
Lecture Notes on Finite Element
Methods for Partial Differential

Equations

Endre Süli

Mathematical Institute

University of Oxford

August 11, 2020



2
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Synopsis:
Finite element methods represent a powerful and general class of techniques for
the approximate solution of partial differential equations; the aim of this course is
to provide an introduction to their mathematical theory, with special emphasis on
theoretical questions such as accuracy, reliability and adaptivity; practical issues
concerning the development of efficient finite element algorithms will also be dis-
cussed.
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Elements of function spaces. Elliptic boundary value problems: existence, unique-
ness and regularity of weak solutions.
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polynomial approximation in Sobolev spaces. The Bramble-Hilbert lemma. Optimal
error bounds in the energy norm. Variational crimes.

The Aubin-Nitsche duality argument. Superapproximation properties in mesh-
dependent norms. A posteriori error analysis by duality: reliability, efficiency and
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Finite element approximation of initial boundary value problems. Energy dissi-
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Chapter 1

Introduction

Partial differential equations arise in the mathematical modelling of many phys-
ical, chemical and biological phenomena and many diverse subject areas such as
fluid dynamics, electromagnetism, material science, astrophysics, economy, financial
modelling, etc. Very frequently the equations under consideration are so compli-
cated that finding their solutions in closed form or by purely analytical means (e.g.
by Laplace and Fourier transform methods, or in the form of a power series) is either
impossible or impracticable, and one has to resort to seeking numerical approxima-
tions to the unknown analytical solution.

These notes are devoted to a particular class of numerical techniques for the
approximate solution of partial differential equations: finite element methods. They
were proposed in a seminal work of Richard Courant1, in 1943; unfortunately, the
relevance of this article was not recognised at the time and the idea was forgotten.
In the early 1950’s the method was rediscovered by engineers, but the mathematical
analysis of finite element approximations began much later, in the 1960’s, the first
important results being due to Miloš Zlámal2 in 1968. Since then finite element
methods have been developed into one of the most general and powerful class of
techniques for the numerical solution of partial differential equations and are widely
used in engineering design and analysis.

In these notes we shall be concerned with the mathematical aspects of finite
element approximation, including stability, accuracy, reliability and adaptivity. We
begin by developing some of the theoretical tools: the present chapter is devoted to
summarising the elements of the theory of function spaces and reviewing some basic
results from the theory of partial differential equations. The concepts and notational
conventions introduced here will be used systematically throughout the notes.

1R. Courant: Variational methods for the solution of problems of equilibrium and vibrations.
Bull. Amer. Math. Soc., 49, pp. 1–23 (1943)

2M. Zlámal: On the finite element method. Numerische Mathematik, 12, pp. 394–402 (1968)
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1.1 Elements of function spaces

As will become apparent in subsequent chapters, the accuracy of finite element ap-
proximations to partial differential equations very much depends on the smoothness
of the analytical solution to the equation under consideration, and this in turn hinges
on the smoothness of the data.

Precise assumptions about the regularity of the solution and the data can be
conveniently formulated by considering classes of functions with specific differentia-
bility and integrability properties, called function spaces. In this section we present
a brief overview of basic definitions and simple results form the theory of function
spaces. For future reference, we remark here that all functions that appear in these
notes will be assumed to be real-valued.

1.1.1 Spaces of continuous functions

In this section, we describe some simple function spaces which consist of continuously
differentiable functions. For the sake of notational convenience, we introduce the
concept of a multi-index.

Let N denote the set of non-negative integers. An n-tuple

α = (α1, . . . , αn) ∈ Nn

is called a multi–index. The non-negative integer |α| := α1 + . . . + αn is referred
to as the length of the multi–index α = (α1, . . . , αn). We denote (0, . . . , 0) by 0;
clearly |0| = 0. Let

Dα =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

=
∂|α|

∂xα1
1 . . . ∂xαn

n

.

Example 1 Suppose that n = 3, and α = (α1, α2, α3), αj ∈ N, j = 1, 2, 3. Then
for u, a function of three variables x1, x2, x3,∑

|α|=3

Dαu =
∂3u

∂x3
1

+
∂3u

∂x2
1∂x2

+
∂3u

∂x2
1∂x3

+
∂3u

∂x1∂x2
2

+
∂3u

∂x1∂x2
3

+
∂3u

∂x3
2

+
∂3u

∂x1∂x2∂x3

+
∂3u

∂x2
2∂x3

+
∂3u

∂x2∂x2
3

+
∂3u

∂x3
3

. �

This example highlights the importance of multi-index notation: instead of labori-
ously writing out in detail the ten terms on the right-hand side of the last identity,
we can compress the information into a single entity shown on the left.

Let Ω be an open set in Rn and let k ∈ N. We denote by Ck(Ω) the set of all
continuous real-valued functions defined on Ω such that Dαu is continuous on Ω for
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all α = (α1, . . . , αn) with |α| ≤ k. Assuming that Ω is a bounded open set, Ck(Ω̄)
will denote the set of all u in Ck(Ω) such that Dαu can be extended from Ω to a
continuous function on Ω̄, the closure of the set Ω, for all α = (α1, . . . , αn), |α| ≤ k.
Ck(Ω̄) can be equipped with the norm

‖u‖Ck(Ω̄) :=
∑
|α|≤k

sup
x∈Ω
|Dαu(x)|.

In particular when k = 0 we shall write C(Ω̄) instead of C0(Ω̄) to denote the set of
all continuous functions defined on Ω̄; in this case,

‖u‖C(Ω̄) = sup
x∈Ω
|u(x)| = max

x∈Ω̄
|u(x)|.

Similarly, if k = 1,

‖u‖C1(Ω̄) =
∑
|α|≤1

sup
x∈Ω
|Dαu(x)|

= sup
x∈Ω
|u(x)|+

n∑
j=1

sup
x∈Ω
| ∂u
∂xj

(x)|.

Example 2 Consider the open interval Ω = (0, 1) ⊂ R1. The function u(x) = 1/x
belongs to Ck(Ω) for each k ≥ 0. As Ω̄ = [0, 1] and limx→0 u(x) =∞, it is clear that
u is not continuous on Ω̄; the same is true of its derivatives. Therefore u 6∈ Ck(Ω̄)
for any k ≥ 0. �

The support of a continuous function u defined on an open set Ω ⊂ Rn is defined
as the closure in Ω of the set {x ∈ Ω : u(x) 6= 0}. We shall write supp u for the
support of u. Thus, supp u is the smallest closed subset of Ω such that u = 0 in
Ω\supp u.

Example 3 Let w be the function defined on Rn by

w(x) =

{
e
− 1

1−|x|2 , |x| < 1,
0, otherwise;

here |x| = (x2
1 + . . . + x2

n)1/2. Clearly, the support of w is the closed unit ball
{x ∈ Rn : |x| ≤ 1}. �

We denote by Ck
0 (Ω) the set of all u contained in Ck(Ω) whose support is a bounded

subset of Ω. Let

C∞0 (Ω) = ∩
k≥0 C

k
0 (Ω).

Example 4 The function w defined in the previous example belongs to the space
C∞0 (Rn). �



8 CHAPTER 1. INTRODUCTION

1.1.2 Spaces of integrable functions

Next we consider a class of spaces that consist of (Lebesgue-) integrable functions.
Let p be a real number, p ≥ 1; we denote by Lp(Ω) the set of all real-valued functions
defined on an open subset Ω of Rn such that∫

Ω

|u(x)|p dx <∞.

Any two functions which are equal almost everywhere (i.e. equal, except on a
set of measure zero) on Ω are identified with each other. Thus, strictly speaking,
Lp(Ω) consists of equivalence classes of functions; still, we shall not insist on this
technicality. Lp(Ω) is equipped with the norm

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|p dx

)1/p

.

We shall also consider the space L∞(Ω) consisting of functions u defined on Ω such
that |u| has finite essential supremum on Ω (namely, there exists a positive constant
M such that |u(x)| ≤ M for almost every3 x in Ω; the smallest such number M is
called the essential supremum of |u|, and we write M = ess.supx∈Ω|u(x)|). L∞(Ω)
is equipped with the norm

‖u‖L∞(Ω) = ess.supx∈Ω|u(x)|.

A particularly important case corresponds to taking p = 2; then

‖u‖L2(Ω) =

(∫
Ω

|u(x)|2 dx

)1/2

.

The space L2(Ω) can be equipped with the inner product

(u, v) :=

∫
Ω

u(x)v(x) dx.

Clearly ‖u‖L2(Ω) = (u, u)1/2.

Lemma 1 (The Cauchy–Schwarz inequality) Let u and v belong to L2(Ω); then
u v ∈ L1(Ω) and

|(u, v)| ≤ ‖u‖L2(Ω)‖v‖L2(Ω).

Proof Let λ ∈ R; then

0 ≤ ‖u+ λv‖2L2(Ω) = (u+ λv, u+ λv)

= (u, u) + (u, λv) + (λv, u) + (λv, λv)

= ‖u‖2L2(Ω) + 2λ(u, v) + λ2‖v‖2L2(Ω), λ ∈ R.

3We shall say that a property P (x) is true for almost every x in Ω, if P (x) is true for all x ∈ Ω\Γ
where Γ is a subset of Ω with zero Lebesgue measure.
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The right-hand side is a quadratic polynomial in λ with real coefficients, and it is non-
negative for all λ ∈ R; therefore its discriminant is non-positive, i.e.

|2(u, v)|2 − 4‖u‖2L2(Ω)‖v‖
2
L2(Ω) ≤ 0,

and hence the desired inequality. �

Corollary 1 (The triangle inequality) Let u and v belong to L2(Ω); then u + v ∈
L2(Ω), and

‖u+ v‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖v‖L2(Ω).

Proof This is a straightforward consequence of the Cauchy–Schwarz inequality:

‖u+ v‖2L2(Ω) = (u+ v, u+ v) = ‖u‖2L2(Ω) + 2(u, v) + ‖v‖2L2(Ω)

≤
(
‖u‖L2(Ω) + ‖v‖L2(Ω)

)2
.

Upon taking the square root of both sides we complete the proof. �

Remark 1 The space Lp(Ω) with p ∈ [1,∞] is a Banach space4. In particular,
L2(Ω) is a Hilbert space: it has an inner product (·, ·) and, when equipped with the
associated norm ‖ · ‖L2(Ω), defined by ‖u‖L2(Ω) = (u, u)1/2, it is a Banach space. �

To conclude this section, we note that a statement analogous to Corollary 1
holds, more generally, in the Lp norm for 1 ≤ p ≤ ∞; namely,

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω), u, v ∈ Lp(Ω).

Furthermore, the following generalisation of the Cauchy–Schwarz inequality, known
as Hölder’s inequality, is valid for any two functions u ∈ Lp(Ω) and v ∈ Lp′(Ω)
with 1/p+ 1/p′ = 1: ∣∣∣∣∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ ‖u‖Lp(Ω)‖v‖Lp′ (Ω).

4A normed linear space X, with norm ‖ · ‖X , is called a Banach space if, whenever {um}∞m=1 is
a sequence of elements of X such that

lim
n,m→∞

‖un − um‖X = 0, (1.1)

there exists u ∈ X such that limm→∞ ‖u− um‖X = 0 (i.e. the sequence {um}∞m=1 converges to u
in X). A sequence {um}∞m=1 with the property (1.1) is called a Cauchy sequence.
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1.1.3 Sobolev spaces

In this section we introduce a class of spaces, called Sobolev spaces (after the Russian
mathematician S.L. Sobolev), which play an important role in modern differential
equation theory. Before we give the precise definition of a Sobolev space, we intro-
duce the concept of weak derivative.

Suppose that u is a smooth function, say u ∈ Ck(Ω), with Ω an open subset of
Rn, and let v ∈ C∞0 (Ω); then the following integration-by-parts formula holds:∫

Ω

Dαu(x) · v(x) dx = (−1)|α|
∫

Ω

u(x) ·Dαv(x) dx, |α| ≤ k,

∀v ∈ C∞0 (Ω).

Note that all terms involving integrals over the boundary of Ω, which arise in the
course of integrating by parts, have disappeared because v and all of its derivatives
are identically zero on the boundary of Ω. This identity represents the starting point
for defining the concept of weak derivative.

Now suppose that u is a locally integrable function defined on Ω (i.e. u ∈ L1(ω)
for each bounded open set ω, with ω̄ ⊂ Ω). Suppose also that there exists a function
wα, locally integrable on Ω and such that∫

Ω

wα(x) · v(x) dx = (−1)|α|
∫

Ω

u(x) ·Dαv(x) dx ∀v ∈ C∞0 (Ω);

then we say that wα is a weak derivative of the function u of order |α| = α1 + . . .+
αn, and we write wα = Dαu. In order to see that this definition is correct it has to
be shown that if a locally integrable function has a weak derivative then this must be
unique; we remark that this is a straightforward consequence of DuBois Reymond’s
lemma5. Clearly, if u is a sufficiently smooth function, say u ∈ Ck(Ω), then its weak
derivative Dαu of order |α| ≤ k coincides with the corresponding partial derivative
in the classical pointwise sense,

∂|α|u

∂xα1
1 . . . ∂xαn

n

.

In order to simplify the notation, we shall use the letter D to denote classical as
well as weak derivatives; it will always be clear from the context (by considering the
smoothness of the function differentiated) which of the two is implied.

Example 5 Let Ω = R1, and suppose that we wish to determine the weak first
derivative of the function u(x) = (1− |x|)+ defined on Ω. Clearly u is not differen-
tiable at the points 0 and ±1. However, because u is locally integrable on Ω, it may,

5DuBois Reymond’s lemma: Suppose that w is a locally integrable function defined on an
open set Ω, Ω ⊂ Rn. If ∫

Ω

w(x)v(x) dx = 0 for all v in C∞
0 (Ω)

then w(x) = 0 for almost every x ∈ Ω.



1.1. ELEMENTS OF FUNCTION SPACES 11

nevertheless, have a weak derivative. Indeed, for any v ∈ C∞0 (Ω),∫ +∞

−∞
u(x)v′(x) dx =

∫ +∞

−∞
(1− |x|)+v

′(x) dx =

∫ 1

−1

(1− |x|)v′(x) dx

=

∫ 0

−1

(1 + x)v′(x) dx+

∫ 1

0

(1− x)v′(x) dx

= −
∫ 0

−1

v(x) dx+ (1 + x)v(x)|0−1 +

∫ 1

0

v(x) dx+ (1− x)v(x)|1x=0

=

∫ 0

−1

(−1)v(x) dx+

∫ 1

0

1 · v(x) dx ≡ −
∫ +∞

−∞
w(x)v(x) dx,

where

w(x) =


0, x < −1,
1, x ∈ (−1, 0),
−1, x ∈ (0, 1),

0, x > 1.

Thus, the piecewise constant function w is the first (weak) derivative of the contin-
uous piecewise linear function u, i.e. w = u′ = Du. �

Now we are ready to give a precise definition of a Sobolev space. Let k be a
non-negative integer and suppose that p ∈ [1,∞]. We define (with Dα denoting a
weak derivative of order |α| )

W k
p (Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k}.

W k
p (Ω) is called a Sobolev space of order k; it is equipped with the (Sobolev) norm

‖u‖Wk
p (Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

1/p

when 1 ≤ p <∞

and

‖u‖Wk
∞(Ω) :=

∑
|α|≤k

‖Dαu‖L∞(Ω) when p =∞.

Letting,

|u|Wk
p (Ω) :=

∑
|α|=k

‖Dαu‖pLp(Ω)

1/p

,

for p ∈ [1,∞), we can write

‖u‖Wk
p (Ω) =

(
k∑
j=0

|u|p
W j

p (Ω)

)1/p

.
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Similarly, letting

|u|Wk
∞(Ω) :=

∑
|α|=k

‖Dαu‖L∞(Ω),

we have that

‖u‖Wk
∞(Ω) =

k∑
j=0

|u|W j
∞(Ω).

When k ≥ 1, |·|Wk
p (Ω) is called the Sobolev semi-norm6 on W k

p (Ω).

An important special case corresponds to taking p = 2; the space W k
2 (Ω) is then

a Hilbert space with the inner product

(u, v)Wk
2 (Ω) :=

∑
|α|≤k

(Dαu,Dαv).

For this reason, we shall usually write Hk(Ω) instead of W k
2 (Ω).

Throughout these notes we shall frequently refer to the Hilbertian Sobolev spaces
H1(Ω) and H2(Ω). Our definitions of W k

p (Ω) and its norm and seminorm, for p = 2,
k = 1, give:

H1(Ω) =

{
u ∈ L2(Ω) :

∂u

∂xj
∈ L2(Ω), j = 1, . . . , n

}
,

‖u‖H1(Ω) =

{
‖u‖2

L2(Ω) +
n∑
j=1

‖ ∂u
∂xj
‖2
L2(Ω)

}1/2

,

|u|H1(Ω) =

{
n∑
j=1

‖ ∂u
∂xj
‖2
L2(Ω)

}1/2

.

Similarly, for p = 2 and k = 2,

H2(Ω) =

{
u ∈ L2(Ω) :

∂u

∂xj
∈ L2(Ω), j = 1, . . . , n,

∂2u

∂xi∂xj
∈ L2(Ω), i, j = 1, . . . , n

}
,

‖u‖H2(Ω) =
{
‖u‖2

L2(Ω) +
n∑
j=1

‖ ∂u
∂xj
‖2
L2(Ω)

+
n∑

i,j=1

‖ ∂2u

∂xi∂xj
‖2
L2(Ω)

}1/2

,

6When k ≥ 1, | · |Wk
p (Ω) is only a semi-norm rather than a norm because if |u|Wk

p (Ω) = 0 for

u ∈W k
p (Ω) it does not necessarily follow that u(x) = 0 for almost every x in Ω (all that is known

is that Dαu(x) = 0 for almost every x ∈ Ω, |α| = k), so | · |Wk
p (Ω) does not satisfy the first axiom

of norm.
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|u|H2(Ω) =

{
n∑

i,j=1

‖ ∂2u

∂xi∂xj
‖2
L2(Ω)

}1/2

.

Finally, we define the special Sobolev space H1
0 (Ω) as the closure of C∞0 (Ω) in the

norm of ‖ · ‖H1(Ω); in other words, H1
0 (Ω) is the set of all u ∈ H1(Ω) such that u

is the limit in H1(Ω) of a sequence {um}∞m=1 with um ∈ C∞0 (Ω). It can be shown
(assuming that ∂Ω is sufficiently smooth) that

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω};

i.e. H1
0 (Ω) is, in fact, the set of all functions u in H1(Ω) such that u = 0 on ∂Ω, the

boundary of the set Ω. We shall use this space when considering a partial differential
equation that is coupled with a homogeneous (Dirichlet) boundary condition: u = 0
on ∂Ω. We note here that H1

0 (Ω) is also a Hilbert space, with the same norm and
inner product as H1(Ω).

We conclude the section with the following useful result.

Lemma 2 (Poincaré–Friedrichs inequality) Suppose that Ω is a bounded open set in
Rn (with a sufficiently smooth boundary7 ∂Ω) and let u ∈ H1

0 (Ω); then there exists
a constant c?(Ω), independent of u, such that∫

Ω

|u(x)|2 dx ≤ c?

n∑
i=1

∫
Ω

| ∂u
∂xi

(x)|2 dx. (1.2)

Proof As any function u ∈ H1
0 (Ω) is the limit in H1(Ω) of a sequence {um}∞m=1 ⊂ C∞0 (Ω),

it is sufficient to prove this inequality for u ∈ C∞0 (Ω).

In fact, to simplify matters, we shall restrict ourselves to considering the special case
of a rectangular domain Ω = (a, b) × (c, d) in R2. The proof for general Ω is analogous.
Evidently

u(x, y) = u(a, y) +

∫ x

a

∂u

∂x
(ξ, y) dξ =

∫ x

a

∂u

∂x
(ξ, y) dξ, c < y < d.

Thence, by the Cauchy–Schwarz inequality,∫
Ω
|u(x, y)|2 dx dy =

∫ b

a

∫ d

c
|
∫ x

a

∂u

∂x
(ξ, y) dξ|2 dy dx

≤
∫ b

a

∫ d

c
(x− a)

(∫ x

a
|∂u
∂x

(ξ, y)|2 dξ

)
dy dx

≤
∫ b

a
(x− a) dx

(∫ d

c

∫ b

a
|∂u
∂x

(ξ, y)|2 dξ dy

)
=

1

2
(b− a)2

∫
Ω
|∂u
∂x

(x, y)|2 dx dy.

7Say, Ω is a polygonal domain in R2 or a polyhedron in R3.
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Analogously, ∫
Ω
|u(x, y)|2 dx dy ≤ 1

2
(d− c)2

∫
Ω
|∂u
∂y

(x, y)|2 dx dy.

By adding the two inequalities, we obtain∫
Ω
|u(x, y)|2 dx dy ≤ c?

∫
Ω

(
|∂u
∂x
|2 + |∂u

∂y
|2
)

dx dy,

where c? =
(

2
(b−a)2

+ 2
(d−c)2

)−1
. �

For further reference, we note that if Ω = (0, 1)2 ⊂ R2 then c? = 1
4
; similarly, if

Ω = (0, 1) ⊂ R then c? = 1
2
.

1.2 Weak solutions to elliptic problems

In the first part of this lecture course we shall focus on boundary value problems for
elliptic partial differential equations. Elliptic equations are typified by the Laplace
equation

∆u = 0,

and its non-homogeneous counterpart, Poisson’s equation

−∆u = f,

where we used the notation

∆ =
n∑
i=1

∂2

∂x2
i

for the Laplace operator.
More generally, let Ω be a bounded open set in Rn, and consider the linear

second-order partial differential equation

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (1.3)

where the coefficients aij, bi, c and f satisfy the following conditions:

aij ∈ C1(Ω̄), i, j = 1, . . . , n;

bi ∈ C(Ω̄), i = 1, . . . , n;

c ∈ C(Ω̄), f ∈ C(Ω̄),

and
n∑

i,j=1

aij(x)ξiξj ≥ c̃
n∑
i=1

ξ2
i , ∀ξ = (ξ1, . . . , ξn) ∈ Rn, x ∈ Ω̄; (1.4)
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here c̃ is a positive constant independent of x and ξ. The condition (1.4) is usually
referred to as uniform ellipticity and (1.3) is called an elliptic equation.

In problems that arise in applications equation (1.3) is usually supplemented by
one of the following boundary conditions, with g denoting a given function defined
on ∂Ω:

(a) u = g on ∂Ω (Dirichlet boundary condition);

(b) ∂u
∂ν

= g on ∂Ω, where ν denotes the unit outward normal vector to ∂Ω (Neu-
mann boundary condition);

(c) ∂u
∂ν

+ σu = g on ∂Ω, where σ(x) ≥ 0 on ∂Ω (Robin boundary condition);

(d) A generalisation of the boundary conditions (b) and (c) is

n∑
i,j=1

aij
∂u

∂xi
cosαj + σ(x)u = g on ∂Ω,

where αj is the angle between the unit outward normal vector ν to ∂Ω and
the xj axis (Oblique derivative boundary condition).

In many physical problems more than one type of boundary condition is imposed
on ∂Ω (e.g. ∂Ω is the union of two disjoint subsets ∂Ω1 and ∂Ω2, with a Dirichlet
boundary condition on ∂Ω1 and Neumann boundary condition on ∂Ω2). The study
of such mixed boundary value problems will not be pursued in these notes.

We begin by considering the homogeneous Dirichlet boundary value problem

−
n∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (1.5)

u = 0 on ∂Ω, (1.6)

where aij, bi, c and f are as in (1.4).
A function u ∈ C2(Ω)∩C(Ω̄) satisfying (1.5) and (1.6) is called a classical solu-

tion of this problem. The theory of partial differential equations tells us that (1.5),
(1.6) has a unique classical solution, provided that aij, bi, c, f and ∂Ω are sufficiently
smooth. However, in many applications one has to consider equations where these
smoothness requirements are violated, and for such problems the classical theory is
inappropriate. Take, for example, Poisson’s equation with zero Dirichlet boundary
condition on Ω = (−1, 1)n in Rn:

−∆u = sgn
(

1
2
− |x|

)
, x ∈ Ω,

u = 0, x ∈ ∂Ω.

}
(∗)

This problem does not have a classical solution, u ∈ C2(Ω)∩C(Ω̄), for otherwise ∆u
would be a continuous function on Ω, which is not possible because sgn(1/2 − |x|)
is not continuous on Ω.
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In order to overcome the limitations of the classical theory and to be able to
deal with partial differential equations with “non-smooth” data, we generalise the
notion of solution by weakening the differentiability requirements on u.

To begin, let us suppose that u is a classical solution of (1.5), (1.6). Then, for
any v ∈ C1

0(Ω),

−
n∑

i,j=1

∫
Ω

∂

∂xj

(
aij

∂u

∂xi

)
· v dx +

n∑
i=1

∫
Ω

bi(x)
∂u

∂xi
· v dx

+

∫
Ω

c(x)uv dx =

∫
Ω

f(x)v(x) dx.

Upon integration by parts in the first integral and noting that v = 0 on ∂Ω, we
obtain:

n∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx +

n∑
i=1

∫
Ω

bi(x)
∂u

∂xi
v dx

+

∫
Ω

c(x)uv dx =

∫
Ω

f(x)v(x) dx ∀v ∈ C1
0(Ω).

In order for this equality to make sense we no longer need to assume that u ∈ C2(Ω):
it is sufficient that u ∈ L2(Ω) and ∂u/∂xi ∈ L2(Ω), i = 1, . . . , n. Thus, remembering
that u has to satisfy a zero Dirichlet boundary condition, it is natural to seek u in
the space H1

0 (Ω), where, as in Section 1.1.3,

H1
0 (Ω) = {u ∈ L2(Ω) :

∂u

∂xi
∈ L2(Ω), i = 1, . . . , n, u = 0 on ∂Ω}.

Therefore, we consider the following problem: find u in H1
0 (Ω) such that

n∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi
· ∂v
∂xj

dx+
n∑
i=1

∫
Ω

bi(x)
∂u

∂xi
v dx

+

∫
Ω

c(x)uv dx =

∫
Ω

f(x)v(x) dx ∀v ∈ C1
0(Ω). (1.7)

We note that C1
0(Ω) ⊂ H1

0 (Ω), and it is easily seen that when u ∈ H1
0 (Ω) and

v ∈ H1
0 (Ω), (instead of v ∈ C1

0(Ω)), the expressions on the left- and right-hand side
of (1.7) are still meaningful (in fact, we shall prove this below)8. This motivates the
following definition.

8Note further that since the coefficients aij no longer appear under derivative signs in (1.7),
it is not necessary to assume that aij ∈ C1(Ω̄); aij ∈ L∞(Ω) will be seen to be sufficient. Also,
the smoothness requirements imposed on the coefficients bi and c can be relaxed: bi ∈ L∞(Ω) for
i = 1, . . . , n and c ∈ L∞(Ω) will suffice.
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Definition 1 Let aij ∈ L∞(Ω), i, j = 1, . . . , n, bi ∈ L∞(Ω), i = 1, . . . , n, c ∈
L∞(Ω), and let f ∈ L2(Ω). A function u ∈ H1

0 (Ω) satisfying

n∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx +

n∑
i=1

∫
Ω

bi(x)
∂u

∂xi
v dx

+

∫
Ω

c(x)uv dx =

∫
Ω

f(x)v(x) dx ∀v ∈ H1
0 (Ω) (1.8)

is called a weak solution of (1.5), (1.6). All partial derivatives in (1.8) should be
understood as weak derivatives.

Clearly if u is a classical solution of (1.5), (1.6), then it is also a weak solution
of (1.5), (1.6). However, the converse is not true. If (1.5), (1.6) has a weak solution,
this may not be smooth enough to be a classical solution. Indeed, we shall prove
below that the boundary value problem (∗) has a unique weak solution u ∈ H1

0 (Ω),
despite the fact that it has no classical solution. Before considering this particular
boundary value problem, we look at the wider issue of existence of a unique weak
solution to the more general problem (1.5), (1.6).

For the sake of simplicity, we adopt the following notation:

a(w, v) =
n∑

i,j=1

∫
Ω

aij(x)
∂w

∂xi

∂v

∂xj
dx

+
n∑
i=1

∫
Ω

bi(x)
∂w

∂xi
v dx+

∫
Ω

c(x)wv dx (1.9)

and

l(v) =

∫
Ω

f(x)v(x) dx. (1.10)

With this new notation, problem (1.8) can be written as follows:

find u ∈ H1
0 (Ω) such that a(u, v) = l(v) ∀v ∈ H1

0 (Ω). (1.11)

We shall prove the existence of a unique solution to this problem by exploiting the
following abstract result from Functional Analysis.

Theorem 1 (Lax & Milgram theorem) Suppose that V is a real Hilbert space equipped
with norm ‖ · ‖V . Let a(·, ·) be a bilinear functional on V × V such that:

(a) ∃c0 > 0 ∀v ∈ V a(v, v) ≥ c0‖v‖2
V ,

(b) ∃c1 > 0 ∀v, w ∈ V |a(w, v)| ≤ c1‖w‖V ‖v‖V ,

and let l(·) be a linear functional on V such that

(c) ∃c2 > 0 ∀v ∈ V |l(v)| ≤ c2‖v‖V .
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Then, there exists a unique u ∈ V such that

a(u, v) = l(v) ∀v ∈ V.

For a proof of this result the interested reader is referred to the books: P. Ciarlet:
The Finite Element Method for Elliptic Problems, North-Holland, 1978; K. Yosida:
Functional Analysis, Reprint of the 6th ed., Springer-Verlag, 1995.

We apply the Lax-Milgram theorem with V = H1
0 (Ω) and ‖ · ‖V = ‖ · ‖H1(Ω)

to show the existence of a unique weak solution to (1.5), (1.6) (or, equivalently, to
(1.11)). Let us recall from Section 1.1.3 that H1

0 (Ω) is a Hilbert space with the inner
product

(w, v)H1(Ω) =

∫
Ω

wv dx+
n∑
i=1

∫
Ω

∂w

∂xi
· ∂v
∂xi

dx

and the associated norm ‖w‖H1(Ω) = (w,w)
1/2

H1(Ω). Next we show that a(·, ·) and l(·),
defined by (1.9) and (1.10), satisfy the hypotheses (a), (b), (c) of the Lax-Milgram
theorem.

We begin with (c). The mapping v 7→ l(v) is linear: indeed, for any α, β ∈ R,

l(αv1 + βv2) =

∫
Ω

f(x)(αv1(x) + βv2(x)) dx

= α

∫
Ω

f(x)v1(x) dx+ β

∫
Ω

f(x)v2(x) dx

= αl(v1) + βl(v2), v1, v2 ∈ H1
0 (Ω);

so l(·) is a linear functional on H1
0 (Ω). Also, by the Cauchy–Schwarz inequality,

|l(v)| = |
∫

Ω

f(x)v(x) dx| ≤
(∫

Ω

|f(x)|2 dx

)1/2(∫
Ω

|v(x)|2 dx

)1/2

= ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω),

for all v ∈ H1
0 (Ω), where we have used the obvious inequality ‖v‖L2(Ω) ≤ ‖v‖H1(Ω).

Letting c2 = ‖f‖L2(Ω), we obtain the required bound.
Next we verify (b). For any fixed w ∈ H1

0 (Ω), the mapping v 7→ a(v, w) is linear.
Similarly, for any fixed v ∈ H1

0 (Ω), the mapping w 7→ a(v, w) is linear. Hence a(·, ·)
is a bilinear functional on H1

0 (Ω)×H1
0 (Ω). Applying the Cauchy–Schwarz inequality,

we deduce that

|a(w, v)| ≤
n∑

i,j=1

max
x∈Ω̄
|aij(x)| |

∫
Ω

∂w

∂xi

∂v

∂xj
dx|

+
n∑
i=1

max
x∈Ω̄
|bi(x)| |

∫
Ω

∂w

∂xi
v dx|
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+ max
x∈Ω̄
|c(x)| |

∫
Ω

w(x)v(x) dx|

≤ ĉ

{
n∑

i,j=1

(∫
Ω

| ∂w
∂xi
|2 dx

)1/2(∫
Ω

| ∂v
∂xj
|2 dx

)1/2

+
n∑
i=1

(∫
Ω

| ∂w
∂xi
|2 dx

)1/2(∫
Ω

|v|2 dx

)1/2

+

(∫
Ω

|w|2 dx

)1/2(∫
Ω

|v|2 dx

)1/2
}

≤ ĉ

{(∫
Ω

|w|2 dx

)1/2

+
n∑
i=1

(∫
Ω

| ∂w
∂xi
|2 dx

)1/2
}

×

{(∫
Ω

|v|2 dx

)1/2

+
n∑
j=1

(∫
Ω

| ∂v
∂xj
|2 dx

)1/2
}

(1.12)

where

ĉ = max

{
max

1≤i,j≤n
max
x∈Ω̄
|aij(x)|, max

1≤i≤n
max
x∈Ω̄
|bi(x)|,max

x∈Ω̄
|c(x)|

}
.

By further majorisation of the right-hand side in (1.12) we deduce that

|a(w, v)| ≤ 2nĉ

{∫
Ω

|w|2 dx+
n∑
i=1

∫
Ω

| ∂w
∂xi
|2 dx

}1/2

×

{∫
Ω

|v|2 dx+
n∑
j=1

∫
Ω

| ∂v
∂xj
|2 dx

}1/2

,

so that, by letting c1 = 2nĉ, we obtain inequality (b):

|a(w, v)| ≤ c1‖w‖H1(Ω)‖v‖H1(Ω). (1.13)

It remains to establish (a). To do so, we shall slightly strengthen the smoothness
requirements on the coefficients bi by demanding that bi ∈ W 1

∞(Ω) (see, however,
Remark 4 at the end of this chapter). Using (1.4), we deduce that

a(v, v) ≥ c̃

n∑
i=1

∫
Ω

| ∂v
∂xi
|2 dx+

n∑
i=1

∫
Ω

bi(x)
1

2

∂

∂xi
(v2) dx+

∫
Ω

c(x)|v|2 dx,

where we wrote ∂v
∂xi
· v as 1

2
∂
∂xi

(v2). Integrating by parts in the second term on the
right, we obtain

a(v, v) ≥ c̃
n∑
i=1

∫
Ω

| ∂v
∂xi
|2 dx+

∫
Ω

(
c(x)− 1

2

n∑
i=1

∂bi
∂xi

)
|v|2 dx.
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Suppose that bi, i = 1, . . . , n, and c satisfy the inequality

c(x)− 1

2

n∑
i=1

∂bi
∂xi
≥ 0, x ∈ Ω̄. (1.14)

Then

a(v, v) ≥ c̃

n∑
i=1

∫
Ω

| ∂v
∂xi
|2 dx. (1.15)

By virtue of the Poincaré–Friedrichs inequality stated in Lemma 1.2, the right-hand
side can be further bounded below to obtain

a(v, v) ≥ c̃

c?

∫
Ω

|v|2 dx. (1.16)

Summing (1.15) and (1.16),

a(v, v) ≥ c0

(∫
Ω

|v|2 dx+
n∑
i=1

∫
Ω

| ∂v
∂xi
|2 dx

)
, (1.17)

where c0 = c̃/(1 + c?), and hence (a). Having checked all hypotheses of the Lax-
Milgram theorem, we deduce the existence of a unique u ∈ H1

0 (Ω) satisfying (1.11);
consequently, problem (1.5), (1.6) has a unique weak solution. We encapsulate this
result in the following theorem.

Theorem 2 Suppose that aij ∈ L∞(Ω), i, j = 1, . . . , n, bi ∈ W 1
∞(Ω), i = 1, . . . , n,

c ∈ L∞(Ω), f ∈ L2(Ω), and assume that (1.4) and (1.14) hold; then the boundary
value problem (1.5), (1.6) possesses a unique weak solution u ∈ H1

0 (Ω). In addition,

‖u‖H1(Ω) ≤
1

c0

‖f‖L2(Ω). (1.18)

Proof We only have to show (1.18) as the rest of the theorem has been proved above.
By (1.17), (1.11), the Cauchy–Schwarz inequality and recalling the definition of ‖ · ‖H1(Ω),

c0‖u‖2H1(Ω) ≤ a(u, u) = l(u) = (f, u)

≤ |(f, u)| ≤ ‖f‖L2(Ω)‖u‖L2(Ω)

≤ ‖f‖L2(Ω)‖u‖H1(Ω).

Hence the desired inequality. �

Now we return to our earlier example (∗) which has been shown to have no
classical solution. However, applying the above theorem with aij(x) ≡ 1, i = j,
aij(x) ≡ 0, i 6= j, 1 ≤ i, j ≤ n, bi(x) ≡ 0, c(x) ≡ 0, f(x) = sgn(1

2
− |x|), and

Ω = (−1, 1)n, we see that (1.4) holds with c̃ = 1 and (1.14) is trivially fulfilled.
Thus (∗) has a unique weak solution u ∈ H1

0 (Ω) by Theorem 2. Similar results
are valid in the case of Neumann, Robin, and oblique derivative boundary value
problems, as well as mixed problems.
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Remark 2 Consider, for example, the following Dirichlet-Neumann mixed bound-
ary value problem:

−∆u = f in Ω,

u = 0 on Γ1,
∂u

∂ν
= g on Γ2,

where Γ1 is a non-empty, relatively open subset of ∂Ω and Γ1 ∪ Γ2 = ∂Ω. We shall
suppose that f ∈ L2(Ω) and that g ∈ L2(Γ2). Following a similar reasoning as in the
case of the Dirichlet boundary value problem, we consider the special Sobolev space

H1
0,Γ1

(Ω) = {v ∈ H1(Ω) : v = 0 on Γ1},

and define the weak formulation of the mixed problem as follows: find u ∈ H1
0,Γ1

(Ω)
such that

a(u, v) = l(v) for all v in H1
0,Γ1

(Ω),

where we put

a(u, v) =

∫
Ω

n∑
i=1

∂u

∂xi

∂v

∂xi
dx

and

l(v) =

∫
Ω

f(x)v(x) dx+

∫
Γ2

g(s)v(s) ds.

Applying the Lax-Milgram theorem with V = H1
0,Γ1

(Ω), the existence and uniqueness
of a weak solution to this mixed problem easily follows. �

Remark 3 Theorem 2 implies that the weak formulation of the elliptic boundary
value problem (1.5), (1.6) is well-posed in the sense of Hadamard; namely, for each
f ∈ L2(Ω) there exists a unique (weak) solution u ∈ H1

0 (Ω), and “small” changes in
f give rise to “small” changes in the corresponding solution u. The latter property
follows by noting that if u1 and u2 are weak solutions in H1

0 (Ω) of (1.5), (1.6)
corresponding to right-hand sides f1 and f2 in L2(Ω), respectively, then u1 − u2

is the weak solution in H1
0 (Ω) of (1.5), (1.6) corresponding to the right-hand side

f1 − f2 ∈ L2(Ω). Thus, by virtue of (1.18),

‖u1 − u2‖H1(Ω) ≤
1

c0

‖f1 − f2‖L2(Ω), (1.19)

and hence the required continuous dependence of the solution of the boundary value
problem on the right-hand side. �

Remark 4 The requirement bi ∈ W 1
∞(Ω) in Theorem 2 can be relaxed to the original

assumption bi ∈ L∞(Ω), i = 1, . . . , n. To see this, note that the smoothness require-
ments on bi are unrelated to the verification of condition (c) in the Lax-Milgram
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theorem, and condition (b) can be shown with bi ∈ L∞(Ω), i = 1, . . . , n, only any-
way. Thus, it remains to see how condition (a) may be verified under the hypothesis
bi ∈ L∞(Ω), i = 1, . . . , n. By (1.4) and the Cauchy–Schwarz inequality,

a(v, v) ≥ c̃|v|2H1(Ω) −

(
n∑
i=1

‖bi‖2
L∞(Ω)

)1/2

|v|H1(Ω)‖v‖L2(Ω) +

∫
Ω

c(x)|v(x)|2 dx

≥ 1

2
c̃|v|2H1(Ω) +

∫
Ω

(
c(x)− 2

c̃

n∑
i=1

‖bi‖2
L∞(Ω)

)
|v(x)|2 dx.

Assuming that

c(x)− 2

c̃

n∑
i=1

‖bi‖2
L∞(Ω) ≥ 0 (1.20)

we arrive at the inequality

a(v, v) ≥ 1

2
c̃

n∑
i=1

∫
Ω

| ∂v
∂xi
|2 dx,

which is analogous to (1.15). Thus, proceeding in the same way as in the transi-
tion from (1.15) to (1.17) we arrive at (1.17) with c0 = c̃/(2 + 2c∗); this verifies
condition (a) in the Lax-Milgram theorem, under the assumptions that bi ∈ L∞(Ω),
i = 1, . . . , n, only and (1.4), (1.20) hold. �



Chapter 2

Approximation of elliptic problems

In this chapter we describe the construction of finite element methods for ellip-
tic boundary value problems and outline some of their key properties. Unlike finite
difference schemes which are constructed in a more-or-less ad hoc fashion through re-
placing the derivatives in the differential equation by divided differences, the deriva-
tion of finite element methods is quite systematic.

The first step in the construction of a finite element method for an elliptic bound-
ary value problem (e.g. (1.5), (1.6)) is to convert the problem into its weak formu-
lation:

find u ∈ V such that a(u, v) = l(v) ∀v ∈ V , (P )

where V is the solution space (e.g. H1
0 (Ω) for the homogeneous Dirichlet boundary

value problem), a(·, ·) is a bilinear functional on V ×V , and l(·) is a linear functional
on V (e.g. (1.9) and (1.10)).

The second step in the construction is to replace V in (P ) by a finite-dimensional
subspace Vh ⊂ V which consists of continuous piecewise polynomial functions of
a fixed degree associated with a subdivision of the computational domain; then
consider the following approximation of (P ):

find uh ∈ Vh such that a(uh, vh) = l(vh) ∀vh ∈ Vh. (Ph)

Suppose, for example, that

dimVh = N(h) and Vh = span{φ1, . . . , φN(h)},

where the (linearly independent) basis functions φi, i = 1, . . . , N(h), have “small”
support. Expressing the approximate solution uh in terms of the basis functions, φi,
we can write

uh(x) =

N(h)∑
i=1

Uiφi(x), (∗∗)

where Ui, i = 1, . . . , N(h), are to be determined. Thus (Ph) can be rewritten as
follows:

find (U1, . . . , UN(h)) ∈ RN(h) such that

23



24 CHAPTER 2. APPROXIMATION OF ELLIPTIC PROBLEMS

N(h)∑
i=1

a(φi, φj)Ui = l(φj), j = 1, . . . , N(h). (P ′h)

This is a system of linear equations for U = (U1, . . . , UN(h))
T , with the matrix

of the system A = (a(φj, φi)) of size N(h) × N(h). Because the φi’s have small
support, a(φj, φi) = 0 for most pairs of i and j, so the matrix A is sparse (in the
sense that most of its entries are equal to 0); this property is crucial from the point
of efficient solution – in particular, fast iterative methods are available for sparse
linear systems. Once (P ′h) has been solved for U = (U1, . . . , UN(h))

T , the expansion
(∗∗) provides the required approximation to u.

After this brief outline of the idea behind the finite element method, we illustrate
the construction of this numerical technique by considering some simple examples.

2.1 Piecewise linear basis functions

In this section we describe the construction of the finite element method through
two simple examples: the first of these is a two-point boundary value problem
for a second-order ordinary differential equation; the second model problem is the
homogeneous Dirichlet boundary value problem for Poisson’s equation on the unit
square in the plane. For the time being we shall assume that the finite element
space Vh consists of continuous piecewise linear functions. Higher-degree piecewise
polynomial approximations will be discussed later on in the notes.

One-dimensional problem

Let us consider the boundary value problem

−(p(x)u′)′ + q(x)u = f(x), x ∈ (0, 1), (2.1)

u(0) = 0, u(1) = 0, (2.2)

where p ∈ C[0, 1], q ∈ C[0, 1], f ∈ L2(0, 1) with p(x) ≥ c̃ > 0 and q(x) ≥ 0 for all x
in [0, 1]. The weak formulation of this problem is:

find u ∈ H1
0 (0, 1) such that∫ 1

0

p(x)u′(x)v′(x) dx+

∫ 1

0

q(x)u(x)v(x) dx =

∫ 1

0

f(x)v(x) dx

∀v ∈ H1
0 (0, 1).

 (P )

In order to construct the finite element approximation of this problem, we sub-
divide Ω̄ = [0, 1] into N subintervals [xi, xi+1], i = 0, . . . , N − 1, by the points
xi = ih, i = 0, . . . , N , where h = 1/N , N ≥ 2, as shown in Fig 2.1. We note that
in general the mesh points xi need not be equally spaced: here we have chosen a
uniform spacing only to simplify the exposition.
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0 = x0 x1 x2 . . . xi . . . xN = 1

Figure 2.1: Subdivision of Ω̄ = [0, 1].
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Figure 2.2: The piecewise linear finite element basis function φi(x).

The subintervals (xi, xi+1) are referred to as element domains or elements,
(hence the name finite element method). In this example, the weak solution
u ∈ H1

0 (0, 1) of problem (P ) will be approximated by a continuous piecewise linear
function on the subdivision depicted in Figure 2.1. It will be convenient to express
our approximation as a linear combination of the finite element basis functions

φi(x) =

(
1− |x− xi

h
|
)

+

, i = 1, . . . , N − 1,

shown in Figure 2.2. It is clear that φi ∈ H1
0 (0, 1); furthermore, supp φi = [xi−1, xi+1],

i = 1, . . . , N − 1, and the functions φi, i = 1, . . . , N − 1, are linearly independent;
therefore

Vh := span{φ1, . . . , φN−1}

is an (N − 1)-dimensional subspace of H1
0 (0, 1).

The finite element approximation of (P ) is:

find uh ∈ Vh such that∫ 1

0

p(x)u′h(x)v′h(x) dx +

∫ 1

0

q(x)uh(x)vh(x) dx

=

∫ 1

0

f(x)vh(x) dx ∀vh ∈ Vh.

 (Ph)

Since uh ∈ Vh = span{φ1, . . . , φN−1}, it can be written as a linear combination
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of the basis functions:

uh(x) =
N−1∑
i=1

Uiφi(x).

Substituting this expansion into (Ph) we obtain the following problem, equivalent
to (Ph):

find U = (U1, . . . , UN−1)T ∈ RN−1 such that
N−1∑
i=1

Ui

∫ 1

0

[p(x)φ′i(x)φ′j(x) + q(x)φi(x)φj(x)] dx

=

∫ 1

0

f(x)φj(x) dx,

for j = 1, . . . , N − 1.


(P ′h)

Letting

aji :=

∫ 1

0

[p(x)φ′i(x)φ′j(x) + q(x)φi(x)φj(x)] dx, i, j = 1, . . . , N − 1;

Fj :=

∫ 1

0

f(x)φj(x) dx, j = 1, . . . , N − 1,

(P ′h) can be written as a system of linear equations

AU = F,

where A = (aji), F = (F1, . . . , FN−1)T . The matrix A is symmetric (i.e. AT = A)
and positive definite (i.e. xTAx > 0, x 6= 0). Since supp φi ∩ supp φj has empty
interior when |i− j| > 1, it follows that the matrix A is tri-diagonal (namely, aji is
zero, unless |i− j| ≤ 1). Having solved the system of linear equations AU = F , we
substitute the values U1, . . . , UN−1 into the expansion

uh(x) =
N−1∑
i=1

Uiφi(x)

to obtain uh.
In practice the entries aji of the matrix A and the entries Fj of the vector F

are calculated approximately using numerical integration (quadrature) rules. In the
simple case when p and q are constant functions on [0, 1], the entries of A can be
calculated exactly:

aij = p

∫ 1

0

φ′i(x)φ′j(x) dx+ q

∫ 1

0

φi(x)φj(x) dx

= p


2/h, i = j,
−1/h, |i− j| = 1,

0, |i− j| > 1,
+ q


4h/6, i = j,
h/6, |i− j| = 1,

0, |i− j| > 1.

=


2p/h+ 4hq/6, i = j,
−p/h+ qh/6, |i− j| = 1,

0, |i− j| > 1.
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Figure 2.3: A subdivision (triangulation) of Ω̄.

This gives rise to the following set of linear equations:

−pUi−1 − 2Ui + Ui+1

h2
+ q

Ui−1 + 4Ui + Ui+1

6
=

1

h

∫ xi+1

xi−1

f(x)φi(x) dx,

i = 1, . . . , N − 1,

with the convention that U0 = 0 and UN = 0 (corresponding to the fact that
uh(0) = 1 and uh(1) = 0, respectively). This is a three-point finite difference scheme
for the values Ui, the values of uh(x) at the mesh points xi.

Two-dimensional problem

Let Ω be a bounded domain in R2 with a polygonal boundary ∂Ω; thus Ω can be
exactly covered by a finite number of triangles. It will be assumed that any pair of
triangles in a triangulation of Ω intersect along a complete edge, at a vertex, or not
at all, as shown in Fig. 2.3. We shall denote by hK the diameter (longest side) of
triangle K, and we define h = maxK hK .

With each interior node (marked � in the figure) we associate a basis function φ
which is equal to 1 at that node and equal to 0 at all the other nodes; φ is assumed
to be a continuous function on Ω̄ and linear in each of the triangles, as shown in
Fig. 2.4.

Let us suppose that the interior nodes are labelled 1, 2, . . . , N(h); let φ1(x, y),
. . . , φN(h)(x, y) be the corresponding basis functions. The functions φ1, . . . , φN(h)

are linearly independent and they span an N(h)-dimensional linear subspace Vh of
H1

0 (Ω).
Let us consider the elliptic boundary value problem

−∆u = f in Ω,
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0 0

0 0

0 0

1

Figure 2.4: A typical finite element basis function φ.

u = 0 on ∂Ω.

In order to construct the finite element approximation of the problem, we begin by
considering its weak formulation (see the discussion about weak solutions in Chapter
1 in the special case when n = 2, aij(x) ≡ 1 for i = j and ≡ 0 for i 6= j, bi(x) ≡ 0
for all i and c(x) ≡ 0):

find u ∈ H1
0 (Ω) such that∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dx dy =

∫
Ω

fv dx dy ∀v ∈ H1
0 (Ω).

The finite element approximation of the problem is:

find uh ∈ Vh such that∫
Ω

(
∂uh
∂x

∂vh
∂x

+
∂uh
∂y

∂vh
∂y

)
dx dy =

∫
Ω

fvh dx dy ∀vh ∈ Vh.

Writing

uh(x, y) =

N(h)∑
i=1

Uiφi(x, y),

the finite element method can be restated as follows:

find U = (U1, . . . , UN(h))
T ∈ RN(h) such that
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N(h)∑
i=1

Ui

[∫
Ω

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dx dy

]
=

∫
Ω

fφj dx dy,

for j = 1, . . . , N(h).

Letting A = (aij), F = (F1, . . . , FN(h))
T ,

aij = aji =

∫
Ω

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dx dy,

Fj =

∫
Ω

fφj dx dy,

the finite element approximation can be written as a system of linear equations

AU = F.

Solving this, we obtain U = (U1, . . . , UN(h))
T , and hence the approximate solution

uh(x, y) =

N(h)∑
i=1

Uiφi(x, y).

The matrix A is called the stiffness matrix.
To simplify matters let us suppose that Ω = (0, 1) × (0, 1) and consider the

triangulation of Ω̄ shown in Fig. 2.5. The case of a general triangulation will be
considered later. Let φij denote the basis function associated with the interior node
(xi, yj):

φij(x, y) =



1− x−xi
h
− y−yj

h
, (x, y) ∈ 1

1− y−yj
h
, (x, y) ∈ 2

1− xi−x
h
, (x, y) ∈ 3

1− xi−x
h
− yj−y

h
, (x, y) ∈ 4

1− yj−y
h
, (x, y) ∈ 5

1− x−xi
h
, (x, y) ∈ 6

0 otherwise,

where 1, 2, . . . , 6 denote the triangles surrounding the node (xi, yj) (see Fig. 2.6.)
Thus,

∂φij
∂x

=



−1/h, (x, y) ∈ 1
0, (x, y) ∈ 2

1/h, (x, y) ∈ 3
1/h, (x, y) ∈ 4

0, (x, y) ∈ 5
−1/h, (x, y) ∈ 6

0, otherwise,
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Figure 2.5: Triangulation of Ω̄ = [0, 1]× [0, 1].
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and

∂φij
∂y

=



−1/h, (x, y) ∈ 1
−1/h, (x, y) ∈ 2

0, (x, y) ∈ 3
1/h, (x, y) ∈ 4
1/h, (x, y) ∈ 5

0, (x, y) ∈ 6
0, otherwise.

Since

N−1∑
i=1

N−1∑
j=1

Uij

∫
Ω

(
∂φij
∂x

∂φkl
∂x

+
∂φij
∂y

∂φkl
∂y

)
dx dy

=
N−1∑
i=1

N−1∑
j=1

Uij

∫
supp φkl

(
∂φij
∂x

∂φkl
∂x

+
∂φij
∂y

∂φkl
∂y

)
dx dy

= 4Ukl − Uk−1,l − Uk+1,l − Uk,l−1 − Uk,l+1, k, l = 1, ..., N − 1,

the finite element approximation is equivalent to

−Uk+1,l − 2Uk,l + Uk−1,l

h2
− Uk,l+1 − 2Uk,l + Uk,l−1

h2

=
1

h2

∫ ∫
supp φkl

f(x, y)φkl(x, y) dx dy, k, l = 1, . . . , N − 1;

Ukl = 0 on ∂Ω.

Thus, on this special triangulation of Ω, the finite element approximation gives
rise to the familiar 5-point finite difference scheme with the forcing function f aver-
aged in a special way.

2.2 The self-adjoint elliptic problem

Let us consider, as in Chapter 1, the elliptic boundary value problem

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (2.3)

u = 0 on ∂Ω, (2.4)

where Ω is a bounded open set in Rn, aij ∈ L∞(Ω), i, j = 1, . . . , n; bi ∈ W 1
∞(Ω),

i = 1, . . . , n, c ∈ L∞(Ω), f ∈ L2(Ω), and assume that there exists a positive constant
c̃ such that

n∑
i,j=1

aij(x)ξiξj ≥ c̃
n∑
i=1

ξ2
i ∀ξ = (ξ1, . . . , ξn) ∈ Rn, ∀x ∈ Ω̄. (2.5)
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We recall from Chapter 1 that the weak formulation of (2.3), (2.4) is:

find u ∈ H1
0 (Ω) such that a(u, v) = l(v) ∀v ∈ H1

0 (Ω), (2.6)

where the bilinear functional a(·, ·) and the linear functional l(·) are defined by

a(u, v) =
n∑

i,j=1

∫
Ω

aij
∂u

∂xi

∂v

∂xj
dx+

n∑
i=1

∫
Ω

bi(x)
∂u

∂xi
v dx+

∫
Ω

c(x)uv dx,

and

l(v) =

∫
Ω

f(x)v(x) dx.

We have shown that if

c(x)− 1

2

n∑
i=1

∂bi
∂xi
≥ 0, x ∈ Ω̄,

then (2.6) has a unique solution u in H1
0 (Ω), the weak solution of (2.3), (2.4). In

the special case when the boundary value problem is self-adjoint, i.e.

aij(x) = aji(x), i, j = 1, . . . , n, x ∈ Ω̄,

and

bi(x) ≡ 0, i = 1, . . . , n, x ∈ Ω̄,

the bilinear functional a(·, ·) is symmetric in the sense that

a(v, w) = a(w, v) ∀v, w ∈ H1
0 (Ω);

in the rest of this section this will always be assumed to be the case. Thus we
consider

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ c(x)u = f(x), x ∈ Ω,

(2.7)

u = 0, on ∂Ω

with aij(x) satisfying the ellipticity condition (2.5); aij(x) = aji(x), c(x) ≥ 0, x ∈ Ω̄.
It turns out that (2.7) can be restated as a minimisation problem. To be more

precise, we define the quadratic functional J : H1
0 (Ω)→ R by

J(v) =
1

2
a(v, v)− l(v), v ∈ H1

0 (Ω).
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Lemma 3 Let u be the (unique) weak solution to (2.6) in H1
0 (Ω) and suppose that

a(·, ·) is a symmetric bilinear functional on H1
0 (Ω); then u is the unique minimiser

of J(·) over H1
0 (Ω).

Proof Let u be the unique weak solution to (2.6) in H1
0 (Ω) and, for v ∈ H1

0 (Ω), consider
J(v)− J(u):

J(v)− J(u) =
1

2
a(v, v)− l(v)− 1

2
a(u, u) + l(u)

=
1

2
a(v, v)− 1

2
a(u, u)− l(v − u)

=
1

2
a(v, v)− 1

2
a(u, u)− a(u, v − u)

=
1

2
[a(v, v)− 2a(u, v) + a(u, u)]

=
1

2
[a(v, v)− a(u, v)− a(v, u) + a(u, u)]

=
1

2
a(v − u, v − u).

Thence

J(v)− J(u) =
1

2
a(v − u, v − u).

Because of (1.17),

a(v − u, v − u) ≥ c0‖v − u‖2H1(Ω),

where c0 is a positive constant. Thus

J(v)− J(u) ≥ c0

2
‖v − u‖2H1(Ω) ∀v ∈ H

1
0 (Ω), (2.8)

and therefore,

J(v) ≥ J(u) ∀v ∈ H1
0 (Ω), (2.9)

i.e. u minimises J(·) over H1
0 (Ω).

In fact, u is the unique minimiser of J(·) in H1
0 (Ω). Indeed, if ũ also minimises J(·)

on H1
0 (Ω), then

J(v) ≥ J(ũ) ∀v ∈ H1
0 (Ω). (2.10)

Taking v = ũ in (2.9) and v = u in (2.10), we deduce that

J(u) = J(ũ);

but then, by virtue of (2.8),

‖ũ− u‖H1(Ω) = 0,

and hence u = ũ. �
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u

J(u)

J(v)

H1
0 (Ω)

R

Figure 2.7: The quadratic functional J(·).

It is easily shown that J(·) is convex (down), i.e.

J((1− θ)v + θw) ≤ (1− θ)J(v) + θJ(w) ∀θ ∈ [0, 1], ∀v, w ∈ H1
0 (Ω).

This follows from the identity

(1− θ)J(v) + θJ(w) = J((1− θ)v + θw) +
1

2
θ(1− θ)a(v − w, v − w)

and the fact that a(v − w, v − w) ≥ 0. Moreover, if u minimises J(·) then J(·) has
a stationary point at u; namely,

J ′(u)v := lim
λ→0

J(u+ λv)− J(u)

λ
= 0

for all v ∈ H1
0 (Ω). Since

J(u+ λv)− J(u)

λ
= a(u, v)− l(v) +

λ

2
a(v, v),

we deduce that if u minimises J(·) then

lim
λ→0

[a(u, v)− l(v) +
λ

2
a(v, v)] = a(u, v)− l(v) = 0 ∀v ∈ H1

0 (Ω),

which proves the following result.

Lemma 4 Suppose that u ∈ H1
0 (Ω) minimises J(·) over H1

0 (Ω); then u is the
(unique) solution of problem (2.6). The problem (2.6) is called the Euler–Lagrange
equation for this minimisation problem.
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This lemma is precisely the converse of the previous lemma, and the two results
together express the equivalence of the weak formulation:

find u ∈ H1
0 (Ω) such that a(u, v) = l(v) ∀v ∈ H1

0 (Ω) (W )

of the self-adjoint elliptic boundary value problem (2.7) to the associated minimisa-
tion problem:

find u ∈ H1
0 (Ω) such that J(u) ≤ J(v) ∀v ∈ H1

0 (Ω). (M)

We shall now use this equivalence to give a variational characterisation of the
finite element approximation uh to u in the self-adjoint case. Given that Vh is a
certain finite-dimensional subspace of H1

0 (Ω) which consists of continuous piecewise
polynomials of a fixed degree, the finite element approximation of (W ) is:.

find uh ∈ Vh such that a(uh, vh) = l(vh) ∀vh ∈ Vh. (Wh)

We can repeat the argument presented above (or simply replacing H1
0 (Ω) by Vh

throughout) to show the equivalence of (Wh) to the following minimisation prob-
lem:

find uh ∈ Vh such that J(uh) ≤ J(vh) ∀vh ∈ Vh. (Mh)

Thus, uh can be characterised as the unique minimiser of the functional

J(vh) =
1

2
a(vh, vh)− l(vh)

as vh ranges over the finite element space Vh. This means that the finite element
solution uh inherits the energy minimisation property possessed by the weak solution
u ∈ H1

0 (Ω) in the sense that:

J(uh) = min
vh∈Vh

J(vh).

Of course, in general J(u) < J(uh).

2.3 Calculation and assembly of stiffness matrix

Using the variational characterisation of uh described at the end of the previous
section we return to the construction of the finite element approximation to Poisson’s
equation−∆u = f in Ω subject to homogeneous Dirichlet boundary condition, u = 0
on ∂Ω, in the case of a general triangulation. Rather than restricting ourselves to
the special case when Ω is a square, we now suppose that Ω is a bounded polygonal
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domain in the plane, subdivided into M triangles K, so that any pair of (closed)
triangles intersect only along a complete edge, at a vertex or not at all. We consider
the set of all continuous piecewise linear functions vh defined on such a triangulation
with the property that vh = 0 of ∂Ω; the linear space consisting of all such functions
vh is denoted Vh. Thus, uh is characterised as the unique minimiser of the functional

J(vh) =
1

2

∫
Ω

|∇vh(x, y)|2 dx dy −
∫

Ω

f(x, y)vh(x, y) dx dy

as vh ranges over Vh. Equivalently, writing

vh(x, y) =
N∑
i=1

Viφi(x, y),

where Vi is the value of vh(x, y) at the node (xi, yi), φi is the continuous piecewise
linear basis function associated with this node, and N is the number of nodes internal
to Ω, we can write this minimisation problem in matrix form as follows:

find V ∈ RN such that 1
2
V TAV − V TF is minimum, (2.11)

where V = (V1, . . . , VN)T , A is the (global) stiffness matrix - an N × N matrix
with (i, j) entry

a(φi, φj) = (∇φi,∇φj) =

∫
Ω

∇φi(x, y) · ∇φj(x, y) dx dy,

and F = (F1, . . . , FN)T is the (global) load vector, with

Fi = (f, φi) =

∫
Ω

f(x, y)φi(x, y) dx dy.

Consider any triangle K in the triangulation of Ω, and introduce the position
vectors ri = (xi, yi), i = 1, 2, 3, of its three vertices labelled in the anti-clockwise
direction, say. In addition, we consider a so-called local (ξ, η) coordinate system
and the canonical triangle depicted in Figure 2.8. The coordinate r = (x, y) of any
point in the triangle K can be written as a convex combination of the coordinates
of the three vertices:

r = (1− ξ − η)r1 + ξr2 + ηr3 (2.12)

≡ r1ψ1(ξ, η) + r2ψ2(ξ, η) + r3ψ3(ξ, η).

The set {ψ1, ψ2, ψ3} is called the nodal basis (or local basis) for the set of
linear polynomials in terms of the local coordinates. Consider the transformation
(ξ, η) 7→ r = (x, y) defined by (2.12) from the canonical triangle to the ‘global’ (x, y)
coordinate system. The Jacobi matrix J of this transformation is given by

J =
∂(x, y)

∂(ξ, η)
=

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
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Figure 2.8: Canonical triangle and local coordinates.

from which it follows that the Jacobian is

|J | = det

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
= det

 x1 y1 1
x2 y2 1
x3 y3 1

 , (2.13)

namely,
|J | = 2A123

where A123 is the area of the triangle K = ∆(r1, r2, r3). Similarly, for any function
vh ∈ Vh,

vh(x, y) = vh(r(ξ, η)) = V1ψ1(ξ, η) + V2ψ2(ξ, η) + V3ψ3(ξ, η), (2.14)

where Vi is the value of vh at the node of the triangle K with position vector ri,
i = 1, 2, 3. In order to determine the entries of the stiffness matrix, we need the
gradient of vh in the global coordinate system; however, from (2.12) and the form
of the Jacobi matrix J we have that ∂vh

∂ξ

∂vh
∂η

 = J

 ∂vh
∂x

∂vh
∂y

 ,
 ∂vh

∂x

∂vh
∂y

 = J−1

 ∂vh
∂ξ

∂vh
∂η

 . (2.15)

Consequently,

∂vh
∂x

=
1

|J |

[
(y3 − y1)

∂vh
∂ξ
− (y2 − y1)

∂vh
∂η

]
(2.16)

∂vh
∂y

=
1

|J |

[
−(x3 − x1)

∂vh
∂ξ

+ (x2 − x1)
∂vh
∂η

]
.

Hence

|J |2|∇vh|2 = |r3 − r1|2
(
∂vh
∂ξ

)2

+ |r2 − r1|2
(
∂vh
∂η

)2

−2(r3 − r1) · (r2 − r1)
∂vh
∂ξ

∂vh
∂η

(2.17)
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and from (2.14) and (2.12) it follows that

∂vh
∂ξ

= V2 − V1,
∂vh
∂η

= V3 − V1. (2.18)

As vh(x, y) is linear on each triangle K in the triangulation, ∇vh is constant on K
so the contribution to∫

Ω

|∇vh(x, y)|2 dx dy =
∑
K

∫
K

|∇vh(x, y)|2 dx dy

from triangle K is∫
K

|∇vh(x, y)|2 dx dy = A123|∇vh|2 =
1

2
|J ||∇vh|2 =

1

4A123

|J |2|∇vh|2.

Substitution of (2.17) and (2.18) into this formula yields a quadratic form in the
nodal values V1, V2, V3; after a little algebra, we find that the coefficient of V 2

1 is

|r3 − r1|2 + |r2 − r1|2 − 2(r3 − r1) · (r2 − r1) = |r3 − r2|2

and the coefficient of V1V2 is

−2|r3 − r1|2 + 2(r3 − r1) · (r2 − r1) = 2(r2 − r3) · (r3 − r1)

with similar expressions for the coefficients of V 2
2 , V 2

3 and V2V3, V3V1, obtained by
cyclic permutations of the indices in these expressions, respectively. Thus we deduce
that ∫

K

|∇vh(x, y)|2 dx dy = [V1, V2, V3]Ak

 V1

V2

V3

 ,
where k ∈ {1, . . . ,M} is the number of the triangle K in the global numbering and
Ak is the symmetric 3× 3 element stiffness matrix:

Ak =
1

4A123

 |r2 − r3|2 (r2 − r3) · (r3 − r1) (r2 − r3) · (r1 − r2)
|r3 − r1|2 (r3 − r1) · (r1 − r2)

symm. |r1 − r2|2

 .
Assembly of the global stiffness matrix entails relating the local numbering of

the nodes to the global numbering system. Let us denote by N the number of nodes
internal to Ω; as

uh(x, y) =
N∑
i=1

Uiφi(x, y),

N is precisely the number of unknowns: U1, . . . , UN . Let us label by N + 1, N +
2, . . . N∗ the nodes that lie on the boundary of Ω (thus N∗ is the total number of
nodes of which N are internal and N∗−N are on the boundary). As uh = 0 on the
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boundary, we can adopt the notational convention that UN+1 = UN+2 = . . . UN∗ = 0,
and write

uh(x, y) =
N∗∑
i=1

Uiφi(x, y),

with the understanding that the coefficients Uj, j = N + 1, . . . , N∗ are, in fact,
known (to be zero) from the boundary condition.

For the kth triangle K, we consider the Boolean matrix1 Lk of size N∗×3 whose
entries are defined as follows: if in calculating the matrix Ak the node with position
vector r1 is the ith node in the global numbering, i ∈ {1, . . . , N, . . . , N∗}, then the
first column of Lk has unit entry in the ith row; similarly, the second and third
column depend on the global numbering of the nodes with position vectors r2 and
r3 appearing in the matrix Ak. Then, the so called full stiffness matrix A∗ is an
N∗ × N∗ matrix defined as a sum over the elements K in the triangulation of the
domain:

A∗ =
M∑
k=1

LkAk(Lk)T ,

where (Lk)T is the transpose of the matrix Lk.
When programming this, instead of working with M Boolean arrays Lk, k =

1, . . . ,M , it is more economical to store the information contained in the arrays Lk

in a single connectivity array LNODS which has dimension M×3, where M is the
number of triangles in the triangulation of Ω; LNODS(k, j) ∈ {1, . . . , N∗} is equal
to the global number of the node rj in the kth triangle. By letting k = 1, . . . ,M , we
loop through all the triangles in the triangulation of Ω, and calculate Akij for i, j =
1, 2, 3 from the formula for Ak given above; once the value Akij has been calculated it
is added into the full stiffness matrix A∗ at position (LNODS(k, i), LNODS(k, j)).
The full load vector F ∗ = (F1, . . . , FN , . . . FN∗)

T is built up in the same way.
Once A∗ and F ∗ have been found, we erase the last N∗ − N rows and columns

of A∗ to obtain the global stiffness matrix A, and the last N∗ −N entries of F ∗

to obtain to global load vector F , and then solve the linear system

AU = F

to determine the vector of unknowns U = (U1, . . . , UN)T .
In order to justify more clearly the compression of A∗ to A and F ∗ to F , let us

note that the minimisation problem (2.11) can be restated in the following equivalent
form:

find V ∗ = (V1, . . . , VN , 0, . . . , 0)T ∈ RN∗ such that 1
2
V ∗TA∗V ∗ − V ∗TF ∗ is minimum.

(2.19)
Since the last N∗−N entries of V ∗ are equal to 0, the last N∗−N rows and columns
of A∗ and the last N∗−N entries of F ∗ can be discarder since they are all multiplied

1i.e. a matrix whose entries are 0s and 1s
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by entries of V ∗ that are equal to zero. Even though it may seem that we are doing
unnecessary work when computing entries of A∗ and F ∗ which are then thrown away
when A∗ is compressed to A and F ∗ is compressed to F , the assembly of A∗ and F ∗,
followed by compression, is typically a faster process than the direct assembly of A
and F , since in the latter case special care has to be taken for nodes which belong
to triangles with at least one boundary point, leading to a slower assembly process.
No such difficulties arise when we work with A∗ and F ∗.

It is worth noting that in practice it is not essential that the first N indices in
the set {1, . . . , N∗} correspond to the interior nodes and the last N∗ − N to the
boundary nodes: indeed, the nodes may be numbered in any order; the only thing
that matters is that rows and columns of A∗ and entries of F ∗ corresponding to
boundary nodes are discarded when A and F are formed. Here we have chosen the
last N∗ −N nodes of a total of N∗ to be those on the boundary simply for ease of
presentation.

2.4 Galerkin orthogonality; Céa’s lemma

Having described the construction of the finite element method, we now outline the
basic tools for its error analysis. Let us consider the elliptic boundary value problem

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (2.20)

u = 0 on ∂Ω, (2.21)

where Ω is a bounded open set in Rn, aij ∈ L∞(Ω), i, j = 1, . . . , n; bi ∈ W 1
∞(Ω),

i = 1, . . . , n, c ∈ L∞(Ω), f ∈ L2(Ω), and assume that there exists a positive constant
c̃ such that

n∑
i,j=1

aij(x)ξiξj ≥ c̃
n∑
i=1

ξ2
i ∀ξ = (ξ1, . . . , ξn) ∈ Rn, ∀x ∈ Ω̄. (2.22)

The weak formulation of (2.20), (2.21) is:

find u ∈ H1
0 (Ω) such that a(u, v) = l(v) ∀v ∈ H1

0 (Ω), (2.23)

where the bilinear functional a(·, ·) and the linear functional l(·) are defined by

a(u, v) =
n∑

i,j=1

∫
Ω

aij
∂u

∂xi

∂v

∂xj
dx+

n∑
i=1

∫
Ω

bi(x)
∂u

∂xi
v dx+

∫
Ω

c(x)uv dx,

and

l(v) =

∫
Ω

f(x)v(x) dx.
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We have shown that if

c(x)− 1

2

n∑
i=1

∂bi
∂xi
≥ 0, x ∈ Ω̄,

then (2.23) has a unique solution u in H1
0 (Ω), the weak solution of (2.20), (2.21).

Moreover,

‖u‖H1(Ω) ≤
1

c0

‖f‖L2(Ω),

where c0 is as in (1.17).
Now suppose that Vh is a finite-dimensional subspace of H1

0 (Ω), without making
further precise assumptions on the nature of Vh (although we shall implicitly assume
that Vh consists of continuous piecewise polynomials defined on a subdivision of
“fineness” h of the computational domain Ω). The finite element approximation of
(2.23) is:

find uh in Vh such that a(uh, vh) = l(vh) for all vh ∈ Vh. (2.24)

As, by hypothesis, Vh is contained in H1
0 (Ω) it follows from the Lax-Milgram theorem

that (2.24) has a unique solution uh in Vh. Moreover, (2.23) holds for any v = vh ∈
Vh; namely,

a(u, vh) = l(vh) for all vh ∈ Vh.

Subtracting (2.24) from this identity we deduce that

a(u− uh, vh) = 0 for all vh ∈ Vh. (2.25)

The property (2.25) is referred to as Galerkin orthogonality and will be seen to
play a crucial role in the error analysis of finite element methods. Since by (1.17),
with v = u− uh ∈ H1

0 (Ω) we have that

‖u− uh‖2
H1(Ω) ≤

1

c0

a(u− uh, u− uh),

it follows from (2.25) that

‖u− uh‖2
H1(Ω) ≤

1

c0

a(u− uh, u− vh);

further, by (1.13),

a(u− uh, u− vh) ≤ c1‖u− uh‖H1(Ω)‖u− vh‖H1(Ω).

Combining the last two inequalities, we deduce that

‖u− uh‖H1(Ω) ≤
c1

c0

‖u− vh‖H1(Ω) for all vh ∈ Vh.

Thus we have proved the following result.
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Lemma 5 (Céa’s lemma) The finite element approximation uh to u ∈ H1
0 (Ω), the

weak solution to the problem (2.20), (2.21), is the near-best fit to u in the norm
‖ · ‖H1(Ω); i.e.,

‖u− uh‖H1(Ω) ≤
c1

c0

min
vh∈Vh

‖u− vh‖H1(Ω).

Remark 5 We shall prove in the next chapter that, for a typical finite element space
Vh,

min
vh∈Vh

‖u− vh‖H1(Ω) ≤ C(u)hs

where C(u) is a positive constant, dependent on the smoothness of u, h is the mesh-
size parameter (the maximum diameter of elements in the subdivision of the com-
putational domain) and s is a positive real number, dependent on the smoothness of
u and the degree of piecewise polynomials comprising the space Vh. Hence, with the
aid of Céa’s lemma we shall be able to deduce that

‖u− uh‖H1(Ω) ≤ C(u)

(
c1

c0

)
hs (2.26)

which is a bound of the global error eh = u−uh in terms of the mesh-size parameter
h. Such a bound on the global error is called an a priori error bound (the terminol-
ogy stems from the fact that (2.26) can be stated prior to computing uh). It shows,
in particular, that as h → 0 when refining the subdivision further and further, the
sequence of finite element solutions {uh}h converges to u in the H1(Ω) norm. While
this result is reassuring from the theoretical point of view, it is of little practical rel-
evance as the constant C(u) involved in (2.26) is difficult to quantify (given that it
depends on the unknown analytical solution u). Later on we shall discuss a poste-
riori error bounds which make explicit use of the computed solution uh and provide
computable bounds on the global error. �

Example 6 In this example we highlight a further point concerning the a priori
error bound (2.26): for certain elliptic problems the ratio c1/c0 can be very large,
and then the mesh-size h has to be taken extremely small before any reduction in
the size of the global error is observed. Suppose that Ω is a bounded open set in Rn.
Consider the following boundary value problem:

−ε∆u+ b · ∇u = f in Ω,

u = 0 on ∂Ω,

where ε > 0, b = (b1, . . . , bn)T , with bi ∈ W 1
∞(Ω) for i = 1, . . . , n. For the sake

of simplicity, we shall suppose that div b ≤ 0 almost everywhere on Ω. Such prob-
lems arise in the mathematical modelling of advection-diffusion phenomena. When
advection dominates diffusion the so-called Péclet number

Pe =

(∑n
i=1 ‖bi‖2

L∞(Ω)

)1/2

ε
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is very large (say, of the order 106 to 108).
A simple calculation shows that for the present problem

c1 =

(
ε2 +

n∑
i=1

‖bi‖2
L∞(Ω)

)1/2

and
c0 =

ε

(1 + c2
?)

1/2
.

Therefore
c1

c0

= (1 + c2
?)

1/2(1 + Pe2)1/2,

and (2.26) gives

‖u− uh‖H1(Ω) ≤ (1 + c2
?)

1/2(1 + Pe2)1/2C(u)hs. (2.27)

Thus, when ε << 1, the constant on the right-hand side in this error bound is made
very large through the presence of the Peclet number; in fact, things are even worse:
the constant C(u) also depends on ε through u (typically C(u) >> 1 when ε << 1).

We shall not consider the finite element approximation of advection-dominated
diffusion problems any further. The point that we wish to make is merely that care
should be taken when attempting to draw practically relevant conclusions from theo-
retical results of the kind (2.26). As it happens, the poor quality of the a priori error
bound (2.27) when Pe >> 1 is merely a reflection of the fact that for advection-
dominated diffusion equations conventional finite element methods are genuinely
badly behaved: on coarse meshes the numerical solution exhibits large unphysical
oscillations which can only be eliminated by severely reducing the mesh-size h. �

In order to put this example into perspective, we now discuss the other extreme
case, when b ≡ 0 on Ω: then c1 = c0 = ε, so Céa’s lemma implies that

‖u− uh‖H1(Ω) ≤ min
vh∈Vh

‖u− vh‖H1(Ω).

In fact, since the left-hand side of this inequality cannot be strictly less than the
right-hand side (this can be seen by choosing vh = uh on the right), it follows that

‖u− uh‖H1(Ω) = min
vh∈Vh

‖u− vh‖H1(Ω),

so that uh is the best approximation to u from Vh in the H1(Ω) norm. We shall
show that a result of this kind holds in a slightly more general setting, when the
problem is self-adjoint, namely aij(x) ≡ aji(x) for all i, j = 1, . . . , n, bi(x) ≡ 0 for
i = 1, . . . , n. Let us define

(v, w)a := a(v, w), v, w ∈ H1
0 (Ω).
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Figure 2.9: The error u− uh is orthogonal to Vh.

Because a(·, ·) is a symmetric bilinear functional on H1
0 (Ω)×H1

0 (Ω) and

a(v, v) ≥ c0‖v‖2
H1(Ω) ∀v ∈ H1

0 (Ω),

it is easily seen that (·, ·)a satisfies all axioms of an inner product. Let ‖ · ‖a denote
the associated energy norm defined by:

‖v‖a := [a(v, v)]1/2.

Since Vh ⊂ H1
0 (Ω), taking v = vh ∈ Vh in the statement of (W ), we deduce that

a(u, vh) = l(vh), vh ∈ Vh; (2.28)

also by, (Wh),

a(uh, vh) = l(vh), vh ∈ Vh. (2.29)

Subtracting (2.29) from (2.28) and using the fact that a(·, ·) is a bilinear functional,
we deduce the Galerkin orthogonality property

a(u− uh, vh) = 0 ∀vh ∈ Vh,

i.e.

(u− uh, vh)a = 0 ∀vh ∈ Vh. (2.30)

Thus, in the self-adjoint case, the error u− uh between the exact solution u and its
finite element approximation uh is orthogonal to Vh in the inner product (·, ·)a (see
Figure 2.9). By virtue of the orthogonality property (2.30),

‖u− uh‖2
a = (u− uh, u− uh)a

= (u− uh, u)a − (u− uh, uh)a
= (u− uh, u)a

= (u− uh, u)a − (u− uh, vh)a
= (u− uh, u− vh)a ∀vh ∈ Vh.
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Thence, by the Cauchy–Schwarz inequality,

‖u− uh‖2
a = (u− uh, u− vh)a
≤ ‖u− uh‖a‖u− vh‖a ∀vh ∈ Vh;

therefore

‖u− uh‖a ≤ ‖u− vh‖a ∀vh ∈ Vh.

Consequently,

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a.

Thus we have proved the following refinement of Céa’s lemma in the self-adjoint
case.

Lemma 6 The finite element approximation uh ∈ Vh of u ∈ H1
0 (Ω) is the best fit to

u from Vh in the energy norm ‖ · ‖a, i.e.

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a.

Céa’s lemma is the key to the error analysis of the finite element method for
elliptic boundary value problems. In the next section we describe how such an
analysis proceeds in the self-adjoint case, for a particularly simple finite element
space Vh consisting of continuous piecewise linear functions on Ω. The general case
is very similar and will be considered later on in the notes.

2.5 Optimal error bound in the energy norm

In this section, we shall employ Céa’s lemma to derive an optimal error bound for
the finite element approximation (Wh) of problem (W ) in the case of piecewise linear
basis functions. We shall consider two examples: a one-dimensional model problem
– a two-point boundary value problem, and a two-dimensional model problem –
Poisson’s equation subject to homogeneous Dirichlet boundary condition.

One-dimensional problem

Consider, for f ∈ L2(0, 1), the boundary value problem

−u′′ + u = f(x), 0 < x < 1,

u(0) = 0, u(1) = 0.

Its weak formulation is:

find u in H1
0 (0, 1) such that a(u, v) = l(v) ∀v ∈ H1

0 (0, 1),
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where

a(u, v) =

∫ 1

0

(u′(x)v′(x) + u(x)v(x)) dx

and

l(v) =

∫ 1

0

f(x)v(x) dx.

The symmetric bilinear functional a(·, ·) induces the energy norm ‖ · ‖a defined by

‖w‖a = (a(w,w))1/2 =

[∫ 1

0

(
|w′(x)|2 + |w(x)|2

)
dx

]1/2

= ‖w‖H1(0,1).

The finite element approximation of this problem, using piecewise linear basis
functions, has been described in Section 2.1 (take p(x) ≡ 1 and q(x) ≡ 1 there
to obtain the present problem). Here, instead of restricting ourselves to uniform
subdivisions of [0, 1], we consider a general nonuniform subdivision:

0 = x0 < x1 < . . . < xN−1 < xN = 1,

where the mesh-points xi, i = 0, . . . , N , are not necessarily equally spaced. It will be
supposed that N ≥ 2 so that we have at least one mesh-point inside (0, 1). We put
hi = xi − xi−1 and define the mesh parameter h = maxi hi. For such a subdivision,
we consider the finite element basis function

φi(x) =


0 if x ≤ xi−1

(x− xi−1)/hi if xi−1 ≤ x ≤ xi
(xi+1 − x)/hi+1 if xi ≤ x ≤ xi+1

0 if xi+1 ≤ x,

for i = 1, . . . , N − 1. We put

Vh = span{φ1, . . . , φN−1}.

Clearly Vh is an (N − 1)-dimensional subspace of H1
0 (0, 1). We approximate the

boundary value problem by the finite element method

find uh in Vh such that a(uh, vh) = l(vh) ∀vh ∈ Vh.

Now since the bilinear functional a(·, ·) is symmetric it follows from Céa’s lemma
that

‖u− uh‖H1(0,1) = ‖u− uh‖a = min
vh∈Vh

‖u− vh‖a = min
vh∈Vh

‖u− vh‖H1(0,1). (2.31)

Let Ihu ∈ Vh denote the continuous piecewise linear function on the subdivision
{x0, x1, . . . , xN} which coincides with u at the mesh-points xi, i = 0, . . . , N . Thus,

Ihu(x) =
N−1∑
i=1

u(xi)φi(x).



2.5. OPTIMAL ERROR BOUND IN THE ENERGY NORM 47

The function Ihu is called the interpolant of u from the finite element space Vh.
Choosing vh = Ihu in (2.31), we see that

‖u− uh‖H1(0,1) ≤ ‖u− Ihu‖H1(0,1). (2.32)

Thus, to derive a bound on the global error u − uh in the H1(0, 1) norm, we shall
now seek a bound on the interpolation error u−Ihu in the same norm. The rest of
this subsection is devoted to the proof of the following estimate:

‖u− Ihu‖H1(0,1) ≤
h

π

(
1 +

h2

π2

)1/2

‖u′′‖L2(0,1). (2.33)

Theorem 3 Suppose that u ∈ H2(0, 1) and let Ihu be the interpolant of u from the
finite element space Vh defined above; then the following error bounds hold:

‖u− Ihu‖L2(0,1) ≤
(
h

π

)2

‖u′′‖L2(0,1),

‖u′ − (Ihu)′‖L2(0,1) ≤
h

π
‖u′′‖L2(0,1).

Proof Consider a subinterval [xi−1, xi], 1 ≤ i ≤ N , and define ζ(x) = u(x) − Ihu(x)
for x ∈ [xi−1, xi]. Then ζ ∈ H2(xi−1, xi) and ζ(xi−1) = ζ(xi) = 0. Therefore ζ can be
expanded into a convergent Fourier sine-series,

ζ(x) =
∞∑
k=1

ak sin
kπ(x− xi−1)

hi
, x ∈ [xi−1, xi].

Hence, ∫ xi

xi−1

[ζ(x)]2 dx =
hi
2

∞∑
k=1

|ak|2.

Differentiating the Fourier sine-series for ζ twice, we deduce that the Fourier coefficients
of ζ ′ are (kπ/hi)ak, while those of ζ ′′ are −(kπ/hi)

2ak. Thus,∫ xi

xi−1

[ζ ′(x)]2 dx =
hi
2

∞∑
k=1

(
kπ

hi

)2

|ak|2,∫ xi

xi−1

[ζ ′′(x)]2 dx =
hi
2

∞∑
k=1

(
kπ

hi

)4

|ak|2.

Because k4 ≥ k2 ≥ 1, it follows that∫ xi

xi−1

[ζ(x)]2 dx ≤
(
hi
π

)4 ∫ xi

xi−1

[ζ ′′(x)]2 dx,∫ xi

xi−1

[ζ ′(x)]2 dx ≤
(
hi
π

)2 ∫ xi

xi−1

[ζ ′′(x)]2 dx.
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However ζ ′′(x) = u′′(x) − (Ihu)′′(x) = u′′(x) for x ∈ (xi−1, xi) because Ihu is a linear
function on this interval. Therefore, upon summation over i = 1, . . . , N and letting h =
maxi hi, we obtain

‖ζ‖2L2(0,1) ≤
(
h

π

)4

‖u′′‖2L2(0,1),

‖ζ ′‖2L2(0,1) ≤
(
h

π

)2

‖u′′‖2L2(0,1).

After taking the square root and recalling that ζ = u − (Ihu) these yield the desired

bounds on the interpolation error. �

Now (2.33) follows directly from this theorem by noting that

‖u− Ihu‖2
H1(0,1) = ‖u− Ihu‖2

L2(0,1) + ‖(u− Ihu)′‖2
L2(0,1)

≤ h2

π2

(
1 +

h2

π2

)
‖u′′‖2

L2(0,1).

Having established the bound (2.33) on the interpolation error, we arrive at the
following a priori error bound by inserting (2.33) into the inequality (2.32):

‖u− uh‖H1(0,1) ≤
h

π

(
1 +

h2

π2

)1/2

‖u′′‖L2(0,1). (2.34)

This shows that, provided u′′ ∈ L2(0, 1), the error in the finite element solution,
measured in the H1(0, 1) norm, converges to 0 at the rate O(h) as h→ 0.

As a final note concerning this example, we remark that our hypothesis on f
(namely that f ∈ L2(0, 1)) implies that u′′ ∈ L2(0, 1). Indeed, choosing v = u in the
weak formulation of the boundary value problem gives∫ 1

0

|u′(x)|2 dx+

∫ 1

0

|u(x)|2 dx =

∫ 1

0

f(x)u(x) dx

≤
(∫ 1

0

|f(x)|2 dx

)1/2(∫ 1

0

|u(x)|2 dx

)1/2

. (2.35)

Hence, (∫ 1

0

|u(x)|2 dx

)1/2

≤
(∫ 1

0

|f(x)|2 dx

)1/2

,

i.e.
‖u‖L2(0,1) ≤ ‖f‖L2(0,1).

Thereby, from (2.35),
‖u′‖L2(0,1) ≤ ‖f‖L2(0,1).

Finally, as u′′ = u− f from the differential equation, we have that

‖u′′‖L2(0,1) = ‖u− f‖L2(0,1) ≤ ‖u‖L2(0,1) + ‖f‖L2(0,1) ≤ 2‖f‖L2(0,1).
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Thus we have proved that u′′ ∈ L2(0, 1) (in fact, as we also know that u and u′

belong to L2(0, 1), we have proved more: u ∈ H2(0, 1)). Substituting this bound on
‖u′′‖L2(0,1) into (2.34) gives

‖u− uh‖H1(0,1) ≤
2h

π

(
1 +

h2

π2

)1/2

‖f‖L2(0,1).

This now provides a computable upper bound on the global error u − uh in the
H1(0, 1) norm, since f is a given function and h = maxi hi can be easily calculated
for any given subdivision of [0, 1].

The argument presented in this example is representative of a general finite
element (a priori) error analysis. In a nutshell, it consisted of using:

a) Céa’s lemma, together with

b) an interpolation error bound.

These two ingredients then lead us to the error bound (2.34). Finally, if we are
fortunate enough to have a bound of the type ‖u′′‖L2(0,1) ≤ C∗ ‖f‖L2(0,1) (or, in
other words, |u|H2(0,1) ≤ C∗‖f‖L2(0,1)), which is called

c) an elliptic regularity estimate,

then, at least in principle, we obtain a computable bound on the global error. Un-
fortunately, for (multi-dimensional) elliptic boundary value problems proving an
elliptic regularity estimate of the form

|u|H2(Ω) ≤ C∗‖f‖L2(Ω) (2.36)

is a highly non-trivial task (this issue will be touched on in the next section, in dis-
cussion about the Aubin–Nitsche duality argument). In fact, for multi-dimensional
problems (2.36) will not hold unless the boundary ∂Ω and the coefficients aij, bi and
c are sufficiently smooth. Worse still, even when (2.36) holds precise estimates of the
size of the constant C∗ are only available in rare circumstances. The upshot is that
an a priori error bound will usually not provide a computable estimate of the global
error. This is a serious drawback from the point of view of practical computations
where one would like to have precise information about the size of the error between
the analytical solution and its finite element approximation. Later on in the notes
we shall discuss an alternative approach, a posteriori error analysis, which resolves
this difficulty and provides computable bounds on the error in terms of uh.

Two-dimensional problem

Let Ω = (0, 1)× (0, 1), and consider the elliptic boundary value problem

−∆u = f in Ω, (2.37)

u = 0 on ∂Ω. (2.38)
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...

Figure 2.10: Triangulation of Ω̄ = [0, 1]× [0, 1].

We recall that the weak formulation of this problem is:

find u ∈ H1
0 (Ω) such that∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dx dy =

∫
Ω

fv dx dy ∀v ∈ H1
0 (Ω). (2.39)

In order to construct the finite element approximation, we triangulate the domain
as shown in the Fig 2.10. Let h = 1/N , and define xi = ih, i = 0, . . . , N , yj = jh,
j = 0, . . . , N . With each node, (xi, yj), contained in the interior of Ω (labelled � in
the figure), we associate a basis function φij, i, j = 1, . . . , N − 1, defined by

φij(x, y) =



1− x−xi
h
− y−yj

h
, (x, y) ∈ 1

1− y−yj
h
, (x, y) ∈ 2

1− xi−x
h
, (x, y) ∈ 3

1− xi−x
h
− yj−y

h
, (x, y) ∈ 4

1− yj−y
h
, (x, y) ∈ 5

1− x−xi
h
, (x, y) ∈ 6

0 otherwise.
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Figure 2.11: Triangles surrounding the node (xi, yj).

Let Vh = span{φij, i = 1, . . . , N − 1; j = 1, . . . , N − 1}. The finite element
approximation of (2.37) (and (2.39)) is:

find uh ∈ Vh such that∫
Ω

(
∂uh
∂x

∂vh
∂x

+
∂uh
∂y

∂vh
∂y

)
dx dy =

∫
Ω

fvh dx dy ∀vh ∈ Vh. (2.40)

Letting

l(v) =

∫
Ω

f(x)v(x) dx and

(v, w)a = a(v, w) =

∫
Ω

(
∂v

∂x

∂w

∂x
+
∂v

∂y

∂w

∂y

)
dx dy,

(2.39) and the finite element method (2.40) can be written, respectively, as follows:

find u ∈ H1
0 (Ω) such that a(u, v) = l(v) ∀v ∈ H1

0 (Ω), (5.13′)

and

find uh ∈ Vh such that a(uh, vh) = l(vh) ∀vh ∈ Vh. (5.14′)

According to Céa’s lemma,

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a ≤ ‖u− Ihu‖a, (2.41)

where Ihu denotes the continuous piecewise linear interpolant of the function u on
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the set Ω̄ = [0, 1]× [0, 1]:

(Ihu)(x, y) =
N−1∑
i=1

N−1∑
j=1

u(xi, yj)φij(x, y).

Clearly (Ihu)(xk, yl) = u(xk, yl). Let us estimate ‖u− Ihu‖a:

‖u− Ihu‖2
a =

∫
Ω

| ∂
∂x

(u− Ihu)|2 dx dy +

∫
Ω

| ∂
∂y

(u− Ihu)|2 dx dy

=
∑
4

{∫
4
| ∂
∂x

(u− Ihu)|2 dx dy +

∫
4
| ∂
∂y

(u− Ihu)|2 dx dy

}
(2.42)

where 4 is a triangle in the subdivision of Ω. Suppose, for example, that

4 = {(x, y) : xi ≤ x ≤ xi+1; yj ≤ y ≤ yj+1 + xi − x}.

In order to estimate∫
4
| ∂
∂x

(u− Ihu)|2 dx dy +

∫
4
| ∂
∂y

(u− Ihu)|2 dx dy,

we define the canonical triangle

K = {(s, t) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1− s}

and the affine mapping (x, y) 7→ (s, t) from 4 to K, by

x = xi + sh, 0 ≤ s ≤ 1,

y = yj + th, 0 ≤ t ≤ 1.

Let ū(s, t) := u(x, y). Then,

∂u

∂x
=
∂ū

∂s
· ∂s
∂x

+
∂ū

∂t
· ∂t
∂x

=
1

h
· ∂ū
∂s
,

∂u

∂y
=
∂ū

∂s
· ∂s
∂y

+
∂ū

∂t
· ∂t
∂y

=
1

h
· ∂ū
∂t
.

The Jacobian of the mapping (s, t) 7→ (x, y) is

|J | =
∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ =

∣∣∣∣ xs xt
ys yt

∣∣∣∣ = h2.

Thus∫
4
| ∂
∂x

(u− Ihu)|2 dx dy = (P.T.O.)
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=

∫
K

| ∂
∂s

(ū(s, t)− [(1− s− t)ū(0, 0) + sū(1, 0) + tū(0, 1)]) |2 ds dt

=

∫ 1

0

∫ 1−s

0

|∂ū
∂s

(s, t)− [ū(1, 0)− ū(0, 0)]|2 ds dt

=

∫ 1

0

∫ 1−s

0

|∂ū
∂s

(s, t)−
∫ 1

0

∂ū

∂s
(σ, 0) dσ|2 ds dt

=

∫ 1

0

∫ 1−s

0

|
∫ 1

0

(
∂ū

∂s
(s, t)− ∂ū

∂s
(σ, t)

)
dσ +

∫ 1

0

(
∂ū

∂s
(σ, t)− ∂ū

∂s
(σ, 0)

)
dσ|2 ds dt

=

∫ 1

0

∫ 1−s

0

|
∫ 1

0

∫ s

σ

∂2ū

∂s2
(θ, t) dθ dσ +

∫ 1

0

∫ t

0

∂2ū

∂s ∂t
(σ, η) dη dσ|2 ds dt

≤ 2

∫ 1

0

∫ 1−s

0

∫ 1

0

∫ 1

0

|∂
2ū

∂s2
(θ, t)|2 dθ dσ ds dt

+2

∫ 1

0

∫ 1−s

0

∫ 1

0

∫ 1

0

| ∂
2ū

∂s ∂t
(σ, η)|2 dη dσ ds dt

≤ 2

∫ 1

0

∫ 1

0

|∂
2ū

∂s2
(θ, t)|2 dθ dt+

∫ 1

0

∫ 1

0

| ∂
2ū

∂s ∂t
(σ, η)|2 dσ dη

= 2

∫ xi+1

xi

∫ yj+1

yj

|∂
2u

∂x2
(x, y)|2 · |h2|2 · h−2 dx dy

+

∫ xi+1

xi

∫ yj+1

yj

| ∂
2u

∂x ∂y
(x, y)|2 · |h2|2 · h−2 dx dy.

Therefore,∫
4
| ∂
∂x

(u− Ihu)|2 dx dy ≤ 2h2

∫ xi+1

xi

∫ yj+1

yj

(
|∂

2u

∂x2
|2 +

1

2
| ∂

2u

∂x ∂y
|2
)

dx dy.

(2.43)

Similarly,∫
4
| ∂
∂y

(u− Ihu)|2 dx dy ≤ 2h2

∫ xi+1

xi

∫ yj+1

yj

(
|∂

2u

∂y2
|2 +

1

2
| ∂

2u

∂x ∂y
|2
)

dx dy.

(2.44)

Substituting (2.43) and (2.44) into (2.42),

‖u− Ihu‖2
a ≤ 4h2

∫
Ω

(
|∂

2u

∂x2
|2 + | ∂

2u

∂x ∂y
|2 + |∂

2u

∂y2
|2
)

dx dy. (2.45)

Finally by (2.41) and (2.45),

‖u− uh‖a ≤ 2h|u|H2(Ω). (2.46)

Thus we have proved the following result.
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Theorem 4 Let u be the weak solution of the boundary value problem (2.37), and
let uh be its piecewise linear finite element approximation defined by (2.40). Suppose
that u ∈ H2(Ω) ∩H1

0 (Ω); then

‖u− uh‖a ≤ 2h|u|H2(Ω).

Corollary 2 Under the hypotheses of Theorem 4,

‖u− uh‖H1(Ω) ≤
√

5h|u|H2(Ω).

Proof According to Theorem 4,

‖u− uh‖2a = |u− uh|2H1(Ω) ≤ 4h2|u|2H2(Ω).

Since u ∈ H1
0 (Ω), uh ∈ Vh ⊂ H1

0 (Ω), it follows that u − uh ∈ H1
0 (Ω). By the Poincaré–

Friedrichs inequality,

‖u− uh‖2L2(Ω) ≤
1

4
|u− uh|2H1(Ω); (2.47)

thus,

‖u− uh‖2H1(Ω) = ‖u− uh‖2L2(Ω) + |u− uh|2H1(Ω)

≤ 5

4
|u− uh|2H1(Ω) ≤ 5h2|u|2H2(Ω),

and that completes the proof. �

From (2.47) and (2.46) we also see that

‖u− uh‖L2(Ω) ≤ h |u|H2(Ω). (2.48)

The Aubin–Nitsche duality argument. The error estimate (2.48) indicates
that the error in the L2-norm between u and its finite element approximation uh is
of the size O(h). It turns out, however, that this bound is quite pessimistic and can
be improved to O(h2); the proof of this is presented below.

Let us first observe that if w ∈ H2(Ω) ∩H1
0 (Ω), Ω = (0, 1)× (0, 1), then

‖∆w‖2
L2(Ω) =

∫
Ω

(
∂2w

∂x2
+
∂2w

∂y2

)2

dx dy

=

∫
Ω

(
∂2w

∂x2

)2

dx dy + 2

∫
Ω

∂2w

∂x2
· ∂

2w

∂y2
dx dy +

∫
Ω

(
∂2w

∂y2

)2

dx dy.

Performing integration by parts and using the fact that w = 0 on ∂Ω,∫
Ω

∂2w

∂x2
· ∂

2w

∂y2
dx dy =

∫
Ω

∂2w

∂x ∂y
· ∂

2w

∂x ∂y
dx dy

=

∫
Ω

| ∂
2w

∂x ∂y
|2 dx dy.
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Thus

‖∆w‖2
L2(Ω) =

∫
Ω

(
|∂

2w

∂x2
|2 + 2| ∂

2w

∂x ∂y
|2 + |∂

2w

∂y2
|2
)

dx dy

= |w|2H2(Ω).

Given g ∈ L2(Ω), let wg ∈ H1
0 (Ω) be the weak solution of the boundary value

problem

−∆wg = g in Ω, (2.49)

wg = 0 on ∂Ω; (2.50)

then wg ∈ H2(Ω) ∩H1
0 (Ω), and

|wg|H2(Ω) = ‖∆wg‖L2(Ω) = ‖g‖L2(Ω). (2.51)

After this brief preparation, we turn to the derivation of the optimal error bound in
the L2-norm.

According to the Cauchy–Schwarz inequality for the L2-inner product (·, ·),

(u− uh, g) ≤ ‖u− uh‖L2(Ω)‖g‖L2(Ω) ∀g ∈ L2(Ω).

Therefore,

‖u− uh‖L2(Ω) = sup
g∈L2(Ω)

(u− uh, g)

‖g‖L2(Ω)

. (2.52)

For g ∈ L2(Ω), the function wg ∈ H1
0 (Ω) is the weak solution of the problem (2.49),

so it satisfies

a(wg, v) = lg(v) ∀v ∈ H1
0 (Ω), (2.53)

where

lg(v) =

∫
Ω

gv dx dy = (g, v),

a(wg, v) =

∫
Ω

(
∂wg
∂x

∂v

∂x
+
∂wg
∂y

∂v

∂y

)
dx dy.

Consider the finite element approximation of (2.53):

find wgh ∈ Vh such that a(wgh, vh) = lg(vh) ∀vh ∈ Vh. (2.54)

From (2.53), (2.54) and the error bound (2.46), we deduce that

‖wg − wgh‖a ≤ 2h|wg|H2(Ω),
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and therefore, by (2.51),

‖wg − wgh‖a ≤ 2h‖g‖L2(Ω). (2.55)

Now

(u− uh, g) = (g, u− uh) = lg(u− uh)
= a(wg, u− uh) = a(u− uh, wg). (2.56)

Because wgh ∈ Vh, (2.30) implies that

a(u− uh, wgh) = 0,

and therefore, by (2.56),

(u− uh, g) = a(u− uh, wg)− a(u− uh, wgh)
= a(u− uh, wg − wgh)
= (u− uh, wg − wgh)a.

Applying the Cauchy–Schwarz inequality on the right,

(u− uh, g) ≤ ‖u− uh‖a‖wg − wgh‖a,

and thence by (2.46) and (2.55)

(u− uh, g) ≤ 4h2|u|H2(Ω) · ‖g‖L2(Ω). (2.57)

Substituting (2.57) into the right-hand side of (2.52), we obtain

‖u− uh‖L2(Ω) ≤ 4h2|u|H2(Ω),

which is our improved error bound in the L2-norm. The proof presented above is
called the Aubin–Nitsche duality argument.

2.6 Superapproximation in mesh-dependent norms

We have shown that the piecewise linear finite element approximation uh to the solu-
tion u of the homogeneous Dirichlet boundary value problem for Poisson’s equation
obeys the following error bounds:

‖u− uh‖H1(Ω) ≤ Ch|u|H2(Ω),

‖u− uh‖L2(Ω) ≤ Ch2|u|H2(Ω),

where C denotes a generic positive constant and h is the maximum element size
in the subdivision. It is possible to show that these error bounds are sharp in the
sense they cannot in general be improved. However, it was observed by engineers
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that, when sampled at certain special points, the finite element approximation uh is
more accurate than these error bounds might indicate. Indeed, we shall prove here
that when measured in a discrete counterpart of the Sobolev H1(Ω) norm, based
on sampling at the mesh points, the error u − uh is O(h2). A result of this kind is
usually referred to as a superapproximation property.

We consider the model problem

−∆u = f in Ω, (2.58)

u = 0 on ∂Ω, (2.59)

where Ω = (0, 1) × (0, 1). We showed in Section 2.1 that when using continuous
piecewise linear finite elements on the uniform triangulation shown in Figure 2.5,
the finite element solution uh(x, y) can be expressed in terms of the finite element
basis functions φij(x, y) as

uh(x, y) =
N−1∑
i=1

N−1∑
j=1

Uijφij(x, y),

where the Uij(= uh(xi, yj)) are obtained by solving the set of difference equations

−Ui+1,j − 2Uij + Ui−1,j

h2
− Ui,j+1 − 2Uij + Ui,j−1

h2

=
1

h2

∫ ∫
supp φij

f(x, y)φij(x, y) dx dy, i, j = 1, . . . , N − 1;

Uij = 0 when i = 0 or i = N or j = 0 or j = N.

Since uh(x, y) = 0 when (x, y) ∈ ∂Ω, we have adopted the convention that Uij = 0
when i = 0 or i = N or j = 0 or j = N . For simplicity, we shall write

Fij =
1

h2

∫ ∫
supp φij

f(x, y)φij(x, y) dx dy, for i, j = 1, . . . , N − 1.

Here N is an integer, N ≥ 2, and h = 1/N ; the mesh-points are (xi, yj), i, j =
0, . . . , N, where xi = ih, yj = jh. These form the finite difference mesh

Ω̄h = {(xi, yj) : i, j = 0, . . . , N}.

We consider the set of interior mesh points

Ωh = {(xi, yj) : i, j = 1, ..., N − 1},

and the set of boundary mesh points Γh = Ω̄h \ Ωh. In more compact notation, the
difference scheme can be written as follows:

−(D+
xD

−
x Uij +D+

y D
−
y Uij) = Fij, (xi, yj) ∈ Ωh, (2.60)

U = 0 on Γh, (2.61)
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Figure 2.12: The mesh Ωh(·), the boundary mesh Γh(×), and a typical 5-point
difference stencil.

where D+
x and D−x denote the forward and backward divided difference operators in

the x direction, respectively, defined by

D+
x Vij =

Vi+1,j − Vij
h

, D−x Vij =
Vij − Vi−1,j

h
,

and

D+
xD

−
x Vij = D+

x (D−x Vij) =
Vi+1,j − 2Vij + Vi−1,j

h2

is the second divided difference operator in the x direction. Similar definitions apply
in the y direction.

For each i and j, 1 ≤ i, j ≤ N − 1, the finite difference equation (2.60) involves
five values of U : Ui,j, Ui−1,j, Ui+1,j, Ui,j−1, Ui,j+1. It is possible to write (2.60) as a
system of linear equations

AU = F, (2.62)

where

U = (U11, U12, . . . , U1,N−1, U21, U22, . . . , U2,N−1, . . . ,

. . . , Ui1, Ui2, . . . , Ui,N−1, . . . , UN−1,1, UN−1,2, . . . , UN−1,N−1)T ,
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Figure 2.13: The sparsity structure of the band matrix A.

F = (F11, F12, . . . , F1,N−1, F21, F22, . . . , F2,N−1, . . . ,

. . . , Fi1, Fi2, . . . , Fi,N−1, . . . , FN−1,1, FN−1,2, . . . , FN−1,N−1)T ,

and A is an (N − 1)2 × (N − 1)2 sparse matrix of band structure. A typical row of
the matrix contains five non-zero entries, corresponding to the five values of U in
the finite difference stencil shown in Fig. 2.12, while the sparsity structure of A is
depicted in Fig. 2.13.

Next we show that (2.62) has a unique solution2. For two functions, V and W ,
defined on Ωh, we introduce the inner product

(V,W )h =
N−1∑
i=1

N−1∑
j=1

h2VijWij

(which resembles the L2-inner product (v, w) =
∫

Ω
v(x, y)w(x, y) dx dy.)

Lemma 7 Suppose that V is a function defined on Ω̄h and that V = 0 on Γh; then

(−D+
xD

−
x V, V )h + (−D+

y D
−
y V, V )h

=
N∑
i=1

N−1∑
j=1

h2|D−x Vij|2 +
N−1∑
i=1

N∑
j=1

h2|D−y Vij|2. (2.63)

2The uniqueness of the solution to the linear system (2.62) is a trivial consequence of the
uniqueness of solution uh to the finite element method. The argument that follows is an alternative
way of verifying uniqueness; we present it here since some of its ingredients will be exploited in
the course of the proof of the superapproximation property.
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Proof We shall prove that the first term on the left is equal to the first term on the right,
and the second term on the left to the second term on the right.

(−D+
xD
−
x V, V )h = −

N−1∑
i=1

N−1∑
j=1

(Vi+1,j − 2Vij + Vi−1,j)Vij

= −
N−1∑
i=1

N−1∑
j=1

(Vi+1,j − Vij)Vij +

N−1∑
i=1

N−1∑
j=1

(Vij − Vi−1,j)Vij

= −
N∑
i=2

N−1∑
j=1

(Vij − Vi−1,j)Vi−1,j +
N−1∑
i=1

N−1∑
j=1

(Vij − Vi−1,j)Vij

= −
N∑
i=1

N−1∑
j=1

(Vij − Vi−1,j)Vi−1,j +
N∑
i=1

N−1∑
j=1

(Vij − Vi−1,j)Vij

=

N∑
i=1

N−1∑
j=1

(Vij − Vi−1,j)
2 =

N∑
i=1

N−1∑
j=1

h2|D−x Vij |2.

Similarly,

(−D+
y D
−
y V, V )h =

N−1∑
i=1

N∑
j=1

h2|D−y Vij |2,

and that completes the proof. �

Returning to the analysis of the finite difference scheme (2.60), we note that by
(2.63) we have

(AV, V )h = (−D+
xD

−
x V −D+

y D
−
y V, V )h

= (−D+
xD

−
x V, V )h + (−D+

y D
−
y V, V )h

=
N∑
i=1

N−1∑
j=1

h2|D−x Vij|2 +
N−1∑
i=1

N∑
j=1

h2|D−y Vij|2, (2.64)

for any V defined on Ω̄h such that V = 0 on Γh. Now this implies that A is a
non-singular matrix. Indeed if AV = 0, then (2.64) yields:

D−x Vij =
Vij − Vi−1,j

h
= 0,

i = 1, . . . , N,
j = 1, . . . , N − 1;

D−y Vij =
Vij − Vi,j−1

h
= 0,

i = 1, . . . , N − 1,
j = 1, . . . , N.

Since V = 0 on Γh, these imply that V ≡ 0. Thus AV = 0 if and only if V = 0.
Hence A is non-singular, and U = A−1F is the unique solution of (2.60). In summary
then, the (unique) solution of the finite difference scheme (2.60) may be found by
solving the system of linear equations (2.62).
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In order to prove the stability of the finite difference scheme (2.60), we introduce
the mesh–dependent norms

‖U‖h = (U,U)
1/2
h ,

and

‖U‖1,h = (‖U‖2
h + ‖D−x U ]|2x + ‖D−y U ]|2y)1/2,

where

‖D−x U ]|x =

(
N∑
i=1

N−1∑
j=1

h2|D−x Uij|2
)1/2

and

‖D−y U ]|y =

(
N−1∑
i=1

N∑
j=1

h2|D−y Uij|2
)1/2

.

The norm ‖ · ‖1,h is the discrete version of the Sobolev norm ‖ · ‖H1(Ω),

‖u‖H1(Ω) =

(
‖u‖2

L2(Ω) + ‖∂u
∂x
‖2
L2(Ω) + ‖∂u

∂y
‖2
L2(Ω)

)1/2

.

With this new notation, the inequality (2.64) takes the following form:

(AV, V )h ≥ ‖D−x V ]|2x + ‖D−y V ]|2y. (2.65)

Using the discrete Poincaré-Friedrichs inequality stated in the next lemma, we shall
be able to deduce that

(AV, V )h ≥ c0‖V ‖2
1,h,

where c0 is a positive constant.

Lemma 8 (Discrete Poincaré–Friedrichs inequality) Let V be a function defined on
Ω̄h and such that V = 0 on Γh; then there exists a constant c∗, independent of V
and h, such that

‖V ‖2
h ≤ c∗

(
‖D−x V ]|2x + ‖D−y V ]|2y

)
(2.66)

for all such V .

Proof Writing

|Vij |2 =

(
i∑

k=1

hD−x Vkj

)2

,
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we deduce that

|Vij |2 ≤

(
i∑

k=1

h

) (
i∑

k=1

h|D−x Vkj |2
)
≤ i

N∑
k=1

h2|D−x Vkj |2.

Multiplying both sides by h2 and summing through i = 1, . . . , N −1 and j = 1, . . . , N −1,
on noting that

h2
N−1∑
i=1

i = h2 (N − 1)N

2
≤ 1

2
,

we deduce that

‖V ‖2h ≤
1

2
‖D−x V ]|2x.

Analogously,

‖V ‖2h ≤
1

2
‖D−y V ]|2y.

Adding these two inequalities we complete the proof of (2.66) with c∗ = 1
4 . �

Now (2.65) and (2.66) imply that

(AV, V )h ≥
1

c∗
‖V ‖2

h.

Finally, combining this with (2.65) and recalling the definition of the norm ‖ · ‖1,h,
we obtain

(AV, V )h ≥ c0‖V ‖2
1,h, (2.67)

where c0 = (1 + c∗)
−1.

Theorem 5 The scheme (2.60) is stable in the sense that

‖U‖1,h ≤
1

c0

‖F‖h. (2.68)

Proof The proof is simple: it follows from (2.67) and the Cauchy–Schwarz inequality
that

c0‖V ‖21,h ≤ (AV, V )h = (F, V )h ≤ ‖F‖h‖V ‖h ≤ ‖F‖h‖V ‖1,h,

and hence the result. �

Having established stability, we turn to the question of accuracy. We define the
global error eh by eh(x, y) = u(x, y) − uh(x, y) and note that uh(xi, yj) = Uij for
i, j = 1, . . . , N − 1. Since uh(x, y) = 0 when (x, y) ∈ ∂Ω, we have adopted the
convention that Uij = 0 when i = 0 or i = N or j = 0 or j = N . Thus, writing
eij = eh(xi, yj), we have that

eij = u(xi, yj)− Uij, 0 ≤ i, j ≤ N,

with eij = 0 when i = 0 or i = N or j = 0 or j = N .
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Now,

Aeij = Au(xi, yj)− AUij = Au(xi, yj)− Fij

= Au(xi, yj)−
1

h2

∫ ∫
supp φij

φij(x, y)f(x, y) dx dy

=

[
1

h2

∫ ∫
supp φij

φij(x, y)
∂2u

∂x2
(x, y) dx dy −D+

xD
−
x u(xi, yj)

]

+

[
1

h2

∫ ∫
supp φij

φij(x, y)
∂2u

∂y2
(x, y) dx dy −D+

y D
−
y u(xi, yj)

]
≡ ϕij.

Thus,

Aeij = ϕij, 1 ≤ i, j ≤ N − 1,

e = 0 on Γh.

By virtue of (2.68),

‖u− U‖1,h = ‖e‖1,h ≤
1

c0

‖ϕ‖h. (2.69)

Assuming that u ∈ C4(Ω̄) and employing a Taylor series expansion of u(x, y) about
(xi, yj), we deduce that

|ϕij| ≤ K0h
2

(
‖∂

4u

∂x4
‖C(Ω̄) + ‖∂

4u

∂y4
‖C(Ω̄)

)
,

where K0 is a positive constant independent of h. Thus,

‖ϕ‖h ≤ K0h
2

(
‖∂

4u

∂x4
‖C(Ω̄) + ‖∂

4u

∂y4
‖C(Ω̄)

)
. (2.70)

Finally (2.69) and (2.70) yield the following result.

Theorem 6 Let f ∈ L2(Ω) and suppose that the corresponding weak solution u ∈
H1

0 (Ω) belongs to C4(Ω̄); then

‖u− uh‖1,h ≤
5

4
K0h

2

(
‖∂

4u

∂x4
‖C(Ω̄) + ‖∂

4u

∂y4
‖C(Ω̄)

)
. (2.71)

Proof Recall that c0 = (1 + c∗)
−1, c∗ = 1

4 , so that 1/c0 = 5
4 , and combine (2.69) and

(2.70). �

According to this result, the piecewise linear finite element approximation of the
homogeneous Dirichlet boundary value problem on uniform triangular subdivision
of size h is O(h2) convergent to the weak solution in the discrete Sobolev H1 norm,
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‖ · ‖1,h, provided that u ∈ C4(Ω̄). Since this exceeds the first order of convergence of
the global error observed in the Sobolev norm ‖ · ‖H1(Ω), the result encapsulated in
Theorem 6 is referred to as a superapproximation property. In fact the smoothness
requirement u ∈ H1

0 (Ω)∩C4(Ω̄) can be relaxed to u ∈ H1
0 (Ω)∩H3(Ω) while retaining

the superapproximation property ‖u − uh‖1,h = O(h2); the proof of this is more
technical and relies on the Bramble-Hilbert lemma (See Chapter 3).



Chapter 3

Piecewise polynomial
approximation

In the previous chapter we discussed finite element approximations to elliptic bound-
ary value problems using piecewise polynomials of degree 1. The purpose of this
chapter is to develop, in a more general setting, the construction of finite element
spaces and to formalise the concepts introduced in Chapter 2.

3.1 Construction of finite element spaces

Let us consider an elliptic boundary value problem written in its weak formulation:

find u in V such that a(u, v) = l(v) ∀v ∈ V ,

where H1
0 (Ω) ⊂ V ⊂ H1(Ω); in the case of a homogeneous Dirichlet boundary value

problem V = H1
0 (Ω), in the case of a Neumann, Robin or oblique derivative bound-

ary value problem, V = H1(Ω). In order to define a finite element approximation
to this problem we need to construct a finite-dimensional subspace Vh of V consist-
ing of continuous piecewise polynomial functions of a certain degree defined on a
subdivision of the computational domain Ω. We have already discussed the special
case when Vh consists of continuous piecewise linear functions; here we shall put this
construction into a general context.

3.1.1 The finite element

We begin by giving a formal definition of a finite element.

Definition 2 Let us suppose that

(i) K ⊂ Rn is a simply connected bounded open set with piecewise smooth bound-
ary (the element domain);

65
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(ii) P is a finite-dimensional space of functions defined on K (the space of shape
functions);

(iii) N = {N1, . . . , Nk} is a basis for P ′ (the set of nodal variables).

Then (K,P ,N ) is called a finite element.

In this definition P ′ denotes the algebraic dual of the linear space P .

Definition 3 Let (K,P ,N ) be a finite element, and let {ψ1, ψ2, . . . , ψk} be a basis
for P, dual to N ; namely,

Ni(ψj) = δij, 1 ≤ i, j ≤ k.

Such a basis is called a nodal basis for P.

We give a simple example to illustrate these definitions.

Example 7 (The one-dimensional Lagrange element) Let K = (0, 1), P the set
of linear polynomials, and N = {N1, N2}, where N1(v) = v(0) and N2(v) = v(1)
for all v ∈ P. Then (K,P ,N ) is a finite element, with nodal basis {ψ1, ψ2} where
ψ1(x) = 1− x and ψ2(x) = x. �

Next we give an equivalent characterisation of condition (iii) in Definition 2.

Lemma 9 Let P be a k-dimensional linear space of functions on Rn, and suppose
that {N1, N2, . . . , Nk} is a subset of the dual space P ′. Then the following two
statements are equivalent:

(a) {N1, N2, . . . , Nk} is a basis for P ′;

(b) Given that v ∈ P and Ni(v) = 0 for i = 1, . . . , k, then v ≡ 0.

Proof Let {ψ1, . . . , ψk} be a basis for P. Now {N1, . . . , Nk} is a basis for P ′ if and only
if any L ∈ P ′ can written in a unique fashion as a linear combination of the Ni’s:

L = α1N1 + . . .+ αkNk.

This is equivalent to demanding that, for each i = 1, . . . , k, L(ψi) can be written in a
unique fashion as a linear combination

L(ψi) = α1N1(ψi) + . . .+ αkNk(ψi).

Let us define the matrix B = (Nj(ψi))i,j=1,...,k and the vectors

y = (L(ψ1), . . . , L(ψk))
T , a = (α1, . . . , αk)

T .

Then the last condition is equivalent to requiring that the system of linear equations
Ba = y has a unique solution, which, in turn, is equivalent to demanding that the matrix
B be invertible. Given any v ∈ P, we can write

v = β1ψ1 + . . .+ βkψk.
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Now Ni(v) = 0 for all i = 1, . . . , k if and only if

β1Ni(ψ1) + . . .+ βkNi(ψk) = 0, i = 1, . . . , k. (3.1)

Thus (b) is equivalent to requiring that (3.1) implies β1 = . . . = βk = 0. Let C =

(Ni(ψj))i,j=1,...,k; then (b) holds if and only if Cb = 0, with b = (β1, . . . , βk)
T , implies

that b = 0, which is equivalent to demanding that C be invertible. However Ct = B and

therefore (a) and (b) are equivalent. �

Motivated by this result, we introduce the following definition.

Definition 4 We say that N determines P if ψ ∈ P with N(ψ) = 0 for all N ∈ N
implies that ψ = 0.

We shall need the following Lemma.

Lemma 10 Suppose that P is a polynomial of degree d ≥ 1 that vanishes on the
hyperplane {x : L(x) = 0} where L is a non-degenerate linear function. Then we
can write P in the factorised form P = LQ where Q is a polynomial of degree (d−1).

Proof Let us write x̂ = (x1, . . . , xn−1). Suppose that we have carried out an affine change
of variables such that L(x̂, xn) = xn; so, the hyperplane L(x̂, xn) = 0 is the hyperplane
xn = 0; then, by hypothesis, P (x̂, 0) ≡ 0. Since P is of degree d, we have that

P (x̂, xn) =

d∑
j=0

∑
|α|≤d−j

cαj x̂
αxjn,

where α = (i1, . . . , in−1) and x̂α = xi11 · · ·x
in−1

n−1 . Letting xn = 0 we get

0 ≡ P (x̂, 0) =
∑
|α|≤d

cα0x̂
α,

which implies that cα0 = 0 for |α| ≤ d. Hence

P (x̂, xn) =

d∑
j=1

∑
|α|≤d−j

cαj x̂
αxjn = xn

d∑
j=1

∑
|α|≤d−j

cαj x̂
αxj−1

n = xnQ = LQ

where Q is of degree (d− 1). �

3.1.2 Examples of triangular finite elements

Let K be a triangle and let Pk denote the set of all polynomials of degree ≤ k in
two variables. The dimension of the linear space Pk is displayed in Table 3.1.2.
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Figure 3.1: Linear Lagrange triangle with edges L1, L2, L3 and vertices z1, z2, z3.

k dim Pk

1 3
2 6
3 10
... ...
k 1

2
(k + 1)(k + 2)

Table 3.1.2: The dimension of the linear space Pk.

Lagrange elements

Example 8 Let k = 1 and take P = P1, N = N1 = {N1, N2, N3} (and therefore
the dimension of P1 is 3), where Ni(v) = v(zi) and z1, z2, z3 are the vertices of the
triangle K, as shown in Figure 3.1.

In the figure • indicates function evaluation at the point where the dot is placed.
We verify condition (iii) of Definition 2 using part (b) of Lemma 9; namely, we prove
that N1 determines P1. Indeed, let L1, L2 and L3 be non-trivial linear functions
which define the lines that contain the three edges of the triangle. Suppose that a
polynomial P ∈ P1 vanishes at z1, z2 and z3. Since P |L1

is a linear function of
one variable that vanishes at two points, it follows that P ≡ 0 on L1. By virtue of
Lemma 10, we can write P = cL1 where c is a constant (i.e. a polynomial of degree
1− 1 = 0). However, because L1(z1) 6= 0,

0 = P (z1) = cL1(z1)

implies that c = 0; thus P ≡ 0. Hence, according to Lemma 9, N1 determines P1. �

Example 9 Now take k = 2, let P = P2 and N = N2 = {N1, N2, . . . , N6} (so we
have that dim P2 = 6), where

Ni(v) =

{
v(at the ith vertex of the triangle), i = 1, 2, 3
v(at the midpoint of the (i− 3)rd edge), i = 4, 5, 6.
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Figure 3.2: Quadratic Lagrange triangle with edges L1, L2, L3, vertices z1, z2, z3,
and z4, z5 and z6 denoting the midpoints of L1, L2 and L3, respectively.

We have to show that N2 determines P2. Let L1, L2 and L3 be non-trivial linear
functions which define the lines containing the edges of the triangle. Let P ∈ P2

be such that P (zi) = 0 for i = 1, . . . , 6. As P |L1
is a quadratic function of one

variable that vanishes at three points, it follows that P ≡ 0 on L1. By Lemma 10,
P = L1Q1, where the degree of Q1 is one less than the degree of P , so Q1 is of
degree 1. However, by an analogous argument P also vanishes along L2. Therefore,
L1Q1|L2

≡ 0. Thus, on L2, either L1 ≡ 0 or Q1 ≡ 0. But L1 can be equal to zero
only at one point of L2 because the triangle is non-degenerate. Thus Q1 ≡ 0 on
L2, except possibly at one point. However, by continuity of Q1, we then have that
Q1 ≡ 0 along the whole of L2.

Now applying again Lemma 10, we deduce that Q1 = L2Q2, where the degree of
Q2 is one less than the degree of Q1, so Q2 is of degree 0. Thus, Q2 ≡ c, where c
is a constant. Hence, P = cL1L2. However P (z6) = 0 and z6 does not lie on either
L1 or L2. Consequently,

0 = P (z6) = cL1(z6)L2(z6).

Therefore, c = 0 since L1(z6) 6= 0 and L2(z6) 6= 0. This finally implies that P ≡ 0,
so N2 determines P2. �

Hermite elements

Example 10 Let us suppose that k = 3, and let P = P3. Let • denote evaluation
at a point and let © signify evaluation of the gradient at the centre point of the
circle. We shall prove that N = N3 = {N1, N2, . . . , N10}, as depicted in Figure 3.3,
determines P3 (whose dimension is precisely 10). Let, as before, L1, L2 and L3 be
the lines corresponding to the three sides of the triangle and suppose that P ∈ P3 and
Ni(P ) = 0 for the i = 1, 2 . . . , 10. The restriction of P to L1 is a cubic polynomial
of one variable with double roots at z2 and z3. Hence P ≡ 0 along L1. Similarly,
P ≡ 0 along the edges L2 and L3. By Lemma 10, we can write P = cL1L2L3, where
c is a constant. However,

0 = P (z4) = cL1(z4)L2(z4)L3(z4),
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Figure 3.3: Cubic Hermite triangle with edges L1, L2, L3 and vertices z1, z2 and z3,
and centroid z3.

and so c = 0, since Li(z4) 6= 0 for i = 1, 2, 3. Thus P ≡ 0 and we deduce that N
uniquely determines P3. �

3.1.3 The interpolant

Having described a number of finite elements, we now wish to piece them together
to construct finite-dimensional subspaces of Sobolev spaces.

Definition 5 Let (K,P ,N ) be a finite element and let the set {ψi : i = 1, . . . , k},
be a basis for P dual to N . Given that v is a function for which all Ni ∈ N ,
i = 1, . . . , k, are defined, we introduce the local interpolant IKv by

IKv =
k∑
i=1

Ni(v)ψi.

In order to illustrate the idea of local interpolant, we give a simple example.

Example 11 Consider the triangle K shown in Figure 3.4, let P = P1, N =
{N1, N2, N3} as in the case of the linear Lagrange element (k = 1), and suppose
that we wish to find the local interpolant IKv of the function v defined by v(x, y) =
(1 + x2 + y2)−1.

By definition,
IKv = N1(v)ψ1 +N2(v)ψ2 +N3(v)ψ3.

Thus we must determine ψi, i = 1, 2, 3, to be able to write down the local interpolant.
This we do, using Definition 3, as follows. The line L1 has equation y = 1 − x;
as ψ1 vanishes at z2 and z3, and thereby along the whole of L1, it follows that
ψ1 = cL1 = c(1 − x − y), where c is a constant to be determined. Also, N1ψ1 = 1,
so c = ψ1(z1) = 1. Hence, ψ1 = 1− x− y. Similarly, ψ2 = L2(x, y)/L2(z2) = x and
ψ3 = L3(x, y)/L3(z3) = y.

Having found ψ1, ψ2 and ψ3, we have that

IK(v) = N1(v)(1− x− y) +N2(v)x+N3(v)y.
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Figure 3.4: Linear Lagrange triangle with edges L1, L2, L3, and the vertices z1, z2

and z3 where the local interpolant is evaluated.

In fact, in our case N1(v) = v(z1) = 1, N2(v) = v(z2) = 1
2

and N3(v) = v(z3) = 1
2
,

and so

IK(v) = 1− 1

2
(x+ y). �

The next lemma summarises the key properties of the local interpolant.

Lemma 11 The local interpolant has the following properties:

a) The mapping v 7→ IKv is linear.

b) Ni(IK(v)) = Ni(v), i = 1, . . . , k.

c) IK(v) = v for v ∈ P; consequently IK is idempotent on P, that is, I2
K = IK.

Proof

a) Since each Ni : v 7→ Ni(v), i = 1, . . . , k, is a linear functional, v 7→ IKv has the
same property.

b) Clearly

Ni(IK(v)) = Ni

 k∑
j=1

Nj(v)ψj

 =
k∑
j=1

Nj(v)Ni(ψj)

=

k∑
j=1

Nj(v)δij = Ni(v),

for i = 1, . . . , k, where δij = 1 when i = j and = 0 when i 6= j.

c) It follows from b) that Ni(v−IK(v)) = 0, i = 1, . . . , k, which implies that IK(v) = v
for all v ∈ P. The second assertion follows from this; indeed, I2

Kv = IK(IKv) = IKv
since IKv ∈ P.



72 CHAPTER 3. PIECEWISE POLYNOMIAL APPROXIMATION

That completes the proof of the lemma. �

We can now glue together the element domains to obtain a subdivision of the
computational domain, and merge the local interpolants to obtain a global inter-
polant.

Definition 6 A subdivision of the computational domain Ω is a finite collection
of open sets {Ki} such that

(1) Ki ∩Kj = ∅ if i 6= j, and

(2)
⋃
i K̄i = Ω̄.

Definition 7 Suppose that Ω is a bounded open set in Rn with subdivision T . As-
sume that each element domain K in the subdivision is equipped with some type of
shape functions P and nodal variables N , such that (K,P ,N ) forms a finite el-
ement. Let m be the order of the highest partial derivative involved in the nodal
variables. For v ∈ Cm(Ω̄) the global interpolant Ihv is defined on Ω̄ by

Ihv|Ki
= IKi

v ∀Ki ∈ T .

In the absence of further conditions on the subdivision it is not possible to assert
the continuity of the global interpolant. Next we shall formulate a simple condition
which ensures that the global interpolant is a continuous function on Ω̄. To keep the
presentation simple, we shall restrict ourselves to the case of two space dimensions,
namely when Ω ⊂ R2, although an analogous definition can be introduced in Rn.

Definition 8 A triangulation of a polygonal domain Ω is a subdivision of Ω con-
sisting of triangles which have the property that

(3) No vertex of any triangle lies in the interior of an edge of another triangle.

From now on, we shall use the word triangulation without necessarily implying that
Ω ⊂ R2: when Ω ⊂ Rn and n = 2 we shall mean that the condition of this definition
is satisfied; when n > 2, the obvious generalisation of this condition to n dimensions
will be meant to hold.

Definition 9 We say that an interpolant has continuity of order r (or, briefly,
that it is Cr) if Ihv ∈ Cr(Ω̄) for all v ∈ Cm(Ω̄). The space

{Ihv : v ∈ Cm(Ω̄)}

is called a Cr finite element space.

For simplicity, again, the next result is stated and proved in the case of n = 2;
an analogous result holds for n > 2.
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Theorem 7 The Lagrange and Hermite elements on triangles are all C0 elements.
More precisely, given a triangulation T of Ω, it is possible to choose edge nodes for
the corresponding elements (K,P ,N ), K ∈ T , such that the global interpolant Ihv
belongs to C0(Ω̄) for all v in Cm(Ω̄), where m = 0 for Lagrange and m = 1 for
Hermite elements.

Proof It suffices to show that continuity holds across each edge. Let Ki, i = 1, 2, be
two triangles in the triangulation T with common edge e. Assuming that we choose nodes
interior to e in a symmetric way, it follows that the edge nodes on e for the elements on
both K1 and K2 are at the same location in space.

Let w = IK1v − IK2v, where we interpret IK1v and IK2v to be defined everywhere

by extension outside K1 and K2, respectively, as polynomials. Now w is a polynomial of

degree k and its restriction to the edge e vanishes at the one-dimensional Lagrange (or

Hermite) nodes. Therefore w|e ≡ 0. Hence IK1 |e v = IK2v|e, i.e. the global interpolant

is continuous across each edge. �

In order to be able to compare global interpolation operators on different ele-
ments, we introduce the following definition (now for K ⊂ Ω ⊂ Rn.)

Definition 10 Let (K,P ,N ) be a finite element and suppose that F (x) = Ax + b
where A is a non-singular n×n matrix and x and b are n-component column vectors.
The finite element (K̂, P̂ , N̂ ) is affine equivalent to (K,P ,N ) if:

(a) F (K) = K̂;

(b) F ∗P̂ = P and

(c) F∗N = N̂ .

Here F ∗ is the pull-back of F defined by F ∗(v̂) = v̂ ◦ F , and F∗ is the push-forward
of F defined by (F∗N)(v̂) = N(F ∗(v̂)) = N(v̂ ◦ F ).

Example 12 Lagrange elements on triangles with appropriate choice of edge and
interior nodes are affine equivalent. The same is true of Hermite elements on tri-
angles. �

3.1.4 Examples of rectangular elements

To conclude this section we consider finite elements defined on rectangles. Let

Qk =

{∑
j

cjpj(x)qj(y) : pj and qj are polynomials of degree ≤ k

}
.

It can be shown that Qk is a linear space of dimension (dim P1
k)2, where P1

k denotes
the set of all polynomials of a single variable of degree ≤ k and dim P1

k signifies its
dimension.

We give two examples, without going into details.
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Figure 3.5: Bilinear Lagrange rectangle with edges L1, L2, L3, L4 and the vertices
z1, z2, z3 and z4.
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Figure 3.6: Biquadratic Lagrange rectangle with edges L1, L2, L3, L4 and the vertices
z1, z3, z7, z9, midpoints of edges z2, z4, z6, z8, and centroid z5.

Example 13 (Bilinear Lagrange rectangle) Let k = 1 and suppose that K is a
rectangle. Further, let P = Q1 and let N = {N1, . . . , N4} with Ni(v) = v(zi) with
zi, i = 1, . . . , 4, as in Figure 3.5. We leave it as an exercise to the reader to show,
using Lemmas 9 and 10 that N determines P = Q1 (the dimension of Q1 is equal
to 4). �

Example 14 (Biquadratic Lagrange rectangle) Let k = 2 and suppose that K is a
rectangle. We let P = Q2 and put N = {N1, . . . , N9} with Ni(v) = v(zi) with zi,
i = 1, . . . , 9, as in Figure 3.6. It is left as an exercise to show that N determines
P = Q2 (the dimension of Q2 is equal to 9). �

3.2 Polynomial approximation in Sobolev spaces

In this section we shall develop the approximation theory for the finite element
spaces described in the previous section. We shall adopt a constructive approach
which will enable us to calculate the constants in the error estimates explicitly. The
technique is based on the use of the Hardy-Littlewood maximal function, following
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the work of Ricardo Durán1. An alternative approach which exploits the theory of
Riesz potentials is presented in the Brenner-Scott monograph cited in the reading
list.

3.2.1 The Bramble-Hilbert lemma

A key device in finite element error analysis is the following result.

Lemma 12 (Bramble-Hilbert lemma) Suppose that Ω is a bounded open set in Rn

and assume that Ω is star-shaped with respect to every point in a set B of positive
measure contained in Ω (i.e. for all x ∈ Ω the closed convex hull of {x} ∪ B is
a subset of Ω). Let l be a bounded linear functional on the Sobolev space Wm

p (Ω),
m ≥ 1, 1 < p < ∞, such that l(Q) = 0 for any polynomial Q of degree ≤ m − 1.
Then there exists a constant C1 > 0 such that

|l(v)| ≤ C1|v|Wm
p (Ω) for all v ∈ Wm

p (Ω).

Proof By hypothesis, there exists C0 > 0 such that

|l(v)| ≤ C0‖v‖Wm
p (Ω) ∀v ∈Wm

p (Ω).

Since l(Q) = 0 for all Q ∈ Pm−1, we have by the linearity of l that

|l(v)| = |l(v −Q)| ≤ C0‖v −Q‖Wm
p (Ω)

= C0

 m∑
j=0

|v −Q|p
W j

p (Ω)

1/p

= C0

m−1∑
j=0

|v −Q|p
W j

p (Ω)
+ |v|pWm

p (Ω)

1/p

≤ C0

m−1∑
j=0

|v −Q|
W j

p (Ω)
+ |v|Wm

p (Ω)

 .

In order to complete the proof it remains to prove that

∃Kj > 0 ∀v ∈W j
p (Ω) ∃Q ∈ Pm−1 such that

|v −Q|
W j

p (Ω)
≤ Kj |v|Wm

p (Ω), j = 0, . . . ,m− 1. (3.2)

This will be done in the rest of the section. Once (3.2) has been verified, we shall have
that

|l(v)| ≤ C0

1 +

m−1∑
j=0

Kj

 |v|Wm
p (Ω),

1R. Durán: On polynomial approximation in Sobolev spaces. SIAM Journal of Numerical
Analysis, 20, No. 5., (1983), pp. 985–988.
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and the proof will be complete, with the constant

C1 = C0

1 +

m−1∑
j=0

Kj

 .

�

The original proof of (3.2) given by Bramble and Hilbert was based on the use of
the Hahn-Banach theorem and was non-constructive in nature in the sense that it
did not provide computable constants Kj, j = 0, . . . ,m−1; only the existence of such
constants was proved. The remainder of this section is devoted to the (constructive)
proof of (3.2). Our main tool is the following lemma.

Lemma 13 Let g ∈ Lp(Rn), 1 < p <∞. Given ν ∈ Rn such that |ν| = 1, we define

g1(x, ν) = sup
t>0

1

t

∫ t

0

|g(x+ sν)| ds

and

g∗(x) =

(∫
|ν|=1

g1(x, ν)p dσν

)1/p

.

Then
‖g∗‖Lp(Rn) ≤

p

p− 1
ω1/p
n ‖g‖Lp(Rn),

where ωn is the measure of the unit sphere in Rn.

Proof Since g1(·, ν) is the Hardy-Littlewood maximal function of g(·) in the direction ν,
it follows that2 ∫

Rn

g1(x, ν)p dx ≤
(

p

p− 1

)p ∫
Rn

|g(x)|p dx,

and therefore ∫
Rn

|g∗(x)|p dx =

∫
Rn

(∫
|ν|=1

g1(x, ν)p dσν

)
dx

=

∫
|ν|=1

(∫
Rn

g1(x, ν)p dx

)
dσν

≤ ωn

(
p

p− 1

)p ∫
Rn

|g(x)|p dx.

Upon taking the pth root of the two sides in this inequality we arrive at the desired result.

�

Now we are ready to prove (3.2).

2See E.M. Stein and T.S. Murphy: Harmonic Analysis: Real Variable Methods, Orthogonality
and Oscillatory Integrals. Princeton University Press, 1993; or A.P. Calderón: Estimates for
singular integral operators in terms of maximal functions. Stud. Math. 44, (1972), pp.563–582.
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Theorem 8 Let Ω ⊂ Rn be a bounded open set which is star-shaped with respect to
each point in a set of positive measure B ⊂ Ω. Let 1 < p <∞, 0 ≤ j < m, and let
d be the diameter of Ω. If v ∈ Wm

p (Ω) then

inf
Q∈Pm−1

|v −Q|W j
p (Ω) ≤ C

dm−j+(n/p)

|B|1/p
|v|Wm

p (Ω),

where |B| denotes the measure of B and

C = (]{α : |α| = j}) m− j
n1/p

p

p− 1
ω1/p
n

 ∑
|β|=m−j

(β!)−p
′

1/p′

,

with 1/p + 1/p′ = 1. Here, for a set A, ]A denotes the number of elements in A
and, for a multi-index β = (β1, . . . , βn), β! = β1! · . . . · βn!.

Proof Because C∞(Ω̄) is dense3 inWm
p (Ω), it suffices to prove the theorem for v ∈ C∞(Ω̄).

Given x ∈ B, we define

Pm(v)(x, y) =
∑
|β|<m

Dβv(x)
(y − x)β

β!

and

Qm(v)(y) =
1

|B|

∫
B
Pm(v)(x, y) dx.

Here we used the multi-index notation (y − x)β = (y1 − x1)β1 · . . . · (yn − xn)βn . It is easy
to prove by induction that

DαQm(v)(y) = Qm−|α|(D
αv)(y).

Thus,

|v −Qm(v)|
W j

p (Ω)
=

∑
|α|=j

‖Dα(v −Qm(v))‖pLp(Ω)

1/p

≤
∑
|α|=j

‖Dα(v −Qm(v))‖Lp(Ω)

=
∑
|α|=j

‖Dαv −Qm−j(Dαv)‖Lp(Ω).

Now let us estimate ‖Dαv −Qm−j(Dαv)‖Lp(Ω) for each α, |α| = j. As

(Dαv −Qm−j(Dαv))(y) =
1

|B|

∫
B

[Dαv(y)− Pm−j(Dαv)(x, y)] dx,

3See R.A. Adams: Sobolev Spaces. Academic Press, 1975.
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it follows, by applying Minkowski’s inequality for integrals4 that

‖Dαv −Qm−j(Dαv)‖Lp(Ω)

≤ 1

|B|

∫
B

(∫
Ω
|Dαv(y)− Pm−j(Dαv)(x, y)|p dy

)1/p

dx. (3.3)

Now recalling the integral-remainder for Taylor series, for x ∈ B, y ∈ Ω, we have that

|Dαv(y)− Pm−j(Dαv)(x, y)|

=

∣∣∣∣∣∣(m− j)
∑

|β|=m−j

(y − x)β

β!

∫ 1

0
DβDαv(x+ t(y − x))(1− t)m−j−1 dt

∣∣∣∣∣∣
≤ (m− j)dm−j

∫ 1

0

∑
|β|=m−j

1

β!
|DβDαv(x+ t(y − x))|dt

= (m− j)dm−j 1

|y − x|

∫ |y−x|
0

∑
|β|=m−j

1

β!

∣∣∣∣DβDαv

(
x+ s

y − x
|y − x|

)∣∣∣∣ ds.

Let g be the function that coincides with
∑
|β|=m−j

1
β! |D

βDαv| in Ω and is identically zero
outside Ω. If g1 and g∗ are the functions associated with g, as defined in Lemma 13, we
have that

|Dαv(y)− Pm−j(Dαv)(x, y)| ≤ (m− j)dm−jg1

(
x,

y − x
|y − x|

)
,

and therefore

|Dαv(y)− Pm−j(Dαv)(x, y)|p ≤ (m− j)pd(m−j)pgp1

(
x,

y − x
|y − x|

)
.

Noting that B ⊂ Ω, it follows for each x ∈ B that∫
Ω
|Dαv(y)− Pm−j(Dαv)(x, y)|p dy ≤ (m− j)pd(m−j)p

∫
|y−x|≤d

gp1

(
x,

y − x
|y − x|

)
dy.

Thus, (∫
Ω
|Dαv(y)− Pm−j(Dαv)(x, y)|p dy

)1/p

≤ (m− j)dm−j
(∫ d

0

∫
|ν|=1

gp1(x, ν) dσνr
n−1 dr

)1/p

= (m− j)dm−j
(
dn

n

)1/p
(∫
|ν|=1

gp1(x, ν) dσν

)1/p

= (m− j)dm−j
(
dn

n

)1/p

g∗(x).

4Minkowski’s integral inequality states that, for a function u ∈ C(B̄ × Ω̄),

‖
∫
B

u(x, ·) dx‖Lp(Ω) ≤
∫
B

‖u(x, ·)‖Lp(Ω) dx.
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Inserting this into (3.3) we get, by Hölder’s inequality (see Ch.1, Sec.1.1.2).

‖Dαv −Qm−j(Dαv)‖Lp(Ω) ≤
1

|B|
(m− j) dm−j

(
dn

n

)1/p ∫
B
g∗(x) dx

≤ 1

|B|
(m− j) dm−j |B|1−(1/p)

(
dn

n

)1/p

‖g∗‖Lp(Rn)

and hence, by Lemma 13,

‖Dαv −Qm−j(Dαv)‖Lp(Ω) ≤
m− j
n1/p

dm−j+(n/p)

|B|1/p
p

p− 1
ω1/p
n ‖g‖Lp(Rn)

=
m− j
n1/p

dm−j+(n/p)

|B|1/p
p

p− 1
ω1/p
n ‖g‖Lp(Ω).

However,

‖g‖Lp(Ω) = ‖
∑

|β|=m−j

1

β!
|DβDαv| ‖Lp(Ω)

≤
∑

|β|=m−j

1

β!
‖DβDαv‖Lp(Ω)

≤

 ∑
|β|=m−j

(β!)−p
′

1/p′ ∑
|β|=m−j

‖DβDαv‖pLp(Ω)

1/p

,

where 1/p+ 1/p′ = 1. Therefore,

‖Dαv −Qm−j(Dαv)‖Lp(Ω) ≤
m− j
n1/p

dm−j+(n/p)

|B|1/p
p

p− 1
ω1/p
n

 ∑
|β|=m−j

(β!)−p
′

1/p′

×

 ∑
|β|=m−j

‖DβDαv‖pLp(Ω)

1/p

.

Recalling that |α| = j, we deduce that

|v −Qm(v)|
W j

p (Ω)
≤ Kj |v|Wm

p (Ω),

where

Kj = C
dm−j+(n/p)

|B|1/p
.

Since Qm ∈ Pm−1, this completes the proof of Theorem 8, and thereby also the proof of

the Bramble-Hilbert lemma (Lemma 12). �

Corollary 3 Let Ω ⊂ Rn be a bounded open set of diameter d which is star-shaped
with respect to every point of an open ball B ⊂ Ω of diameter µd, µ ∈ (0, 1]. Suppose
that 1 < p <∞ and 0 ≤ j < m, m ≥ 1. If v ∈ Wm

p (Ω) then

inf
Q∈Pm−1

|v −Q|W j
p (Ω) ≤ C(m,n, p, j, µ)dm−j|v|Wm

p (Ω),
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where

C(m,n, p, j, µ) = µ−n/p (]{α : |α| = j}) p(m− j)
p− 1

 ∑
|β|=m−j

(β!)−p
′

1/p

,

with 1/p+ 1/p′ = 1.

Proof Note that

|B| = (µd)nωn
n

.

�

In order to minimise the size of the constant C(m,n, p, j, µ), µ should be taken
as large as possible a number in the interval (0, 1] such that Ω is star-shaped with
respect to each point in a ball B ⊂ Ω of radius µd.

3.2.2 Error bounds on the interpolation error

We shall apply Corollary 3 to derive a bound on the error between a function and
its finite element interpolant. We begin by estimating the norm of the local inter-
polation operator.

Lemma 14 Let (K,P ,N ) be a finite element such that the diameter of K is equal to
1, P ⊂ Wm

∞(K) and N ⊂ (C l(K̄))′ (i.e. the nodal variables in N involve derivatives
up to order l, and each element of the set N is a bounded linear functional on
C l(K̄)). Then the local interpolation operator is bounded from C l(K̄) into Wm

p (K)
for 1 < p <∞.

Proof Let N = {N1, . . . , Nk}, and let {ψ1, . . . , ψk} ⊂ P be the basis dual to N . The
local interpolant of a function u is defined by the formula

IKu =
k∑
i=1

Ni(u)ψi,

where each ψi ∈Wm
∞(K) ⊂Wm

p (K), 1 < p <∞, by hypothesis. Thus

‖IKu‖Wm
p (K) ≤

k∑
i=1

|Ni(u)| ‖ψi‖Wm
p (K)

≤

(
k∑
i=1

‖Ni‖(Cl(K̄)′‖ψi‖Wm
p (K)

)
‖u‖Cl(K̄)

= Const. ‖u‖Cl(K̄).

and that completes the proof. �

We define

σ(K) = sup
v∈Cl(K̄)

‖IKv‖Wm
p (K)

‖v‖Cl(K̄)

,

the norm of the local interpolation operator IK : C l(K̄)→ Wm
p (K).
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Theorem 9 Let (K,P ,N ) be a finite element satisfying the following conditions:

(i) K is star-shaped with respect to some ball contained in K;

(ii) Pm−1 ⊂ P ⊂ Wm
∞(K);

(iii) N ⊂ (C l(K̄))′.

Suppose that 1 < p < ∞ and m − l − (n/p) > 0. Then, for 0 ≤ j ≤ m and
v ∈ Wm

p (K) we have that

|v − IKv|W j
p (K) ≤ C(m,n, p, µ, σ(K̂))hm−jK |v|Wm

p (K),

where hK is the diameter of K, K̂ = {x/hK : x ∈ K} and µ is the largest real
number in the interval (0, 1] such that a ball of diameter µhK is contained in K.

Proof It suffices to take K with diameter equal to 1, in which case K = K̂; the general
case follows by a simple scaling argument. Also, note that the local interpolation operator
is well defined on Wm

p (K) by the Sobolev embedding theorem5 and there exists a constant
C = Cm,n,p such that, for all v ∈Wm

p (K),

‖v‖Cl(K̄) ≤ Cm,n,p‖v‖Wm
p (K).

Let Qmv be as in the proof of Theorem 8. Since IKf = f for any f ∈ P, we have that

IKQmv = Qmv,

because Qmv ∈ Pm−1 ⊂ P. Thus,

‖v − IKv‖Wm
p (K) ≤ ‖v −Qmv‖Wm

p (K) + ‖Qmv − IKv‖Wm
p (K)

= ‖v −Qmv‖Wm
p (K) + ‖IK(Qmv − IKv)‖Wm

p (K)

≤ ‖v −Qmv‖Wm
p (K) + σ(K) ‖Qmv − IKv‖Cl(K̄)

≤ (1 + Cm,n,pσ(K)) ‖v −Qmv‖Wm
p (K),

by the Sobolev embedding theorem. Finally, by (3.2) we deduce that

‖v − IKv‖Wm
p (K) ≤ C(m,n, p, µ, σ(K)) |v|Wm

p (K),

and hence, for 0 ≤ j ≤ m, we have that

|v − IKv|W j
p (K)

≤ C(m,n, p, µ, σ(K)) |v|Wm
p (K).

That completes the proof. �

Next we show that, under a certain regularity condition on the subdivision T =
{K} of the computational domain Ω, the constant C(m,n, p, µ, σ(K̂)) can be made
independent of σ(K̂).

5The Sobolev embedding theorem asserts that Wm
p (K) ⊂ Cl(K̄) for m− l > n

p , 1 ≤ p <∞ and

the identity operator Id : v ∈Wm
p (K) 7→ v ∈ Cl(K̄) is a bounded linear operator.
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Let us suppose that each (K̂, P̂ , N̂ ) is affine equivalent to a single reference
element (K,P ,N ) through an affine transformation

x 7→ x̂ = Ax ≡ ax+ b,

where a = (aij) is an invertible n × n matrix and b is a column vector of size n, of
the same length as the column vector x.6 We shall denote the entries of the matrix
a−1 by (a−1)ij. The definition of affine equivalence yields:

ÎK̂ v̂(x̂) =
∑
N∈N

(A∗N)v̂(A−1)∗ψN(x̂),

where
(A∗N)(v̂) = N(A∗v̂), (A∗v̂)x = v̂(Ax).

Thus,

|(A∗N)(v̂)| = |N(A∗v̂)| ≤ CN‖A∗v̂‖Cl(K̄)

≤ CN,n,l

(
1 + max

1≤i,j≤n
|aij|

)l
‖v̂‖

Cl(
¯̂
K)
.

Also,

‖(A−1)∗ψN‖Wm
p (K̂) ≤ C ′N,n,m

(
1 + max

1≤i,j≤n
|(a−1)ij|

)m
|det a|1/p‖ψN‖Wm

p (K).

Since ‖ψN‖Wm
p (K) is a fixed constant on the reference element K, we have that

‖ÎK̂ v̂‖Wm
p (K̂) ≤ Cref

(
1 + max

1≤i,j≤n
|aij|

)l
×
(

1 + max
1≤i,j≤n

|(a−1)ij|
)m
|det a|1/p‖v̂‖

Cl(
¯̂
K)
,

where
Cref = |N | max

N∈N
{CN,n,l} max

N∈N
{C ′N,n,m} max

N∈N
{‖ψN‖Wm

p (K)},

and |N | denotes the number of nodal variables (i.e. the dimension of P). Thus, we
have shown that

σ(K̂) ≤ Cref

(
1 + max

1≤i,j≤n
|aij|

)l
×
(

1 + max
1≤i,j≤n

|(a−1)ij|
)m
|det a|1/p.

6To avoid confusion between the finite element (K,P,N ), associated with an element domain
K in the triangulation, and the affine image of (K̂, P̂, N̂ ) considered here, it would have been
better to use a new symbol (K̃, P̃, Ñ ), say, instead of (K,P,N ) and x̃ instead of x, to denote the
affine image; but this would have complicated the notation. Here and in the next 17 lines we shall,
temporarily, adopt this sloppy notation. Thereafter, (K,P,N ) will, again, signify a finite element
on an element domain K in the triangulation.
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Assuming that the subdivision T = {K} is regular in the sense that

∃µ > 0 ∀K ∈ T µhK ≤ ρK(≤ hK),

where hK is the diameter of K and ρK is the radius of the largest sphere (largest
circle for n = 2) contained in K, it is a straightforward exercise in geometry to show
that σ(K̂) ≤ Cµ, where Cµ is a fixed constant dependent on µ, but independent of

K̂ ∈ T . Consequently,

|v − IKv|W j
p (K) ≤ C(m, p, n, µ)hm−jK |v|Wm

p (K) (3.4)

for each K ∈ T provided that T is a regular subdivision, 1 < p <∞, m−l−(n/p) >
0 and 0 ≤ j ≤ m; from this, and recalling the definition of the global interpolant of
v ∈ Wm

p (Ω) it follows that(∑
K∈T

h
(j−m)p
K |v − Ihv|pW j

p (K)

)1/p

≤ C(m, p, n, µ)|v|Wm
p (Ω). (3.5)

We shall also need the following somewhat cruder statement which is a straight-
forward consequence of (3.4); still supposing that the triangulation T is regular,
1 < p <∞, m− l − (n/p) > 0 and 0 ≤ j ≤ m, and v ∈ Wm

p (Ω), we have that

|v − Ihv|W j
p (Ω) ≤ C(m, p, n, µ)hm−j|v|Wm

p (Ω), (3.6)

where h = maxK∈T hK . These interpolation error estimates are of crucial importance
in finite element error analysis.

3.3 Optimal error bounds in the H1(Ω) norm –

revisited

In this section we return to the discussion of error estimation in the H1(Ω) norm.
In Chapter 2 we showed, for the finite element approximation uh ∈ Vh to the weak
solution u of the homogeneous Dirichlet boundary value problem for a second-order
elliptic equation, that

‖u− uh‖H1(Ω) ≤
c1

c0

inf
vh∈Vh

‖u− vh‖H1(Ω). (3.7)

(c.f. Céa’s lemma 5). Thus, restricting ourselves to the case of Poisson’s equation
and a continuous piecewise linear approximation uh defined on a uniform triangula-
tion of Ω = (0, 1)2, we proved that, whenever u ∈ H2(Ω) ∩H1

0 (Ω), we have

‖u− uh‖H1(Ω) ≤ Ch|u|H2(Ω).
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Now, equipped with the interpolation error estimate (3.6) we can derive an anal-
ogous error bound in a more general setting; also, we can generalise to higher degree
piecewise polynomial approximations.

Suppose that Ω ⊂ Rn and that it can be represented as a union of element
domains K such that conditions (i), (ii) and (iii) of Theorem 9 hold with p = 2.
Given such a triangulation T of Ω we shall suppose that it is regular in the sense
introduced in the previous section and we put

Vh = Ih(Hm(Ω) ∩H1
0 (Ω)).

Then,

inf
vh∈Vh

‖u− vh‖H1(Ω) ≤ ‖u− Ihu‖H1(Ω) ≤ C(m,n, µ)hm−1|u|Hm(Ω).

Substituting this into (3.7), we arrive at the following error bound:

‖u− uh‖H1(Ω) ≤ C(m,n, µ, c1, c0)hm−1|u|Hm(Ω), (3.8)

provided that u ∈ Hm(Ω) ∩ H1
0 (Ω). In particular, this will be the case if we use

continuous piecewise polynomials of degree m − 1 on a regular triangulation of Ω,
with m = 2 corresponding to our earlier result with piecewise linear basis functions.
The inequality (3.8) is usually referred to as an optimal error bound, since for a
given m the smallest possible error that can be, in general, achieved in the H1(Ω)
norm is of size O(hm−1).

3.4 Variational crimes

To conclude this chapter we briefly comment on a further issue which arises in the
implementation of finite element methods. Let us consider the weak formulation of
the second-order elliptic partial differential equation (1.5) on a bounded open set
Ω ⊂ Rn, in the case of a homogeneous Dirichlet boundary condition (1.6):

find u ∈ H1(Ω) such that a(u, v) = l(v) for all v ∈ H1
0 (Ω),

where, as before,

a(w, v) =
n∑

i,j=1

∫
Ω

aij(x)
∂w

∂xi

∂v

∂xj
dx

+
n∑
i=1

∫
Ω

bi(x)
∂w

∂xi
v dx+

∫
Ω

c(x)wv dx (3.9)

and

l(v) =

∫
Ω

f(x)v(x) dx. (3.10)
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The associated finite element method is based on choosing a finite element sub-
space Vh ⊂ H1

0 (Ω) consisting of continuous piecewise polynomials of a certain de-
gree defined on a subdivision of the computational domain Ω, and considering the
approximate problem

find uh ∈ Vh such that a(uh, vh) = l(vh) for all vh ∈ Vh.

Unfortunately, unless the coefficients aij, bi and c and the right-hand side f are
exceptionally simple functions, the integrals which appear in the definitions of a(·, ·)
and l(·) will not be possible to evaluate exactly, and numerical integration rules (such
as the trapezium rule, Simpson’s rule, Gauss-type rules and their multi-dimensional
counterparts) will have to be used to calculate a(·, ·) and l(·) approximately. Without
focusing on any particular quadrature rule, we attempt to analyse the effects of this
quadrature-induced perturbation on the accuracy of the exactly-integrated finite
element method. To keep the discussion simple, let us suppose that the bilinear form
a(·, ·) is still calculated exactly, but that l(·) has been replaced by an approximation
lh(·), thereby leading to the following definition of uh:

find uh ∈ Vh such that a(uh, vh) = lh(vh) for all vh ∈ Vh.

We recall that a key step in developing the finite element error analysis was the
presence of the Galerkin orthogonality property. With this new definition of uh,
however, we have that

a(u− uh, vh) = a(u, vh)− a(uh, vh) = l(vh)− lh(vh) 6= 0, vh ∈ Vh,

and Galerkin orthogonality no longer holds. We say that we have committed a
variational crime by replacing l(·) by lh(·). We wish to study the extent to which
the accuracy of the basic finite element approximation is disturbed by this variational
crime.

Assuming that

c(x)− 1

2

n∑
i=1

∂bi
∂xi
≥ 0,

we have that
a(v, v) ≥ c0‖v‖2

H1(Ω),

with c0 a positive constant (as in Section 1.2). Thus,

c0‖u− uh‖2
H1(Ω) ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)
= a(u− uh, u− vh) + l(vh − uh)− lh(vh − uh)
≤ c1‖u− uh‖H1(Ω)‖u− vh‖H1(Ω)

+ sup
wh∈Vh

|l(wh)− lh(wh)|
‖wh‖H1(Ω)

‖vh − uh‖H1(Ω),
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with c1 a positive constant (as in Section 1.2). To simplify writing, we define

‖l − lh‖−1,h = sup
wh∈Vh

|l(wh)− lh(wh)|
‖wh‖H1(Ω)

.

Hence,

c0‖u− uh‖2
H1(Ω) ≤ c1‖u− uh‖H1(Ω)‖u− vh‖H1(Ω)

+‖l − lh‖−1,h

(
‖u− uh‖H1(Ω) + ‖u− vh‖H1(Ω)

)
=
(
c1‖u− vh‖H1(Ω) + ‖l − lh‖−1,h

)
‖u− uh‖H1(Ω)

+‖l − lh‖−1,h‖u− vh‖H1(Ω). (3.11)

Now applying the elementary inequality

ab ≤ 1

2c0

a2 +
c0

2
b2, a, b ≥ 0,

we have that(
c1‖u− vh‖H1(Ω) + ‖l − lh‖−1,h

)
‖u− uh‖H1(Ω)

≤ 1

2c0

(
c1‖u− vh‖H1(Ω) + ‖l − lh‖−1,h

)2
+
c0

2
‖u− uh‖2

H1(Ω).

Substituting this into (3.11) gives

c2
0‖u− uh‖2

H1(Ω) ≤
(
c1‖u− vh‖H1(Ω) + ‖l − lh‖−1,h

)2

+2c0‖l − lh‖−1,h‖u− vh‖H1(Ω).

Noting that c0 ≤ c1, this yields

c2
0‖u− uh‖2

H1(Ω) ≤ 2
(
c1‖u− vh‖H1(Ω) + ‖l − lh‖−1,h

)2
,

and therefore,

‖u− uh‖H1(Ω) ≤
c1

√
2

c0

‖u− vh‖H1(Ω) +

√
2

c0

‖l − lh‖−1,h.

Equivalently,

‖u− uh‖H1(Ω) ≤
c1

√
2

c0

‖u− vh‖H1(Ω) +

√
2

c0

sup
wh∈Vh

|l(wh)− lh(wh)|
‖wh‖H1(Ω)

. (3.12)

Since vh ∈ Vh is arbitrary, it follows that we have proved the following perturbed
version of Céa’s lemma:

‖u− uh‖H1(Ω) ≤
c1

√
2

c0

min
vh∈Vh

‖u− vh‖H1(Ω)

+

√
2

c0

sup
wh∈Vh

|l(wh)− lh(wh)|
‖wh‖H1(Ω)

.
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The second term on the right-hand side of (3.12) quantifies the extent to which the
accuracy of the exactly integrated finite element method is affected by the failure of
Galerkin orthogonality. Indeed, arguing in the same manner as in Section 3.3 will
lead to the error bound

‖u− uh‖H1(Ω) ≤ C(m,n, µ, c1, c0)hm−1|u|Hm(Ω)

+

√
2

c0

sup
wh∈Vh

|l(wh)− lh(wh)|
‖wh‖H1(Ω)

.

Thus, in order to retain the accuracy of the exactly integrated method, the
numerical quadrature rule has to be selected so that the second term on the right
is also of size O(hm−1); in the case of continuous piecewise linear basis functions
(m = 2) this means that the additional error should be at most O(h).

The situation when a(·, ·) is perturbed to ah(·, ·) is analysed in a similar manner.
We shall not discuss variational crimes which arise from replacing the computational
domain Ω by a “conveniently chosen close-by domain” Ωh; for the details of the
analysis the reader is referred to the books on the reading list and references therein.
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Chapter 4

A posteriori error analysis by
duality

In this chapter we shall derive a computable bound on the global error and indicate
the implementation of this result into an adaptive algorithm with reliable error
control.

4.1 The one-dimensional model problem

In order to illuminate the key ideas and avoid technical difficulties, we shall consider
the two-point boundary value problem

−u′′ + b(x)u′ + c(x)u = f(x), 0 < x < 1,

u(0) = 0, u(1) = 0,

where b ∈ W 1
∞(0, 1), c ∈ L∞(0, 1) and f ∈ L2(0, 1). Letting

a(w, v) =

∫ 1

0

[w′(x)v′(x) + b(x)w′(x)v(x) + c(x)w(x)v(x)] dx

and

l(v) =

∫ 1

0

f(x)v(x) dx,

the weak formulation of this problem can be stated as follows:

find u ∈ H1
0 (0, 1) such that a(u, v) = l(v) for all v ∈ H1

0 (0, 1).

Assuming that

c(x)− 1

2
b′(x) ≥ 0, for x ∈ (0, 1), (4.1)

there exists a unique weak solution, u ∈ H1
0 (0, 1).

The finite element approximation of this problem is constructed by considering a
(possibly non-uniform) subdivision of the interval [0, 1] by the points 0 = x0 < x1 <

89
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. . . < xN−1 < xN = 1 and defining the finite element space Vh ⊂ H1
0 (0, 1) consisting

of continuous piecewise polynomials of a certain degree on this subdivision. To keep
matters simple, let us suppose that Vh consists of continuous piecewise linear func-
tions, as described in Chapter 2. The finite element approximation of the boundary
value problem is:

find uh ∈ Vh such that a(uh, vh) = l(vh) for all vh ∈ Vh.

We let hi = xi − xi−1, i = 1, . . . , N , and put h = maxi hi.
We wish to derive an a posteriori error bound; that is, we aim to quantify the

size of the global error u− uh in terms of the mesh parameter h and the computed
solution uh (rather then the analytical solution u, as in an a priori error analysis).
To do so, we consider the following auxiliary boundary value problem

−z′′ − (b(x)z)′ + c(x)z = (u− uh)(x), 0 < x < 1,

z(0) = 0, z(1) = 0,

called the dual or adjoint problem.
We begin our error analysis by noting that the definition of the dual problem and

a straightforward integration by parts yield (recall that (u−uh)(0) = 0, (u−uh)(1) =
0):

‖u− uh‖2
L2(0,1) = (u− uh, u− uh) = (u− uh,−z′′ − (bz)′ + cz)

= a(u− uh, z).

By virtue of the Galerkin orthogonality property,

a(u− uh, zh) = 0 ∀zh ∈ Vh.

In particular, choosing zh = Ihz ∈ Vh, the continuous piecewise linear interpolant of
the function z, associated with the subdivision 0 = x0 < x1 < . . . < xN−1 < xN = 1,
we have that

a(u− uh, Ihz) = 0.

Thus,

‖u− uh‖2
L2(0,1) = a(u− uh, z − Ihz) = a(u, z − Ihz)− a(uh, z − Ihz)

= (f, z − Ihz)− a(uh, z − Ihz). (4.2)

We observe that by this stage the right-hand side no longer involves the unknown
analytical solution u. Now,

a(uh, z − Ihz) =
N∑
i=1

∫ xi

xi−1

u′h(x) (z − Ihz)′(x) dx

+
N∑
i=1

∫ xi

xi−1

b(x)u′h(x) (z − Ihz)(x) dx

+
N∑
i=1

∫ xi

xi−1

c(x)uh(x) (z − Ihz)(x) dx.
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Integrating by parts in each of the (N−1) integrals in the first sum on the right-hand
side, noting that (z − Ihz)(xi) = 0, i = 0, . . . , N , we deduce that

a(uh, z − Ihz) =
N∑
i=1

∫ xi

xi−1

[−u′′h(x) + b(x)u′h(x) + c(x)uh(x)] (z − Ihz)(x) dx.

Further

(f, z − Ihz) =
N∑
i=1

∫ xi

xi−1

f(x) (z − Ihz)(x) dx.

Substituting these two identities into (4.2), we deduce that

‖u− uh‖2
L2(0,1) =

N∑
i=1

∫ xi

xi−1

R(uh)(x) (z − Ihz)(x) dx, (4.3)

where, for i = 1, . . . , N ,

R(uh)(x) = f(x) + u′′h(x)− b(x)u′h(x)− c(x)uh(x), x ∈ (xi−1, xi).

The function R(uh) is called the finite element residual; it measures the extent
to which uh fails to satisfy the differential equation −u′′ + b(x)u′ + c(x)u = f(x) on
the interval (0, 1). Now, applying the Cauchy–Schwarz inequality on the right-hand
side of (4.3) yields

‖u− uh‖2
L2(0,1) ≤

N∑
i=1

‖R(uh)‖L2(xi−1,xi)‖z − Ihz‖L2(xi−1,xi).

Recalling from the proof of Theorem 3 (with ζ = z − Ihz and noting that ζ ′′(x) =
z′′(x) for all x in (xi−1, xi), since Ihz is a linear function on (xi−1, xi), i = 1, . . . , N)
that

‖z − Ihz‖L2(xi−1,xi) ≤
(
hi
π

)2

‖z′′‖L2(xi−1,xi), i = 1, . . . , N,

we deduce that

‖u− uh‖2
L2(0,1) ≤

1

π2

N∑
i=1

h2
i ‖R(uh)‖L2(xi−1,xi)‖z′′‖L2(xi−1,xi)

and consequently,

‖u− uh‖2
L2(0,1) ≤

1

π2

(
N∑
i=1

h4
i ‖R(uh)‖2

L2(xi−1,xi)

)1/2

‖z′′‖L2(0,1). (4.4)

The rest of the analysis is aimed at eliminating z′′ from the right-hand side of (4.4).
We recall that

z′′ = uh − u− (b z)′ + c z = uh − u− b z′ + (c− b′) z,
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and therefore,

‖z′′‖L2(0,1) ≤ ‖u− uh‖L2(0,1) + ‖b‖L∞(0,1)‖z′‖L2(0,1)

+‖c− b′‖L∞(0,1)‖z‖L2(0,1). (4.5)

We shall show that both ‖z′‖L2(0,1) and ‖z‖L2(0,1) can be bounded in terms of ‖u−
uh‖L2(0,1) and then, by virtue of (4.5), we shall deduce that the same is true of
‖z′′‖L2(0,1). Let us observe that

(−z′′ − (bz)′ + cz, z) = (u− uh, z).

Integrating by parts and noting that z(0) = 0 and z(1) = 0 yields

(−z′′ − (bz)′ + cz, z) = (z′, z′) + (bz, z′) + (cz, z)

= ‖z′‖2
L2(0,1) +

1

2

∫ 1

0

b(x)[z2(x)]′ dx+

∫ 1

0

c(x)[z(x)]2 dx.

Integrating by parts, again, in the second term on the right gives

(−z′′ − (bz)′ + cz, z) = ‖z′‖2
L2(0,1) −

1

2

∫ 1

0

b′(x)[z2(x)] dx+

∫ 1

0

c(x)[z(x)]2 dx.

Hence,

‖z′‖2
L2(0,1) +

∫ 1

0

(
c(x)− 1

2
b′(x)

)
[z(x)]2 dx = (u− uh, z),

and thereby, noting (4.1),

‖z′‖2
L2(0,1) ≤ (u− uh, z) ≤ ‖u− uh‖L2(0,1)‖z‖L2(0,1). (4.6)

By the Poincaré–Friedrichs inequality,

‖z‖2
L2(0,1) ≤

1

2
‖z′‖2

L2(0,1).

Thus, (4.6) gives

‖z‖L2(0,1) ≤
1

2
‖u− uh‖L2(0,1). (4.7)

Inserting this into the right-hand side of (4.6) yields

‖z′‖L2(0,1) ≤
1√
2
‖u− uh‖L2(0,1). (4.8)

Now we substitute (4.7) and (4.8) into (4.5) to deduce that

‖z′′‖L2(0,1) ≤ K‖u− uh‖L2(0,1). (4.9)

Where

K = 1 +
1√
2
‖b‖L∞(0,1) +

1

2
‖c− b′‖L∞(0,1).
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It is important to note here that K0 involves only known quantities, namely the
coefficients in the differential equation under consideration, and therefore it can be
computed without difficulty. Inserting (4.9) into (4.4), we arrive at our final result,
the computable a posteriori error bound,

‖u− uh‖L2(0,1) ≤ K0

(
N∑
i=1

h4
i ‖R(uh)‖2

L2(xi−1,xi)

)1/2

, (4.10)

where K0 = K/π2.
The name a posteriori stems from the fact that (4.10) can only be employed

to quantify the size of the approximation error that has been committed in the
course of the computation after uh has been computed. In the next section we shall
describe the construction of an adaptive mesh refinement algorithm based on the
bound (4.10).

4.2 An adaptive algorithm

Suppose that TOL is a prescribed tolerance and that our aim is to compute a finite
element approximation uh to the unknown solution u (with the same definition of u
and uh as in the previous section) so that

‖u− uh‖L2(0,1) ≤ TOL.

We shall use the a posteriori error bound (4.10) to achieve this goal by succes-
sively refining the subdivision, and computing a succession of numerical solutions
uh on these subdivisions, until the stopping criterion

K0

(
N∑
i=1

h4
i ‖R(uh)‖2

L2(xi−1,xi)

)1/2

≤ TOL

is satisfied. The algorithm proceeds as follows:

1. Choose an initial subdivision

T0 : 0 = x
(0)
0 < x

(0)
1 < . . . < x

(0)
N0−1 < x

(0)
N0

= 1

of the interval [0, 1], with h
(0)
i = x

(0)
i − x

(0)
i−1 for i = 1, . . . , N0, and h(0) =

maxi h
(0)
i , and consider the associated finite element space Vh(0) (of dimension

N0 − 1).

2. Compute the corresponding solution uh(0) ∈ Vh(0) .

3. Given a computed solution uh(m) ∈ Vh(m) for some m ≥ 0, defined on a subdi-
vision Tm, stop if

K0

(
Nm∑
i=1

(
h

(m)
i

)4

‖R(uh(m))‖2

L2(x
(m)
i−1 ,x

(m)
i )

)1/2

≤ TOL. (4.11)
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4. If not, then determine a new subdivision

Tm+1 : 0 = x
(m+1)
0 < x

(m+1)
1 < . . . < x

(m+1)
Nm+1−1 < x

(m+1)
Nm+1

= 1

of the interval [0, 1], with h
(m+1)
i = x

(m+1)
i − x(m+1)

i−1 for i = 1, . . . , Nm+1 and

h(m+1) = maxi h
(m+1)
i , and an associated finite element space Vh(m+1) (of di-

mension Nm+1 − 1), with h(m+1) as large as possible (and consequently Nm+1

as small as possible), such that

K0

(
Nm+1∑
i=1

(
h

(m+1)
i

)4

‖R(uh(m))‖2

L2(x
(m+1)
i−1 ,x

(m+1)
i )

)1/2

= TOL, (4.12)

and continue.

Here (4.11) is the stopping criterion and (4.12) is the mesh modification strategy.
According to the a posteriori error bound (4.10), when the algorithm terminates the
global error ‖u−uh‖L2(0,1) is controlled to within the prescribed tolerance TOL. The
relation (4.12) defines the new mesh-size by maximality. The natural condition for
maximality is equidistribution; this means that the residual contributions from
individual elements in the subdivision are required to be equal:(

h
(m+1)
i

)4

‖R(uh(m))‖2

L2(x
(m+1)
i−1 ,x

(m+1)
i )

=
TOL2

K2
0Nm+1

for each i = 1, . . . , Nm+1; the implementation can be simplified by replacing Nm+1

on the right-hand side by Nm. Then, we have a simple formula for h
(m+1)
i :

h
(m+1)
i =

 TOL2

K2
0Nm‖R(uh(m))‖2

L2(x
(m+1)
i−1 ,x

(m+1)
i )

1/4

, i = 1, . . . , Nm+1,

from which the h
(m+1)
i can be found by treating this as an equation in h

(m+1)
i ,

and solving it numerically, for m and i fixed, by some root-finding algorithm (e.g.
successive bisection or fixed-point iteration), starting from i = 1.

Reliability means that the computational error is controlled in a given norm
on a given tolerance level. Thus what we have described above is a reliable com-
putational algorithm. Efficiency means that the computational effort required to
achieve reliability is minimal. It is unclear from the present discussion whether the
adaptive algorithm described above is efficient in this sense: although we have min-
imised the computational effort required to ensure that the right-hand side in the
error bound (4.10) is below the given tolerance, the extent to which this implies
that we have also minimised the amount of computational effort required to ensure
that the left-hand side in (4.10) is less than TOL depends on the sharpness of the
inequality (4.10), and this will vary from case to case, depending very much on the
choice of the functions b, c and f .



Chapter 5

Evolution problems

In previous chapters we considered the finite element approximation of elliptic
boundary value problems. This chapter is devoted to finite element methods for
time-dependent problems; in particular, we shall be concerned with the finite ele-
ment approximation of parabolic equations. Hyperbolic equations will not be dis-
cussed in these notes.

5.1 The parabolic model problem

Let Ω be a bounded open set in Rn, n ≥ 1, with boundary Γ = ∂Ω, and let T > 0.
In Q = Ω× (0, T ], we consider the initial boundary value problem for the unknown
function u(x, t), x ∈ Ω, t ∈ (0, T ] :

∂u

∂t
−

n∑
i,j=1

∂

∂xj
(aij(x, t)

∂u

∂xi
) +

n∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u = f(x, t),

x ∈ Ω, t ∈ (0, T ], (5.1)

u(x, t) = 0, x ∈ Γ, t ∈ [0, T ], (5.2)

u(x, 0) = u0(x), x ∈ Ω̄. (5.3)

Suppose that u0 ∈ L2(Ω), and that there exists a positive constant c̃ such that

n∑
i,j=1

aij(x, t)ξiξj ≥ c̃

n∑
i=1

ξ2
i ,

∀ξ = (ξ1, . . . , ξn) ∈ Rn, ∀x ∈ Ω̄, t ∈ [0, T ]. (5.4)

We shall also assume that

aij ∈ L∞(Q), bi ∈ W 1
∞(Q), i, j = 1, . . . , n,

c ∈ L∞(Q), f ∈ L2(Q),

95
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and that

c(x, t)− 1

2

n∑
i=1

∂bi
∂xi

(x, t) ≥ 0, (x, t) ∈ Q̄, (5.5)

as in the elliptic case.
A partial differential equation of the form (5.1) is called a parabolic equation (of

second order). Simple examples of parabolic equations are the heat equation

∂u

∂t
= ∆u

and the unsteady advection-diffusion equation

∂u

∂t
−∆u+

n∑
i=1

bi
∂u

∂xi
= 0.

The proof of the existence of a unique solution to a parabolic initial boundary
value problem is more technical than for an elliptic boundary value problem and
it is omitted here. Instead, we shall simply assume that (5.1)–(5.3) has a unique
solution and investigate its decay in t (t typically signifies time), and discuss the
question of continuous dependence of the solution on the initial datum u0 and the
forcing function f .

We recall that, for v, w ∈ L2(Ω), the inner product (u, v) and the norm ‖v‖L2(Ω)

are defined by

(v, w) =

∫
Ω

v(x)w(x) dx,

‖v‖L2(Ω) = (v, v)1/2.

Taking the inner product of (5.1) with u, noting that u(x, t) = 0, x ∈ Γ, integrating
by parts, and applying (5.4) and (5.5), we get(

∂u

∂t
(·, t), u(·, t)

)
+ c̃

n∑
i=1

‖ ∂u
∂xi

(·, t)‖2
L2(Ω) ≤ (f(·, t), u(·, t)).

Noting that (
∂u

∂t
(·, t), u(·, t)

)
=

1

2

d

dt
‖u(·, t)‖2

L2(Ω),

and using the Poincaré–Friedrichs inequality (1.2), we obtain

1

2

d

dt
‖u(·, t)‖2

L2(Ω) +
c̃

c?
‖u(·, t)‖2

L2(Ω) ≤ (f(·, t), u(·, t)).
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Let K = c̃/c?; then, by the Cauchy–Schwarz inequality,

1

2

d

dt
‖u(·, t)‖2

L2(Ω) +K‖u(·, t)‖2
L2(Ω) ≤ ‖f(·, t)‖L2(Ω)‖u(·, t)‖L2(Ω)

≤ 1

2K
‖f(·, t)‖2

L2(Ω) +
K

2
‖u(·, t)‖2

L2(Ω).

Thence,

d

dt
‖u(·, t)‖2

L2(Ω) +K‖u(·, t)‖2
L2(Ω) ≤

1

K
‖f(·, t)‖2

L2(Ω).

Multiplying both sides by eKt,

d

dt

(
eKt‖u(·, t)‖2

L2(Ω)

)
≤ eKt

K
‖f(·, t)‖2

L2(Ω).

Integrating from 0 to t,

eKt‖u(·, t)‖2
L2(Ω) − ‖u0‖2

L2(Ω) ≤
1

K

∫ t

0

eKτ‖f(·, τ)‖2
L2(Ω) dτ.

Hence

‖u(·, t)‖2
L2(Ω) ≤ e−Kt‖u0‖2

L2(Ω) +
1

K

∫ t

0

e−K(t−τ)‖f(·, τ)‖2
L2(Ω) dτ. (5.6)

Assuming that (5.1)–(5.3) has a solution, (5.6) implies that the solution is unique.
Indeed, if u1 and u2 are solutions to (5.1)–(5.3), then u = u1−u2 satisfies (5.1)–(5.3)
with f ≡ 0 and u0 ≡ 0; therefore, by (5.6), u ≡ 0, i.e. u1 ≡ u2.

Let us also look at the special case when f ≡ 0 in (5.1). This corresponds to
considering the evolution of the solution from the initial datum u0 in the absence of
external forces. In this case (5.6) yields

‖u(·, t)‖2
L2(Ω) ≤ e−Kt‖u0‖2

L2(Ω), t ≥ 0; (5.7)

in physical terms, the energy 1
2
‖u(·, t)‖2

L2(Ω) dissipates exponentially. Since K =

c̃/c?, we have

‖u(·, t)‖2
L2(Ω) ≤ e−c̃t/c?‖u0‖2

L2(Ω), t ≥ 0, (5.8)

and we deduce that the rate of dissipation depends on the lower bound, c̃, on the
“diffusion coefficients” aij (i.e. the smaller c̃, the slower the decay of the energy).
Conservation of energy would correspond to

‖u(·, t)‖2
L2(Ω) = ‖u0‖2

L2(Ω);

this will only occur by formally setting c̃ = 0, however since c̃ > 0 by hypothesis,
conservation of energy will not be observed for a physical process modelled by a
second-order parabolic equation.

In the next section we consider some simple finite element methods for the nu-
merical solution of parabolic initial boundary value problems. In order to simplify
the presentation, we restrict ourselves to the heat equation in one space dimension,
but the analysis that we shall present also applies in the general setting.
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5.2 Forward and backward Euler schemes

We consider the following simple model problem for the heat equation in one space
dimension. Let Q = Ω× (0, T ], where Ω = (0, 1), T > 0;

find u(x, t) such that

∂u

∂t
=
∂2u

∂x2
+ f(x, t), x ∈ (0, 1), t ∈ (0, T ],

u(0, t) = 0, u(1, t) = 0, t ∈ [0, T ], (5.9)

u(x, 0) = u0(x), x ∈ [0, 1].

We describe two schemes for the numerical solution of (5.9). They both use the
same discretisation in the x variable but while the first scheme (called the forward
Euler scheme) employs a forward divided difference in t to approximate ∂u/∂t, the
second (called the backward Euler scheme) uses a backward difference in t.

The forward Euler scheme. We begin by constructing a mesh on Q̄ = [0, 1] ×
[0, T ]. Let h = 1/N be the mesh-size in the x-direction and let ∆t = T/M be the
mesh-size in the t-direction; here N and M are two integers, N ≥ 2, M ≥ 1. We
define the uniform mesh Q̄∆t

h on Q̄ by

Q̄∆t
h = {(xj, tm) : xj = jh, 0 ≤ j ≤ N ; tm = m ·∆t, 0 ≤ m ≤M}.

Let Vh ⊂ H1
0 (0, 1) denote the set of all continuous piecewise linear functions defined

on the x-mesh
0 = x0 < x1 < . . . < xN−1 < xN = 1

which vanish at the end-points, x = 0 and x = 1.
We approximate (5.9) by the finite element method, referred to as the forward

Euler scheme:

find umh ∈ Vh, 0 ≤ m ≤M, such that(
um+1
h − umh

∆t
, vh

)
+ a(umh , vh) = (f(·, tm), vh) ∀vh ∈ Vh,

(5.10)

(u0
h − u0, vh) = 0 ∀vh ∈ Vh,

where umh represents the approximation of u(·, tm), and a(·, ·) is defined by

a(w, v) =

∫ 1

0

w′(x)v′(x) dx.

Clearly, (5.10) can be rewritten as follows:

(um+1
h , vh) = (umh , vh)−∆t a(umh , vh) + ∆t (f(·, tm), vh)

∀vh ∈ Vh, 0 ≤ m ≤M − 1,
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with
(u0

h, vh) = (u0, vh) ∀vh ∈ Vh.
Thus, given umh , to find um+1

h at time level tm+1 we have to solve a system of linear
equations with symmetric positive definite matrix M of size (N −1)× (N −1), with
entries (φi, φj) where φi denotes the one-dimensional piecewise linear finite element
basis function associated with the x-mesh point xi; the same matrix arises when
determining u0

h. It is a simple matter to show that this matrix is tridiagonal and
has the form

M =
h

6


4 1 0 0 . . . 0
1 4 1 0 . . . 0
0 1 4 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 1 4

 .

The matrix M is usually referred to as the mass matrix.

The backward Euler scheme. Alternatively, one can approximate the time
derivative by a backward difference, which gives rise to the following backward
Euler scheme:

find umh ∈ Vh, 0 ≤ m ≤M, such that(
um+1
h − umh

∆t
, vh

)
+ a(um+1

h , vh) = (f(·, tm+1), vh) ∀vh ∈ Vh,

(5.11)

(u0
h − u0, vh) = 0 ∀vh ∈ Vh,

where umh represents the approximation of u(·, tm). Equivalently, (5.11) can be
written

(um+1
h , vh) + ∆t a(um+1

h , vh) = (umh , vh) + ∆t (f(·, tm+1), vh)

∀vh ∈ Vh, 0 ≤ m ≤M − 1,

with
(u0

h, vh) = (u0, vh) ∀vh ∈ Vh.
Thus, given umh , to find um+1

h at time level tm+1 we have to solve a system of linear
equations with symmetric positive definite matrix A of size (N − 1)× (N − 1), with
entries (φi, φj) + ∆t (φ′i, φ

′
j) where φi denotes the one-dimensional piecewise linear

finite element basis function associated with the x-mesh point xi; finding u0
h still

only involves inverting the mass matrix M . It is clear that A = M + ∆tK, where

K =
1

h


2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .

0 0 . . . 0 −1 2


is the so-called stiffness matrix.
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5.3 Stability of θ-schemes

We shall study the stability of the schemes (5.10) and (5.11) simultaneously, by
embedding them into a one-parameter family of finite element schemes:

find umh ∈ Vh, 0 ≤ m ≤M, such that(
um+1
h − umh

∆t
, vh

)
+ a(um+θ

h , vh) = (fm+θ, vh) ∀vh ∈ Vh (5.12)

(u0
h − u0, vh) = 0 ∀vh ∈ Vh,

where 0 ≤ θ ≤ 1, and for the sake of notational simplicity, we wrote

fm+θ(x) = θf(x, tm+1) + (1− θ)f(x, tm)

and

um+θ
h (x) = θum+1

h (x) + (1− θ)umh (x).

For θ = 0 this gives the forward Euler scheme, for θ = 1 the backward Euler scheme.
The method corresponding to θ = 1

2
is known as the Crank-Nicolson scheme.

Recall that

(w, v) =

∫ 1

0

w(x)v(x) dx,

‖v‖L2(Ω) = (v, v)1/2.

Taking the inner product of (5.12) with um+θ
h we get(

um+1
h − umh

∆t
, um+θ

h

)
+ a(um+θ

h , um+θ
h ) = (fm+θ, um+θ

h ).

Equivalently, (
um+1
h − umh

∆t
, um+θ

h

)
+ |um+θ

h |2H1(Ω) = (fm+θ, um+θ
h ).

Since

um+θ
h = ∆t

(
θ − 1

2

)
um+1
h − umh

∆t
+
um+1
h + umh

2
,

it follows that

∆t

(
θ − 1

2

)
‖u

m+1
h − umh

∆t
‖2
L2(Ω) +

‖um+1
h ‖2

L2(Ω) − ‖umh ‖2
L2(Ω)

2∆t

+|um+θ
h |2H1(Ω) = (fm+θ, um+θ

h ). (5.13)
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Suppose that θ ∈ [1/2, 1]; then θ − 1/2 ≥ 0, and therefore

‖um+1
h ‖2

L2(Ω) − ‖umh ‖2
L2(Ω)

2∆t
+ |um+θ

h |2H1(Ω) ≤ (fm+θ, um+θ
h )

≤ ‖fm+θ‖L2(Ω)‖um+θ
h ‖L2(Ω).

According to the Poincaré–Friedrichs inequality,

‖um+θ
h ‖2

L2(Ω) ≤
1

2
|um+θ
h |2H1(Ω).

Thus

‖um+1
h ‖2

L2(Ω) − ‖umh ‖2
L2(Ω)

2∆t
+ 2‖um+θ

h ‖2
L2(Ω) ≤

1

2
‖fm+θ‖2

L2(Ω) +
1

2
‖um+θ

h ‖2
L2(Ω),

so that

‖um+1
h ‖2

L2(Ω) ≤ ‖umh ‖2
L2(Ω) + ∆t‖fm+θ‖2

L2(Ω).

Summing through m, m = 0, . . . , k, we get that

‖ukh‖2
L2(Ω) ≤ ‖u0

h‖2
L2(Ω) +

k−1∑
m=0

∆t‖fm+θ‖2
L2(Ω), (5.14)

for all k, 1 ≤ k ≤M .
The inequality (5.14) can be thought of as the discrete version of (5.6). If follows

from (5.14) that

max
1≤k≤M

‖ukh‖2
L2(Ω) ≤ ‖u0

h‖2
L2(Ω) +

M−1∑
m=0

∆t‖fm+θ‖2
L2(Ω),

i.e.

max
1≤k≤M

‖ukh‖L2(Ω) ≤

[
‖u0

h‖2
L2(Ω) +

M−1∑
m=0

∆t‖fm+θ‖2
L2(Ω)

]1/2

, (5.15)

which expresses the continuous dependence of the solution to the finite element
scheme (5.12) on the initial data and the right-hand side. This property is called
stability.

Thus we have proved that for θ ∈ [1/2, 1], the scheme (5.12) is stable, without
any limitations on the time step in terms of h. In other words, the scheme (5.12) is
unconditionally stable for θ ∈ [1/2, 1].

Now let us consider the case θ ∈ [0, 1/2). According to (5.13),

‖um+1
h ‖2

L2(Ω) − ‖umh ‖2
L2(Ω)

2∆t
+ |um+θ

h |2H1(Ω)

= ∆t(
1

2
− θ)‖u

m+1
h − umh

∆t
‖2
L2(Ω) + (fm+θ, um+θ). (5.16)
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Recalling (5.12) with vh = (um+1
h − umh )/∆t, we have that

‖u
m+1
h − umh

∆t
‖2
L2(Ω) =

(
fm+θ,

um+1
h − umh

∆t

)
− a

(
um+θ
h ,

um+1
h − umh

∆t

)
.

Therefore,

‖u
m+1
h − umh

∆t
‖2
L2(Ω) ≤ ‖fm+θ‖L2(Ω)‖

um+1
h − umh

∆t
‖L2(Ω)

+|um+θ
h |H1(Ω) |

um+1
h − umh

∆t
|H1(Ω). (5.17)

Next we shall prove that, for each wh ∈ Vh,

|wh|H1(Ω) ≤
√

12

h
‖wh‖L2(Ω). (5.18)

We shall then use this inequality to estimate the terms appearing on the right-hand
side of (5.17). Let Wi denote the value of the piecewise linear function wh ∈ Vh at
the mesh-point xi, i = 0, . . . , N , and note that W0 = WN = 0. A simple calculation
reveals that

|wh|2H1(Ω) =
N∑
i=1

h|Wi −Wi−1

h
|2 ≤ 4

h2

N−1∑
i=1

h|Wi|2. (5.19)

On the other hand,

‖wh‖2
L2(Ω) =

h

6

N−1∑
i=1

(WiWi−1 + 4W 2
i +WiWi+1)

≥ h

6

N−1∑
i=1

[
−1

2
W 2
i −

1

2
W 2
i−1 + 4W 2

i −
1

2
W 2
i −

1

2
W 2
i+1

]

≥ 1

3

N−1∑
i=1

h|Wi|2. (5.20)

From (5.20) and (5.19) we deduce (5.18).
Now, equipped with the inequality (5.18), we continue the stability analysis.

Applying (5.18) with wh = (um+1
h − umh )/∆t, we deduce that

‖u
m+1
h − umh

∆t
‖2
L2(Ω) ≤ ‖fm+θ‖L2(Ω)‖

um+1
h − umh

∆t
‖L2(Ω)

+

√
12

h
|um+θ
h |H1(Ω) ‖

um+1
h − umh

∆t
‖L2(Ω)

and hence

‖u
m+1
h − umh

∆t
‖L2(Ω) ≤ ‖fm+θ‖L2(Ω) +

√
12

h
|um+θ
h |H1(Ω) (5.21)
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By (5.21), for any ε ∈ (0, 1),

‖u
m+1
h − umh

∆t
‖2
L2(Ω) ≤

(√
12

h
|um+θ
h |H1(Ω) + ‖fm+θ‖L2(Ω)

)2

≤ (1 + ε)
12

h2
|um+θ
h |2H1(Ω) + (1 + ε−1)‖fm+θ‖2

L2(Ω),

where the inequality (a + b)2 ≤ (1 + ε)a2 + (1 + 1
ε
)b2, a, b ≥ 0, ε > 0, has been

applied. Substituting into (5.16),

‖um+1
h ‖2

L2(Ω) − ‖umh ‖2
L2(Ω)

2∆t
+

(
1−∆t(

1

2
− θ) · 12(1 + ε)

h2

)
|um+θ
h |2H1(Ω)

≤ ‖fm+θ‖L2(Ω)‖um+θ
h ‖L2(Ω) + ∆t(

1

2
− θ)(1 + ε−1)‖fm+θ‖2

L2(Ω).

(5.22)

According to the Poincaré–Friedrichs inequality,

‖um+θ
h ‖2

L2(Ω) ≤
1

2
|um+θ
h |2H1(Ω),

and therefore,

‖fm+θ‖L2(Ω)‖um+θ
h ‖L2(Ω) ≤

1

8ε2
‖fm+θ‖2

L2(Ω) + 2ε2‖um+θ
h ‖2

L2(Ω)

≤ 1

8ε2
‖fm+θ‖2

L2(Ω) + ε2|um+θ
h |2H1(Ω). (5.23)

Substituting (5.23) into (5.22),

‖um+1
h ‖2

L2(Ω) − ‖umh ‖2
L2(Ω)

2∆t
+

(
1−∆t

6(1− 2θ)(1 + ε)

h2
− ε2

)
|um+θ
h |2H1(Ω)

≤ 1

8ε2
‖fm+θ‖2

L2(Ω) + ∆t(
1

2
− θ)(1 + ε−1)‖fm+θ‖2

L2(Ω).

Let us suppose that

∆t ≤ h2

6(1− 2θ)
(1− ε), θ ∈ [0, 1/2),

where ε is a fixed real number, ε ∈ (0, 1). Then

1−∆t
6(1− 2θ)(1 + ε)

h2
− ε2 ≥ 0,

so that

‖um+1
h ‖2

L2(Ω) ≤ ‖umh ‖2
L2(Ω) +

∆t

4ε2
‖fm+θ‖2

L2(Ω) + ∆t2(1− 2θ)(1 + ε−1)‖fm+θ‖2
L2(Ω).
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Letting cε = 1/(4ε2) + ∆t(1 − 2θ)(1 + ε−1), upon summation through all m this
implies that

max
1≤k≤M

‖ukh‖2
L2(Ω) ≤ ‖u0

h‖2
L2(Ω) + cε

M−1∑
m=0

∆t‖fm+θ‖2
L2(Ω).

Taking the square root of both sides, we deduce that for θ ∈ [0, 1/2) the scheme
(5.12) is conditionally stable in the sense that

max
1≤k≤M

‖ukh‖h ≤

[
‖u0

h‖2
L2(Ω) + cε

M−1∑
m=0

∆t‖fm+θ‖2
L2(Ω)

]1/2

, (5.24)

provided that

∆t ≤ h2

6(1− 2θ)
(1− ε), 0 < ε < 1. (5.25)

To summarise: when θ ∈ [1/2, 1], the method (5.12) is unconditionally stable. In
particular, the backward Euler scheme, corresponding to θ = 1, and the Crank-
Nicolson scheme, corresponding to θ = 1/2, are unconditionally stable, and (5.15)
holds. When θ ∈ [0, 1/2), the scheme (5.12) is conditionally stable, subject to the
time step limitation (5.25). The forward Euler scheme, corresponding to θ = 0, is
only conditionally stable.

5.4 Error analysis in the L2 norm

In this section we investigate the accuracy of the finite element method (5.12) for
the numerical solution of the initial boundary value problem (5.9). For simplicity,
we shall restrict ourselves to the backward Euler scheme (θ = 1); for other values of
θ ∈ [0, 1] the analysis is completely analogous.

We decompose the global error eh as follows:

emh = u(·, tm)− umh = ηm + ξm,

where

ηm = u(·, tm)− Pu(·, tm), ξm = Pu(·, tm)− umh ,

and for t ∈ [0, T ], Pu(·, t) ∈ Vh denotes the Dirichlet projection of u(·, t) defined
by

a(Pu(·, t), vh) = a(u(·, t), vh) ∀vh ∈ Vh.

The existence and uniqueness of Pu(·, t) ∈ Vh follows by the Lax-Milgram theorem.
Hence,

a(ηm, vh) = 0 ∀vh ∈ Vh,
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and therefore, by Céa’s lemma,

|ηm|H1(Ω) ≤ |u(·, tm)− Ihu(·, tm)|H1(Ω) ≤
h

π
|u(·, tm)|H2(Ω),

where Ihu(·, tm) ∈ Vh denotes the continuous piecewise linear interpolant of u(·, tm)
from Vh. By the Aubin–Nitsche duality argument,

‖ηm‖L2(Ω) ≤
h2

π2
|u(·, tm)|H2(Ω). (5.26)

Since also,

a

(
ηm+1 − ηm

∆t
, vh

)
= 0 ∀vh ∈ Vh,

by an identical argument we deduce that

‖η
m+1 − ηm

∆t
‖L2(Ω) ≤

h2

π2

∣∣∣∣u(·, tm+1)− u(·, tm)

∆t

∣∣∣∣
H2(Ω)

. (5.27)

For m = 0,

(ξ0, vh) = (e0
h, vh)− (η0, vh) = −(η0, vh)

and therefore, choosing vh = ξ0 and applying the Cauchy–Schwarz inequality on the
right,

‖ξ0‖L2(Ω) ≤ ‖η0‖L2(Ω) ≤
h2

π2
|u0|H2(Ω). (5.28)

It is easily seen that ξm ∈ Vh satisfies the following identity:(
ξm+1 − ξm

∆t
, vh

)
+ a(ξm+1, vh)

=

(
u(·, tm+1)− u(·, tm)

∆t
− ∂u

∂t
(·, tm+1)− ηm+1 − ηm

∆t
, vh

)

According to the stability result proved earlier on,

max
1≤m≤M

‖ξm‖L2(Ω) ≤

[
‖ξ0‖2

L2(Ω) +
M−1∑
m=0

∆t‖ϕm+1‖2
L2(Ω)

]1/2

, (5.29)

where

ϕm+1 =
u(·, tm+1)− u(·, tm)

∆t
− ∂u

∂t
(·, tm+1)− ηm+1 − ηm

∆t
.

By (5.28),

‖ξ0‖L2(Ω) ≤
h2

π2
|u0|H2(Ω). (5.30)
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It remains to estimate ‖ϕm+1‖L2(Ω). Now

‖ϕm+1‖L2(Ω) ≤ ‖u(·, tm+1)− u(·, tm)

∆t
− ∂u

∂t
(·, tm+1)‖L2(Ω)

+‖η
m+1 − ηm

∆t
‖L2(Ω) ≡ I + II. (5.31)

For term I, Taylor’s formula with integral remainder yields that

u(x, tm+1)− u(x, tm)

∆t
− ∂u

∂t
(x, tm+1) = − 1

∆t

∫ tm+1

tm
(t− tm)

∂2u

∂t2
(x, t) dt,

and therefore

I ≤
√

∆t

(∫ tm+1

tm
‖∂

2u

∂t2
(·, t)‖2

L2(Ω) dt

)1/2

.

Further, by (5.27),

II ≤ h2

π2

∣∣∣∣u(·, tm+1)− u(·, tm)

∆t

∣∣∣∣
H2(Ω)

=
h2

π2

∣∣∣∣∣ 1

∆t

∫ tm+1

tm

∂u

∂t
(·, t) dt

∣∣∣∣∣
H2(Ω)

≤ h2

π2
√

∆t

(∫ tm+1

tm

∣∣∣∣∂u∂t (·, t)
∣∣∣∣2
H2(Ω)

dt

)1/2

.

Substituting the bounds on terms I and II onto (5.31) and inserting the resulting
inequality and (5.30) into (5.29), we obtain the following error bound:

max
1≤m≤M

‖ξm‖L2(Ω) ≤ C1(h2 + ∆t), θ ∈ (1/2, 1], (5.32)

where C1 is a positive constant, independent of h and ∆t, and depending only on
norms of the analytical solution u. But,

max
1≤m≤M

‖u(·, tm)− umh ‖L2(Ω) ≤ max
1≤m≤M

‖ξm‖L2(Ω) + max
1≤m≤M

‖ηm‖L2(Ω).

Thus, by (5.32) and (5.26), we deduce that

max
1≤m≤M

‖u(·, tm)− umh ‖L2(Ω) ≤ C2(h2 + ∆t),

where C2 is a positive constant independent of h and ∆t.
The Crank-Nicolson scheme (θ = 1/2) can be shown to converge in the norm

‖ · ‖L2(Ω) unconditionally, with error O(h2 + (∆t)2). For θ ∈ (1/2, 1] the scheme con-
verges unconditionally with error O(h2 + ∆t). For θ ∈ [0, 1/2) the scheme converges
with error O(h2 +∆t), but only conditionally. The stability and convergence results
presented here can be extended to parabolic equations in more than one space di-
mension, but the exposition of that theory, while very similar to the one-dimensional
case, is beyond the scope of these notes.


