B4.4 Fourier Analysis HT22

Lecture 5: Tempered distributions and the adjoint identity scheme revisited

Definition of tempered distributions

Comparison of the different classes of distributions
Examples: tempered LP functions and tempered measures
The boundedness property of tempered distributions

o s~ b=

The adjoint identity scheme in the tempered context

The material corresponds to pp. 20-25 in the lecture notes and should be
covered in Week 3.
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An adjoint identity for the Fourier transform

We have proved that the Fourier transform is a bijective .#" continuous
linear map F: .7(R") — . (R") with inverse 71 = (27)~"F. In view of
this the product rule, when restricted to Schwartz test functions, becomes
an adjoint identity:

Floypdx = | ¢F(¢)dx
R" R"

holds for all ¢, ¢ € .7(R"). We shall take advantage of this and extend the
Fourier transform, in a consistent manner, to a large class of distributions.
This is the motivation for introducing the class of Schwartz test function.
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Definition of tempered distributions

Definition A functional u: .(R") — C is a tempered distribution on R"
if
(i) uis linear,
(i) wis.” continuous: if ¢; — ¢ in Z(R"), then u(¢;) — u(e).
The set of all tempered distributions on R” is denoted by .#’'(R").

Remarks

e When u: .#(R") — C is linear, then (ii) holds provided u is ./
continuous at 0.

e Under the usual definitions of vector space operations it is clear that
'(R"™) becomes a vector space over C.

e We shall also use the bracket notation for tempered distributions and
often write (u, ¢) instead of u(¢).
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Relation to other classes of distributions from B4.3

We have introduced the classes of distributions 2'(R") and &’(R") on R".
How are these classes related to the tempered distributions? — First note
that

Z(R") c L(R") C C®°(R")
where the two inclusions are strict. We claim that

E'(R") c Z'(R") Cc Z'(R")
and that the two inclusions are strict too. First, one may wonder what it
means. The argument below will however make that clear.
Let u € 7/(R"). Then its restriction u|y(gny to the subspace Z(R") is

clearly still linear. If ¢; — 0 in Z(R"), then as we have seen before the
convergence also takes place in the .% sense, so by assumption

<u|,@(R”)7¢j> = <u7¢j> - 07
hence the restriction u|yrn) € Z'(R"). It is in this sense we intend the

inclusion above. We also emphasize that the restriction u|gmgn) uniquely
determines u € ./(R") because Z(R") is . dense in .7 (R").
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Relation to other classes of distributions

The incIusion is strict since e” € 2/(R™)\ ' (R"): if u € ./(R") and
= [ra(x e|x| dx for ¢ € Z(R"), then approximating

e ‘X| € Z(R") by ¢; € Z(R") in the . sense we get a constradiction,

(u, e*|'|2> = lim (u, ¢;) = lim / e‘X‘z@(X) dx = o0
Jj—0o JRrn

J—00

We turn to the compactly supported distributions and let u € &’(R"). We
recall from B4.3 that u admits a unique extension, denoted u again, to a
linear functional on C°°(IR") with the property that for each compact
neighbourhood K of the support supp(u) there exist constants

c=ck >0, m=mg € Ng so

[(u,0)| < ¢ Y sup|o”g|
jaj<m K

holds for all ¢ € C°(R").
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Relation to other classes of distributions

Clearly the restriction ul s (gn) remains linear and if ¢; — 0 in .(R"), then

|(ul ey, 05)| = [(u,0j)] < ¢ Z S;p|<9a¢j\

laj<m

( T 1)so,m(¢,-) o,

laj<m

IN

so u| y(mny € '(R"), and it is in this sense the inclusion should be
understood. Again, the inclusion is strict since e~ " € .7/(R") \ &'(R").

As already indicated above, we shall omit writing restrictions here, and for

instance simply write that u € ./(R") when we actually mean
ul @y € 7' (R").
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Example 1. Let f € LP(R"), where p € [1,00]. Define

Tr(6) = /]R Fodx, o € S (R,

Then Ty is well-defined and linear. By Holder's inequality and the inclusion
S (R™) C LY(R"), where q is the Holder conjugate exponent to p, we get

[ Te(@) < [Ifllplléllg < c(n @)lIfllpSni10(e)-

Therefore Ty is also . continuous, so Ty € .#/(R"). As observed before
T, or its restriction to Z(R"), is then a distribution in 2’(R") too, and so
f is uniquely determined (by the fundamental lemma of the calculus of
vairations). We shall therefore also identify T¢ and f for tempered
distributions, and simply write T = f, where it is then clear from context
or else must be explicitly mentioned in what capacity f is considered.
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Example 2. Let i be a finite Borel measure on R". Define
T6) = | sdn o e SR

Then T, is well-defined and linear. Since also | T,,(¢)| < u(IR")So0(¢) it
follows that T, € ./(R"). As in the previous example T, or its restriction
to Z(R") is a distribution in 2'(R") and so p is uniquely determined by
T,.. We therefore identify T,, with 1 and write simply T, = p also in this
case. In particular note that the Dirac delta function 4, also can be viewed
as a tempered distribution.

Example 3. Functions in L, (R") and locally finite Borel measures do not
in general define tempered distributions. As we have seen, eX* € L (R")
does not define a tempered distribution. In order to be a tempered
distribution a function should not grow too fast at infinity. This is vague
and, as it turns out, it has to be. For example you will show on problem

sheet 3 that ¢* ¢ .%/(R), while <™ € .7/(R).
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Tempered L functions and measures

In the context of the distributions in &’ the regular distributions were those
corresponding to Li. functions. The corresponding notion of regular
tempered distribution is the notion of a tempered L' function.

Definition Let p € [1,00]. A measurable function f: R” — C is (a
representative for) a tempered LP function if there exists m € Ny so
f(x)

— e LP(R"). (1)
(1+1xP)

N3

A Borel measure ;1 on R" is a tempered measure if for some m € Ny we

have

1 + ’X‘Z)g
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Tempered LP functions and tempered measures are tempered
distributions: Assume f is a tempered L function and p a tempered
measure, say (1) and (2) hold. Then if ¢ € Z(R") we define

(Tr.0) = [ F)o(x)ax and (Ty0) = [ oan

We claim they are well-defined tempered distributions. To see that Ty is,
use Hdlder's inequality,

f(-)
[(T¢.9) /!fqb!dx < ‘(1+|-| 7 HH! )% .
c L S
S (1 N ‘ ' |2)% . n+ +m,0(¢)

so Ty is well-defined and hence linear. It also follows from the bound that
it is .7 continuous. The proof for T, is easier and left as an exercise.
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Tempered L functions and measures

As we have seen that .7/(R") C Z'(R") also T¢, T, € 2'(R") and so we
may also in the tempered context identify T¢ with f and T, with p.
Henceforth we therefore also write

Tr=f
for tempered LP functions and
T.=p

for tempered measures.
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The boundedness property of tempered distributions

Proposition Let u: .7(R") — C be linear. Then u is . continuous if
and only if there exist constants ¢ > 0, k, / € Ny so

(1, 9)] < €Ska()
holds for all ¢ € .7(R").

Note that the boundedness property implies that tempered distributions
always have a finite order (the order is at most / if the above bound holds
for u).
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The boundedness property of tempered distributions

Proof. It is clear that the bound together with linearity implies .
continuity. So we focus on the opposite direction and assume that v is .%¥
continuous. The proof goes by contradiction: assume that the boundedness
property fails. Then for all c = k =/ = j € N there exists ¢; € .(R") so

[ (u, 65)| > j5;4(95)-
Then clearly ¢; # 0, so S; j(¢;) > 0 and we may define
J51j(7)

Fix o, B € N§. Then for j > |a| + |3] we have S, 5(1);) < 1//, so by

arbitrariness of «, 5 we have shown that ¢); — 0 in .(R"). Consequently
we must by . continuity have (u,v;) — 0. But this is impossible because
we also have |(u, ;)| > 1. O

¥ € S (R").
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Convergence of tempered distributions

Definition For a sequence (u;) in ./(R") and u € .'(R") we write
uj — uin L' (R") if (uj, ¢) — (u, @) holds for all ¢ € #(R").

Because Z(R") is a proper subspace of .%/(R") this mode of convergence
is clearly strictly stronger than convergence in 2'(R").

Example Find the limits in the sense of tempered distributions of
(i) (sin(jx)) as j — oo,
(i) (p) as e\, 0.
(i): We know from B4.3 that sin(jx) — 0 in 2'(R"). Because Z(R) is .¥

dense in 7 (R), given ¢ € (R) and € > 0 we can find ¢ € Z(R) with
S20(¢ —¢) <e.
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Convergence of tempered distributions

Now
'/Rsin(jX)¢(X)dx < /Rsin(jx)w(x)dx —|—/R‘sin(jx)||¢(x) —1/J(x)|dx
< | [sinGgu ax
+/le;2§gﬂg<(l +x%)]o(x) — ¢(X)|>

< /Rsin(jx)gb(x) dx| + 2w S2,0(¢ — )

< /Rsin(jx)w(x) dx| + 27e.

It follows that sin(jx) — 0 in */(R) as j — cc.
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Convergence of tempered distributions

We could of course also have proceeded exactly as we did in B4.3, simply
replacing the 2 test functions by Schwartz test functions throughout.
However we wanted to point out that many results from B4.3 can also be
transferred without much effort using . density of Z(R") in .(R").

(i)): pe = do in L'(R) as e N\, 0.

Let ¢ € #(R"). Then by uniform convergence we get since
supp(p) = B1(0) has finite measure:

(p-s6) = [P0 dx = 6(0)
as e \0.
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The adjoint identity scheme in the tempered context

The procedure is as in B4.3 and the only difference is that we replace
2(Q) by L (R").

Given an operation T on .#(R"), assumed to be a linear map
T: . 7R") — (R,
that we would like to extend to tempered distributions.

Assume S: .7 (R") — #(R") is a linear and . continuous map, and that
we have the adjoint identity:

[ T@wax= [ os()ax

holds for all ¢, ¥ € .7(R").

) HT22 17 /22



The adjoint identity scheme in the tempered context

We can then define T: .%/(R") — .#/(R") for each u € .#'(R") by the

rule
(T(u),d) = (u,5(9)), ¢ € S (R").

We record that hereby T(u): .#(R") — C is linear and .# continuous,
that is, T(u) € .Z'(R"), so T: .7'(R") — .#'(R") is well-defined. By
inspection we see that it is linear and .#’ continuous: if uj — u in #'(R"),
then also T(u;) — T(u) in #/(R™).

Note that the adjoint identity ensures that the extension is consistent,
T|@ny = T and so as in Z context we shall in the sequel write T also for

the extension T.
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The Fourier transform on tempered distributions

We have seen that the Fourier transform acts a linear and .% continuous
map F: .(R") — .#(R"). The product rule is therefore an adjoint
identity and so we can define the Fourier transform on .’ by the adjoint
identity scheme: for u € ./(R") we define Fu = & by the rule

-~

(U, ¢) = (u,¢), p € L(R").
Hereby F: ./(R") — ./(R") is linear and .’ continuous.

The adjoint identity ensures that our definition is consistent on Schwartz
test functions, but what about our definition on L1(R"), do we also have
consistency there? — Let £ € L}(R™) and let us compare our two definitions:

f&)= | f(x)e€%dx and (Tr,¢) = | fddx, ¢ € L (R").
Rn R"
The product rule in L! ensures that they are the same: Tr= fr
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The Fourier transform on tempered distributions
Example Find the Fourier transform of §,, where a € R".
For ¢ € .7(R") we have

(00, 8) = (0a:0) = &(2)

SO N )
XGRS

In particular record the result for a=0: §p = 1.

Exercise Check that our definition of the Fourier transform on .’ is
consistent with the definition we gave for the Fourier transform of finite
Borel measures in Lecture 1:

—

T,=Tg

holds for all finite Borel measures i on R”".
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Extending other operations to tempered distributions

Because ./(R") C 2'(R") we can of course define many of the operations
introduced in B4.3 also for tempered distributions. What is needed for the
operation to produce a tempered distribution again is that the operation on
Z(R") extends to a linear and . continuous map of .(R") to itself.
That is, we should have an adjoint identity in the .% context.

This is easily seen to be the case with differentiation, where we define for a
direction 1 < j < nand u € .%/(R") the tempered distribution partial
derivative 0;u by the rule

(Oju,9) = —(u,0;9), » € S (R").

With this definition we can then, for each u € .#/(R"), make sense of 9“u
and of p(d)u as tempered distributions for any multi-index o € Nj and any
differential operator p(9).
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Extending other operations to tempered distributions

Likewise, we can define the operations
e O,ufor @ € O(n) (and in particular ),
e dilations d,u and u, for a scale factor r > 0,
e translation 7,u for a vector h € R"

on tempered distributions in a straight forward manner.

Example Let v € .#’(R). Then

ThU — U

— = u in S'(R") as h— 0.

However, some care is needed for multiplication with C*° function, where

the multiplying function must be restricted. We pick up on this in the next
lecture.
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