C3.5 Lie Groups Sheet 1 — MT23

Section A contains an introductory question. Section B contains material to test understanding of the course. Section C contains a more advanced question which is optional. Only answers to Section B should be submitted for marking.

Section A

1. Let G be the group of Möbius transformations which map the upper half-plane

$$\{z = x + iy \in \mathbb{C} : y > 0\}$$

to itself. These are of the form

$$z \mapsto \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{R}$ and ad - bc > 0. Show that G is a 3-dimensional non-compact connected Lie group.

Solution: The coefficients in a Möbius transformation are only defined up to a scalar multiple, so we cover G with two charts.

Since ad - bc > 0, a and b are not simultaneously zero, so define U as the subset on which $a \neq 0$ and take coordinates $x_1 = c/a, x_2 = b/a, x_3 = d/a$ in the open subset of \mathbb{R}^3 defined by $x_3 - x_1x_2 > 0$, which is equivalent to ad - bc > 0. This is one chart.

For another take V to be the open subset where $b \neq 0$ and set $\tilde{x}_1 = c/b$, $\tilde{x}_2 = a/b$, $\tilde{x}_3 = d/b$ so that $\tilde{x}_3 - \tilde{x}_1 \tilde{x}_2 > 0$. Then on $U \cap V$, where $y = b/a \neq 0$, we have

$$\tilde{x}_1 = x_1/x_2, \quad \tilde{x}_2 = 1/x_2, \quad \tilde{x}_3 = x_3/x_2$$

which is smooth and invertible.

This makes G into a 3-dimensional manifold with a countable basis of open sets. Composition of Möbius transformations follows from multiplication of the 2×2 matrices

$$\left(\begin{array}{cc}a&b\\a'&b'\end{array}\right)\left(\begin{array}{cc}c&d\\c'&d'\end{array}\right),$$

which is polynomial and hence smooth in the coordinates x_i , \tilde{x}_i for i = 1, 2, 3. Inversion is

$$z\mapsto \frac{dz-b}{-cz+a}$$

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk $% \mathcal{D} = \mathcal{D} =$

which is smooth.

We need to prove that G is Hausdorff; it is sufficient to prove that any $g \in G$ and e, the identity, can be separated by open sets. The identity is given by a = d and b = c = 0, or $(x_1, x_2, x_3) = (0, 0, 1)$. Since the topology of an open set in \mathbb{R}^3 is Hausdorff it is separated from anything in U. So if $g \in V$ is not in U then a = 0 so $\tilde{x}_2 = 0$. A neighbourhood of this point has \tilde{x}_2 small and hence in $U \cap V$ where $\tilde{x}_2 = 1/x_2$ we must have $|x_2|$ large. But then a neighbourhood of y = 0 will not intersect this.

The subset U is homeomorphic to the open subset of \mathbb{R}^3 defined by $x_3 - x_1x_2 > 0$, which is connected (think of the half-planes $x_3 > mx_1$ in the (x_1, x_3) -plane as m varies) – and likewise V. Since $U \cap V$ is non-empty, G is connected.

The group G is non-compact, for consider the well-defined function $a^2/(ad-bc)$. Restrict to $b = c = 0, a = \lambda \in \mathbb{R}^+, d = 1$ and it is the unbounded function λ .

Section B

- 2. (a) Suppose G_1, G_2 are Lie groups.
 - (i) Show that $G_1 \times G_2$ is a Lie group in a natural way. (You may assume that the product of two manifolds is naturally a manifold).
 - (ii) Show that $T^n = S^1 \times \cdots \times S^1$ is a Lie group.
 - (b) (i) Find a map $\pi : \mathbb{R}^n \to T^n$ that allows you to identify T^n with the quotient group $\mathbb{R}^n/\mathbb{Z}^n$.
 - (ii) Which vector fields on \mathbb{R}^n project under the map induced by π to vector fields on T^n ? Do all vector fields on T^n arise in this way?
 - (iii) Which vector fields X on T^n are left-invariant?
- 3. (a) Show that

$$\mathbf{U}(n) = \{ A \in M_n(\mathbb{C}) : \overline{A^{\mathrm{T}}}A = I \}$$

is a Lie group and compute its dimension.

[Hint: Use the Regular Value Theorem.]

- (b) Find the tangent space $T_I U(n)$.
- (c) Show that U(n) is compact.
- 4. (a) Let G be a Lie group with identity e.
 - (i) Show that the tangent bundle $TG = \bigsqcup_{g \in G} T_g G$ of a Lie group G is canonically identifiable with $G \times T_e G$. [*Hint: Consider left-translation.*]
 - (ii) Deduce that any Lie group of dimension n has n non-vanishing vector fields which are linearly independent at each point of G.
 - (b) (i) Show that the 3-dimensional sphere S^3 is a Lie group by identifying it with

$$\mathrm{SU}(2) = \{ A \in M_2(\mathbb{C}) : \overline{A^{\mathrm{T}}}A = I, \, \det A = 1 \}.$$

(ii) Show that the 2-dimensional sphere S^2 cannot be a Lie group. [*Hint: apply the "Hairy Ball Theorem"*.] 5. (a) Let $\varphi : M \to N$ be a diffeomorphism of manifolds. For a vector field X on M define the *push-forward* vector field $Z = \varphi_* X$ on N by

$$Z_y = d\varphi_x(X_x)$$

where $x = \varphi^{-1}(y)$.

(i) Show that for any smooth function $f: N \to \mathbb{R}$,

$$(\varphi_*X) \cdot f = (X \cdot (f \circ \varphi)) \circ \varphi^{-1}.$$

(ii) Deduce that $[\varphi_*X, \varphi_*Y] \cdot f = \varphi_*[X, Y] \cdot f$, and hence that

$$[\varphi_*X,\varphi_*Y] = \varphi_*[X,Y].$$

- (b) Let G be a Lie group with identity e and let Lie G be the set of left-invariant vector fields on G.
 - (i) Show that

$$(L_q)_*X = X$$
 for all $g \in G \quad \Leftrightarrow \quad d(L_q)_e(X_e) = X_q$ for all $g \in G$

- (ii) Show that if $X, Y \in \text{Lie } G$, then also $[X, Y] \in \text{Lie } G$.
- 6. Let G be a Lie group, and let G_0 denote the connected path component of G containing the identity (we call G_0 the *identity component* of G).
 - (a) Show that G_0 is a normal subgroup of G.
 - (b) If G = O(n) what is G_0 ? Is it true in this example that $G \cong G_0 \times (G/G_0)$ as groups?

Section C

7. (a) By considering the action of a matrix of the form

$$\left(\begin{array}{rrrr} A_{11} & A_{12} & a_1 \\ A_{21} & A_{22} & a_2 \\ 0 & 0 & 1 \end{array}\right)$$

on the plane $x_3 = 1$ in \mathbb{R}^3 , find the condition on A_{ij} for this to define an isometry of \mathbb{R}^2 , and then show that the set of such matrices is a 3-dimensional Lie group G.

- (b) Is G connected?
- (c) Show that G is diffeomorphic to $\mathbb{R}^2 \times O(2)$ as a manifold.
- (d) Show that G has a subgroup isomorphic as a group to the additive group \mathbb{R}^2 , and another isomorphic to O(2), but G is not a product of these two groups.