(2)

Problem Sheet 4

Section A

No work in this section will be marked. Guided solutions will be published. The material has to be considered as preliminary/bookwork.

QUESTION 1. Monotone operators satisfy (H3) Let $M \subset M$ satisfy (SA) and let $A : M \to X^*$ be a monotone operator. Using monotonicity first, and then Minty's Lemma, show that A satisfies the assumption (H3), i.e.:

(i) If $(u_n) \subset M$, $u_n \rightharpoonup u$ weakly in X and $A(u_n) \rightharpoonup \xi$ weakly in X^* , then

(1)
$$\langle \xi, u \rangle \le \liminf_{n \to \infty} \langle A(u_n), u_n \rangle$$

(ii) Equality in (1) implies that

$$\langle A(u) - \xi, u - v \rangle \le 0$$
, for all $v \in M$

Solution. Notice that, thanks to Minty's inequality, (2) is equivalent to

(3)
$$\langle A(v) - \xi, u - v \rangle \le 0$$
, for all $v \in M$.

Notice that since by assumption X is reflexive, then weak convergence is equivalent to weak^{*} convergence in X^* .

It follows that, if $(u_n) \subset M$, $u_n \rightharpoonup u$ weakly in X and $A(u_n) \rightharpoonup \xi$ weakly in X^{*}, then $A(u_n) \stackrel{*}{\rightharpoonup} \xi$ weakly^{*} in X^{*}. Then

$$\langle A(u_n) - \xi, v \rangle \to 0$$
, for every $v \in X$.

Moreover, using that $u_n \rightharpoonup u$ weakly in X, we have

(4)
$$\langle A(u), u_n - u \rangle \to 0$$

Proof of (i). The monotonicity of A gives

$$\langle A(u_n) - A(u), u_n - u \rangle \ge 0$$
, for all $n \in \mathbb{N}$.

Thus, using (4), we get

$$\liminf_{n \to \infty} \langle A(u_n), u_n - u \rangle = \liminf_{n \to \infty} \left(\langle A(u_n) - A(u), u_n - u \rangle + \langle A(u), u_n - u \rangle \right) \ge 0$$

giving

$$\liminf_{n \to \infty} \langle A(u_n), u_n \rangle \ge \limsup_{n \to \infty} \langle A(u_n), u \rangle = \langle \xi, u \rangle$$

Proof of (ii). We aim to prove that equality in (1) implies (3). The monotonicity of A gives that

$$\langle A(v) - A(u_n), u_n - v \rangle \le 0$$
, for all $v \in M$, for all $n \in \mathbb{N}$.

Expanding and taking the limsup, we obtain

$$\begin{split} 0 &\geq \limsup_{n \to \infty} \left(\langle A(v), u_n \rangle - \langle A(u_n), u_n \rangle - \langle A(v), v \rangle + \langle A(u_n), v \rangle \right) \\ &= \langle A(v), u \rangle - \langle \xi, u \rangle - \langle A(v), v \rangle + \langle \xi, v \rangle \, . \\ &= \langle A(v) - \xi, u - v \rangle, \ \text{ for all } v \in M \, . \end{split}$$

QUESTION 2. Monotonicity, Convexity

Let X be a Banach space and $F: X \to \mathbb{R}$ Gâteaux differentiable in every point $u \in X$ with Gâteaux derivative F'(u). Show that

$$F$$
 is convex \Leftrightarrow $F': X \to X^*$ is monotone.

Remark:

- A map $G: X \to X^*$ is monotone if $\langle G(u) G(v), u v \rangle \ge 0$ for all $u, v \in X$ (i.e. hemicontinuity, as in the definition of a monotone operator, is not required).
- A function $F: X \to \mathbb{R}$ is convex on X, if $F(tu + (1-t)v) \le tF(u) + (1-t)F(v)$ for all $t \in [0,1]$ and $u, v \in X$.
- Recall that a differentiable function $g : I \subset \mathbb{R} \to \mathbb{R}$ is convex on I if g' is monotonically increasing on I. Consider g(t) := F(tu + (1 t)v).

Solution. First of all recall that if F is Gateaux differentiable, then for every $x \in X$ there exists $F'(x) \in X^*$ such that $F'(x)(v) = \partial_v F(u)$.

Proof that F convex $\Rightarrow F': X \to X^*$ is monotone.

- Since F is convex, then for every $u, v \in X$ the function $t \mapsto g_{u,v}(t) := F(tu + (1-t))v$ is convex.
- Since F is Gateaux differentiable, the directional derivative exists, so the function $g_{u,v}$ is differentiable with $g'_{u,v}(t) = \langle F'(tu + (1-t))v, (u-v) \rangle$.
- The convexity of $g_{u,v}$ implies that $t \mapsto g'_{u,v}(t)$ is non-decreasing.

The combination of the facts above implies that

$$0 \leq g'_{u,v}(1) - g'_{u,v}(0) = \left\langle F'(u), (u-v) \right\rangle - \left\langle F'(v), u-v \right\rangle,$$

i.e. F' is monotone.

<u>Proof that $F': X \to X^*$ is monotone $\Rightarrow F$ convex.</u> Let $u, v \in X$ and $g_{u,v}$ be as above. We first show that F' monotone implies that

(5)
$$g'_{u,v}(s) - g'_{u,v}(t) \ge 0$$
, for $s \ge t$.

Denote $u_s := su + (1 - s)v$. For $s \ge t$, we have

$$g'_{u,v}(s) - g'_{u,v}(t) = \langle F'(u_s), u - v \rangle - \langle F'(u_s + (t - s)(u - v)), u - v \rangle$$

= $\frac{1}{s - t} \langle F'(u_s) - F'(u_s - (s - t)(u - v)), (s - t)(u - v) \rangle$
\ge 0,

where in the last inequality we used that F' is monotone. This proves the claim (5). The convexity of $t \mapsto g_{u,v}(t)$ follows directly from (5). We conclude that

$$F(tu + (1-t)v) = g_{u,v}(t) \le tg_{u,v}(0) + (1-t)g_{u,v}(1) = tF(u) + (1-t)F(v) \quad \text{for all } u, v \in X.$$

Section B

Work done in this section will be marked.

QUESTION 3. Strongly monotone operator Let $\Omega = (-1, 1)$ and $X = H^2(\Omega) \cap H^1_0(\Omega)$ endowed with the H^2 -norm.

(a) Let $A: X \to X^*$ be defined via

$$\langle A(u),v\rangle := \int_{\Omega} u''v''dx.$$

Show that A is a strongly monotone operator, i.e. hemicontinuous and so that there exists some $c_0 > 0$ with

 $\langle A(u) - A(v), u - v \rangle \ge c_0 ||u - v||^2$ for all $u, v \in M$.

Hint: Use Poincaré's inequality, as well as Poincaré's inequality for functions with mean value zero.

(b) Let now $F_{\mu}(u) := A(u) + \mu B(u)$ where $B(u)(v) := u(0) \cdot v(0) + \int_{\Omega} x \cdot v(x) dx$.

Show that $F_{\mu} : X \to X^*$ is well defined for any $\mu \in \mathbb{R}$ and that there exists a number $\mu_0 > 0$ so that for each μ with $|\mu| \le \mu_0$ there exists a unique solution of the equation

$$F_{\mu}(u) = 0.$$

(c) Let now $\mu \ge 0$. Determine a functional $I_{\mu} : X \to \mathbb{R}$ so that the following holds: $u \in X$ is a solution of $F_{\mu}(u) = 0$ if and only if u is a minimiser of I_{μ} on X

QUESTION 4. Consider a domain $\Omega \subset \mathbb{R}^n$ which is smooth and bounded, and $g \in C^2(\mathbb{R}^n)$ such that $g \leq 0$ on $\partial\Omega$. Consider the energy I given by

$$I(v) = \int_{\Omega} \left| \Delta v \right|^2 + f v dx,$$

for some $f \in L^2(\Omega)$.

- (1) Find the Euler-Lagrange equation satisfied by the critical points of I(v) and prove that every critical point of I is a minimiser.
- (2) Consider the set M given by

$$M := \left\{ v \in H^2(\Omega) \cap H^1_0(\Omega) \, | \, v \ge g \text{ a.e. on } \Omega \right\}.$$

Show that there exists a unique minimizer of I on M —check carefully that the assumptions of the Theorem(s) you use are satisfied. You may use without proof that for all $u \in H_0^1(\Omega) \cap H^2(\Omega)$

$$\|u\|_{H^1_0(\Omega)} \le C \|\Delta u\|_{L^2(\Omega)},$$

where the constant C is independent of u.

QUESTION 5. Three approaches to the same problem. Consider a domain $\Omega = \{(x, y) \in \mathbb{R}^2 \text{ s.t. } x^2 + y^2 \leq 1\}$ and the equation

$$-\Delta u + u^5 = 1 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega.$$

- Show that this equation makes sense in $H_0^1(\Omega)$, that is, it has a legitimate weak variational formulation.
- Using the first part of the course, show that you can formulate it as a fixed point problem of the form u = T(u) where T is a continuous compact map.
- Find a simple subsolution \underline{u} and a simple supersolution \overline{u} . Show that the problem can be transformed into

$$-\Delta u + \lambda u = f_{\lambda}(u)$$

for a constant $\lambda > 0$ chosen so that $f_{\lambda}(u)$ is increasing when $\underline{u} \leq u \leq \overline{u}$, and use the method of sub and super solutions to show that a solution u can be found by a constructive (iterative) method.

- Using Schauder's FPT and the above show that there exists a solution.
- Use the variational inequality approach to find a solution in $H_0^1(\Omega)$.
- What can you say about uniqueness?

Section C

Instead of more exercises, in the Section C (usually devoted to complimentary material) of this last problem sheet, I encourage you to read some fundamental topics that we did not have time to cover in the lectures and exercise sheets. Of course, the list below is not exhaustive; however it is a good starting point for the enthusiastic students. The corresponding material is not examinable, however it is fundamental if you want to do research in PDEs in your graduate studies.

- (1) Hopf's Strong Maximum principle. See for instance Evan's PDE Book Chapter 6.4.2.
- (2) Harnack Inequality. See for instance Evan's PDE Book Chapter 6.4.3.
- (3) Eigenvalues of Symmetric Elliptic Operators. See for instance Evan's PDE Book Chapter 6.5.1.
- (4) In the course we ofter considered minimizers of integral energies. For existence of minimizers via the so-called "Direct method in the calculus of variations" see for instance Evan's PDE Book Chapter 8.2. For a more thorough treatment, see for instance Chapter I of Struwe's book "Variational methods".
- (5) For the existence of critical points of min-max type see for instance Evan's PDE Book Chapter 8.5. For a more thorough treatment of min-max type critical points, see for instance Chapter II of Struwe's book "Variational methods".
- (6) Regularity for second order elliptic PDEs. The topic is very broad. Some standard references are "Elliptic Partial Differential Equations of Second Order" by Gilbarg-Trudinger, "Elliptic Partial Differential Equations" by Han-Lin, "Lectures on Elliptic Partial Differential Equations" by Ambrosio-Carlotto-Massaccesi, "Elliptic Regularity Theory-a first course" by Beck.