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2 Free boundary problems

2.1 Introduction

A free boundary problem occurs when the region in which the problem is to be solved is
unknown in advance and must be found as part of the solution. We will describe a canonical
free boundary problem known as the Stefan problem, which describes the flow of heat through
a material where a phase change occurs. For example, when a block of ice melts to form water
(or when water freezes to form ice), we have to solve for the free boundary between the two
phases as well as for the temperature field in each phase. As we will see, these problems can
become ill posed, predicting pathologically unstable behaviour. We will show how a well-posed
and physically realistic model may be formulated by introducing a “mushy region”.

The Stefan problem is a canonical “codimension-one” free boundary problem: the free
boundary has dimension one below that of the space in which the problem is solved. (For
example, the free boundary between ice and water in three dimensions is a two-dimensional
surface.) A slightly rarer situation is a “codimension-two” free boundary problem, where the
free boundary has two fewer dimensions than the space in which the problem is solved. For
example, this would describe a two-dimensional problem in which the free boundary consists
of a set of points. We will analyse in detail a relatively simple codimension-two free boundary
problem that describes electropainting of a metal surface. As we will see, such problems often
lead to singular integral equations, and we will show how a simple example can be solved
analytically.

2.2 Stefan problems

Industrial problem: electric welding

One convenient way to weld steel plates is to place them together, attach electrodes to the
edges and then pass a large electric current through. This heats the metal, causing a neigh-
bourhood of the interface between the plates to melt. When the current is switched off, the
liquid metal solidifies and the two plates are welded together.

Since the interfacial region cannot be observed directly, we must know in advance how
long the current should be applied to ensure that the metal melts without melting the entire
plates. We must also calculate how long the plates should be left once the current has been
switched off to ensure that they have solidified completely.

One-dimensional Stefan problem

Consider a slab of initially solid material occupying the region 0 < x < a. The temperature
T (x, t) in the slab satisfies the heat equation

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
, (2.1)
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where ρ, c and k are the density, heat capacity and thermal conductivity. In (2.1) we have
neglected any heat sources (for example electric heating) and assumed that the heat flux q
satisfies Fourier’s law

q = −k
∂T

∂x
. (2.2)

We focus for the moment on a concrete problem in which the slab is initially at a uniform
temperature T0 and the face x = a is insulated, while the temperature of the face at x = 0
is suddenly increased to a temperature T1 > T0. We then have to solve (2.1) subject to the
initial and boundary conditions

T (x, 0) = T0, 0 < x < a; T (0, t) = T1, t > 0;
∂T

∂x
(a, t) = 0, t > 0. (2.3)

If T1 is high enough, then we expect the solid to melt and become liquid in some neigh-
bourhood of x = 0. If so, we must seek a solution in which the slab is liquid in 0 < x < s(t)
and solid in s(t) < x < a, where x = s(t) is the free boundary separating the liquid and solid
phases. The position of the free boundary is unknown in advance and must be found as part
of the solution.

In general we have to solve the heat equation (2.1) in both solid and liquid phases, i.e., in
0 < x < s(t) and in s(t) < x < a, with different values of the parameters ρ, c and k on either
side. We also need to impose conditions at the free boundary x = s(t). First we assume that
the phase change happens at a known melting temperature:

T (s(t), t) = Tm. (2.4)

The temperature is continuous so this applies on both sides of the free boundary.
The second condition comes from an energy balance. At a fixed boundary, the heat flux

coming in from one side must equal the heat flux exiting from the other side, i.e., q = −k∂T/∂x
must be continuous. However, at a moving interface, we must also consider the energy
associated with the phase change, known as the latent heat L. For example, the latent heat
of water is L = 334 kJ/kg, meaning that it requires 334 kJ of energy to turn 1 kg of ice at
0◦C to 1 kg of water at 0◦C. The latent heat acts as an energy source or sink at a moving
solid–liquid interface, and the resulting boundary condition

k
∂T

∂x

∣∣∣∣
x=s(t)+

− k
∂T

∂x

∣∣∣∣
x=s(t)−

= ρL
ds

dt
(2.5)

is known as the Stefan condition.
In summary, the Stefan problem consists of the heat equation (2.1) on either side of the

free boundary x = s(t), where the two conditions (2.4) and (2.5) are applied. The problem is
closed by suitable boundary and initial conditions, for example (2.3).

Before proceeding, we briefly review some of the assumptions that have been made so
far. In using Fourier’s law (2.2), we have assumed that the heat flux is purely due to thermal
conductivity. If the liquid flows at all, then there will also be a contribution due to convection.
Generally there is a change in density as the material melts, so that ρ is discontinuous across
x = s(t). This would inevitably mean there must be a nonzero velocity and therefore a nonzero
convective heat flux. It is a good exercise to work out how the model should be modified to
include convection. For the moment, we can avoid such complications by assuming that the
density change at the solid–liquid interface is small enough to be neglected.



Further Partial Differential Equations 2–3

One-phase Stefan problem

To make progress we will make some more simplifying assumptions. We will assume that ρ, c
and k are all constant on either side of the solid–liquid interface – in general they may all be
functions of temperature. We will also for the moment suppose that the initial temperature
T0 is equal to the melting temperature Tm. This means that the solid region s(t) < x < a
is always at temperature Tm and we only need to solve the heat equation in the liquid phase
0 < x < s(t): this is a one-phase Stefan problem.

We non-dimensionalize as follows:

x = ax′, t =

(
ρLa2

k(T1 − Tm)

)
t′, T = Tm + (T1 − Tm)u. (2.6)

Then with primes dropped, we get a normalized one-phase Stefan problem in the form

St
∂u

∂t
=

∂2u

∂x2
0 < x < s(t), t > 0, (2.7a)

u = 1 x = 0, t > 0, (2.7b)

u = 0, −∂u

∂x
=

ds

dt
x = s(t), t > 0, (2.7c)

s(0) = 0. (2.7d)

Clearly generalized versions of (2.7) would be obtained if we relaxed some of the simplifying
assumptions made above.

The dimensionless parameter1

St =
c(T1 − Tm)

L
, (2.8)

called the Stefan number, measures the relative importance of the sensible heat and the
latent heat; in other words, the energy needed to raise the temperature of the material and
the energy needed to melt it.

We can seek a similarity solution of (2.7) in which

s(t) = β
√
t and u(x, t) = f(η), where η =

x√
t
, (2.9)

for some constant β, and

d2f

dη2
+

St

2
η
df

dη
= 0 0 < η < β, (2.10a)

f = 1 η = 0, (2.10b)

f = 0,
df

dη
= −β

2
η = β. (2.10c)

This is again a free boundary problem: the three boundary conditions imposed on a second-
order ODE in principle determine β as part of the solution.

The solution is given by

f(η) = 1−
erf
(
η
√
St/2

)
erf
(
β
√
St/2

) , (2.11)

1beware: some authors define the Stefan number to be the reciprocal of our definition
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Figure 2.1: The relation between the parameter β and the Stefan number St determined by
equation (2.12). The dashed curves show the asymptotic limits (2.13).

where β satisfies the transcendental equation

√
πβeStβ

2/4 erf
(
β
√
St/2

)
2
√
St

= 1. (2.12)

The relation between β and the Stefan number St is plotted in figure 2.1, along with the
asymptotic limits

β ∼


√
2 as St → 0,

2√
St

√
log

(
St√
π

)
as St → ∞.

(2.13)

Given the value of St, we can thus determine β and hence the evolution of the free
boundary s(t) = β

√
t. This square-root behaviour of the free boundary as a function of

time is characteristic of Stefan problems. The entire slab has melted when s(t) = 1, and
the dimensionless time taken is thus given by 1/β2. By reversing the non-dimensionalization
(2.6) and using (2.13), we find two alternative approximations for the dimensional melting
time tm, namely

tm ∼


ρLa2

2k(T1 − Tm)
St ≪ 1,

ρca2

4k log (St/
√
π)

St ≫ 1.

(2.14)

When the Stefan number is small, the melting of the slab is mainly limited by the latent heat
required. At the other extreme, the main barrier is the energy needed to heat up the slab,
and the melting time depends only weakly on the latent heat L.

The limit St ≪ 1 is very helpful and often valid: figure 2.1 suggests that the small-St
approximation works well even for values of St up to around 1. For example, suppose we try
to melt a block of ice by heating one face to 5◦C. The relevant parameters are L = 334 kJ/kg
and c = 4.2 kJ/kgK so that St ≈ 0.06. In this case, the value of β obtained by solving the
transcendental equation (2.12) differs from the limiting value

√
2 by around 1%.
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Two-phase Stefan problem

The two-phase version of the dimensionless Stefan problem considered above reads

St
∂u

∂t
=

∂2u

∂x2
0 < x < s(t), t > 0, (2.15a)

St

κ

∂u

∂t
=

∂2u

∂x2
s(t) < x < 1, t > 0, (2.15b)

u = 1 x = 0, t > 0, (2.15c)

∂u

∂x
= 0 x = 1, t > 0, (2.15d)

u = 0, K

[
∂u

∂x

]+
−
[
∂u

∂x

]−
=

ds

dt
x = s(t), t > 0 (2.15e)

u = −θ, s = 0 t = 0, (2.15f)

where the new dimensionless parameters are

κ =
c1k2
c2k1

, K =
k2
k1

, θ =
Tm − T0

T1 − Tm
. (2.16)

Here we have denoted the values of the specific heat and thermal conductivity in the liquid
and solid phases by c1, k1 in 0 < x < s and c2, k2 in s < x < 1.

In general, this problem must be solved numerically. However, analytical progress can be
made in some special cases. As noted above, it is often valid and helpful to consider the limit
St → 0, in which case the PDEs (2.15a) and (2.15b) are quasi-steady and may be integrated
directly. We then quickly get

u(x, t) =

1− x

s(t)
0 < x < s(t) < 1,

0 0 < s(t) < x < 1,
(2.17)

and the Stefan condition (2.15e) then leads to

ds

dt
=

1

s
, (2.18)

and hence
s(t) =

√
2t, (2.19)

which is equivalent to (2.9) in the small-St limit where β =
√
2.

However, the approximate solution (2.17) does not satisfy the initial condition (2.15f),
except in the special case where θ = 0 (i.e., T0 = Tm). This may easily be resolved by
considering a small-t boundary layer in which u adjusts from the initial value −θ to the
“outer” solution (2.17).

Two-dimensional Stefan problem

A two-dimensional version of the problem (2.15) is depicted schematically in figure 2.2. To
avoid confusion we now use the subscripts 1 and 2 to denote the normalized temperatures
u1 and u2 in the liquid and solid phases respectively. Each of these now satisfies the two-
dimensional heat equation. The free boundary between the two phases is now a curve in the
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Figure 2.2: Schematic of a two-dimensional Stefan problem.

(x, y)-plane, on which both u1 and u2 are equal to the normalized melting temperature 0.
Finally, the Stefan condition now relates the normal velocity Vn of the free boundary to the
jump in the normal derivative of the temperature on either side. To close the problem, it only
remains to specify suitable initial conditions, namely the value of the temperature everywhere
in the domain and the position of the free boundary at t = 0.

As in the one-dimensional situation, the problem may be simplified somewhat if the Stefan
number is small. In the limit St → 0, the temperature u just satisfies Laplace’s equation on
either side of the free boundary, and the resulting quasi-steady problem resembles the Hele-
Shaw problem.

Linear stability

Now we can examine the stability of the one-dimensional solutions found above to two-
dimensional perturbations. We first make some simplifying assumptions to make the cal-
culations relatively straightforward. We take the limit St → 0 and focus on a one-phase
Stefan problem in which u2 ≡ 0 (in the notation of figure 2.2) — the problem is then equiva-
lent to the one-phase Hele-Shaw problem. We also assume that the free boundary is moving
at constant speed V under a constant temperature gradient −λ before being perturbed. We
therefore write the normalized temperature and the position of the free boundary in the forms

u(x, y, t) = −λ(x− V t) + ũ(x, y, t), x = V t+ ξ(y, t), (2.20)

before linearising the problem with respect to the small perturbations ũ and ξ. Assuming as
above that the material is solid in x > V t and liquid in x < V t, we expect λ to be positive,
so that the temperature is above the melting temperature in the liquid region.

At leading order, the Stefan condition relates the propagation speed V to the temperature
gradient:

V = λ. (2.21)
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Then the linearised problem for the perturbations reads

∇2ũ = 0 x < V t, (2.22a)

ũ− λξ = 0 x = V t, (2.22b)

−∂ũ

∂x
=

∂ξ

∂t
x = V t. (2.22c)

Now we seek a wave-like separable solution with

ũ(x, y, t) = Aeσt+iky+k(x−V t), ξ(y, t) = Beσt+iky, (2.23)

where k > 0 is the wavenumber in the y-direction and σ is the linear growth rate. This ansatz
is chosen to satisfy Laplace’s equation identically and to ensure that the perturbations decay
as x → −∞. The free boundary conditions lead to two linear equations for the constants A
and B, namely (

1 −λ
k σ

)(
A
B

)
= 0. (2.24)

This system admits nontrivial solutions if and only if the determinant of the matrix on the
left-hand side is zero, and this condition leads to

σ = −λk = −V k, (2.25)

after using (2.21).
Assuming that V is positive, so that the solid phase is melting into a liquid, we infer that

σ < 0 for all wavenumbers k, and hence the propagating free boundary is stable. However, in
the opposite case where the liquid is freezing into a solid, so that V < 0, we see that σ > 0 for
all k and hence the free boundary is unstable. This is perhaps not surprising since V can be
negative only if λ is negative, which means that the liquid temperature is below the melting
temperature in the liquid phase ahead of the free boundary. This situation is referred to as
the liquid being supercooled.

If V is negative, equation (2.25) implies that the growth rate is unbounded as k → ∞.
Hence infinitesimal perturbations to the free boundary can grow arbitrarily quickly. More-
over, the most dangerous modes occur for large wavenumbers, i.e., small wavelengths. This
behaviour is characteristic of the problem being ill posed, in the sense that the solution does
not depend continuously on the data: an arbitrarily small perturbation of the initial con-
ditions may cause an arbitrarily large change in the solution. Such behaviour is physically
unacceptable, and such ill posed problems are also effectively impossible to solve numerically.

If some of the assumptions we have made are relaxed, i.e., if we include temperature
variations in the solid phase or retain the terms proportional to St, then more complicated
stability criteria are found. However, it is still generally the case that, depending on the
temperature gradients imposed, the free boundary problem may be unstable and indeed ill
posed. Moreover, it is a familiar experience that, while a solid typically melts smoothly (e.g.
an ice cube in a fizzy drink), a freezing liquid often exhibits a highly irregular “dendritic” free
boundary (e.g. the ice crystals that fill up your freezer), as shown in figure 2.3.

These observations suggest that it is reasonable for a freezing boundary to be unstable
at least under some conditions, but it is still not acceptable for the problem to be ill posed.
Some additional physics must become important to “regularize” the problem by suppressing
arbitrarily high wavenumbers. For example, surface energy effects may be incorporated to
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Figure 2.3: “Ice crystals on the box” by Brocken Inaglory. Licensed under CC BY-SA 3.0 via
Wikimedia Commons —
http://commons.wikimedia.org/wiki/File:Ice_crystals_on_the_box.jpg

penalise high curvature variations in the free boundary. Another possibility is “kinetic un-
dercooling”, based on the idea that temperature need not be continuous if the free boundary
evolves rapidly enough to be out of thermodynamic equilibrium. More sophisticated models
that include these and other physical effects are able to predict instability to small but finite
wavelength perturbations which develop into dendrite-like structures.

Rather than trying to resolve this complicated microstructure, an alternative approach is
to use a homogenised model for the “mushy region” where liquid and solid phases coexist, as
described below.

One-dimensional welding problem

Consider the one-dimensional welding problem shown schematically in figure 2.4. The electric
current J (per unit area) through the plate causes a volumetric heating J2/σ, where σ is the
conductivity of the metal, so the heat equation is modified to

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

J2

σ
. (2.26)

For simplicity, we assume that the parameters ρ, c, k and σ are constant and the same in both
phases (i.e., K = κ = 1 in the notation of (2.15) — this is easily generalized). We assume
symmetry about the centre x = 0 of the metal plate, as indicated in figure 2.4. We also need
a thermal boundary condition at the electrode x = a: for simplicity we suppose that this is
held at constant ambient temperature T0 < Tm.
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Figure 2.4: Schematic of a one-dimensional electric welding problem.
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Figure 2.5: Schematic showing the anticipated evolution of the temperature profile in the
one-dimensional welding problem.
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Figure 2.6: Schematic showing the anticipated temperature profile in the one-dimensional
welding problem with a mushy region.

If the heating power J2/σ is sufficiently large, then we expect the metal to melt in some
neighbourhood of the centre x = 0 of the sample, as indicated in figure 2.4. We then expect
to introduce a free boundary x = s(t) and apply the Stefan conditions

T = Tm,

[
k
∂T

∂x

]+
−
= ρL

ds

dt
at x = s(t). (2.27)

However, by thinking about how the temperature profile must evolve, we can quickly see that
something is wrong with this model.

As shown schematically in figure 2.5, the temperature must increase from its initially
uniform profile, with a maximum at x = 0 where ∂T/∂x = 0. Assuming the heat supplied
is sufficiently high, the temperature at x = 0 eventually reaches the melting temperature Tm

at some time t = tm, indicated as a red curve. Now, the temperature cannot immediately
increase above Tm until enough additional energy has been supplied to overcome the latent
heat required to melt the metal. Furthermore, the Stefan condition (2.27) implies that the
free boundary cannot propagate away from the origin until ∂T/∂x > 0 at x = 0. Hence for t
slightly larger than tm, the temperature profile must resemble the green curve in figure 2.5,
which means that the metal in x > 0 is superheated : its temperature exceeds Tm even though
it is still supposed to be solid. We might expect such a set-up to be catastrophically unstable,
and indeed a linear stability calculation would confirm that the model is ill posed.

So, what must happen instead? In practice, it is observed that there is not a simple free
boundary between pure liquid and pure solid phases. Instead, there is a “mushy region”
in which both solid and liquid phases coexist, with the solid existing in a very fine dendritic
crystalline structure as shown in figure 2.3. Rather than try to resolve this highly complicated
structure, we construct a homogenised model that describes the net macroscopic behaviour
of the mixture as a whole. The basic structure is shown schematically in figure 2.6: there are
now two free boundaries x = s1(t) and x = s2(t), with solid material in s1 < x < a, mush in
s2 < x < s1 and liquid in 0 < x < s2. It just remains to construct a model for the mush.

The first observation is that, for both phases to coexist, the temperature must everywhere
be close to the melting temperature, and to a first approximation we may set T = Tm
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everywhere in the mush. The energy source therefore does not serve to heat up the mixture
but instead supplies the latent heat needed to melt the solid. The energy equation in the
mush reads

ρL
∂θ

∂t
=

J2

σ
, (2.28)

where θ is the liquid fraction in the mixture: θ = 0 in a pure solid and θ = 1 in pure liquid.
The condition for conservation of energy at each free boundary reads[

ρLθ
dsj
dt

− k
∂T

∂x

]+
−
= 0 at s = sj(t) (j = 1, 2). (2.29)

Finally, we require one initial condition for the PDE (2.28), namely that θ is continuous
across the advancing melting boundary x = s1(t) (so that the liquid fraction is zero as the
mush first forms), i.e.

θ = 0 at x = s1(t). (2.30)

Note, though, that θ is not in general continuous at the mush-liquid boundary x = s2(t).
After suitable non-dimensionalization, the full equations and boundary conditions are

St
∂u

∂t
=

∂2u

∂x2
+ q 0 < x < 1, t > 0, (2.31a)

∂u

∂x
= 0 x = 0, t > 0, (2.31b)

u = −1 x = 1, t > 0, (2.31c)

u = −1 0 < x < 1, t = 0, (2.31d)

where q is the dimensionless heating power. If q is sufficiently large, then we have to introduce
a mushy region s2(t) < x < s1(t), as described above, with

u = 0,
∂θ

∂t
= q s2(t) < x < s1(t), t > 0, (2.31e)

u = 0,

[
θ
dsj
dt

+
∂u

∂x

]
= 0 x = sj(t), t > 0. (2.31f)

It may be shown that this modified free boundary problem is well posed. In general,
numerical solution is required, and a very useful approach is to use the enthalpy, which
measures the total internal energy in the material, including thermal energy and latent heat.
However, the initial stages at least may be analysed analytically, and in the quasi-steady limit
St → 0 the problem may be solved completely.

2.3 Codimension-two free boundary problems

Industrial problem: electrochemical painting

Metal objects (e.g. parts for cars or domestic appliances) are often coated using electrochem-
ical painting. The object (“workpiece”) is immersed in an electrolyte solution, across which a
potential difference V is imposed. This drives a current j of ions which attach themselves as
a layer of paint on the workpiece. A simple example is depicted schematically in figure 2.7:
here for simplicity the workpiece is assumed flat and parallel to the x-axis, and the painted
region is the interval x ∈ (−c, c). A model is needed to determine when (and if) the entire
surface of the workpiece is covered in paint, and the thickness of the paint layer achieved.
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Figure 2.7: Schematic of a metal surface undergoing electrochemical painting.

Simple electrostatic problem

To derive a tractable model we make some simplifying assumptions. We assume that the
concentration of ions in solution is sufficiently large that their depletion during the process
is negligible, and we may therefore treat the concentration as a constant. The flux of ions in
the solution due to the imposed electric field is then given by

j = −σ∇ϕ, (2.32)

where ϕ is the electric potential and σ is the conductivity (assumed constant). Conservation
of charge then implies that ∇ · j = 0 and hence that ϕ satisfies Laplace’s equation. The
imposed potential difference V prescribes ϕ = −V on the workpiece and ϕ = 0 at the earthed
outer surface.

Now, let the thickness of the paint layer (where it exists) be denoted by h(x, t). The paint
acts as a resistive layer with conductivity σ̄ much lower than that of the solution. If the layer
is thin, then it will act as a classical resistor with surface conductivity σ̄/h. Hence we can
relate the potential difference across the layer to the current across it by

σ
∂ϕ

∂y
=

σ̄

h
(V + ϕ) at y = h(x, t). (2.33)

It is observed experimentally that, when the current is switched off, the paint dissolves
back into solution at some rate d. The net rate at which the layer thickness increases (where
it exists) is therefore given by

∂h

∂t
= −d+ ασ

∂ϕ

∂y
at y = h(x, t), (2.34)

where α is a constant of proportionality (α = VM/F , where VM is the molar volume of solid
paint and F is Faraday’s constant).

We normalize the problem as follows:

(x, y) = L (x̃, ỹ) , ϕ = −V + V ϕ̃ h = ϵL h̃, t =
ϵL2

ασV
t̃, (2.35)
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Figure 2.8: Schematic of a codimension-two free boundary problem for the electropainting
process.

where L is a typical length scale for the workpiece and

ϵ =
σ̄

σ
≪ 1. (2.36)

Then, with the tildes dropped, the boundary conditions (2.33) and (2.34) become

∂ϕ

∂y
=

ϕ

h
,

∂h

∂t
=

∂ϕ

∂y
− δ at y = ϵh(x, t), (2.37)

where

δ =
Ld

ασV
. (2.38)

Now, the smallness of ϵ implies that the thickness of the paint layer is small compared
with the net size of the workpiece, as expected. By letting ϵ → 0, we can apply the bound-
ary conditions (2.37) on the known surface of the workpiece rather than the unknown free
boundary y = ϵh(x, t). To justify this approximation, Taylor expand about y = 0 to get

ϕ
(
x, ϵh, t

)
= ϕ(x, 0, t) + ϵh

∂ϕ

∂y
(x, 0, t) +O

(
ϵ2
)
. (2.39)

Hence as ϵ → 0, we can replace (2.37) by

∂ϕ

∂y
=

ϕ

h
,

∂h

∂t
=

∂ϕ

∂y
− δ at y = 0. (2.40)

This applies wherever the paint layer is present so that h > 0.

If there is a bare patch where h = 0, then since the resistive paint layer is no longer
present, we instead impose

ϕ = 0 at y = 0. (2.41)

This applies wherever h = 0 and ∂ϕ/∂y ≤ δ, so that according to (2.40) it is not possible for
the paint layer to grow.
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Figure 2.9: Schematic of a model codimension-two free boundary problem for the steady
electropainting problem.

The resulting problem is as depicted in figure 2.8. This set-up is easily generalized to
more complicated situations, for example where the workpiece and/or the earthed electrodes
are not flat. This is not a classical free boundary problem since the geometry in which
Laplace’s equation is to be solved is specified in advance. However, the points where the
painted layer begins and ends (x = ±c in our simple set-up), and the boundary conditions
switch from Dirchlet to Robin boundary conditions, are not known in advance and must be
found as part of the solution. In general we expect these points to vary with time as the
painted region grows or shrinks. These points are the free boundaries in this problem. This
is called a codimension-two free boundary problem, two being the codimension between the
space in which the problem is posed (two dimensions) and the free boundaries (points, i.e.,
zero dimensions).

Steady model problem

Now we focus on a relatively simple concrete problem that is analytically tractable but not
trivial. If the system has reached steady state, then the boundary condition on the painted
region is just the Neumann condition

∂ϕ

∂y
= δ at y = 0. (2.42)

The paint film thickness may then be recovered a posteriori by using

h(x) =
ϕ(x, 0)

δ
(2.43)

Since the thickness cannot be negative, it follows that ϕ ≥ 0 on the painted region.

Let us suppose that the earthed electrode is a single point (x, y) = (0, 1) in dimensionless
coordinates. As illustrated in figure 2.9, this corresponds to a logarithmic singularity, with

ϕ ∼ − 1

2π
log
∣∣(x, y)− (0, 1)

∣∣ = − 1

4π
log
(
x2 + (y − 1)2

)
as (x, y) → (0, 1), (2.44)
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where the strength of the source has been normalized to unity.
As a first step, it is helpful to subtract off the singular part of ϕ, along with an image

singularity at (x, y) = (0,−1), so that the boundary condition ϕ = 0 on the unpainted
workpiece y = 0, |x| > c is preserved. We also note that ϕ = δy satisfies the boundary
conditions on y = 0 exactly. We therefore set

ϕ(x, y) = δy − 1

4π
log
(
x2 + (y − 1)2

)
+

1

4π
log
(
x2 + (y + 1)2

)
+Φ(x, y). (2.45)

Thus the new dependent variable Φ satisfies the problem

∇2Φ = 0 y > 0, (2.46a)

∂Φ

∂y
→ −δ x2 + y2 → ∞, (2.46b)

Φ = 0,
∂Φ

∂y
≤ −f(x) y = 0, |x| > c, (2.46c)

Φ ≥ 0,
∂Φ

∂y
= −f(x) y = 0, |x| < c, (2.46d)

where

f(x) =
1

π (1 + x2)
. (2.47)

This is a mixed boundary value problem, and in general one expects the solution to have
singularities at the points (±c, 0) where the boundary conditions switch from Dirichlet to
Neumann. In principle, the value of c can be determined as part of the solution by specifying
how singular Φ is allowed to be: we require ∇Φ to be bounded at both free boundaries.

This problem can be solved in principle, for example by taking a Fourier transform in x,
in terms of the function Φ at the surface of the workpiece, i.e.

Φ0(x) = Φ(x, 0). (2.48)

We have Φ0(x) = 0 for |x| > c but otherwise Φ0 is unknown as yet. We therefore find that

∂Φ

∂y
=

1

π

∫ c

−c

(x− s)Φ′
0(s)

(x− s)2 + y2
ds (2.49)

for y > 0. Carefully letting y → 0 and applying the boundary condition (2.46d), we therefore
find that Φ0 satisfies the singular integral equation

−f(x) =
1

π
−
∫ c

−c

Φ′
0(s)

x− s
ds. (2.50)

Here −
∫

signifies that the principal value of this singular integral is taken, i.e.

−
∫ c

−c

Φ0(s)

x− s
ds = lim

ϵ→0

(∫ x−ϵ

−c
+

∫ c

x+ϵ

)
Φ0(s)

x− s
ds. (2.51)

We have to solve equation (2.50) for Φ0(x), and find the value of c such that Φ is differentiable
at (±c, 0). The thickness of the painted layer is then recovered from

h(x) =
Φ0(x)

δ
. (2.52)
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Solution of model problem

There are various techniques for tackling singular integral equations like (2.50), or equivalently
mixed boundary value problems like (2.46). The most elegant approaches exploit complex
variable theory. The first step is to recognise that, since Φ satisfies Laplace’s equation, it may
be written as the real part of a holomorphic function of z = x+ iy, i.e.

Φ(x, y) + iΨ(x, y) = w(z), (2.53)

where w(z) is holomorphic in Im(z) > 0. (The imaginary part Ψ is the harmonic conjugate
to Φ; they are related through the Cauchy–Riemann equations.) Differentiation with respect
to z gives

∂Φ

∂x
− i

∂Φ

∂y
= w′(z), (2.54)

so our task is to find a function w′(z) that is holomorphic in the upper half-plane and satisfies
the conditions

w′(z) → δi z → ∞, (2.55a)

Re
[
w′(z)

]
= 0, y = 0, |x| > c, (2.55b)

Im
[
w′(z)

]
= f(x) y = 0, |x| < c. (2.55c)

The mixed character of the probem is reflected in the fact that we specify the imaginary
part of w′ on a segment of the boundary and the real part elsewhere. We can use a trick to
transform this into a classical problem in which the real part is specified everywhere. Let

w′(z) =
√

z2 − c2W (z), (2.56)

where W (z) is holomorphic in the upper half plane. The square root function is defined as√
z2 − c2 =

√
z − c

√
z + c =

√
r1r2 e

i(θ1+θ2)/2, (2.57)

where

r1 = |z − c|, r2 = |z + c|, θ1 = arg(z − c), θ2 = arg(z + c), (2.58)

and the angles θ1,2 lie in the range (−π, π) for z in the upper half plane. From this definition
we see that

√
z2 − c2 ∼ z as z → ∞. Moreover,

√
z2 − c2 is real as y → 0 with |x| > c

and imaginary as y → 0 with |x| < c. Therefore the new function W (z) satisfies a classical
Dirichlet problem, with its real part specified everywhere on the boundary, namely

W (z) ∼ iδ

z
z → ∞, (2.59a)

Re
[
W (z)

]
=

0 |x| > c,
f(x)√
c2 − x2

|x| < c
y = 0. (2.59b)

In principle this new problem (2.59) is now amenable to solution via classical techniques.
Before considering the solution, we make a few notes about the procedure carried out

above. The first point is that mixed boundary value problems of the form (2.55) generally
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Figure 2.10: The relation between the half-length c of the painted region and the normalized
dissolution current δ, given by equation (2.63).

can be tackled using the so-called Plemelj formulae: the decomposition employed in equation
(2.56) is a shortcut that works in this particular case. Second, we should ask whether the
decomposition (2.56) is unique, i.e., whether a different function could have been used instead
of

√
z2 − c2 with the same property of being real on y = 0, |x| > c and imaginary on y = 0,

|x| < c? The answer is yes: any function of the form (z − c)n+1/2(z + c)m+1/2 would have
worked, where m and n are any integers. The particular choice n = m = 0 was made here
(with the benefit of hindsight) to ensure that w′(z) is bounded as z → ±c but does not grow
too rapidly as z → ∞.

Now, we can find the holomorphic function that satisfies the Dirichlet condition (2.59b)
and decays as z → ∞, by using Poisson’s formula:

W (z) =
1

πi

∫ c

−c

f(t) dt

(t− z)
√
c2 − t2

. (2.60)

Again this is really an application of the Plemelj formulae, but it could also be obtained by
using a Green’s function, for example; or one can easily just verify that (2.60) satisfies (2.59b)
by taking the limit y → 0. Taking the limit z → ∞ in (2.60), we have

W (z) ∼ iK

z
as z → ∞, (2.61)

where

K =
1

π

∫ c

−c

f(t)√
c2 − t2

dt =
1

π2

∫ c

−c

dt

(1 + t2)
√
c2 − t2

=
1

π
√
1 + c2

. (2.62)

By comparing (2.61) with (2.59a), we obtain a relation between δ and c, namely

δ =
1

π
√
1 + c2

and hence c =

√
1

δ2π2
− 1. (2.63)

The relation between c and δ is plotted in figure 2.10. This shows how the size of the painted
region depends on δ. Recall from (2.38) that δ measures the dissolution current relative to the
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applied voltage. Small δ corresponds to a relatively high voltage and leads to a large portion
of the surface being covered. As δ increases, c decreases and reaches zero at a finite critical
value δc = 1/π. If δ > 1/π, then the applied voltage is too weak to overcome the dissolution
current, and none of the surface gets painted. In this case, the Dirichlet condition ϕ = 0 is
satisfied everywhere on y = 0, and the solution is

ϕ(x, y) =
1

4π
log

(
x2 + (y + 1)2

x2 + (y − 1)2

)
, (2.64)

with ∂ϕ/∂y < δ everywhere on y = 0.
To calculate the potential when δ < 1/π, we need to perform the integral in equation

(2.60). This can be done using contour integration, resulting in

W (z) =
1

πi

∫ c

−c

f(t) dt

(t− z)
√
c2 − t2

=
i

π (1 + z2)
√
z2 − c2

+
iz

π (1 + z2)
√
1 + c2

. (2.65)

We can easily see that this is consistent with the previous results (2.61) and (2.62) in the
limit z → ∞. By substitution into (2.56), we therefore have

w′(z) =
i

π (1 + z2)
+

iz
√
z2 − c2

π (1 + z2)
√
1 + c2

. (2.66)

To calculate the thickness of the painted layer using equation (2.52), we need to evaluate
Φ(0, x) for |x| < c. Letting y ↘ 0 in (2.66) with x ∈ (−c, c), we get

∂Φ

∂x
− i

∂Φ

∂y
=

i

π (1 + x2)
− x

√
c2 − x2

π (1 + x2)
√
1 + c2

on y = 0, − c < x < c. (2.67)

Thus the potential at the painted surface Φ0(x) = Φ(x, 0) satisfies

dΦ0

dx
=

−1

π
√
1 + c2

x
√
c2 − x2

1 + x2
, (2.68)

and one further integration gives

Φ0(x) =
1

π

[
tanh−1

(√
c2 − x2

1 + c2

)
−
√

c2 − x2

1 + c2

]
. (2.69)

The resulting painted film thickness profile h(x) = Φ0(x)/δ is plotted in figure 2.11 for
various values of δ between 0 and 1/π. As expected, small values of δ produce a wide, thick
film. As δ increases, the film gets thinner and shorter, and it disappears as δ approaches the
critical value 1/π ≈ 0.318. It is apparent that h(x) has zero slope as x → c; local expansion
of (2.69) gives

Φ0(x) ∼
1

3π

(
c2 − x2

1 + c2

)3/2

as x → ±c. (2.70)

This is a consequence of our insisting that ∇Φ be finite at the two end points (±c, 0), and
thereby selecting the appropriate value of c.
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Figure 2.11: The painted film thickness profile h(x) given by equation (2.69) for values of the
normalized dissolution current δ = 0.1, 0.15, 0.2, 0.25, 0.3.


