C3.5 Lie Groups Sheet 4 - MT23

Section A contains an introductory question. Section B contains material to test understanding of the course. Section C contains further questions which are optional. No solutions should be submitted for marking.

Section A

- 1. Check the following properties hold for a character χ_V associated to a representation V of a compact Lie group G:
 - (a) $\chi_V(e) = \dim V;$
 - (b) χ_V is invariant under conjugation, $\chi_V(hgh^{-1}) = \chi_V(g)$;
 - (c) $\chi_V = \chi_W$ for equivalent reps $V \simeq W$;
 - (d) $\chi_{V\oplus W} = \chi_V + \chi_W;$
 - (e) $\chi_{V\otimes W} = \chi_V \cdot \chi_W;$
 - (f) $\chi_{V^*}(g) = \chi_V(g^{-1})$ for all $g \in G$;
 - (g) if V is unitary, $\chi_V(g^{-1}) = \overline{\chi_V(g)}$ for all $g \in G$.

Solution:

- (a) We have $\chi_V(e) = \text{trace}(\text{id}_V) = \dim V$.
- (b) This follows from the identity $\operatorname{trace}(PAP^{-1}) = \operatorname{trace}(AP^{-1}P) = \operatorname{trace}(A)$ for (invertible) square matrices A and P.
- (c) The fact that $\chi_V = \chi_W$ for equivalent representations V and W is immediate from the definitions.
- (d) A basis for $V \oplus W$ is given by taking a union of bases for V and W. It follows immediately that $\chi_{V \oplus W} = \chi_V + \chi_W$.
- (e) We may assume without loss of generality that the representations are unitary. Take $g \in G$. Then we may choose bases $\{v_i\}$ and $\{w_j\}$ for V and W respectively consisting of eigenvectors for the multiplication by g map, say

$$gv_i = \lambda_i v_i, \quad gw_j = \mu_j w_j.$$

Then $\{v_i \otimes w_j\}$ forms a basis for $V \otimes W$ and

$$g(v_i \otimes w_j) = \lambda_i \mu_j (v_i \otimes w_j).$$

Therefore

$$\chi_{V\otimes W}(g) = \sum_{i,j} \lambda_i \mu_j = \left(\sum_i \lambda_i\right) \left(\sum_j \mu_j\right) = \chi_V(g) \cdot \chi_W(g).$$

(f) To show that $\chi_{V^*}(g) = \chi_V(g^{-1})$, use a basis of eigenvectors v_i as in the previous part. Let $\{v_i^*\}$ be the corresponding dual basis. Then

$$(g \cdot v_i^*)(v_j) = v_i^*(g^{-1}v_j) = v_i^*(\lambda_j^{-1}v_j) = \lambda_i^{-1}\delta_{ij},$$

so $g \cdot v_i^* = \lambda_i^{-1} v_i^*$, which then gives the result.

(g) Continuing from the previous part, unitarity implies $\lambda_i^{-1} = \overline{\lambda_i}$. The equality $\chi_V(g^{-1}) = \overline{\chi_V(g)}$ follows.

Section B

2. Recall that the irreducible representation V_n of SU(2) is given by the space of homogeneous polynomials of degree n in two variables (z_1, z_2) with

 $(A \cdot p)(\mathbf{z}) = p(A^{-1}\mathbf{z}), \quad A \in SU(2), \ p \in V_n, \mathbf{z} = (z_1, z_2).$

- (a) Which of the irreducible representations V_n of SU(2) may be regarded as representations of SO(3)?
- (b) Deduce that for each natural number n we have a real (2n + 1)-dimensional representation W_n of SO(3).
- (c) Show further that the character of W_n is given by

$$\sum_{k=0}^{2n} e^{i(n-k)t}$$

Solution:

- (a) We have an isomorphism $SO(3) \cong SU(2)/\{\pm 1\}$, so V_n descends to a representation of SO(3) if and only if $A \cdot p = (-A) \cdot p$ for all $A \in SU(2)$ and all $p \in V_n$, if and only if n is even.
- (b) Recall that the map $(z_1, z_2) \mapsto (z_2, -z_1)$, extended to a complex anti-linear map $J: V_{2n} \to V_{2n}$, defines a real structure on V_{2n} (recalling that all polynomials in V_{2n} are even degree homogeneous polynomials). This descends to give the (2n + 1)-dimensional $W_n = V_{2n}^J$.
- (c) We know from the lecture notes that

$$\chi_{V_{2n}} \left(\operatorname{diag}(e^{it}, e^{-it}) \right) = \sum_{k=0}^{2n} e^{2it(n-k)}.$$

Recall from Sheet 2 that we have a two-to-one covering map

$$\mathcal{A}: \mathrm{SU}(2) \cong \mathrm{Sp}(1) \to \mathrm{SO}(3)$$

where \mathcal{A}_q is given by conjugation by q on quaternions for $q \in \mathrm{Sp}(1)$. The matrix $R(t) = \mathrm{diag}(e^{it}, e^{-it})$ corresponds to the unit quaternion $q(t) = \cos(t) + i\sin(t) \in \mathrm{Sp}(1)$. Explicitly computing $\mathcal{A}_{q(t)}$ on the basis $\{i, j, k\}$ of $\mathrm{Im}(\mathbb{H})$ gives

$$\mathcal{A}(R(t)) = S(2t) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(2t) & -\sin(2t) \\ 0 & \sin(2t) & \cos(2t) \end{pmatrix}.$$

The matrices $\{S(t) : t \in \mathbb{R}\}$ form a maximal torus in SO(3) (by considering dimensions), and

$$\chi_{W_n}(S(t)) = \chi_{V_{2n}}(R(t/2)) = \sum_{k=0}^{2n} e^{it(n-k)}.$$

3. Show that a maximal torus in a compact Lie group is maximal among connected abelian subgroups.

Solution: Suppose A is a connected abelian subgroup of G with $T \subset A$. We claim \overline{A} is also an abelian subgroup of G. Assuming this is true for the moment, \overline{A} is a closed (hence embedded) subgroup of G which is abelian and connected, so is a torus, hence $T = \overline{A} = A$ by the maximality of T.

We first show $X = \overline{A}$ is a group. Take $g, h \in H$. Let U be an open neighbourhood of gh. Multiplication is continuous so there exists open neighbourhoods V, W of g, hrespectively with $VW \subset U$. As V and W both meet A then $A \cap VW \neq \emptyset$, so $gh \in X$. Similarly if U is an open neighbourhood of g^{-1} then we can find an open neighbourhood V of g with $V^{-1} \subset U$. V meets A so V^{-1} also meets A and so $g^{-1} \in X$. Therefore Xis a subgroup of G.

Suppose for a contradiction there exists $g, h \in X$ with $gh \neq hg$. As G is Hausdorff we may separate gh and hg by disjoint open sets U and V. We may find open neighbourhoods P_g, Q_g of g and P_h, Q_h of h with $P_gP_h \subset U$ and $Q_gQ_h \subset V$. Let $R = P_g \cap Q_g$ and $S = P_h \cap Q_h$. R and S meet A so there exists $r \in A \cap R$ and $s \in A \cap S$. As A is abelian then rs = sr, which contradicts the fact U and V are disjoint. Therefore X is abelian.

4. Find the Weyl group of the unitary group U(n), justifying your answer.

Solution: A torus in U(n) is given by

$$T = \left\{ \operatorname{diag}(e^{it_1}, \dots, e^{it_n}) : t_1, \dots, t_n \in \mathbb{R} \right\}.$$

We claim that T is in fact a maximal torus. Suppose T' is another torus in U(n) containing T. Take $g \in T'$. Then g commutes with any $t \in T$. Choosing t such that the diagonal entries of t are pairwise distinct, by direct computation we see that g itself must be diagonal, so $g \in T$ and T = T' is a maximal torus.

U(n) acts naturally on the vector space \mathbb{C}^n , which we give the standard basis e_1, \ldots, e_n . The e_i are clearly eigenvectors of any $t \in T$. Suppose $g \in N(T)$ and $t \in T$. Then $g^{-1}tg \in T$ also has as eigenvectors all of the e_i , so $ge_i = \lambda_i e_{j_i}$ for some standard basis vector e_{j_i} . Therefore there exists a permutation matrix P_{σ} (for some $\sigma \in S_n = \text{Sym}(\{1, \ldots, n\})$) such that $P_{\sigma}^{-1}g$ is diagonal. But $P_{\sigma} \in U(n)$ so $P_{\sigma}^{-1}g \in T$, thus $g \equiv P_{\sigma} \mod T$. Hence there exists a surjective homomorphism $S_n \to W$ given by $\sigma \mapsto P_{\sigma}$. If P_{σ} , P_{τ} are congruent mod T then by considering the actions on e_1, \ldots, e_n we have $\sigma = \tau$, so the map $S_n \to W$ is an isomorphism. Consequently the Weyl group is given by S_n .

5. Let B denote the subgroup of $\mathrm{GL}(3,\mathbb{C})$ consisting of invertible matrices of the form

$$\begin{pmatrix} \alpha & a & b \\ 0 & \beta & c \\ 0 & 0 & \gamma \end{pmatrix} \quad \text{with } a, b, c \in \mathbb{C} \text{ and } \alpha, \beta, \gamma \in \mathbb{C}^*.$$

- (a) Show that B is an embedded Lie subgroup.
- (b) Show that there is a homomorphism ϕ from B onto the *complex torus* $T_{\mathbb{C}} \cong (\mathbb{C}^*)^3$ of diagonal elements of B.
- (c) Show that ker ϕ may be identified with the subgroup U consisting of elements of B with diagonal entries equal to 1.
- (d) Show further that the elements of U with a = c = 0 form a normal subgroup of U.
- (e) What are the maximal compact connected subgroups of $T_{\mathbb{C}}$, B and U? (You need not give detailed proofs).

Solution:

- (a) From standard linear algebra B is a group, and clearly B is closed in $GL(3, \mathbb{C})$, so is an embedded Lie subgroup.
- (b) Define

$$\phi: \begin{pmatrix} \alpha & a & b \\ 0 & \beta & c \\ 0 & 0 & \gamma \end{pmatrix} \mapsto (\alpha, \beta, \gamma).$$

This is easily seen to be a surjective homomorphism of Lie groups.

- (c) This is immediate from the definition of ϕ .
- (d) We have the identities

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+a' & b+b'+ac' \\ 0 & 1 & c+c' \\ 0 & 0 & 1 \end{pmatrix}$$

and

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}.$$

The result then follows by inspection.

(e) First consider $T_{\mathbb{C}}$. We use the fact that $\mathbb{C}^* \cong S^1 \times (0, \infty)$, so $T_{\mathbb{C}} \cong A := (S^1)^3 \times (0, \infty)^3$. The only compact subgroup of $(0, \infty)$ is the trivial group, for if $x \neq 1$ then $\{x^n : n \in \mathbb{Z}\}$ is not bounded above. $(S^1)^3$ is a compact connected subgroup of A. Therefore $(S^1)^3$ must the unique maximal compact connected subgroup of A. Back in $T_{\mathbb{C}}$ this corresponds to the subgroup

$$M_T = \{ (e^{it_1}, e^{it_2}, e^{it_3}) : t_1, t_2, t_3 \in \mathbb{R} \}.$$

Now suppose G is a compact connected subgroup of U. As G is compact then G is bounded. Therefore the off diagonal entries of any element of G must all be zero, so the only compact subgroup of U is the trivial group.

Finally we consider B. Let K be a compact subgroup of B containing M_T ; we claim $K = M_T$. Projecting to $T_{\mathbb{C}}$, we see that any element of K has unit complex numbers on the diagonal. Take $k \in K$. We may write k = mu with $m \in M_T$ and $u \in U$; by assumption $m \in K$ so $u \in K$ as well. The element u lies in the closure L of $\langle u \rangle$, a closed hence embedded subgroup of K. As K is compact then so is L, but then L is a compact subgroup of U so is trivial, hence u = I. Consequently $K = M_T$, which implies that M_T (and any conjugate of M_T) is a maximal compact connected subgroup. We claim that these are all of the maximal compact connected subgroups of B.

Let K be a compact connected subgroup of B. Consider the standard representation V of K on \mathbb{C}^3 . As K is compact then V is a semisimple $\mathbb{C}K$ -module. We may decompose V as

$$V = \mathbb{C}e_1 \oplus W$$

where $\{e_1, e_2, e_3\}$ is the standard basis for \mathbb{C}^3 and W is an irreducible 2-dimensional $\mathbb{C}K$ -module or is the direct sum of two 1-dimensional $\mathbb{C}K$ -modules. There exists $\lambda \in \mathbb{C}$ such that $w = e_2 + \lambda e_1 \in W$. Take

$$k = \begin{pmatrix} \alpha & a & b \\ 0 & \beta & c \\ 0 & 0 & \gamma \end{pmatrix} \in K.$$

Then $kw = (a + \alpha\lambda)e_1 + \beta e_2 \in W$. The vectors kw and w cannot be linearly independent as the vectors $\{e_1, w, kw\}$ do not span $V = \mathbb{C}^3$, so $kw = \beta w$ by

comparing e_2 coordinates. Then $\mathbb{C}w$ is a submodule of W, so W splits as a direct sum $W = \mathbb{C}w \oplus \mathbb{C}w'$ for some $w' \in W$; by a similar argument it can be shown that $kw' = \gamma w'$. The change of basis matrix from $\{e_1, e_2, e_3\}$ to $\{e_1, w, w'\}$ then gives an element $g \in B$ such that $K \subset gM_Tg^{-1}$; it follows that any compact subgroup of B is a conjugate of a subgroup of M_T and hence the set of all maximal compact connected subgroups of B is

$$\{gM_Tg^{-1}:g\in B\}.$$

Section C

6. Let G be a compact Lie group and C(G) the space of complex-valued continuous functions on G. Define a product (the *convolution product*) by

$$(f_1 * f_2)(h) = \int_G f_1(hg^{-1})f_2(g).$$

- (a) Show that $(f_1 * f_2) * f_3 = f_1 * (f_2 * f_3)$.
- (b) Prove that convolution is commutative if the group is abelian.
- (c) Let $\rho: G \to \operatorname{Aut}(V)$ be a representation of G and $f \in C(G)$ a function. Define $\rho(f) \in \operatorname{End} V$ by

$$\rho(f) = \int_G f(g)\rho(g)$$

Show that $\rho(f_1 * f_2) = \rho(f_1)\rho(f_2)$.

- (d) Use this to give an example of a group where the convolution product is not commutative.
- 7. Suppose that G is compact Lie group and that the continuous function f satisfies $f(hgh^{-1}) = f(g)$ for all h. If ρ is an irreducible representation with character χ show that $\rho(f) = \alpha \cdot \mathrm{id}_V$ where

$$\alpha = \frac{1}{\dim V} \langle f, \bar{\chi} \rangle.$$