This is a preliminary problem sheet, to get the ball rolling. There is a 'bonus' problem for MFoCS students overleaf. Hints/solutions will be put on the website near the end of week 1. Problem sheet 1 (based on the first two weeks' lectures) will be for the first class.

Estimates and asymptotics, union bound and first-moment method

1. Prove the following inequalities:
(a) $1+x \leqslant e^{x}$ for all real x.
(b) $(1+a)^{n} \leqslant e^{a n}$ for $a>-1, n \geqslant 0$.
(c) $k!\geqslant k^{k} / e^{k}$ for $k \geqslant 1$.
(d) $\left(\frac{n}{k}\right)^{k} \leqslant\binom{ n}{k} \leqslant \frac{n^{k}}{k!} \leqslant\left(\frac{e n}{k}\right)^{k}$ for $1 \leqslant k \leqslant n$.
2. For the following functions $f(n)$ and $g(n)$, decide whether $f=o(g)$ or $g=o(f)$ or $f=\Theta(g)$ as $n \rightarrow \infty$:
(a) $f(n)=\binom{n}{k}, g(n)=n^{k}$, first for k fixed and then for the case where $k=k(n) \rightarrow$ ∞ as $n \rightarrow \infty$;
(b) $f(n)=(\log n)^{1000}, g(n)=n^{1 / 1000 ;}$
3. In lectures we saw that the k th diagonal Ramsey number satisfies

$$
R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}
$$

for each integer n. By considering $n=\left\lfloor e^{-1} k 2^{k / 2}\right\rfloor$, deduce that

$$
R(k, k) \geqslant(1-o(1)) e^{-1} k 2^{k / 2}
$$

4. Show that if $n, k, \ell \geqslant 1$ are integers and $0<p<1$, then

$$
R(k, \ell)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{\ell}(1-p)^{\binom{\ell}{2}} .
$$

5. Let H be an r-uniform hypergraph with fewer than $\frac{3^{r-1}}{2^{r}}$ edges. Prove that the vertices of H can be coloured using three colours in such a way that in each edge, all three colours are represented.
6. Let F be a collection of binary strings ("codewords") of finite length, where the i th codeword has length c_{i}. Suppose that no member of F is a prefix of another member (so you can decode any string made up by concatenating codewords as you go along, without looking ahead). Show that $\sum_{i} 2^{-c_{i}} \leqslant 1$ (the Kraft inequality for prefix-free codes).

Bonus question (for MFoCS students, optional for others):
A (finite, or infinite and convergent) sum $S=\sum_{i \geqslant 0} a_{i}$ is said to satisfy the alternating inequalities if the partial sum $\sum_{i=0}^{t} a_{i}$ is at least S for all even t and at most S for all odd t; that is, the partial sums alternately over- and under-estimate the final result.
7. Let I_{1}, \ldots, I_{n} be the indicator functions of n events E_{1}, \ldots, E_{n}. For $0 \leqslant r \leqslant n$ let $S_{r}=\sum_{A \subseteq[n],|A|=r} \prod_{i \in A} I_{i}$, where $[n]=\{1,2, \ldots, n\}$. Show that

$$
\begin{equation*}
\prod_{i=1}^{n}\left(1-I_{i}\right)=\sum_{r=0}^{n}(-1)^{r} S_{r}, \tag{0.1}
\end{equation*}
$$

and that the sum satisfies the alternating inequalities. [Both sides are random; the statement is that the relevant inequalities always hold. You may want to consider different cases according to how many of the events E_{i} hold.] Deduce that

$$
\begin{equation*}
\mathbb{P}\left(\text { no } E_{i} \text { holds }\right)=\sum_{r=0}^{n}(-1)^{r} \sum_{A \subseteq[n],|A|=r} \mathbb{P}\left(\cap_{i \in A} E_{i}\right), \tag{0.2}
\end{equation*}
$$

and that the sum satisfies the alternating inequalities. [This is a form of the inclusion-exclusion formula.]

