C3.5 Lie Groups Sheet 3 — MT23

Section A contains an introductory question. Section B contains material to test understanding of the course. Section C contains further questions which are optional. Only answers to Section B should be submitted for marking.

Section A

- 1. Let $\mathfrak{sl}(2,\mathbb{R}) = \{A \in M_2(\mathbb{R}) : \operatorname{tr} A = 0\}$.
 - (a) Show that $\mathfrak{sl}(2,\mathbb{R})$ is a Lie algebra with basis

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and work out the bracket relations for e, f, h.

(b) Show that $\mathfrak{sl}(2,\mathbb{R})$ is not isomorphic to $\mathfrak{su}(2)$.

Solution:

(a) Since tr(AB) = tr(BA), the trace of any commutator of square matrices is zero, so $\mathfrak{sl}(2,\mathbb{R})$ is a Lie algebra when endowed with the matrix commutator. Any traceless 2×2 real matrix is uniquely expressible in the form

$$A = \left(\begin{array}{cc} a & b \\ c & -a \end{array}\right)$$

for real numbers a, b and c, so $\{e, f, h\}$ is a basis for $\mathfrak{sl}(2, \mathbb{R})$. By direct calculation we have

$$[h, e] = 2e,$$
 $[h, f] = -2f,$ $[e, f] = h.$

(b) Recall su(2) ≈ (ℝ³, ×) where × is the cross product. Any two linearly independent elements of ℝ³ generate (ℝ³, ×) since v × w is orthogonal to both v and w and is non-zero if v and w are linearly independent. Therefore su(2) has no 2-dimensional Lie subalgebras. However ℝ{h, e} is a 2-dimensional Lie subalgebra of sl(2, ℝ). Thus sl(2, ℝ) and su(2) cannot be isomorphic.

Section B

- 2. (a) Let $\varphi : G_1 \to G_2$ be a Lie group homomorphism. Show that ker $\varphi \subseteq G_1$ is a closed (hence embedded) Lie subgroup with Lie algebra ker $(d\varphi_e) \subseteq \mathfrak{g}_1$.
 - (b) A vector subspace $J \subseteq (V, [\cdot, \cdot])$ of a Lie algebra is called an *ideal* if $[v, j] \in J$ for all $v \in V, j \in J$. Show that ideals are Lie subalgebras.
 - (c) Let H be a Lie subgroup of G, with H, G connected. Show that H is a normal subgroup of G ⇔ 𝔥 ⊆ 𝔅 is an ideal.
 [You may find it helpful to show that ge^Yg⁻¹ = e^{Ad(g).Y} for g ∈ G and Y ∈ 𝔅.]
 - (d) The *centre* of a Lie algebra $(V, [\cdot, \cdot])$ is

$$Z(V) = \{ v \in V : [v, w] = 0 \text{ for all } w \in V \}.$$

For G connected, prove that the centre of the group G is

$$Z(G) = \ker(\mathrm{Ad}: G \to \mathrm{Aut}(\mathfrak{g}))$$

- (e) Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal and has Lie algebra $\text{Lie}(Z(G)) = Z(\mathfrak{g})$.
- (f) Finally deduce that, for G connected, G is abelian $\Leftrightarrow \mathfrak{g}$ is abelian.
- 3. (a) Show that if X, Y belong to the Lie algebra of a Lie group G then

$$[X, Y] = 0 \Rightarrow \exp(X + Y) = \exp(X) \exp(Y).$$

- (b) Prove that if G is a connected Lie group with $Z(G) = \{e\}$ then G can be identified with a Lie subgroup of $GL(N, \mathbb{R})$, for some N, so \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(N, \mathbb{R})$.
- (c) If $(V, [\cdot, \cdot])$ is a Lie algebra with $Z(V) = \{0\}$, show that V is the Lie algebra of some Lie group.
- 4. Find all the connected Lie subgroups of SO(3).
- 5. (a) Show that Lebesgue measure is the bi-invariant Haar measure on \mathbb{R}^n viewed as an additive group.
 - (b) Find the bi-invariant Haar measure on $(\mathbb{R}_{>0}, \times)$, the multiplicative group of positive reals.
- 6. Give an example of an *irreducible* representation of S^1 on \mathbb{R}^2 . Describe what happens to this representation when we complexify it.

Section C

- 7. (a) Let $\phi : G \to \operatorname{Aut}(V)$ be a representation. If $\alpha : G \to G$ is an automorphism show that $\phi \circ \alpha$ is another representation on the same vector space.
 - (b) If $\alpha(g) = hgh^{-1}$ for some $h \in G$ show that the two representations are equivalent.
 - (c) Give an example of an automorphism where the two representations are not equivalent.
- 8. Consider the action of SO(3) on \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth real-valued function.
 - (a) For $A \in SO(3)$ show that $(Af)(x) = f(A^{-1}x)$ defines an action of SO(3) on the space of all smooth functions.
 - (b) If $r^2 = x_1^2 + x_2^2 + x_3^2$ show that Af = f.
 - (c) Let Δ denote the Laplace operator

$$\Delta f = \sum_{i=1}^{3} \frac{\partial^2 f}{\partial x_i^2}.$$

Show that $A\Delta f = \Delta A f$.

- (d) Consider the vector space of functions of the form f = p where $p(x_1, x_2, x_3)$ is a homogeneous polynomial of degree m. Show that this is a finite-dimensional representation V_m of SO(3) and calculate its dimension.
- (e) Let $H_m \subseteq V_m$ be the subspace of solutions to $\Delta f = 0$ for $f \in V_m$, the harmonic polynomials of degree m. Show that H_m is a representation space for SO(3) and that $V_2 = H_2 \oplus r^2 H_0$ and $V_3 = H_3 \oplus r^2 H_1$ are decompositions into inequivalent representations.
- (f) Can you generalize this?