
C3.5 Lie Groups

Sheet 3 — MT23

Section A contains an introductory question. Section B contains material to test under-

standing of the course. Section C contains further questions which are optional. Only

answers to Section B should be submitted for marking.

Section A

1. Let sl(2,R) = {A ∈ M2(R) : trA = 0} .

(a) Show that sl(2,R) is a Lie algebra with basis

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
,

and work out the bracket relations for e, f, h.

(b) Show that sl(2,R) is not isomorphic to su(2).

Solution:

(a) Since tr(AB) = tr(BA), the trace of any commutator of square matrices is zero, so

sl(2,R) is a Lie algebra when endowed with the matrix commutator. Any traceless

2× 2 real matrix is uniquely expressible in the form

A =

(
a b

c −a

)

for real numbers a, b and c, so {e, f, h} is a basis for sl(2,R). By direct calculation

we have

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

(b) Recall su(2) ∼= (R3,×) where × is the cross product. Any two linearly independent

elements of R3 generate (R3,×) since v × w is orthogonal to both v and w and is

non-zero if v and w are linearly independent. Therefore su(2) has no 2-dimensional

Lie subalgebras. However R{h, e} is a 2-dimensional Lie subalgebra of sl(2,R).
Thus sl(2,R) and su(2) cannot be isomorphic.
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Section B

2. (a) Let φ : G1 → G2 be a Lie group homomorphism. Show that kerφ ⊆ G1 is a closed

(hence embedded) Lie subgroup with Lie algebra ker(dφe) ⊆ g1.

(b) A vector subspace J ⊆ (V, [·, ·]) of a Lie algebra is called an ideal if [v, j] ∈
J for all v ∈ V, j ∈ J . Show that ideals are Lie subalgebras.

(c) Let H be a Lie subgroup of G, with H,G connected. Show that H is a normal

subgroup of G ⇔ h ⊆ g is an ideal.

[You may find it helpful to show that geY g−1 = eAd(g).Y for g ∈ G and Y ∈ g.]

(d) The centre of a Lie algebra (V, [·, ·]) is

Z(V ) = {v ∈ V : [v, w] = 0 for all w ∈ V }.

For G connected, prove that the centre of the group G is

Z(G) = ker(Ad : G → Aut(g))

(e) Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which

is abelian, normal and has Lie algebra Lie(Z(G)) = Z(g).

(f) Finally deduce that, for G connected, G is abelian ⇔ g is abelian.

3. (a) Show that if X, Y belong to the Lie algebra of a Lie group G then

[X, Y ] = 0 ⇒ exp(X + Y ) = exp(X) exp(Y ).

(b) Prove that if G is a connected Lie group with Z(G) = {e} then G can be identified

with a Lie subgroup of GL(N,R), for some N , so g is a Lie subalgebra of gl(N,R).

(c) If (V, [·, ·]) is a Lie algebra with Z(V ) = {0}, show that V is the Lie algebra of

some Lie group.

4. Find all the connected Lie subgroups of SO(3).

5. (a) Show that Lebesgue measure is the bi-invariant Haar measure on Rn viewed as an

additive group.

(b) Find the bi-invariant Haar measure on (R>0,×), the multiplicative group of positive

reals.

6. Give an example of an irreducible representation of S1 on R2. Describe what happens

to this representation when we complexify it.

Mathematical Institute, University of Oxford

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk

Page 2 of 3



C3.5 Lie Groups: Sheet 3 — MT23

Section C

7. (a) Let ϕ : G → Aut(V ) be a representation. If α : G → G is an automorphism show

that ϕ ◦ α is another representation on the same vector space.

(b) If α(g) = hgh−1 for some h ∈ G show that the two representations are equivalent.

(c) Give an example of an automorphism where the two representations are not equiv-

alent.

8. Consider the action of SO(3) on R3 and let f : R3 → R be a smooth real-valued function.

(a) For A ∈ SO(3) show that (Af)(x) = f(A−1x) defines an action of SO(3) on the

space of all smooth functions.

(b) If r2 = x2
1 + x2

2 + x2
3 show that Af = f .

(c) Let ∆ denote the Laplace operator

∆f =
3∑

i=1

∂2f

∂x2
i

.

Show that A∆f = ∆Af .

(d) Consider the vector space of functions of the form f = p where p(x1, x2, x3) is

a homogeneous polynomial of degree m. Show that this is a finite-dimensional

representation Vm of SO(3) and calculate its dimension.

(e) Let Hm ⊆ Vm be the subspace of solutions to ∆f = 0 for f ∈ Vm, the harmonic

polynomials of degree m. Show that Hm is a representation space for SO(3) and

that V2 = H2 ⊕ r2H0 and V3 = H3 ⊕ r2H1 are decompositions into inequivalent

representations.

(f) Can you generalize this?
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