply Theorem 6.4.
Remark. The proof of Janson's inequalities above is based on that given by Boppana and Spencer, but with a modification suggested by Lutz Warnke. With a little more work the modified proof gives a more general result: A_{1}, \ldots, A_{k} can be arbitrary upsets, not just ones of the special form assumed above (principal up-sets). We take $i \sim j$ if A_{i} and A_{j} are dependent. The extra work needed is to check that this rule gives a valid dependency digraph; this is not true for general events, but is true for up-sets.

How do the second moment method and Janson's inequalities compare? Suppose that Z is the number of events A_{i} that hold, let $\mu=\mathbb{E}[Z]$, and let $\Delta=\sum_{i} \sum_{j \sim i} \mathbb{P}\left(A_{i} \cap\right.$ A_{j}), as in the context of Corollary 2.4. Then Corollary 2.4 says that if $\mu \rightarrow \infty$ and $\Delta=o\left(\mu^{2}\right)$ (i.e., $\left.\mu^{2} / \Delta \rightarrow \infty\right)$, then $\mathbb{P}(Z=0) \rightarrow 0$. More concretely, if $\mu \geqslant L$ and $\mu^{2} / \Delta \geqslant L$, then the proof of Corollary 2.4 gives

$$
\mathbb{P}(Z=0) \leqslant 2 / L
$$

Janson's inequality, in the form of Corollary 6.5, has more restrictive assumptions: the events A_{i} have to be events of a specific type. When this holds, the Δ there is the same Δ as before. When $\mu \geqslant L$ and $\mu^{2} / \Delta \geqslant L$, the conclusion is that

$$
\mathbb{P}(Z=0) \leqslant e^{-L / 2}
$$

Both bounds imply that $\mathbb{P}(Z=0) \rightarrow 0$ when μ and μ^{2} / Δ both tend to infinity, but when Janson's inequalities apply, the concrete bound they give is exponentially stronger than that from the second moment method.

7 Clique and chromatic number of $G(n, p)$

We shall illustrate the power of Janson's inequality by using it to study the chromatic number of $G(n, p)$. The ideas are more important than the details of the calculations. We start by looking at something much simpler: the clique number.

Throughout this section p is constant with $0<p<1$.
Recall that the clique number $\omega(G)$ of a graph G is the maximum k such that G contains a copy of K_{k}. For $k=k(n)$ let X_{k} be the number of copies of K_{k} in $G=G(n, p)$, and

$$
\mu_{k}:=\mathbb{E}\left[X_{k}\right]=\binom{n}{k} p^{\binom{k}{2}} .
$$

Note that

$$
\begin{equation*}
\frac{\mu_{k+1}}{\mu_{k}}=\binom{n}{k+1}\binom{n}{k}^{-1} p^{\binom{k+1}{2}-\binom{k}{2}}=\frac{n-k}{k+1} p^{k} \tag{15}
\end{equation*}
$$

which is a decreasing function of k. It follows that the ratio is at least 1 up to some point and then at most 1 , so μ_{k} first increases from $\mu_{0}=1, \mu_{1}=n, \ldots$, and then decreases.

We define

$$
k_{0}=k_{0}(n, p)=\min \left\{k: \mu_{k}<1\right\} .
$$

Lemma 7.1. With $0<p<1$ fixed we have $k_{0} \sim 2 \log _{1 / p} n=2 \frac{\log n}{\log (1 / p)}$ as $n \rightarrow \infty$.
Proof. Using standard bounds on the binomial coefficient $\binom{n}{k}$,

$$
\left(\frac{n}{k}\right)^{k} p^{k(k-1) / 2} \leqslant \mu_{k} \leqslant\left(\frac{e n}{k}\right)^{k} p^{k(k-1) / 2} .
$$

Taking the k th root it follows that

$$
\mu_{k}^{1 / k}=\Theta\left(\frac{n}{k} p^{(k-1) / 2}\right)=\Theta\left(\frac{n}{k} p^{k / 2}\right) .
$$

Let $\varepsilon>0$ be given.
If $k \leqslant(1-\varepsilon) 2 \log _{1 / p} n$ then $k / 2 \leqslant(1-\varepsilon) \log _{1 / p} n$, so $(1 / p)^{k / 2} \leqslant n^{1-\varepsilon}$, i.e., $p^{k / 2} \geqslant$ $n^{-1+\varepsilon}$. Thus $\mu_{k}^{1 / k}$ is at least a positive constant times $n n^{-1+\varepsilon} / \log n=n^{\varepsilon} / \log n$, so $\mu_{k}^{1 / k}>1$ if n is large. Hence $\mu_{k}>1$, so $k_{0}>k$.

Similarly, if $k \geqslant(1+\varepsilon) 2 \log _{1 / p} n$ then $p^{k / 2} \leqslant n^{-1-\varepsilon}$ and if n is large enough it follows that $\mu_{k}<1$, so $k_{0} \leqslant k$. So for any fixed ε we have

$$
(1-\varepsilon) 2 \log _{1 / p} n \leqslant k_{0} \leqslant\left\lceil(1+\varepsilon) 2 \log _{1 / p} n\right\rceil
$$

if n is large enough, so $k_{0} \sim 2 \log _{1 / p} n$.

Note for later that if $k \sim k_{0}$ then

$$
\begin{equation*}
\left(\frac{1}{p}\right)^{k}=n^{2+o(1)} \tag{16}
\end{equation*}
$$

so from (15) we have

$$
\begin{equation*}
\frac{\mu_{k+1}}{\mu_{k}}=\frac{n-O(\log n)}{\Theta(\log n)} n^{-2+o(1)}=n^{-1+o(1)} \tag{17}
\end{equation*}
$$

Lemma 7.2. With $0<p<1$ fixed we have $\mathbb{P}\left(\omega(G(n, p))>k_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. We have $\omega(G(n, p))>k_{0}$ if and only if $X_{k_{0}+1}>0$, which has probability at most $\mathbb{E}\left[X_{k_{0}+1}\right]=\mu_{k_{0}+1}$. Now $\mu_{k_{0}}<1$ by definition, so by (17) we have $\mu_{k_{0}+1} \leqslant n^{-1+o(1)}$, so $\mu_{k_{0}+1} \rightarrow 0$.

Let Δ_{k} be the expected number of ordered pairs of distinct k-cliques sharing at least one edge. This is exactly the quantity Δ appearing in Corollaries 2.4 and 6.5 when we are counting the k-cliques.

Lemma 7.3. Suppose that $k \sim k_{0}$. Then

$$
\frac{\Delta_{k}}{\mu_{k}^{2}} \leqslant \max \left\{n^{-2+o(1)}, \frac{n^{-1+o(1)}}{\mu_{k}}\right\}
$$

In particular, if $\mu_{k} \rightarrow \infty$ then $\Delta_{k}=o\left(\mu_{k}^{2}\right)$.
Proof. We have

$$
\Delta_{k}=\binom{n}{k} \sum_{s=2}^{k-1}\binom{k}{s}\binom{n-k}{k-s} p^{2\binom{k}{2}-\binom{s}{2}}
$$

so

$$
\frac{\Delta_{k}}{\mu_{k}^{2}}=\sum_{s=2}^{k-1} \alpha_{s}
$$

where

$$
\alpha_{s}=\frac{\binom{k}{s}\binom{n-k}{k-s}}{\binom{n}{k}} p^{-\binom{s}{2}} .
$$

We will show that the α_{s} first decrease then increase as s goes from 2 to $k-1$. Let

$$
\beta_{s}=\frac{\alpha_{s+1}}{\alpha_{s}}=\frac{k-s}{s+1} \frac{k-s}{n-2 k+s+1} p^{-s},
$$

so

$$
\begin{equation*}
\beta_{s}=n^{-1+o(1)}\left(\frac{1}{p}\right)^{s} \tag{18}
\end{equation*}
$$

In particular, using (16) we have $\beta_{s}<1$ for $s \leqslant k / 4$, say, and $\beta_{s}>1$ for $s \geqslant 3 k / 4$. In between we have $\beta_{s+1} / \beta_{s} \sim 1 / p$, so $\beta_{s+1} / \beta_{s} \geqslant 1$, and β_{s} is increasing when s runs from $k / 4$ to $3 k / 4$.

It follows that there is some $s_{0} \in[k / 4,3 k / 4]$ such that $\beta_{s} \leqslant 1$ for $s \leqslant s_{0}$ and $\beta_{s}>1$ for $s>s_{0}$. In other words, the sequence α_{s} decreases and then increases.

Hence, $\max \left\{\alpha_{s}: 2 \leqslant s \leqslant k-1\right\}=\max \left\{\alpha_{2}, \alpha_{k-1}\right\}$, so

$$
\frac{\Delta_{k}}{\mu_{k}^{2}}=\sum_{s=2}^{k-1} \alpha_{s} \leqslant k \max \left\{\alpha_{2}, \alpha_{k-1}\right\}=n^{o(1)} \max \left\{\alpha_{2}, \alpha_{k-1}\right\}
$$

Either calculating directly, or using $\alpha_{0} \leqslant 1, \alpha_{2}=\alpha_{0} \beta_{0} \beta_{1}$, and the approximate formula for β_{s} in (18), one can check that $\alpha_{2} \leqslant n^{-2+o(1)}$. Similarly, $\alpha_{k}=1 / \mu_{k}$ and $\alpha_{k-1}=\alpha_{k} / \beta_{k-1}=n^{-1+o(1)} / \mu_{k}$, using (18) and (16).

Theorem 7.4. Let $0<p<1$ be fixed. Define $k_{0}=k_{0}(n, p)$ as above, and let $G=$ $G(n, p)$. Then

$$
\mathbb{P}\left(k_{0}-2 \leqslant \omega(G) \leqslant k_{0}\right) \rightarrow 1
$$

Proof. The upper bound is Lemma 7.2. For the lower bound, let $k=k_{0}-2$. Note that $\mu_{k_{0}-1} \geqslant 1$ by the definition of k_{0}, so by (17) we have $\mu_{k} \geqslant n^{1-o(1)}$, and in particular $\mu_{k} \rightarrow \infty$. Then by Lemma 7.3 we have $\Delta_{k}=o\left(\mu_{k}^{2}\right)$. Hence by the second moment method (Corollary 2.4) we have $\mathbb{P}(\omega(G)<k)=\mathbb{P}\left(X_{k}=0\right) \rightarrow 0$.

Note that we have 'pinned down' the clique number to one of three values; with only a very little more care, we can pin it down to at most two values. Indeed typically we can specify a single value (when $\mu_{k_{0}-1}$ is much larger than one, $\mu_{k_{0}}$ much smaller than one).

Using Janson's inequality, we can get a very tight bound on the probability that the clique number is significantly smaller than expected.

Theorem 7.5. Under the assumptions of Theorem 7.4 we have

$$
\mathbb{P}\left(\omega(G)<k_{0}-3\right) \leqslant e^{-n^{2-o(1)}}
$$

Note that this is a truly tiny probability: the probability that $G(n, p)$ contains no edges at all is $(1-p)^{\binom{n}{2}}=e^{-\Theta\left(n^{2}\right)}$.

Proof. Let $k=k_{0}-3$. Then arguing as above we have $\mu_{k} \geqslant n^{2-o(1)}$. Hence by Lemma 7.3 we have $\Delta_{k} / \mu_{k}^{2} \leqslant n^{-2+o(1)}$, so $\mu_{k}^{2} / \Delta_{k} \geqslant n^{2-o(1)}$. Thus by Janson's inequality (Corollary 6.5) we have $\mathbb{P}\left(X_{k}=0\right) \leqslant e^{-n^{2-o(1)}}$.

Why is such a good error bound useful? Because it allows us to study the chromatic number, by showing that with high probability every subgraph of a decent size contains a fairly large independent set.

Theorem 7.6 (Bollobás). Let $0<p<1$ be constant and let $G=G(n, p)$. Then for any fixed $\varepsilon>0$, whp

$$
(1-\varepsilon) \frac{n}{2 \log _{b} n} \leqslant \chi(G) \leqslant(1+\varepsilon) \frac{n}{2 \log _{b} n}
$$

where $b=1 /(1-p)$.
Proof. Apply Theorem 7.4 to the complement G^{c} of G, noting that $G^{\mathrm{c}} \sim G(n, 1-p)$. Writing $\alpha(G)$ for the independence number of G, we find that whp $\alpha(G)=\omega\left(G^{c}\right) \leqslant$ $k_{0}(n, 1-p) \sim 2 \log _{b} n$. Since $\chi(G) \geqslant n / \alpha(G)$, this gives the lower bound.

For the upper bound, let $m=\left\lfloor n /(\log n)^{2}\right\rfloor$, say. For each subset W of $V(G)$ with $|W|=m$, let E_{W} be the event that $G[W]$ contains an independent set of size at least $k=k_{0}(m, 1-p)-3$. Note that

$$
k \sim 2 \log _{b} m \sim 2 \log _{b} n
$$

For each (fixed) W, applying Theorem 7.5 to the complement of $G[W]$, which has the distribution of $G(m, 1-p)$, we have

$$
\mathbb{P}\left(E_{W}^{\mathrm{c}}\right) \leqslant e^{-m^{2-o(1)}}=e^{-n^{2-o(1)}}
$$

Let $E=\bigcap_{|W|=m} E_{W}$. Considering the $\binom{n}{m} \leqslant 2^{n}$ possible sets W separately, the union bound gives

$$
\mathbb{P}\left(E^{c}\right)=\mathbb{P}\left(\bigcup_{W} E_{W}^{\mathrm{c}}\right) \leqslant 2^{n} e^{-n^{2-o(1)}} \rightarrow 0 .
$$

It follows that E holds whp. But when E holds one can colour by greedily choosing independent sets of size at least k for the colour classes, until at most m vertices remain, and then simply using one colour for each vertex. Since we use at most n / k sets of size at least k, this shows that, when E holds,

$$
\chi(G(n, p)) \leqslant \frac{n}{k}+m=(1+o(1)) \frac{n}{2 \log _{b} n}+m \sim \frac{n}{2 \log _{b} n},
$$

completing the proof.
Remark. The chromatic number of $G(n, p)$ has been extensively studied, for various ranges $p=p(n)$. For p constant, as here, the tightest bounds currently known are due to Annika Heckel (a DPhil student here in Oxford), who has given bounds of the form $n /(f(n, p)+o(1))$ for a certain function $f(n, p)$. The proof is based on an (extremely complicated) application of the second moment method, with the number of 'balanced' colourings as the random variable.

8 Postscript: other models

(These concluding remarks are non-examinable.) There are several standard models of random graphs on the vertex set $[n]=\{1,2, \ldots, n\}$. We have focussed on $G(n, p)$, where each possible edge is included independently with probability p.

The model originally studied by the founders of the theory of random graphs, Erdős and Rényi, is slightly different. Fix $n \geqslant 1$ and $0 \leqslant m \leqslant N=\binom{n}{2}$. The random graph $G(n, m)$ is the graph with vertex set $[n]$ obtained by choosing exactly m edges randomly, with all $\binom{N}{m}$ possible sets of m edges equally likely.

For most natural questions (but not, for example, 'is the number of edges even?'), $G(n, p)$ and $G(n, m)$ behave very similarly, provided we choose the density parameters in a corresponding way, i.e., we take $p \sim m / N$.

Often, we consider random graphs of different densities simultaneously. In $G(n, m)$, there is a natural way to do this, called the random graph process. This is the random sequence $\left(G_{m}\right)_{m=0,1, \ldots, N}$ of graphs on $[n]$ obtained by starting with no edges, and adding edges one-by-one in a random order, with all N ! orders equally likely. Note that each individual G_{m} has the distribution of $G(n, m)$: we take the first m edges in a random order, so all possibilities are equally likely. The key point is that in the sequence $\left(G_{m}\right)$, we define all the G_{m} together, in such a way that if $m_{1}<m_{2}$, then $G_{m_{1}} \subset G_{m_{2}}$. (This is called a 'coupling' of the distributions $G(n, m)$ for different m.)

There is a similar coupling in the $G(n, p)$ setting, the continuous time random graph process. This is the random 'sequence' $\left(G_{t}\right)_{t \in[0,1]}$ defined as follows: for each possible edge, let U_{e} be a random variable with the uniform distribution on the interval $[0,1]$, with the different U_{e} independent. Let the edge set of G_{t} be $\left\{e: U_{e} \leqslant t\right\}$. (Formally this defines a random function $t \mapsto G_{t}$ from [0,1] to the set of graphs on $[n]$.) One can think of U_{e} as giving the 'time' at which the edge e is born; G_{t} consists of all edges born by time t. For any p, G_{p} has the distribution of $G(n, p)$, but again these distributions are coupled in the natural way: if $p_{1}<p_{2}$ then $G_{p_{1}} \subseteq G_{p_{2}}$.

Of course there are many other random graph models not touched on in this course (as well as many more results about $G(n, p)$). These include other classical models, such as the 'configuration model' for random regular graphs, random geometric graphs, and also new 'inhomogeneous' models introduced as more realistic models for networks in the real world.

[^0]: ${ }^{1}$ This is a lemma from Prelims probability: note that if $A_{1} \subseteq A_{2} \subseteq A_{3} \cdots$, then $\bigcup_{i \geqslant 1} A_{i}$ is the disjoint union of $A_{1}, A_{2} \backslash A_{1}, A_{3} \backslash A_{2}, \ldots$, and use countable (and finite) additivity to see that $\mathbb{P}\left(A_{n}\right) \rightarrow \mathbb{P}\left(\bigcup_{i \geqslant 1} A_{i}\right)$ as $n \rightarrow \infty$.

