C3.5 Lie Groups Sheet 2 — MT23

Section A contains introductory questions. Section B contains material to test understanding of the course. Section C contains further questions which are optional. No answers should be submitted for marking.

Section A

1. The algebra of quaternions is defined as

$$
\mathbb{H} = \{a + bi + cj + dk \; : \; a, b, c, d \in \mathbb{R}\}
$$

where i, j, k satisfy the relations

$$
ij = k = -ji
$$
 and $i^2 = j^2 = k^2 = -1$.

- (a) Show that $jk = i = -kj$ and $ki = j = -ik$.
- (b) Show that $\mathbb H$ may be identified with the algebra of matrices

$$
\left\{ \left(\begin{array}{cc} z & w \\ -\bar{w} & \bar{z} \end{array} \right) \; : \; z, w \in \mathbb{C} \right\}.
$$

(c) If $q = a + bi + cj + dk \in \mathbb{H}$, we define the *quaternionic conjugate* to be

$$
\bar{q} = a - bi - cj - dk.
$$

- (i) Show that $q\bar{q}$ is real and non-negative, so that the norm of q, which is the nonnegative real number |q| such that $|q|^2 = q\bar{q}$, is well-defined.
- (ii) Deduce that $q \in \mathbb{H} \setminus \{0\}$ has a multiplicative inverse $q^{-1} = \frac{\bar{q}}{|\bar{q}|}$ $\frac{\overline{q}}{|q|^2}$.
- (d) (i) Show that, for $q_1, q_2 \in \mathbb{H}$ and $q \in \mathbb{H} \setminus \{0\},$

$$
|q_1q_2| = |q_1| \cdot |q_2|
$$
 and $|q^{-1}| = |q|^{-1}$.

(ii) Viewing $\mathbb H$ as a real 4-dimensional vector space, check that $|q|$ is the usual norm on \mathbb{R}^4 .

Solution:

- (a) We have $jk = -i^2jk = -ik^2 = i = -k^2i = kji^2 = -kj$ and $ki = -kij^2 = -k^2j = j = -jk^2 = -ik.$
- (b) Let

$$
A = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} : z, w \in \mathbb{C} \right\}.
$$

An R-algebra isomorphism $\theta : \mathbb{H} \to A$ is given by

$$
a + bi + cj + dk \mapsto \begin{pmatrix} a + ib & c + id \\ -c + id & a - ib \end{pmatrix}.
$$

By inspection θ is compatible with the relations defining $\mathbb H$ and is R-linear, so is a genuine homomorphism of R-algebras that is also clearly bijective.

(c) (i) If $q = a + bi + cj + dk$ then

$$
q\overline{q} = (a + bi + cj + dk)(a - bi - cj - dk) = a^2 + b^2 + c^2 + d^2 \in \mathbb{R}^{\geq 0}.
$$

- (ii) With $q \neq 0$ and $|q| =$ √ $\overline{q\overline{q}}$ we have $q\overline{q}/|q|^2 = 1$ so $q^{-1} = \overline{q}/|q|^2$.
- (d) (i) We have (by a quick calculation) $\overline{q_1q_2} = \overline{q_2} \cdot \overline{q_1}$ and $q\overline{q} = \overline{q}q$ then

$$
|q_1q_2|^2 = q_1 \cdot q_2 \cdot \overline{q_2} \cdot \overline{q_1} = q_1 |q_2|^2 \overline{q_1} = |q_1|^2 |q_2|^2.
$$

Taking square roots yields $|q_1q_2| = |q_1||q_2|$. Taking $q_1 = q$ and $q_2 = q^{-1}$ gives $|q||q^{-1}| = |1| = 1$, hence $|q^{-1}| = |q|^{-1}$.

Alternatively, by direct calculation

$$
|q|^2=\det\theta(q),
$$

so the multiplicativity of the quaternionic norm follows from the multiplicativity of the determinant.

(ii) This is immediate from the earlier calculation that $|q|^2 = a^2 + b^2 + c^2 + d^2$ for $q = a + bi + cj + dk.$

- 2. Calculate the Lie algebras of the following Lie groups. (Note that this means finding both the vector space and the Lie bracket.)
	- (a) The isometric transformations of \mathbb{R}^2 of the form $x \mapsto Ax + b$.
	- (b) The non-zero quaternions \mathbb{H}^* .
	- (c) The unit quaternions $\{q \in \mathbb{H} : |q| = 1\}.$
	- (d) The group of Möbius transformations of the form

$$
z \mapsto \frac{az + b}{cz + d}
$$

where $a, b, c, d \in \mathbb{R}$ and $ad - bc > 0$.

[Hint: It may be helpful to consider a homomorphism from a subgroup of $GL(2,\mathbb{R})$] to this group.]

Solution:

(a) The group G of isometric transformations of \mathbb{R}^2 of the form $x \mapsto Ax + b$ can be identified with the subgroup of $GL(3,\mathbb{R})$ consisting of matrices of the form

$$
\left(\begin{array}{ccc} A_{11} & A_{12} & b_1 \\ A_{21} & A_{22} & b_2 \\ 0 & 0 & 1 \end{array}\right)
$$

where $A \in O(2)$. Thus the Lie algebra of G is a subalgebra of the Lie algebra of $GL(3,\mathbb{R})$ with Lie bracket given by commutator of matrices. $O(2)$ has Lie algebra the skew-symmetric 2×2 matrices, so a basis for the Lie algebra of G is

$$
X = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), Y = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right), Z = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right),
$$

and the Lie brackets are:

$$
[X,Y]=0,\ [Y,Z]=-X,\ [Z,X]=-Y.
$$

(b) The nonzero quaternions form an open subset in \mathbb{R}^4 so the tangent space at the identity is $\mathbb{R}^4 = \mathbb{H}$. By left multiplication the nonzero quaternions form a subgroup of $GL(4,\mathbb{R})$ with the Lie bracket again the commutator. So the Lie algebra is spanned by $1, i, j, k$ and $[1, q] = 0$ for all $q \in \mathbb{H}$. The remaining Lie brackets are determined by

$$
[i,j]=2k,\ [j,k]=2i,\ [k,i]=2j.
$$

- (c) The unit quaternions form the unit sphere in \mathbb{R}^4 whose tangent space at 1 is the orthogonal complement of $\mathbb{R} \subseteq \mathbb{H}$, namely the imaginary quaternions. The Lie brackets are as above.
- (d) The composition of this group G of Möbius transformations is achieved by multiplying the corresponding 2×2 matrices. This means there is a surjective homomorphism from the subgroup of $GL(2,\mathbb{R})$ consisting of matrices of strictly positive determinant to G and a corresponding surjective map from the Lie algebra of $GL(2,\mathbb{R})$ to the Lie algebra of G. The Lie bracket for the matrix group is again commutator of matrices. The scalar matrices in $GL(2,\mathbb{R})$ give the trivial Möbius transformation, so the Lie algebra homomorphism maps the 3-dimensional Lie algebra of $SL(2,\mathbb{R})$, which consists of the trace zero 2×2 real matrices, surjectively to the 3-dimensional Lie algebra of G. This is therefore an isomorphism of Lie algebras.

Take a basis

$$
X = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), Y = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right),
$$

and the Lie brackets are

$$
[X,Y]=Z,\ [Y,Z]=2Y,\ [Z,X]=2X.
$$

Section B

3. Define the Lie group (called the compact symplectic group) by

$$
\text{Sp}(n) = \{ A \in \text{GL}(n, \mathbb{H}) : \overline{A^T}A = I \},
$$

where $\overline{A^{T}}$ denotes the quaternionic conjugate transpose of A (ie the (i, j) entry of $\overline{A^{T}}$ is the quaternionic conjugate of the (j, i) entry of A).

- (a) Find the dimension of $\text{Sp}(n)$ and the Lie algebra $\mathfrak{sp}(n)$ of $\text{Sp}(n)$.
- (b) Show that

 $Sp(1) = SU(2)$

and that $Sp(1)$ is topologically the 3-sphere.

(c) For $q \in \mathbb{H} \setminus \{0\}$ define

$$
\mathcal{A}_q : \mathbb{H} \to \mathbb{H}, \quad p \mapsto qpq^{-1}.
$$

Show that \mathcal{A}_q is an orthogonal map (viewing $\mathbb H$ as $\mathbb R^4$).

- (d) By considering the orthogonal complement of $\mathbb{R} = \mathbb{R} \cdot 1 \subset \mathbb{H}$, deduce that SU(2) ≅ $\text{Sp}(1) \subset \mathbb{H} \setminus \{0\}$ acts on \mathbb{R}^3 by rotations.
- (e) (Optional) Explain briefly why this gives a homomorphism $Sp(1) \cong SU(2) \rightarrow SO(3)$ with kernel $\{\pm 1\}$.

Solution:

(a) Using the regular value theorem, we see that $Sp(n)$ is a manifold with

$$
\mathfrak{sp}(n) = T_I \text{Sp}(n) = \{ B \in M_n(\mathbb{H}) : \overline{B^T} + B = 0 \}.
$$

This is therefore the Lie algebra with the matrix commutator as the Lie bracket. Its dimension is $4 * \frac{1}{2}$ $\frac{1}{2}n(n-1) = 2n(n-1)$ for the off-diagonal entries plus $3*n$ for the diagonal entries (which are purely imaginary), which is a total of $2n^2+n=n(2n+1)$, which is then the dimension of $Sp(n)$.

- (b) Sp(1) is precisely the set of all quaternions q with $|q|^2 = 1$. Identifying $\mathbb{H} \equiv \mathbb{R}^4$ induces an identification Sp(1) $\equiv S^3$. Identifying $\mathbb{H} \equiv A$ via θ from Question 1 induces the identification $Sp(1)$ with $SU(2)$.
- (c) Observe that if $v = a + bi + cj + dk$ and $w = a' + bi + c'j + d'k$ then by direct calculation

$$
\langle v, w \rangle = \text{Re}(v\overline{w}) = \frac{1}{2}(v\overline{w} + \overline{v}\overline{w}) = \frac{1}{2}(v\overline{w} + w\overline{v}).
$$

Without loss of generality we may assume q has unit norm, so $q^{-1} = \overline{q}$. Then

$$
\langle \mathcal{A}_q(v), \mathcal{A}_q(w) \rangle = \langle qvq^{-1}, qwq^{-1} \rangle
$$

= $\frac{1}{2} \left(qv\overline{q} \cdot \overline{qw\overline{q}} + qw\overline{q} \cdot \overline{qv\overline{q}} \right)$
= $\frac{1}{2} \cdot q \left(v\overline{w} + w\overline{v} \right) \overline{q}$
= $\frac{1}{2} (v\overline{w} + w\overline{v}) = \langle v, w \rangle$,

since $\mathcal{A}_q|_{\mathbb{R}} = id_{\mathbb{R}}$. Therefore \mathcal{A}_q is an orthogonal map on \mathbb{R}^4 .

(d) Let $V = \text{Im}(\mathbb{H}) \cong \mathbb{R}^3$ be the orthogonal complement of $\mathbb{R} \subset \mathbb{H} = \mathbb{R}^4$. Since $\text{Sp}(1) \subset \mathbb{H}^*$ acts by orthogonal transformations on \mathbb{R}^4 and restricts to the identity on R then $\mathcal{A}_q(V) = V$ for all $q \in \text{Sp}(1)$.

To show Sp(1) acts on \mathbb{R}^3 by rotations, we consider the composition

$$
S^3 = \text{Sp}(1) \xrightarrow{\mathcal{A}} \text{O}(3) \xrightarrow{\det} \{\pm 1\}.
$$

This gives a continuous map to a discrete space; as $Sp(1)$ is connected this map is necessarily constant. But $1 \in Sp(1)$ and $det(\mathcal{A}_1) = 1$, so $\mathcal{A}_q \in SO(3)$ for all $q \in \text{Sp}(1)$. In other words $\text{Sp}(1)$ acts on \mathbb{R}^3 by rotations.

(e) The homomorphism in question is given by A (which is in fact a homomorphism of Lie groups). The elements ± 1 lie in the kernel of this map; we will show these are the only elements. We will do this by showing that A is a non-trivial covering map then appealing to the fact that the fundamental group $\pi_1(SO(3)) = \mathbb{Z}/2$.

We first compute the derivative at 1 of A, viewed as a map $\mathbb{R}^4 \to M_4(\mathbb{R})$ (where $SO(3) \hookrightarrow M_4(\mathbb{R})$ via $A \mapsto {\binom{1}{A}}$. Take $q, h \in \mathbb{H}$ with $|h| < 1$. We may expand $(1+h)^{-1}$ as an infinite series:

$$
(1+h)^{-1} = \sum_{n=0}^{\infty} (-1)^n h^n.
$$

Then

$$
(\mathcal{A}_{1+h} - \mathcal{A}_1)(q) = (1+h)q(1+h)^{-1} - q
$$

= (1+h)q(1-h+o(h)) - q
= hq - qh + o(h) = [h, q] + o(h).

It follows that

$$
(d\mathcal{A})_1 : \mathfrak{su}(2) \cong T_1Sp(1) \to \mathfrak{so}(3), \qquad h \mapsto [h, -].
$$

It can easily be shown that this map is an isomorphism of Lie algebras (the Lie bracket of S^3 is given by the cross product on \mathbb{R}^3 - see Question 5). This implies that $\mathcal{A}: Sp(1) \to SO(3)$ is a covering map, which is non-trivial since A has non-trivial kernel.

From algebraic topology there exists a homeomorphism $SO(3) \cong \mathbb{RP}^3$. But S^3 is the universal cover of \mathbb{RP}^3 via the obvious two-to-one quotient map, so S^3 is also the universal cover of SO(3). In particular this implies that $\pi_1(SO(3)) = \mathbb{Z}/2$ and that any non-trivial covering of SO(3) is equivalent to the covering $S^3 \to \mathbb{RP}^3 \cong$ SO(3). Therefore $\mathcal{A}: Sp(1) \cong SU(2) \rightarrow SO(3)$ is a double covering and induces an isomorphism $Sp(1)/\{\pm 1\} \cong SO(3)$.

- 4. Check these properties of $\exp : \mathfrak{g} = \text{Lie}(G) \to G$ for a Lie group G with identity e.
	- (a) Image(exp) $\subseteq G_0$ where G_0 = connected component of $e \in G$.
	- (b) $\exp((s+t)X) = \exp(sX)\exp(tX)$ for all $s, t \in \mathbb{R}$ and $X \in \mathfrak{g}$.
	- (c) $(\exp(X))^{-1} = \exp(-X)$ for all $X \in \mathfrak{g}$.
	- (d) If $q = \exp(X)$ then it has an *n*-th root.
	- (e) exp : $\mathfrak{sl}(n,\mathbb{R}) \to SL(n,\mathbb{R})$ is not surjective for $n \geq 2$.

Solution:

- (a) Recall that if $X \in \mathfrak{g}$ then $\exp(X) = \alpha^X(1)$, where α^X is the 1-parameter subgroup with tangent vector X at the identity. But $t \to \alpha^X(t)$ is a path in G with $\alpha^X(0) = e$, so $\exp(X)$ must lie in the same path component as e.
- (b) By definition $\exp((s+t)X) = \alpha^{(s+t)X}(1)$. For any $\lambda \in \mathbb{R}$ we have $\alpha^{XX}(u) = \alpha^{X}(\lambda u)$ as both curves have tangent vector λX at the identity. Therefore $\exp((s+t)X)$ = $\alpha^X(s+t) = \alpha^X(s)\alpha^X(t) = \exp(sX)\exp(tX).$
- (c) Taking $s = -t = 1$ gives $exp(X) exp(-X) = exp(0) = e$, hence $exp(X)^{-1} =$ $\exp(-X)$.
- (d) If $g = \exp(X)$ then an *n*-th root of g is given by $\exp(X/n)$.
- (e) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $C = \begin{pmatrix} -2 & 0 \\ 0 & -1/2 \end{pmatrix} \in SL(2, \mathbb{R})$ and suppose for a contradiction that $A^{2} = C$ (for some choice of a, \ldots, d). Then $b(a + d) = 0$ and $a^{2} + bc = -2$. This forces $b \neq 0$, so $a = -d$ and $1 = ad - bc = -(a^2 + bc) = 2$, contradiction. Therefore C has no square root so cannot lie in the image of exp. Then by embedding A in $SL(n, \mathbb{R})$ in the obvious way for any $n \geq 2$ gives the result.
- 5. (a) Prove directly that ad is a Lie algebra homomorphism from $\text{ad}(X)(Z) = [X, Z]$ for X, Z in the Lie algebra.
	- (b) Show that

$$
X_1 = \left(\begin{array}{rrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \quad X_2 = \left(\begin{array}{rrr} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right), \quad X_3 = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right)
$$

is a basis for the Lie algebra $\mathfrak{so}(3) \subset M_3(\mathbb{R})$ of SO(3).

(c) By computing $[X_i, X_j]$ for $i, j = 1, 2, 3$, show that if e_1, e_2, e_3 are the standard basis vectors on \mathbb{R}^3 and \times is the cross product on \mathbb{R}^3 , then

$$
F: \mathfrak{so}(3) \to (\mathbb{R}^3, \times), \quad X_i \mapsto e_i
$$

is a Lie algebra isomorphism.

- (d) Via F in the previous part we identify $\text{End}(\mathfrak{so}(3))$ with 3×3 matrices. Compute the matrices $\text{ad}(X_i)$.
- (e) By computing $\kappa(X_i, X_j)$ for $i, j = 1, 2, 3$ show that the Killing form

$$
\kappa(X, Y) = \text{tr}(\text{ad}(X)\text{ad}(Y)) \in \mathbb{R}
$$

is a negative definite scalar product on $\mathfrak{so}(3)$.

Solution:

(a) Let $X, Y, Z \in \mathfrak{g}$. From the given expression for ad(X) we already have that ad is linear, so it remains to show that

$$
ad([X,Y])(Z) = [ad(X), ad(Y)](Z).
$$

But by antisymmetry and the Jacobi identity

$$
[ad(X), ad(Y)] \cdot Z = (ad(X) \circ ad(Y) - ad(Y) \circ ad(X)) \cdot Z
$$

= $ad(X)([Y, Z]) - ad(Y)([X, Z])$
= $[X, [Y, Z]] - [Y, [X, Z]]$
= $[X, [Y, Z]] + [Y, [Z, X]]$
= $-[Z, [X, Y]]$
= $[[X, Y], Z]$
= $ad([X, Y])(Z).$

Therefore ad is a Lie algebra homomorphism.

- (b) The X_i are linearly independent by inspection. Any skew-symmetric 3×3 real matrix must have zeros on the diagonal, and is uniquely determined by the entries a_{ij} with $i < j$. Therefore the X_i span $\mathfrak{so}(3)$.
- (c) The Lie bracket on $\mathfrak{so}(3)$ inherited from the Lie group SO(3) coincides with the matrix commutator. Quick computations then give

$$
[X_1, X_2] = X_3, \quad [X_2, X_3] = X_1, \quad [X_3, X_1] = X_2.
$$

Then F is isomorphism of Lie algebras, as

$$
e_1 \times e_2 = e_3, \quad e_2 \times e_3 = e_1, \quad e_3 \times e_1 = e_2.
$$

(d) With respect to the ordered basis (X_1, X_2, X_3) , by inspection

$$
ad(X_1) = -X_3, \quad ad(X_2) = -X_2, \quad ad(X_3) = -X_1.
$$

(e) We have for all i and j

$$
\kappa(X_i, X_j) = -2\delta_{ij}.
$$

By the linearity of trace and ad the Killing form is bilinear, and is symmetric as $tr(AB) = tr(BA)$. Given $X \in \mathfrak{so}(3)$, expanding out X as a linear combination of the X_i gives $\kappa(X, X) \leq 0$, with equality if and only if $X = 0$. Therefore the Killing form is a negative definite scalar product on $\mathfrak{so}(3)$.

- 6. (a) Show that for a matrix group G, we have $\exp(gXg^{-1}) = g \exp(X)g^{-1}$ for all $g \in G$ and $X \in \mathfrak{a}$.
	- (b) Consider the subgroup T of the unitary group $U(n)$ consisting of diagonal matrices. Show that T is a torus T^n and that T lies in the image of the exponential map $\exp: \mathfrak{u}(n) \to U(n).$
	- (c) Deduce that $\exp: \mathfrak{u}(n) \to U(n)$ is surjective.

Solution:

(a) Fix $g \in G$ and consider the Lie group endomorphism $C_g : G \to G$, $h \mapsto ghg^{-1}$. By definition we have $\text{Ad}_q = (dC_q)_I : \mathfrak{g} \to \mathfrak{g}$. By the naturality of the exponential map the following diagram commutes:

Identifying $\mathfrak g$ as a matrix Lie algebra, we have for $X \in \mathfrak g$ the identity

$$
\mathrm{Ad}(g)(X) = gXg^{-1}
$$

since the map $A \mapsto PAP^{-1}$ on matrices is linear. The equality $\exp(gXg^{-1})$ $g \exp(X) g^{-1}$ follows.

(b) If $A \in T$, the equality $\overline{A}^T A = I$ implies that all of the diagonal entries of A are complex numbers of unit norm, so

$$
T = \left\{ \mathrm{diag}(e^{it_1}, \ldots, e^{it_n}) : t_i \in \mathbb{R} \right\} \cong (S^1)^n.
$$

The exponential map on $\mathfrak{u}(n)$ is given by the usual matrix exponential $A \mapsto$ $\sum_{n=0}^{\infty} A^n/n!$. If $A \in T$, the equality $\overline{A}^T A = I$ implies that all of the diagonal entries of A are complex numbers of unit norm, so

$$
T = \left\{ \mathrm{diag}(e^{it_1}, \ldots, e^{it_n}) : t_i \in \mathbb{R} \right\} \cong (S^1)^n.
$$

The exponential map on $\mathfrak{u}(n)$ is given by the usual matrix exponential $A \mapsto$ $\sum_{n=0}^{\infty} A^n/n!$.(In $GL(k, \mathbb{R})$, the curve $t \mapsto \sum_{n=0}^{\infty} (tB)^n/n!$ is a smooth curve in $GL(k, \mathbb{R})$ with derivative B at $t = 0$, so by uniqueness of integral curves this is the unique integral curve through I with tangent vector B in $GL(k, \mathbb{R})$. Any matrix Lie group is a Lie subgroup of $GL(k, \mathbb{R})$ for some k. Thus for any matrix Lie group, the Lie group and matrix exponentials coincide.)

As

$$
diag(e^{it_1},\ldots,e^{it_n}) = exp(diag(it_1,\ldots, it_n))
$$

then T lies in the image of $\exp: \mathfrak{u}(n) \to U(n)$.

(c) Given $A \in U(n)$, there exists a diagonal matrix D and a unitary matrix P with $A = PDP^{-1}$. Then $D \in T$ so is equal to $exp(B)$ for some $B \in \mathfrak{u}(n)$. Then (using the first part of this question) $A = \exp(PBP^{-1})$. As PBP^{-1} is skew-Hermitian then A lies in the image of $\exp : \mathfrak{u}(n) \to U(n)$.

Section C

7. The 3-dimensional Heisenberg group G consists of matrices of the form

$$
\left(\begin{array}{rrr} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right)
$$

with $a, b, c \in \mathbb{R}$.

(a) Show that the Lie algebra of G consists of matrices

$$
\left(\begin{array}{ccc} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{array}\right)
$$

- (b) Calculate the exponential map for G.
- (c) Is the exponential map surjective in this case?
- 8. (a) If $A \in GL(n, \mathbb{C})$ is diagonalizable, show that $A = \exp B$ for a complex matrix B. (b) Let

$$
A = \left(\begin{array}{cccc} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{array} \right)
$$

with $\lambda \neq 0 \in \mathbb{C}$. Show, by writing this in the form $\lambda(I + N)$, that in this case too there exists B such that $A = \exp B$.

(c) The Jordan normal form states that any complex $n \times n$ matrix is conjugate to a matrix with blocks of the above form down the diagonal. Deduce that the exponential map for the Lie group $GL(n, \mathbb{C})$ is surjective.