Here we look at a solution for Example 9 on page 19 of the lecture notes where we do not presume the asymptotic scalings given there $\left(T=T_{0}+O\left(\epsilon^{2}\right)\right.$ and $u=\epsilon u+O\left(\epsilon^{3}\right)$ etc). Instead, let us suppose we do not anticipate those, and we expand both u and T as full regular series in interger powers of (small) ϵ.

Example Consider consider the following nonlinear equation for $u(x)$:

$$
u^{\prime \prime}+T u+u^{3}=0 \quad 0<x<\pi, \quad u(0)=u(1)=0
$$

Introduce a small parameter ϵ so that $T=T_{0}+\epsilon T_{1}+\epsilon^{2} T_{2}+\ldots$, and consider small solutions as an asymptotic expansion

$$
u=\epsilon \phi_{1}(x)+\epsilon^{2} \phi_{2}(x)+\epsilon^{3} \phi_{3}(x)+\ldots
$$

Substituting in and equating powers of ϵ we find to order ϵ,

$$
\phi_{1}^{\prime \prime}+T_{0} \phi_{1}=0 \quad \phi_{1}(0)=\phi_{1}(1)=0 .
$$

So we must have $T_{0}=n^{2} \pi^{2}$ and $\phi_{1}=A \sin n x$ for some real constant $A \neq 0$, and thus non trivial for A non zero.
This equation can be written $L \phi_{1}=0$, where L is self-adjoint.
To order ϵ^{2} we have

$$
\phi_{2}^{\prime \prime}+T_{0} \phi_{2}=-T_{1} \phi_{0} \quad \phi_{2}(0)=\phi_{2}(1)=0
$$

The Fredholm Alternative says that this has a solution if and only if the RHS is orthogonal to $\sin n x \propto \phi_{0}$, which spans the null space of L (which is self adjoint). Thus we must take $T_{1}=0$. Then wlog we can take $\phi_{2}=0$.
To order ϵ^{3} we have

$$
\phi_{3}^{\prime \prime}+n^{2} \phi_{3}=-T_{2} A \sin n x-A^{3} \sin ^{3} n x \quad \phi_{3}(0)=\phi_{3}(1)=0 .
$$

The Fredholm Alternative says that this has a solution if and only if RHS is orthogonal to $\sin n x \propto \phi_{0}$ (which spans the null space of the adjoint operator): hence we have

$$
-T_{2} \int_{0}^{\pi} \sin ^{2} n x d x=A^{2} \int_{0}^{\pi} \sin ^{4} n x d x
$$

So $A= \pm \sqrt{-T_{2} \int_{0}^{\pi} \sin ^{2} n x d x / \int_{0}^{\pi} \sin ^{4} n x d x}= \pm \sqrt{-4 T_{2} / 3}$, as required. A is real iff $T_{2} \leq 0$.
Of course what is T_{2} here is written as T_{1} in the notes; and u_{3} here is y_{1} in the notes.

