C3.5 Lie Groups
Sheet 4 — MT23

Section A contains an introductory question. Section B contains material to test understand-
ing of the course. Section C contains further questions which are optional. No solutions

should be submitted for marking.

Section A
1. Check the following properties hold for a character xy associated to a representation V'
of a compact Lie group G:
(a) xv(e) = dimV;
(b) xv is invariant under conjugation, v (hgh™') = xv(9);
c

Xv = xw for equivalent reps V ~ W;

€) Xvew = XV ' XW;

(
(

(g) if V is unitary, x1(¢7') = xv(g) for all g € G.

)

(¢)
(d) xvew = Xxv + Xxw;

)
£) xv+(g9) = xv(g™") for all g € G;
)

Solution:

(a) We have xy(e) = trace(idy) = dim V.

(b) This follows from the identity trace(PAP™!) = trace(AP™'P) = trace(A) for (in-

vertible) square matrices A and P.

(c¢) The fact that yy = yw for equivalent representations V' and W is immediate from
the definitions.

(d) A basis for V@ W is given by taking a union of bases for V' and W. It follows
immediately that xyyvew = xv + xw.

(e) We may assume without loss of generality that the representations are unitary.
Take g € G. Then we may choose bases {v;} and {w;} for V and W respectively

consisting of eigenvectors for the multiplication by g map, say

gui = \vi,  gwj = pjw;.
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Then {v; ® w;} forms a basis for V@ W and
(v @ w;) = Xip; (v @ wy).

Therefore
Xvew(g) = Z Ay = (Z A@-> (Z w) = xv(9) - xw(9).

(f) To show that x1+(g) = xv (g7 '), use a basis of eigenvectors v; as in the previous

part. Let {v}} be the corresponding dual basis. Then
(g-v))(v;) = v (g vy) = v (N 1oy) = A 10y,
so g - v = A; 'vf, which then gives the result.

Continuing from the previous part, unitarity implies ;' = X,. The equalit
g g P P y mmp i q y

xv(g™h) = xv(g) follows.
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Section B

2. Recall that the irreducible representation V,, of SU(2) is given by the space of homoge-

neous polynomials of degree n in two variables (z1, z2) with
(A -p)(Z) = p(A_IZ), A € SU(2>7 pE sz = (ZI,ZZ)'

(a) Which of the irreducible representations V,, of SU(2) may be regarded as represen-
tations of SO(3)7

(b) Deduce that for each natural number n we have a real (2n + 1)-dimensional repre-
sentation W, of SO(3).
(c) Show further that the character of W, is given by

2n

Z ei(n—k’)t‘

k=0

Solution:

(a) We have an isomorphism SO(3) = SU(2)/{£1}, so V,, descends to a representation
of SO(3) if and only if A-p = (—A)-p for all A € SU(2) and all p € V,,, if and only

if n is even.

(b) Recall that the map (z1,22) — (22, —21), extended to a complex anti-linear map
J : Vo, — Vo, defines a real structure on Vs, (recalling that all polynomials in V53,
are even degree homogeneous polynomials). This descends to give the (2n + 1)-

. . . J
dimensional W,, = V5.

(c) We know from the lecture notes that

2n

Xva, (diag(e”,e™™)) = Z Q2it(n—k)
k=0

Recall from Sheet 2 that we have a two-to-one covering map
A :SU(2) = Sp(1) — SO(3)

where A, is given by conjugation by ¢ on quaternions for ¢ € Sp(1). The matrix
R(t) = diag(e", e™") corresponds to the unit quaternion ¢(t) = cos(t) + isin(t) €
Sp(1). Explicitly computing Ay« on the basis {7, j, k} of Im(H) gives

1 0 0
A(R(t)) = S(2t) := [ 0 cos(2t) —sin(2t)
0 sin(2t) cos(2t)
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The matrices {S(t) : t € R} form a maximal torus in SO(3) (by considering

dimensions), and

2n

Xwa (S(8)) = Xva, (R(£/2)) = ) ek,

k=0

3. Show that a maximal torus in a compact Lie group is maximal among connected abelian

subgroups.

Solution: Suppose A is a connected abelian subgroup of G with 7' C A. We claim A
is also an abelian subgroup of G. Assuming this is true for the moment, A is a closed
(hence embedded) subgroup of G which is abelian and connected, so is a torus, hence
T = A = A by the maximality of 7.

We first show X = A is a group. Take g, h € H. Let U be an open neighbourhood
of gh. Multiplication is continuous so there exists open neighbourhoods V', W of g, h
respectively with VIV € U. As V and W both meet A then ANVW # 0, so gh € X.
Similarly if U is an open neighbourhood of g~! then we can find an open neighbourhood
V of g with V= C U. V meets A so V! also meets A and so g~' € X. Therefore X
is a subgroup of G.

Suppose for a contradiction there exists g,h € X with gh # hg. As G is Hausdorft we
may separate gh and hg by disjoint open sets U and V. We may find open neighbour-
hoods Py, @, of g and P, @)}, of h with PP, C U and Q,Q, C V. Let R = P,NQ, and
S =PFP,NQ,. Rand S meet A so there existsr € ANR and s € ANS. As A is abelian

then rs = sr, which contradicts the fact U and V are disjoint. Therefore X is abelian.

4. Find the Weyl group of the unitary group U(n), justifying your answer.

Solution: A torus in U(n) is given by
T = {diag(e™,...,e") : ty,...,t, ER}.

We claim that 7" is in fact a maximal torus. Suppose 7" is another torus in U(n)
containing 7. Take g € T". Then g commutes with any ¢t € T. Choosing ¢ such that
the diagonal entries of ¢ are pairwise distinct, by direct computation we see that ¢ itself

must be diagonal, so g € T and T'= T" is a maximal torus.

U(n) acts naturally on the vector space C", which we give the standard basis eq, ..., e,.
The e; are clearly eigenvectors of any ¢t € T'. Suppose g € N(T) and ¢t € T. Then g 'tg €

T also has as eigenvectors all of the e;, so ge; = Aje;; for some standard basis vector e;;,.
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Therefore there exists a permutation matrix P, (for some o € S,, = Sym({1,...,n}))
such that P;'g is diagonal. But P, € U(n) so P,'g € T, thus g = P, mod T. Hence
there exists a surjective homomorphism S,, — W given by ¢ — P,. If P,, P, are
congruent mod 7" then by considering the actions on ey, ..., e, we have 0 = 7, so the

map S, — W is an isomorphism. Consequently the Weyl group is given by S,,.

5. Let B denote the subgroup of GL(3,C) consisting of invertible matrices of the form

a a b
0 B c with a,b,c € C and «, 8,y € C*.
0 0 «v

(a) Show that B is an embedded Lie subgroup.

(b) Show that there is a homomorphism ¢ from B onto the complex torus T = (C*)?

of diagonal elements of B.

(c) Show that ker ¢ may be identified with the subgroup U consisting of elements of B

with diagonal entries equal to 1.
(d) Show further that the elements of U with a = ¢ = 0 form a normal subgroup of U.

(e) What are the maximal compact connected subgroups of Tic, B and U? (You need
not give detailed proofs).

Solution:

(a) From standard linear algebra B is a group, and clearly B is closed in GL(3,C), so

is an embedded Lie subgroup.

(b) Define
a a b
¢: 10 B c|=(ap7).
0 0 v

This is easily seen to be a surjective homomorphism of Lie groups.
(c¢) This is immediate from the definition of ¢.

(d) We have the identities

1 a b 1 d V 1 a+d b+bV+ad
01 ¢ 01 =10 1 c+c
0 01 0 0 1 0 0 1
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and .
1 a b 1 —a ac—»
01 ¢ =10 1 —c
0 01 0 0 1

The result then follows by inspection.

(e) First consider Tx. We use the fact that C* =2 S' x (0,00), so Tp = A := (S')? x
(0,00)3. The only compact subgroup of (0,00) is the trivial group, for if x # 1
then {z" : n € Z} is not bounded above. (S')? is a compact connected subgroup
of A. Therefore (S')® must the unique maximal compact connected subgroup of

A. Back in T this corresponds to the subgroup
My = {(e",e"2 e"3) : t),ty,t3 € R}.

Now suppose G is a compact connected subgroup of U. As GG is compact then G is
bounded. Therefore the off diagonal entries of any element of G must all be zero,

so the only compact subgroup of U is the trivial group.

Finally we consider B. Let K be a compact subgroup of B containing Mp; we
claim K = Mr. Projecting to T, we see that any element of K has unit complex
numbers on the diagonal. Take £ € K. We may write £k = mu with m € My and
u € U; by assumption m € K so u € K as well. The element u lies in the closure
L of (u), a closed hence embedded subgroup of K. As K is compact then so is L,
but then L is a compact subgroup of U so is trivial, hence u = I. Consequently
K = My, which implies that My (and any conjugate of Mr) is a maximal compact
connected subgroup. We claim that these are all of the maximal compact connected

subgroups of B.

Let K be a compact connected subgroup of B. Consider the standard representa-
tion V of K on C*. As K is compact then V is a semisimple CK-module. We may
decompose V' as

V=CeipW

where {e, es, €3} is the standard basis for C* and W is an irreducible 2-dimensional
CK-module or is the direct sum of two 1-dimensional CK-modules. There exists
A € C such that w = ey + Aey € W. Take

o a b
k=10 g c| ek
0 0 v

Then kw = (a + aX)e; + Pes € W. The vectors kw and w cannot be linearly

independent as the vectors {ej,w,kw} do not span V = C?, so kw = pw by
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comparing ey coordinates. Then Cw is a submodule of W, so W splits as a direct
sum W = Cw @ Cw’ for some w’ € W; by a similar argument it can be shown that
kw' = ~w'. The change of basis matrix from {ej, ez, e3} to {e1,w,w'} then gives
an element g € B such that K C gMpg~'; it follows that any compact subgroup
of B is a conjugate of a subgroup of My and hence the set of all maximal compact

connected subgroups of B is

{gMzg™" : g € B}.
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Section C

6. Let G be a compact Lie group and C(G) the space of complex-valued continuous func-

tions on G. Define a product (the convolution product) by

(o fa)(h) = /G £1(hg™) falo).
(a) Show that (f1 * f2) x f3 = f1 % (fa x f3).

(b) Prove that convolution is commutative if the group is abelian.

(c¢) Let p: G — Aut(V) be a representation of G and f € C(G) a function. Define
p(f) € EndV by

o(f) = /G £(9)0(9)
Show that p(f1* f2) = p(f1)p(f2)-

(d) Use this to give an example of a group where the convolution product is not com-

mutative.

7. Suppose that G is compact Lie group and that the continuous function f satisfies
f(hgh™) = f(g) for all h. If p is an irreducible representation with character y show

that p(f) = a -idy where
1

“= dim V

(f, %)-
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