B4.4 Fourier Analysis HT22

Lecture 14: Periodic distributions and the Poisson summation formula

- 1. Examples and the periodisation of a test function
- 2. Periodic distributions are tempered
- 3. The Fourier transform of a periodic distribution
- 4. The Poisson summation formula

The material corresponds to pp. 48–53 in the lecture notes and should be covered in Week 7.

Lecture 14 (B4.4) HT22 1/21

Periodic distributions

Definition Let t > 0. A distribution $u \in \mathcal{D}'(\mathbb{R})$ is t-periodic (or periodic with period t) if

$$\tau_t u = u$$
.

Example 1 Let $u \in L^1_{loc}(\mathbb{R})$. Then u is t-periodic if u(x+t)=u(x) almost everywhere. It follows from the fundamental lemma of the calculus of variations that u is t-periodic if and only if u is t-periodic as a distribution.

Example 2 Let $u \in \mathcal{D}'(\mathbb{R})$ and t > 0. Then u is t-periodic if and only if the dilated distribution

$$d_{\frac{t}{2\pi}}u$$

is 2π -periodic. Indeed, this is a consequence of the identity

$$\tau_{2\pi}d_{\frac{t}{2\pi}}u-d_{\frac{t}{2\pi}}u=d_{\frac{t}{2\pi}}(\tau_{2\pi}u-u).$$

Verify this as an exercise.

Lecture 14 (B4.4)

Periodic distributions

Intuitively a t-periodic distribution is fully determined if we know it on any interval of length t. This is clear for regular distributions. It is a little vague and unclear how this should be understood for general distributions. We assert that if (a,b) is an interval of length b-a>t, then if we know that $u\in \mathscr{D}'(\mathbb{R})$ is t-periodic and know the values $\langle u,\phi\rangle$ for each $\phi\in \mathscr{D}(a,b)$, then we know u.

Given any $\phi \in \mathscr{D}(\mathbb{R})$ with support contained in an interval [c, d]. Cover this compact interval with sets from the open cover

$$\{(a+nt,b+nt): n \in \mathbb{Z}\}$$

of \mathbb{R} . Use a smooth partition of unity for [c,d] that is subordinated this cover (recall we constructed these in B4.3), say

$$[c,d] \subset \bigcup_{j=k}^l (a+jt,b+jt), \ \psi_j \in \mathscr{D}(a+jt,b+jt) \ \text{ and } \ \sum_{j=k}^l \psi_j = 1 \ \text{ on } [c,d].$$

Lecture 14 (B4.4)

Periodic distributions

Now because *u* is *t*-periodic we have

$$\langle u, \phi \rangle = \sum_{j=k}^{l} \langle u, \psi_j \phi \rangle = \sum_{j=k}^{l} \langle u, \tau_{-jt} (\psi_j \phi) \rangle$$

and since $\tau_{-jt}(\psi_j\phi) \in \mathcal{D}(a,b)$ for each j the value of u at ϕ is determined.

In the sequel we shall mainly consider 2π -periodic and 1-periodic distributions. As we have seen above this is not really restrictive as any period t>0 can be obtained by dilation from, say, the 2π -periodic case.

Example 3 Use the Fourier bounds to show that

$$u = \sum_{n \in \mathbb{Z}} e^{inx}$$

is a tempered 2π -periodic distribution. [See details in the lecture notes]

Lecture 14 (B4.4) HT22

The periodisation of a test function

Definition Let $\phi \in \mathscr{S}(\mathbb{R})$. Then *the periodisation of* ϕ is defined for each $x \in \mathbb{R}$ as

$$(P\phi)(x) = \sum_{n \in \mathbb{Z}} \phi(x + 2\pi n) \left(:= \lim_{\substack{k \to \infty \\ l \to \infty}} \sum_{n = -k}^{n = l} \phi(x + 2\pi n) \right).$$

We assert that $P\phi\colon\mathbb{R}\to\mathbb{C}$ is a 2π -periodic C^∞ function. Hereby $P\colon\mathscr{S}(\mathbb{R})\to C^\infty_{\mathrm{per}}(\mathbb{R})$ is a linear map (valued in 2π -periodic C^∞ functions). First note that if $\phi\in\mathscr{D}(\mathbb{R})$, then the series becomes a finite sum and it is then clear that $P\phi\in C^\infty(\mathbb{R})$ and also that it is 2π -periodic. In the general case $\phi\in\mathscr{S}(\mathbb{R})$ the series defining $P\phi(x)$ is a genuine series and we must present a proof for our assertion:

Let $s \in \mathbb{N}_0$. For $n \in \mathbb{Z}$ and $x \in \mathbb{R}$ we estimate

$$\left|\phi^{(s)}(x+2\pi n)\right| = \frac{1+(x+2\pi n)^2}{1+(x+2\pi n)^2} \left|\phi^{(s)}(x+2\pi n)\right| \le \frac{2\overline{S}_{2,s}(\phi)}{1+(x+2\pi n)^2}$$

Lecture 14 (B4.4) HT22

The periodisation of a test function

Consequently, given r>0, we have for $x\in\mathbb{R}$, $k\in\mathbb{Z}$ satisfying $|x|\leq r<|k|$ that

$$\left|\phi^{(s)}(x+2\pi k)\right| \leq \frac{2\overline{S}_{2,s}(\phi)}{1+(2\pi|k|-r)^2}$$

and since

$$\sum_{n\in\mathbb{Z},|n|>r}\frac{2\overline{S}_{2,s}(\phi)}{1+(2\pi|n|-r)^2}<\infty$$

we infer from Weierstrass' M-test that the series $\sum_{n\in\mathbb{Z}}\phi^{(s)}(x+2\pi n)$ converges uniformly in $x\in[-r,r]$. Because $s\in\mathbb{N}_0$, r>0 were arbitrary we deduce that $P\phi$ is C^∞ and that the series, together with the term-by-term differentiated series, converge locally uniformly in $x\in\mathbb{R}$. Finally, it is clear that $P\phi$ is 2π -periodic.

Lecture 14 (B4.4) HT22

The periodisation of a test function

Example 4 Show that if $\phi \in \mathscr{S}(\mathbb{R})$ and $\psi \in \mathscr{D}(\mathbb{R})$, then

$$\sum_{n=-k}^{n=l} \psi(x)\phi(x+2\pi n) \to \psi(x)(P\phi)(x) \text{ in } \mathscr{D}(\mathbb{R})$$

as $k, l \to \infty$.

Put $Z_{k,l}(x) = \sum_{n=-k}^{n=l} \phi(x+2\pi n)$. Then we have just shown that $Z_{k,l}^{(s)}(x) \to \left(P\phi\right)^{(s)}(x)$ locally uniformly in $x \in \mathbb{R}$ for each $s \in \mathbb{N}_0$ as k, $l \to \infty$. Because $\mathrm{supp}\big(\psi Z_{k,l}\big) \subseteq \mathrm{supp}\big(\psi\big)$ for all k, $l \in \mathbb{N}$ and by Leibniz' rule

$$\frac{\mathrm{d}^s}{\mathrm{d}x^s}\bigg(\psi Z_{k,l}\bigg) \to \frac{\mathrm{d}^s}{\mathrm{d}x^s}\bigg(\psi P\phi\bigg) \text{ uniformly}$$

as k, $l \to \infty$, the result follows.

Lecture 14 (B4.4) HT22

Periodic distributions are tempered

Lemma Let $u \in \mathscr{D}'(\mathbb{R})$ be 2π -periodic. Then u is \mathscr{S} continuous and hence extends to $\mathscr{S}(\mathbb{R})$ as a tempered distribution. (We also write u for this extension that necessarily must be unique.)

Proof. Put $\chi=\rho*\mathbf{1}_{(-1,2\pi+1]}$, where as usual ρ is the standard mollifier kernel on \mathbb{R} . Clearly, $\mathbf{1}_{(0,2\pi]}\leq\chi\leq\mathbf{1}_{(-2,2\pi+2]}$. The periodisation $P\chi$ is a 2π -periodic C^∞ function, and we must have $P\chi\geq 1$ everywhere, so that the function

$$\Psi = \frac{\chi}{P\chi}$$

is well-defined and $\Psi \in \mathscr{D}(\mathbb{R})$ and it has periodisation

$$P\Psi=1$$
 on \mathbb{R} .

We use this to give a formula for the extension of u to $\mathscr{S}(\mathbb{R})$.

Lecture 14 (B4.4) HT22

Periodic distributions are tempered-proof

For $\phi \in \mathscr{D}(\mathbb{R})$ we calculate:

$$\begin{array}{lll} \langle u, \phi \rangle & = & \langle u, \phi P \Psi \rangle = \left\langle u, \sum_{n \in \mathbb{Z}} \phi \tau_{2\pi n} \Psi \right\rangle \\ & \stackrel{\mathsf{Example 4}}{=} & \sum_{n \in \mathbb{Z}} \left\langle u, \phi \tau_{2\pi n} \Psi \right\rangle \\ & = & \sum_{n \in \mathbb{Z}} \left\langle u, \tau_{2\pi n} (\Psi \tau_{-2\pi n} \phi) \right\rangle \\ & = & \sum_{n \in \mathbb{Z}} \left\langle u, \Psi \tau_{-2\pi n} \phi \right\rangle \\ & \stackrel{\mathsf{Example 4}}{=} & \left\langle u, \Psi \sum_{n \in \mathbb{Z}} \tau_{-2\pi n} \phi \right\rangle \\ & = & \left\langle u, \Psi P \phi \right\rangle \end{array}$$

Lecture 14 (B4.4)

Periodic distributions are tempered-proof

Let $K = [-2, 2\pi + 2]$. By the boundedness property of u we can find constants $c = c_K \ge 0$, $m = m_K \in \mathbb{N}_0$ such that

$$\left|\langle u, \varphi \rangle\right| \le c \sum_{s=0}^{m} \sup \left|\varphi^{(s)}\right|$$

holds for all $\varphi \in \mathcal{D}(K)$. Using the previous identity and this bound with $\varphi = \Psi P \phi$ we find:

$$\begin{aligned} \left| \langle u, \phi \rangle \right| &= \left| \langle u, \Psi P \phi \rangle \right| \\ &\leq c \sum_{s=0}^m \sup \left| \left(\Psi P \phi \right) \right| \\ &\stackrel{\text{Leibniz}}{\leq} c C(\Psi, m) \overline{S}_{0,m}(\phi), \end{aligned}$$

where $C(\Psi, m) = 3(m+1)2^m \overline{S}_{0.m}(\Psi)$.

Lecture 14 (B4.4) HT22

Assume $u \in \mathscr{D}'(\mathbb{R})$ is *t*-periodic. Then as we just saw, $u \in \mathscr{S}'(\mathbb{R})$ (abuse of notation...) and for some constants $c \geq 0$, $m \in \mathbb{N}_0$ we have

$$|\langle u, \phi \rangle| \le c \overline{S}_{0,m}(\phi)$$
 (1)

holds for all $\phi \in \mathscr{S}(\mathbb{R})$. Its Fourier transform \widehat{u} is defined as a tempered distribution. Is there something special about it?

Obviously, we can Fourier transform the identity $\tau_t u = u$ using the translation rule to get

$$e^{it\xi}\widehat{u} = \widehat{u}.$$

By the Fourier inversion formula any $v \in \mathscr{S}'(\mathbb{R})$ satisfying this equation, that is,

$$e^{it\xi}v = v,$$
 (2)

11 / 21

is the Fourier transform of a t-periodic distribution. Furthermore, from $(e^{it\xi}-1)v=0$ we get that $\operatorname{supp}(v)\subseteq \frac{2\pi}{t}\mathbb{Z}$.

We used the following result:

Exercise If $v \in \mathscr{S}'(\mathbb{R})$ and $\Phi \colon \mathbb{R} \to \mathbb{C}$ is a moderate C^{∞} function, then a *necessary* condition for

$$\Phi v = 0$$
 in $\mathscr{S}'(\mathbb{R})$

to hold is that $\operatorname{supp}(v) \subseteq \{x \in \mathbb{R} : \Phi(x) = 0\}$. Prove it. Prove also that the condition is *not* sufficient.

Now consider v restricted to the interval $\left(-\frac{2\pi}{t}, \frac{2\pi}{t}\right)$. It is supported in $\{0\}$ and so by a result from B4.3 it follows that the restriction has the form

$$v\big|_{(-\frac{2\pi}{t},\frac{2\pi}{t})} = \sum_{s=0}^{m} a_s \delta_0^{(s)}$$

for some constants $a_s \in \mathbb{C}$ and $m \in \mathbb{N}_0$. Inspection shows that δ_0 satisfies (2). To see that the derivatives of δ_0 do not, and so that m = 0 above, we construct suitable test functions.

Fix $k \in \mathbb{N}$ and define

$$\varphi_k(x) = \frac{x^k}{k!} (\rho_{\varepsilon} * \mathbf{1}_{(-2\varepsilon,2\varepsilon)})(x)$$

with $\varepsilon > 0$ so small that it is supported in $(-\frac{2\pi}{t}, \frac{2\pi}{t})$. We then have

$$\left\langle \left(e^{it\xi} - 1 \right) \sum_{s=0}^{m} a_s \delta_0^{(s)}, \varphi_{m-1} \right\rangle = m a_m (-1)^m it$$

and so (2) forces $a_m=0$. Similarly, $a_{m-1}=a_{m-2}=\ldots=a_1=0$. We argue similarly at the other points of $\frac{2\pi}{t}\mathbb{Z}$ and so conclude that

$$v = \sum_{k \in \mathbb{Z}} c_k \delta_{\frac{2\pi}{t}k} \tag{3}$$

13 / 21

for some constants $c_k \in \mathbb{C}$. The doubly infinite sequence $(c_k)_{k \in \mathbb{Z}}$ cannot be arbitrary because the distribution (3) is tempered.

Lecture 14 (B4.4) HT22

If we employ the Fourier inversion formula on the identity (3), assuming as we may that $v=\widehat{u}$, we find that

$$u = \sum_{k \in \mathbb{Z}} c_k e^{i\frac{2\pi}{t}kx} \tag{4}$$

14 / 21

It follows that any t-periodic distribution admits an expansion of the form (4) for suitable coefficients $c_k \in \mathbb{C}$. In order to see what condition the doubly infinite sequence $(c_k)_{k \in \mathbb{Z}}$ must satisfy we return to the boundedness condition (1) for u and combine it with the Fourier bounds to get

$$\left|\sum_{k\in\mathbb{Z}}c_k\phi\left(\frac{2\pi}{t}k\right)\right|\leq C\overline{S}_{m+2,0}(\phi)$$

for $\phi \in \mathscr{S}(\mathbb{R})$, where $C \geq 0$ is a constant. We now construct suitable test functions to extract the information.

Lecture 14 (B4.4) HT22

For each $j \in \mathbb{Z} \setminus \{0\}$ and $\varepsilon \in (0, \frac{\pi}{2t})$ define

$$\phi_j(x) = \frac{\overline{c_j}}{1 + |c_j|} |j|^{-m-2} \left(\rho_{\varepsilon} * \mathbf{1}_{\left(\frac{2\pi}{t}j - 2\varepsilon, \frac{2\pi}{t}j + 2\varepsilon\right)} \right) (x).$$

Then ϕ_j and $\overline{S}_{m+2,0}(\phi_j) \leq \left(\frac{3\pi}{t}\right)^{m+2}$, hence

$$\left|\sum_{k\in\mathbb{Z}}c_k\phi_j\left(\frac{2\pi}{t}k\right)\right| = \frac{|c_j|^2}{1+|c_j|}|j|^{-m-2} \le C\left(\frac{3\pi}{t}\right)^{m+2}$$

holds for all $j \neq 0$. The doubly infinite sequence $(c_k)_{k \in \mathbb{Z}}$ therefore satisfies

$$\left|c_{k}\right| \leq C\left(1+k^{2}\right)^{\frac{N}{2}}\tag{5}$$

for all $k \in \mathbb{Z}$, where $C \ge 0$, $N \in \mathbb{N}_0$ are constants. Such sequences are said to be of *moderate growth*. In turn, if a doubly infinite sequence $(c_k)_{k \in \mathbb{Z}}$ is of moderate growth, then (3) and (4) define tempered distributions.

We have shown

Theorem The Fourier transform of a *t*-periodic distribution has the form

$$\sum_{k\in\mathbb{Z}}c_k\delta_{\frac{2\pi}{t}k},$$

where the doubly infinite sequence $(c_k)_{k\in\mathbb{Z}}$ has moderate growth. In turn, any such sum defines a tempered distribution that is the Fourier transform of a t-periodic distribution.

Corollary Any *t*-periodic distribution *u* admits an expansion

$$u = \sum_{k \in \mathbb{Z}} c_k e^{i\frac{2\pi}{t}kx}$$
 in $\mathscr{S}'(\mathbb{R})$

where the doubly infinite sequence $(c_k)_{k\in\mathbb{Z}}$ has moderate growth.

Lecture 14 (B4.4) HT22

The Poisson summation formula

Theorem (2π -periodic version)

$$\sum_{k \in \mathbb{Z}} e^{ikx} = 2\pi \sum_{k \in \mathbb{Z}} \delta_{2\pi k} \text{ in } \mathscr{S}'(\mathbb{R})$$
 (6)

17 / 21

The meaning of the formula is that for each $\phi \in \mathscr{S}(\mathbb{R})$ we have

$$\sum_{k\in\mathbb{Z}}\widehat{\phi}(k)=2\pi\sum_{k\in\mathbb{Z}}\phi(2\pi k).$$

If we apply the formula to the translate $au_{\mathsf{x}}\phi$ we get

$$(P\phi)(x) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \widehat{\phi}(k) e^{ikx}.$$

At first this convergence is pointwise in $x \in \mathbb{R}$, but it is not difficult to show that it is uniform in $x \in \mathbb{R}$ and that the term-by-term differentiated series also all converge uniformly in $x \in \mathbb{R}$.

Lecture 14 (B4.4) HT22

The Poisson summation formula

There are many variants of (6). For instance, for each t > 0, we get a t-periodic version by dilation:

Corollary (*t*-periodic version)

$$\sum_{k\in\mathbb{Z}} e^{i\frac{2\pi}{t}kx} = t\sum_{k\in\mathbb{Z}} \delta_{kt} \text{ in } \mathscr{S}'(\mathbb{R})$$

As before the identity means that

$$\sum_{k \in \mathbb{Z}} \widehat{\phi} \left(\frac{2\pi}{t} k \right) = t \sum_{k \in \mathbb{Z}} \phi(kt) \tag{7}$$

18 / 21

holds for all $\phi \in \mathscr{S}(\mathbb{R})$. Again we can apply it to a translate of ϕ and this time one gets an expansion of the t-periodisation of ϕ .

For which ϕ beyond $\mathscr{S}(\mathbb{R})$ is (7) valid?

Lecture 14 (B4.4) HT22

The Poisson summation formula-extension of scope

Exercise Let L, R be the distributions on the left-hand, right-hand side, respectively, of the t-periodic version of the Poisson summation formula. Show that there exists a constant $c = c(t) \ge 0$ such that

$$|\langle L, \phi \rangle| \leq c \overline{S}_{2,0}(\widehat{\phi})$$

and

$$|\langle R, \phi \rangle| \leq c \overline{S}_{2,0}(\phi)$$

hold for all $\phi \in \mathscr{S}(\mathbb{R})$.

Deduce that (7) remains valid for all continuous $\phi \colon \mathbb{R} \to \mathbb{C}$ with

$$\overline{S}_{2,0}(\phi) + \overline{S}_{2,0}(\widehat{\phi}) < \infty.$$

Lecture 14 (B4.4) HT22

The Poisson summation formula-proof

Proof. Put

$$u = \sum_{k \in \mathbb{Z}} \delta_k$$

Then it is not difficult to see that $u \in \mathscr{S}'(\mathbb{R})$, that it is 1-periodic and

$$\widehat{u} = \sum_{k \in \mathbb{Z}} e^{-ik\xi} = \sum_{k \in \mathbb{Z}} e^{ik\xi}.$$

By inspection, $e^{i\xi}\widehat{u}=\widehat{u}$ and $\tau_{2\pi}\widehat{u}=\widehat{u}$. We have seen that the first condition implies that

$$\widehat{u} = \sum_{k \in \mathbb{Z}} c_k \delta_{2\pi k}$$

for constants $c_k \in \mathbb{C}$. The second condition then implies that $c_k = c_0$ for all $k \in \mathbb{Z}$, thus

$$\widehat{u} = c_0 \sum_{k \in \mathbb{Z}} \delta_{2\pi k}.$$

The Poisson summation formula-proof

For $\phi \in \mathscr{S}(\mathbb{R})$ and $x \in (0, 2\pi]$ we apply \widehat{u} to $\tau_x \phi \in \mathscr{S}(\mathbb{R})$:

$$\langle \widehat{u}, \tau_{x} \phi \rangle = c_{0} \sum_{k \in \mathbb{Z}} \phi(x + 2\pi k)$$

$$= \sum_{k \in \mathbb{Z}} \widehat{\phi}(k) e^{ikx}.$$

At first this identity holds pointwise in $x \in (0, 2\pi]$, but it is not difficult to see that it holds uniformly in $x \in (0, 2\pi]$. We can therefore integrate the identity by integrating the series term-by-term:

$$\int_0^{2\pi} c_0 \sum_{k \in \mathbb{Z}} \phi(x + 2\pi k) \, \mathrm{d}x = c_0 \sum_{k \in \mathbb{Z}} \int_{2\pi k}^{2\pi(k+1)} \phi(x) \, \mathrm{d}x = c_0 \int_{-\infty}^{\infty} \phi(x) \, \mathrm{d}x$$

equates

$$\int_0^{2\pi} \sum_{k \in \mathbb{Z}} \widehat{\phi}(k) \mathrm{e}^{\mathrm{i}kx} \, \mathrm{d}x = \sum_{k \in \mathbb{Z}} \int_0^{2\pi} \widehat{\phi}(k) \mathrm{e}^{\mathrm{i}kx} \, \mathrm{d}x = 2\pi \widehat{\phi}(0)$$

and so $c_0 = 2\pi$.

Lecture 14 (B4.4) HT22