
C3.5 Lie Groups

Sheet 1 — MT23

Section A contains an introductory question. Section B contains material to test under-

standing of the course. Section C contains a more advanced question which is optional.

Only answers to Section B should be submitted for marking.

Section A

1. Let G be the group of Möbius transformations which map the upper half-plane

{z = x+ iy ∈ C : y > 0}

to itself. These are of the form

z 7→ az + b

cz + d
where a, b, c, d ∈ R and ad − bc > 0. Show that G is a 3-dimensional non-compact

connected Lie group.

Solution: The coefficients in a Möbius transformation are only defined up to a scalar

multiple, so we cover G with two charts.

Since ad − bc > 0, a and b are not simultaneously zero, so define U as the subset on

which a ̸= 0 and take coordinates x1 = c/a, x2 = b/a, x3 = d/a in the open subset of R3

defined by x3 − x1x2 > 0, which is equivalent to ad− bc > 0. This is one chart.

For another take V to be the open subset where b ̸= 0 and set x̃1 = c/b, x̃2 = a/b, x̃3 =

d/b so that x̃3 − x̃1x̃2 > 0. Then on U ∩ V , where y = b/a ̸= 0,we have

x̃1 = x1/x2, x̃2 = 1/x2, x̃3 = x3/x2

which is smooth and invertible.

This makes G into a 3-dimensional manifold with a countable basis of open sets. Com-

position of Möbius transformations follows from multiplication of the 2× 2 matrices(
a b

a′ b′

)(
c d

c′ d′

)
,

which is polynomial and hence smooth in the coordinates xi, x̃i for i = 1, 2, 3. Inversion

is

z 7→ dz − b

−cz + a
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which is smooth.

We need to prove that G is Hausdorff; it is sufficient to prove that any g ∈ G and e, the

identity, can be separated by open sets. The identity is given by a = d and b = c = 0,

or (x1, x2, x3) = (0, 0, 1). Since the topology of an open set in R3 is Hausdorff it is

separated from anything in U . So if g ∈ V is not in U then a = 0 so x̃2 = 0. A

neighbourhood of this point has x̃2 small and hence in U ∩ V where x̃2 = 1/x2 we must

have |x2| large. But then a neighbourhood of y = 0 will not intersect this.

The subset U is homeomorphic to the open subset of R3 defined by x3−x1x2 > 0, which

is connected (think of the half-planes x3 > mx1 in the (x1, x3)-plane as m varies) – and

likewise V . Since U ∩ V is non-empty, G is connected.

The group G is non-compact, for consider the well-defined function a2/(ad−bc). Restrict

to b = c = 0, a = λ ∈ R+, d = 1 and it is the unbounded function λ.
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Section B

2. (a) Suppose G1, G2 are Lie groups.

(i) Show that G1×G2 is a Lie group in a natural way. (You may assume that the

product of two manifolds is naturally a manifold).

(ii) Show that T n = S1 × · · · × S1 is a Lie group.

(b) (i) Find a map π : Rn → T n that allows you to identify T n with the quotient

group Rn/Zn.

(ii) Which vector fields on Rn project under the map induced by π to vector fields

on T n? Do all vector fields on T n arise in this way?

(iii) Which vector fields X on T n are left-invariant?

3. (a) Show that

U(n) = {A ∈ Mn(C) : ATA = I}

is a Lie group and compute its dimension.

[Hint: Use the Regular Value Theorem.]

(b) Find the tangent space TI U(n).

(c) Show that U(n) is compact.

4. (a) Let G be a Lie group with identity e.

(i) Show that the tangent bundle TG =
⊔

g∈G TgG of a Lie group G is canonically

identifiable with G× TeG.

[Hint: Consider left-translation.]

(ii) Deduce that any Lie group of dimension n has n non-vanishing vector fields

which are linearly independent at each point of G.

(b) (i) Show that the 3-dimensional sphere S3 is a Lie group by identifying it with

SU(2) = {A ∈ M2(C) : ATA = I, detA = 1}.

(ii) Show that the 2-dimensional sphere S2 cannot be a Lie group.

[Hint: apply the “Hairy Ball Theorem”.]
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5. (a) Let φ : M → N be a diffeomorphism of manifolds. For a vector field X on M

define the push-forward vector field Z = φ∗X on N by

Zy = dφx(Xx)

where x = φ−1(y).

(i) Show that for any smooth function f : N → R,

(φ∗X) · f = (X · (f ◦ φ)) ◦ φ−1.

(ii) Deduce that [φ∗X,φ∗Y ] · f = φ∗[X, Y ] · f , and hence that

[φ∗X,φ∗Y ] = φ∗[X, Y ].

(b) Let G be a Lie group with identity e and let LieG be the set of left-invariant vector

fields on G.

(i) Show that

(Lg)∗X = X for all g ∈ G ⇔ d(Lg)e(Xe) = Xg for all g ∈ G

(ii) Show that if X, Y ∈ LieG, then also [X, Y ] ∈ LieG.

6. Let G be a Lie group, and let G0 denote the connected path component of G containing

the identity (we call G0 the identity component of G).

(a) Show that G0 is a normal subgroup of G.

(b) If G = O(n) what is G0? Is it true in this example that G ∼= G0 × (G/G0) as

groups?
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Section C

7. (a) By considering the action of a matrix of the form A11 A12 a1

A21 A22 a2

0 0 1


on the plane x3 = 1 in R3, find the condition on Aij for this to define an isometry

of R2, and then show that the set of such matrices is a 3-dimensional Lie group G.

(b) Is G connected?

(c) Show that G is diffeomorphic to R2 ×O(2) as a manifold.

(d) Show that G has a subgroup isomorphic as a group to the additive group R2, and

another isomorphic to O(2), but G is not a product of these two groups.

Mathematical Institute, University of Oxford

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk

Page 5 of 5


