Here we look at a solution for Example 9 on page 19 of the lecture notes where we do not presume the asymptotic scalings given there $(T = T_0 + O(\epsilon^2) \text{ and } u = \epsilon u + O(\epsilon^3) \text{ etc})$. Instead, let us suppose we do not anticipate those, and we expand both u and T as full regular series in interger powers of (small) ϵ .

Example Consider consider the following nonlinear equation for u(x):

$$u'' + Tu + u^3 = 0$$
 $0 < x < \pi$, $u(0) = u(1) = 0$.

Introduce a small parameter ϵ so that $T = T_0 + \epsilon T_1 + \epsilon^2 T_2 + \dots$, and consider small solutions as an asymptotic expansion

$$u = \epsilon \phi_1(x) + \epsilon^2 \phi_2(x) + \epsilon^3 \phi_3(x) + \dots$$

Substituting in and equating powers of ϵ we find to order ϵ ,

$$\phi_1'' + T_0\phi_1 = 0 \quad \phi_1(0) = \phi_1(1) = 0.$$

So we must have $T_0 = n^2 \pi^2$ and $\phi_1 = A \sin nx$ for some real constant $A \neq 0$, and thus non trivial for A non zero.

This equation can be written $L\phi_1 = 0$, where L is self-adjoint. To order ϵ^2 we have

$$\phi_2'' + T_0\phi_2 = -T_1\phi_0 \quad \phi_2(0) = \phi_2(1) = 0.$$

The Fredholm Alternative says that this has a solution if and only if the RHS is orthogonal to $\sin nx \propto \phi_0$, which spans the null space of L (which is self adjoint). Thus we must take $T_1 = 0$. Then wlog we can take $\phi_2 = 0$. To order ϵ^3 we have

$$\phi_3'' + n^2 \phi_3 = -T_2 A \sin nx - A^3 \sin^3 nx \ \phi_3(0) = \phi_3(1) = 0.$$

The Fredholm Alternative says that this has a solution if and only if RHS is orthogonal to $\sin nx \propto \phi_0$ (which spans the null space of the adjoint operator): hence we have

$$-T_2 \int_0^\pi \sin^2 nx dx = A^2 \int_0^\pi \sin^4 nx dx$$

So $A = \pm \sqrt{-T_2 \int_0^{\pi} \sin^2 nx dx / \int_0^{\pi} \sin^4 nx dx} = \pm \sqrt{-4T_2/3}$, as required. A is real iff $T_2 \leq 0$.

Of course what is T_2 here is written as T_1 in the notes; and u_3 here is y_1 in the notes.