
HT23

HT23

C4.6 Fixed Points Methods for PDEs

C4.6 Fixed Points Methods for PDEs

HT22

p. 1/8

Problem Sheet 2

Section A

No work in this section will be marked. The material has to be considered as preliminary/bookwork.

Question 1. Mollification.

(1) Give an example of a function (that will play later the role of kernel for mollification) with the

following properties:

• φ ∈ C∞c (Rn) with supp(φ) = B1(0);

• φ(x) ≥ 0 for all x ∈ Rn;

•
∫
B1(0)

φ(x)dx = 1.

(2) Given φ as in point 1, for every function u ∈ L1
loc(Rn) define

u ? φ(x) :=

∫
Rn
u(x− y)φ(y)dy.

Show that u ? φ ∈ C∞(Rn).

Hint: observe that
∫
Rn u(x− y)φ(y)dy =

∫
Rn φ(x− y)u(y)dy.

(3) Given φ as in point 1, for every ε ∈ (0, 1), let

φε(x) := ε−nφ(x/ε).

Show that supp(φε) = Bε(0) and that
∫
Bε(0)

φε(x)dx = 1.

(4) If u ∈ C(Rn), show that u ? φε converges to u uniformly on compact subsets of Rn.

Solution For more on mollification see the Lecture Notes of C4.3 “Functional Analytic methods for

PDEs”.

(1) Define φ(x) := 0 for |x| ≥ 1 and φ(x) := C exp( 1
|x|2−1 ) for |x| < 1, with C > 0 chosen such that∫

Rn φ(x) dx = 1. It is easily seen that such φ has all the desired properties.

(2) First of all we notice that, if u ∈ L1
loc(Rn) then

u ? φ(x) :=

∫
Rn
u(x− y)φ(y)dy

is well defined for all x ∈ Rn. By the change of variable z = x− y we directly see that

u ? φ(x) :=

∫
Rn
u(x− y)φ(y)dy =

∫
Rn
u(z)φ(x− z)dz =

∫
Rn
φ(x− y)u(y)dy,

proving the hint. Now, since φ is C1 with compact support, we can use the Differentiation Theorem (it

is a corollary of Dominated Convergence Theorem) to infer that

∂xi(u ? φ)(x) = ∂xi

(∫
Rn
φ(x− y)u(y)dy

)
=

∫
Rn

(∂xiφ)(x− y)u(y)dy.

This shows that u ? φ is C1. By iterating the procedure, we obtain that u ? φ is C∞.

(3) Follows directly from (1) by changing variables.

(4) If u ∈ C(Rn) then it is uniformly continuous on compact subsets. Fix a compact subset K b Rn.

Using that φε ≥ 0,
∫
φε = 1 and that supp(φε) = Bε(0), for every x ∈ K we have that

|u(x)− u ? φε(x)| =
∣∣∣∣∫

Rn
(u(x)− u(x− y))φε(y)dy

∣∣∣∣ ≤ ∫
Rn
|u(x)− u(x− y)|φε(y)dy

≤ sup
y∈Rn,|y|≤ε

|u(x)− u(x− y)| .

Denote with K1 := {x ∈ Rn : there exists y ∈ K such that |x− y| ≤ 1}, (i.e. the set of points at distance

at most 1 from K) and notice that K1 is compact as well. From the previous estimate, we obtain

sup
x∈K
|u(x)− u ? φε(x)| ≤ sup

x1,x2∈K1,|x1−x2|≤ε
|u(x1)− u(x2)| → 0 as ε→ 0

by uniform continuity of u on the compact set K1.
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Question 2. An application of Brouwer’s fixed point Theorem: zero’s of continuous

vector fields.

Let g : Rn → Rn be a continuous vector field. Assume that there exists R > 0 such that

g(x) · x ≥ 0, for all x with |x| = R.

Show that there exists x∗ ∈ BR(0) such that g(x∗) = 0; in other words, show that the vector field g has

a zero in BR(0).

Hint: Argue by contradiction, consider the map f(x) := − R
|g(x)|g(x) and apply Brouwer’s fixed point

Theorem.

Solution. Assume that there exists no such x∗. Then we can define

f(x) = −R g(x)

|g(x)|
.

f is continuous and f : BR(0) → BR(0). Brouwer’s FPT implies that there exists x1 ∈ BR(0) such that

f(x1) = x1. Then |x1| = |f(x1)| = R, and thus the assumption on g implies g(x1) · x1 ≥ 0.

On the other hand

g(x1) · x1 = −f(x1) · x1
|g(x1)|
R

= −|x1|2 |g(x1)|
R

< 0,

which is a contradiction. �



HT23

HT23

C4.6 Fixed Points Methods for PDEs

C4.6 Fixed Points Methods for PDEs

HT22

p. 3/8

Section B

No work in this section will be marked. Work in this section should be done by students first without

looking at the solutions. Solutions will be also discussed in intercollegiate classes.

Question 3. Leray-Schauder/Schaefer Theorem.

(a) Prove the following result.

Let X be a Banach space and T : X → X be a compact map with the following property: there

exists R > 0 such that the statement (x = τTx with τ ∈ [0, 1)) implies ‖x‖X < R. Then T has

a fixed point x∗ such that ‖x∗‖X ≤ R.

Hint: Consider the operators

Tn(x) :=

Tx if ‖Tx‖X ≤ R+ 1
n ,

R+1/n
‖Tx‖X

Tx else

on a suitable domain and prove that they are compact.

(b) Let T : X → X be a compact map with the following property: there exists R > 0 such that

‖Tx− x‖2X ≥ ‖Tx‖
2
X − ‖x‖

2
X for all ‖x‖X ≥ R. Show that T admits a fixed point.

Solution. Part (a). Following the hint, consider the operators

Tn(x) :=

Tx if ‖Tx‖X ≤ R+ 1
n ,

R+1/n
‖Tx‖X

Tx else.

By construction, we have that Tn : X → BR+ 1
n

(0). In particular, Tn : BR+ 1
n

(0)→ BR+ 1
n

(0).

Claim: Tn : BR+ 1
n

(0)→ X is a compact operator.

We first observe that Tn : BR+ 1
n

(0) → X is continuous, as T is continuous, R+1/n
‖Tx‖X

Tx is continuous for

Tx ∈ X \BR+ 1
n

(0), and the two maps agree for ‖Tx‖X = R+ 1
n .

Let (xj)j ⊂ BR+ 1
n

(0). Since by assumption T is a compact operator, the sequence (Txj)j has a converging

sub-sequence (Txjk)k. It easily seen that (Tnxjk)k converges as well. The claim is proved.

Since Tn : BR+ 1
n

(0)→ X is a compact operator, from the 3rd formulation of Schauder’s fixed point

Theorem we infer that for every n ∈ N there exists a fixed point

xn ∈ BR+ 1
n

(0), Tnxn = xn.

Claim: Txn = xn for all n ∈ N.

By the explicit expression of Tn, if it is not true that xn = Tnxn = Txn, then xn = Tnxn = τnTxn for

some τn ∈ (0, 1] and ‖Tnxn‖X = R + 1
n . Using the assumption on T , we infer that if the latter holds,

then ‖xn‖X < R. We thus get the contradiction:

R+
1

n
= ‖Tnxn‖X = ‖xn‖X < R,

proving the claim.

Recalling that T is a compact operator, we obtain that the bounded sequence (xn = Txn)n has a

subsequence that converges to some x̄ ∈ BR(0) which, by continuity of T , satisfies T x̄ = x̄.

Part (b). In order to apply part (a) we claim that:

Claim: if x = τTx with τ ∈ [0, 1), then ‖x‖X < R.

If x = τTx then either τ = 0 and thus ‖x‖X = 0 < R, or τ ∈ (0, 1) and thus

‖Tx− x‖2X = ‖Tx− τTx‖2X = (1− τ)2 ‖Tx‖2X = (1− 2τ + τ2) ‖Tx‖2X
< (1− τ2) ‖Tx‖2X = ‖Tx‖2X − ‖τTx‖

2
X

= ‖Tx‖2X − ‖x‖
2
X .

Using the assumption on T we infer that ‖x‖X < R, proving the claim.

We conclude by applying part (a). �
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Question 4. Integral operators on L2(Ω) vs. C(Ω̄) As always, Ω ⊂ Rn is a smooth bounded

domain.

(a) Let a : Ω̄× Ω̄× R→ R be a continuous map, and let

A(u)(x) =

∫
Ω

a(x, y, u(y))dy.

show that A : C(Ω̄)→ C(Ω̄) is well defined and compact. Hint: use Arzela-Ascoli Theorem.

(b) Let k ∈ L2(Ω× Ω) and define

(Ku)(x) =

∫
Ω

k(x, y)u(y)dy.

Show that K : L2(Ω) → L2(Ω) is well defined and compact. You can use for example that

C∞0 (Ω×Ω) is dense in L2(Ω×Ω), and therefore there is a sequence km ∈ C∞0 (Ω×Ω) such that

km → k in L2(Ω).

(c) Give an example of continuous a such that A (defined as above) is not well defined as an operator

from L2(Ω)→ L2(Ω).

Solution of (a).

Claim. x 7→ A(u)(x) is continuous from Ω̄ to R.

By assumption a : Ω̄×Ω̄×R→ R is continuous. If u : Ω̄→ R is continuous, then also (x, y) 7→ a(x, y, u(y))

is continuous from Ω̄× Ω̄→ R. Since Ω̄× Ω̄ is compact, we infer that (x, y) 7→ a(x, y, u(y)) is uniforrmly

continuous, impliying that for every ε > 0 there exists δ > 0 such that

|A(u)(x1)−A(u)(x2)| ≤
∫

Ω̄

|a(x1, y, u(y))− a(x2, y, u(y))|dy

≤ |Ω| ε, for all x1, x2 ∈ Ω̄ with |x1 − x2| ≤ δ.(1)

This shows the first claim and thus the fact that A : C(Ω̄)→ C(Ω̄) is well defined.

Claim. For every bounded subset M⊂ C(Ω̄), the image A(M) is precompact.

In order to show the claim, it is enough to show that A(M) is bounded and equi-continuous, as the

pre-compactness would then follow from Arzelá-Ascoli’s Theorem.

We first show that A(M) is bounded. Let C = supu∈M ‖u‖C0 . We have

‖A(u)‖C0 = sup
x∈Ω̄

|A(u)(x)| ≤ sup
x∈Ω̄

∫
Ω

|a(x, y, u(y))|dy

≤ |Ω| sup
(x,y,z)∈Ω̄×Ω̄×[−C,C]

|a(x, y, z)| =: C̄ <∞, ∀u ∈M.

We next show that A(M) is equi-continuous. Since (x, y, z) 7→ a(x, y, z) is uniformly continuous on the

compact set Ω̄ × Ω̄ × [−C,C], the same estimates as in (1) give that for every ε > 0 there exists δ > 0

such that

|A(u)(x1)−A(u)(x2)| ≤ |Ω| ε, for all u ∈M and all x1, x2 ∈ Ω̄ with |x1 − x2| ≤ δ.

Solution of (b). This can be either approached directly, working with k ∈ L2(Ω× Ω) and arguing

with Fubini-Tonelli’s theorem (for the good definition and continuity of K, and using Kolmogorov-Riesz

for the compactness of the map K), or arguing by approximation as suggested in the hint. We take the

second approach (the advantage is that, for proving the compactness, we will only need Arzelá-Ascoli

and not Kolmogorov-Riesz).

Let km ∈ C∞0 (Ω× Ω) such that km → k in L2(Ω). For all u ∈ L2(Ω), define

(Kmu)(x) =

∫
Ω

km(x, y)u(y)dy.

Since km(x, ·) ∈ L2(Ω), we have that (Kmu)(x) is well defined for all x ∈ Ω.
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Claim 1. Kmu ∈ L2(Ω) for all u ∈ L2(Ω) and Km : L2(Ω) → L2(Ω) is continuous. Using Cauchy-

Schwarz and Fubini-Tonelli, we get

‖Kmu‖2L2 =

∫
Ω

(∫
Ω

km(x, y)u(y)dy

)2

dx ≤
∫

Ω

‖km(x, ·)‖2L2‖u‖2L2dx

= ‖u‖2L2

∫
Ω

(∫
Ω

km(x, y)2dy

)
dx = ‖u‖2L2

∫
Ω×Ω

km(x, y)2dxdy

= ‖u‖2L2‖km‖2L2 .(2)

This shows that Kmu ∈ L2. The operator Km : L2(Ω)→ L2(Ω) is clearly linear, thus the above estimate

also shows the continuity of Km as endomorphism of L2. The proof of the claim is complete.

From (2), it also follows that

‖Kmu−Knu‖2L2 ≤ ‖u‖2L2‖km − kn‖2L2 → 0 as m,n→∞,

i.e. the sequence (Kmu)m is Cauchy in L2 and thus converges. Define

Ku := lim
m→∞

Kmu.

We next establish compactness of K by first proving the compactness of Km and then applying a diagonal

argument.

Claim 2. Fix m ∈ N. For any bounded sequence (un)n ⊂ L2(Ω) there exists a subsequence unj such

that (Kmunj )j ⊂ L2 converges.

Since km ∈ C∞0 (Ω× Ω), we get that (Kmun)n are uniformly bounded:

|Kmun(x)| ≤ ‖Km‖L∞ ‖un‖L1 ≤ ‖Km‖L∞ |Ω|1/2 ‖un‖L2 , for all x ∈ Ω

and equicontinuous, as km is uniformly continuous:

sup
n

sup
|x1−x2|<δ

|Kmun(x1)−Kmun(x2)| ≤|Ω|1/2 sup
n
‖un‖L2 sup

y∈Ω,|x1−x2|<δ
|km(x1, y)− km(x2, y)|

→ 0 as δ → 0.

Thus the sequence (Kmun)n is pre-compact in C0(Ω) by Arzelá-Ascoli Theorem, i.e. it admits a sub-

sequence which converges uniformly, hence in particular in L2, showing the claim.

By a diagonal argument, from claim 2, it follows that for any bounded sequence (un)n ⊂ L2(Ω) there

exists a subsequence unj such that (Kmunj )j ⊂ L2 converges for every m ∈ N.

We now show the compactness of the map K:

Claim 3. For any bounded sequence (un)n ⊂ L2(Ω) there exists a subsequence unj such that

(Kunj )j ⊂ L2 converges.

Let (unj )j be the subsequence such that (Kmunj )j ⊂ L2 converges for every m ∈ N. Then

‖Kunj1 −Kunj2 ‖L2 ≤ ‖Kunj1 −Kmunj1 ‖L2 + ‖Kmunj1 −Kmunj2 ‖L2 + ‖Kmunj2 −Kunj2‖L2

≤ 2 sup
n
‖un‖L2‖k − km‖L2(Ω×Ω) + ‖Km(unj1 − unj2 )‖L2 .

For every ε > 0 let m be such that ‖k − km‖L2(Ω×Ω) ≤ ε/(2 supn ‖un‖L2). Let also J > 0 be such that

‖Km(unj1 − unj2 )‖L2 < ε/2 for all j1, j2 ≥ J . Then ‖Kunj1 −Kunj2‖L2 < ε for all j1, j2 ≥ J , i.e. it is a

Cauchy sequence. The claim follows.

Note. The argument above is very similar to an argument in the lectures, where compact operators

are approximated by “finite dimensional operators”.

Solution of (c). Let a(x, y, z) = z4. If u ∈ L2, it is in general not true that
∫

Ω
u4 exists finite and

thus the corresponding Au may fail to be well defined as an L2 function.

�
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Question 5. Continuous maps. Let g ∈ C(R×Rn) be such that g(z, p) ≤ a+ b|z|α + c|p|, where

a,b and c are non negative constants, and 2α < 2∗, where 2∗ = 2n/(n − 2) if n ≥ 3, and 2∗ = ∞ if

n = 1, 2. Then the map u 7→ g(u,∇u) is continuous from H1
0 (Ω) to L2(Ω) and maps bounded subsets of

H1
0 (Ω) to bounded subsets of L2(Ω).

Hint: rewrite g(u,∇u) = g̃
(
u, ∇u|∇u|ν

)
for a suitable function g̃ and a suitable exponent 0 < ν < 1, and

apply Lemma 2.6 from the lecture notes.

Solution. From Lemma 2.6 in the lecture notes, we know that if f ∈ C(R) satisfies

|f(x)| ≤M1 +M2|x|r, ∀x ∈ Rn

then the map u 7→ f(u) is well defined and continuous from Lp to Lp/r, and maps bounded sets to

bounded sets.

If α ≤ 1 and g ∈ C(R×Rn) satisfies g(z, p) ≤ a+ b|z|α + c|p|, then the claim follows immediately, as

b|z|α ≤ b(|z|+ 1) and as the map u 7→ ∇u is continuous from H1
0 to L2.

If α > 1 then, using that by assumption 2α < 2∗ and Sobolev embedding theorem, we get that u 7→ u

is continuous as a map from H1
0 to L2α.

At the same time, consider the map

(3) v 7→ v

|v|ν
, 0 < ν < 1,

which is well defined and continuous from L2(Ω,Rn) to L2/(1−ν)(Ω,Rn) and maps bounded sets to

bounded sets, by Lemma 2.6. Hence, choosing ν so that 2
1−ν = 2α, we get that (3) is continuous from

L2(Ω,Rn) to L2α(Ω,Rn).

Combining the above, we obtain that

(4) h : u 7→
(
u,
∇u
|∇u|ν

)
is well defined and continuous from H1

0 (Ω) to L2α(Ω,R× Rn). Choose the exponent β in

g̃(v, w) := g(v, |w|βw)

so that

g(u,∇u) = g̃

(
u,
∇u
|∇u|ν

)
,

i.e. choose β = ν/(1− ν). Then

|g̃(v, w)| ≤ a+ b|v|α + c|w|β+1 ≤ ã+ b|v|α + c|w|1/(1−ν)

= ã+ +b|v|α + c|w|α.

We conclude that

H1
0 (Ω)

h−→ L2α(Ω,R× Rn)
g̃−→ L2(Ω)

is well defined, continuous, and maps bounded sets to bounded sets, as composition of maps with such

properties.

�
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Section C

No work in this section will be marked. These problems are not more difficult than those in previous

sections. They sit here simply because they are relevant but either slightly off or beyond the main

interests of the course.

Question 6. Leray’s eigenvalue problem. Let K : [a, b] × [a, b] → (0,∞) be a continuous and

positive function and consider the integral operator T : C0([a, b])→ C0([a, b]) defined by

(Tu)(x) =

∫ b

a

K(x, t)u(t) dt.

Prove that T has at least one non-negative eigenvalue λ whose eigenvector is a continuous non-negative

function u, i.e. there exist λ ≥ 0 and a non-negative u so that∫ b

a

K(x, t)u(t) dt = λu(x).

Hint: consider, on an appropriate closed convex set M , the function

F (u) =
1∫ b

a
Tu(t)dt

· Tu.

and apply one of the versions of Schauder’s Fixed Point Theorem with the help of Arzéla-Ascoli Theorem.

To find a suitable set M think about what property all functions F (u) have in common.

Solution. Since K : [a, b]× [a, b]→ (0,∞) is continuous, there exist c1, c2 ∈ (0,∞) such that

c1 ≤ K(x, t) ≤ c2 , for all (x, t) ∈ [a, b]2.

We know from First year Analysis that if u ∈ C0([a, b]), then the function x 7→
∫ b
a
K(x, t)u(t) dt := Tu(x)

is continuous on [a, b] as well. Moreover, if u ≥ 0 then we have

c1

∫ b

a

u(t) dt ≤
∫ b

a

K(x, t)u(t) dt ≤ c2
∫ b

a

u(t) dt, for all u ≥ 0.

Consider now

F (u) :=
1∫ b

a
Tu(t)dt

· Tu.

Observe that
∫ b
a

(Fw)(t) dt = 1 for every w ≥ 0. Then, any fixed point of F will satisfy u(x) = (Fu)(x)

so in particular ∫ b

a

u(t) dt =

∫ b

a

(Fu)(t) dt = 1.

Observe that

M :=

{
u ∈ C0([a, b]) : u ≥ 0,

∫ b

a

u(t) dt = 1,

}
is convex, closed and non-empty. In order to apply Schauder Theorem version III, we need to prove that

F : M →M is continuous and that F (M) is compact.

Claim 1: F : M →M is continuous.

We know that Tu(x) ≥ c1(b− a) > 0. It easily follows that Fu(x) ≥ 0 for all x ∈ [a, b] as well. Moreover,

we already observed that
∫ b
a

(Fu)(t) dt = 1, and thus F maps M to M .

Proof that F : M → M is continuous. since the map u 7→ K(u) is continuous on C0([a, b]), so also the

map u 7→
∫ b
a
K(u)(t) dt is continuous. Moreover, this is bounded from below:

(5) 0 < c1|b− a|2 ≤
∫ b

a

Tu(t) dt ≤ c2|b− a|2.

So claim 1 follows.
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Claim 2: F (M) is compact.

We first show that F (M) is bounded. From (5) we obtain that

0 ≤ c1
c2(b− a)

≤ F (u)(t) ≤ c2
c1(b− a)

for all u ∈M and all t ∈ [a, b]. Thus F (M) is bounded.

In order to show that F (M) is pre-compact it is then enough to show that it is equi-continuous (so the

pre-compactness will follow from Arzelá-Ascoli’s Theorem).

Let δ > 0, t1,2 be such that |t1 − t2| < δ and let u ∈M . Denote µ(u) :=
∫ b
a
K(u)(t) dt. Then

|F (u)(t1)− F (u)(t2)| ≤ 1

µ(u)

∫
|K(t1, x)−K(t2, x)|u(x) dx ≤ 1

µ(u)
sup

x,|t1−t2|<δ
|K(t1, x)−K(t2, x)|.

The conclusion follows by the uniform continuity of K on the compact set [a, b]2 and by lower bound

µ(u) ≥ (b− a)2c1 > 0. �


