B4.4 Fourier Analysis HT22

Lecture 14: Periodic distributions and the Poisson summation formula

1. Examples and the periodisation of a test function
2. Periodic distributions are tempered

3. The Fourier transform of a periodic distribution
4

. The Poisson summation formula

The material corresponds to pp. 48-53 in the lecture notes and should be
covered in Week 7.
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Periodic distributions

Definition Let t > 0. A distribution u € 2'(R) is t-periodic (or periodic
with period t) if

T = Uu.
Example 1 Let v € L} _(R). Then u is t-periodic if u(x + t) = u(x)
almost everywhere. It follows from the fundamental lemma of the calculus

of variations that v is t-periodic if and only if u is t-periodic as a
distribution.

Example 2 Let v € 2/(R) and t > 0. Then u is t-periodic if and only if
the dilated distribution
dziu

is 2m-periodic. Indeed, this is a consequence of the identity

Tond e u—deu=de (Tomu—u).
27 27

2

Verify this as an exercise.
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Periodic distributions

Intuitively a t-periodic distribution is fully determined if we know it on any
interval of length t. This is clear for regular distributions. It is a little
vague and unclear how this should be understood for general distributions.
We assert that if (a, b) is an interval of length b — a > t, then if we know
that u € 2'(R) is t-periodic and know the values (u, ¢) for each

¢ € P(a, b), then we know u.

Given any ¢ € 2(R) with support contained in an interval [c, d]. Cover
this compact interval with sets from the open cover

{(a+nt,b+nt): neZ}

of R. Use a smooth partition of unity for [c, d] that is subordinated this
cover (recall we constructed these in B4.3), say

! /
[c,d] C U(a+jt,b+jt), Y € D(a+jt,b+jt) and ij =1 on [c,d].
j=k j=k

Lecture 14 (B4.4) HT22 3/21



Periodic distributions

Now because u is t-periodic we have

and since 7_j¢ (1) € Z(a, b) for each j the value of u at ¢ is determined.

In the sequel we shall mainly consider 27-periodic and 1-periodic
distributions. As we have seen above this is not really restrictive as any
period t > 0 can be obtained by dilation from, say, the 27-periodic case.

Example 3 Use the Fourier bounds to show that
U= Z einx
nez

is a tempered 27-periodic distribution. [See details in the lecture notes]
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The periodisation of a test function

Definition Let ¢ € #(R). Then the periodisation of ¢ is defined for each
x €R as

n=I
(Po)(x) = Zd)(x + 27n) (:: lim Z o(x + 27rn)> .

k— o0
nez |—o00 n=—k

We assert that P¢: R — C is a 2w-periodic C* function. Hereby

P: Z(R) — Cpe(R) is a linear map (valued in 27-periodic C* functions).
First note that if ¢ € Z(R), then the series becomes a finite sum and it is
then clear that P¢ € C*°(R) and also that it is 27-periodic. In the general
case ¢ € .7(R) the series defining P¢(x) is a genuine series and we must

present a proof for our assertion:

Let s € Ng. For n € Z and x € R we estimate

1+ (x+2mwn)?
© 1+ (x+2mwn)?

2§2,s(¢)

[0 x + 2mn) 1+ (x + 27mn)?

|¢(5)(X + 27rn)‘ <
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The periodisation of a test function

Consequently, given r > 0, we have for x € R, k € Z satisfying
|x| < r < |k| that

2§2,5(¢)
1+ (27|k| — r)2

16) (x + 2k)| <

and since

2§
2 13 (2;’\5,7(\¢2 PEN
nEZ,|n|>r
we infer from Weierstrass’ M-test that the series » ¢S (x + 27n)
converges uniformly in x € [—r, r]. Because s € Ng, r > 0 were arbitrary
we deduce that P¢ is C* and that the series, together with the
term-by-term differentiated series, converge locally uniformly in x € R.
Finally, it is clear that P¢ is 2m-periodic.
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The periodisation of a test function

Example 4 Show that if ¢ € Z(R) and ¢ € Z(R), then

n=/

> (x)d(x + 2mn) = ¥(x)(Pg)(x) in 2(R)

as k, | = oo.

Put Z/(x) = S27=" , é(x + 27mn). Then we have just shown that
les,)(x) — (P(Z))(s)(x) locally uniformly in x € R for each s € Ny as k,
| = oo. Because supp (¥ Zx,) C supp(¢) for all k, | € N and by Leibniz’

rule
: Z — i Po iforml
e VZy | = Y uniformly

as k, | — o0, the result follows.
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Periodic distributions are tempered

Lemma Let u € 2'(R) be 27-periodic. Then v is . continuous and
hence extends to .’(R) as a tempered distribution. (We also write u for
this extension that necessarily must be unique.)

Proof. Put x = p* 1(_1 2r41], where as usual p is the standard mollifier
kernel on R. Clearly, 1(g25] < X < 1(_22r42- The periodisation Py is a
2m-periodic C*° function, and we must have Py > 1 everywhere, so that

the function
X

~Px
is well-defined and W € 2(R) and it has periodisation

PV =1 on R.

We use this to give a formula for the extension of u to .(R).
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Periodic distributions are tempered—proof

For ¢ € 2(R) we calculate:

<U7¢> = < ¢P\U < Z¢T27rn >

neZ
Exarg:le 4 Z<U, ¢T27rnw>
nez
= Z<ua T2mn (\U7127rn¢)>
nez
= > {u, VT omnd)
nez
Exargle 4 <u’ w Z 7_27rn¢>
nezZ
= (u,VPg)
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Periodic distributions are tempered—proof

Let K = [—2,27 + 2]. By the boundedness property of u we can find
constants ¢ = cx > 0, m = mk € Ny such that

[(u,0)] < " sup|pl®)]
s=0

holds for all ¢ € Z(K). Using the previous identity and this bound with
© = VP we find:

(u,0)] = |(u,VPg)|
< e sup|(VPo)|
s=0

< cC(V,m)So,m(d),

where C(V, m) = 3(m + 1)2™Sg m(W¥). O
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The Fourier transform of a periodic distribution

Assume u € 2'(R) is t-periodic. Then as we just saw, u € .%/(R) (abuse
of notation...) and for some constants ¢ > 0, m € Ny we have

(v, )] < cSom(¢) (1)

holds for all ¢ € .#(R). lts Fourier transform u is defined as a tempered
distribution. Is there something special about it?

Obviously, we can Fourier transform the identity 7u = u using the
translation rule to get
0 =10

By the Fourier inversion formula any v € .%/(R) satisfying this equation,
that is,
ety = v, (2)

is the Fourier transform of a t-periodic distribution. Furthermore, from
(el —1)v = 0 we get that supp(v) C ZZ.
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The Fourier transform of a periodic distribution
We used the following result:

Exercise If v e .¥/(R) and ®: R — C is a moderate C* function, then a
necessary condition for
dv =0 in Y'(R)

to hold is that supp(v) C {x € R: ®(x) = 0}. Prove it. Prove also that
the condition is not sufficient.

Now consider v restricted to the interval (—2T’T, 27”) It is supported in {0}

and so by a result from B4.3 it follows that the restriction has the form

V\(—Aw 2r) = ; 2s05”

tt

for some constants as € C and m € Ny. Inspection shows that §g satisfies
(2). To see that the derivatives of dp do not, and so that m = 0 above, we

construct suitable test functions.
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The Fourier transform of a periodic distribution

Fix k € N and define
«k
Spk(x) = ﬂ(pe * 1(—28,28))()()

with € > 0 so small that it is supported in (—27”, 27”) We then have
m
<(elt£ — 1) Z 355(()5), gpm1> = mam(—l)mit
s=0
and so (2) forces ap, = 0. Similarly, a;m—1 = am—2= ... =a; =0. We

argue similarly at the other points of 2T”Z and so conclude that

vV = ZCkéZTﬂ'k (3)

keZ

for some constants ¢, € C. The doubly infinite sequence (cy) 4oz Cannot
be arbitrary because the distribution (3) is tempered.
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The Fourier transform of a periodic distribution

If we employ the Fourier inversion formula on the identity (3), assuming as
we may that v = @, we find that

u= Z ckeizTﬂkX (4)

k€EZ

It follows that any t-periodic distribution admits an expansion of the form
(4) for suitable coefficients ¢, € C. In order to see what condition the
doubly infinite sequence (cx), ., must satisfy we return to the boundedness
condition (1) for u and combine it with the Fourier bounds to get

> Ck¢(2:k)' < CSmi2,0(9)

keZ

for ¢ € .Z(R), where C > 0 is a constant. We now construct suitable test
functions to extract the information.
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The Fourier transform of a periodic distribution

For each j € Z\ {0} and ¢ € (0, ;) define

¢j(X) ‘ Ui~ —m=2 (Ps * 1(2T7rj—2g,2T"j+2e))(X)-

1+|cJ

Then ¢; and Spmi20(¢;) < (%”)mﬂ, hence

2 m
> ey (Ca) | = {9 < o)™

kEZ

holds for all j # 0. The doubly infinite sequence (ck) therefore satisfies

o] < C(1+#)? (5)

for all k € Z, where C > 0, N € Ny are constants. Such sequences are said
to be of moderate growth. In turn, if a doubly infinite sequence (cx)
of moderate growth, then (3) and (4) define tempered distributions.
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The Fourier transform of a periodic distribution—summary
We have shown

Theorem The Fourier transform of a t-periodic distribution has the form

z Ckézlka
t

kEZ

where the doubly infinite sequence (Ck)kEZ has moderate growth. In turn,
any such sum defines a tempered distribution that is the Fourier transform
of a t-periodic distribution.

Corollary Any t-periodic distribution u admits an expansion

u= cheizTﬂkX in .'(R)

keZ

where the doubly infinite sequence (ck) has moderate growth.
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The Poisson summation formula

Theorem (27-periodic version)
D =21 Gom in S(R) (6)
keZ keZ
The meaning of the formula is that for each ¢ € .(R) we have
> o(k) =2r )" p(2mk).
kEZ kEZ
If we apply the formula to the translate 7,¢ we get
(P6)(x) = o D Ak
keZ

At first this convergence is pointwise in x € R, but it is not difficult to
show that it is uniform in x € R and that the term-by-term differentiated
series also all converge uniformly in x € R.
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The Poisson summation formula

There are many variants of (6). For instance, for each t > 0, we get a
t-periodic version by dilation:

Corollary (t-periodic version)
Zeiz?wkx = tZ(Skt in .7'(R)
KkEZ kEZ
As before the identity means that
S5 (%) =X alk) ™
t
keZ kEZ

holds for all ¢ € .7(R). Again we can apply it to a translate of ¢ and this
time one gets an expansion of the t-periodisation of ¢.

For which ¢ beyond .#(R) is (7) valid?
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The Poisson summation formula—extension of scope

Exercise Let L, R be the distributions on the left-hand, right-hand side,
respectively, of the t-periodic version of the Poisson summation formula.
Show that there exists a constant ¢ = ¢(t) > 0 such that

(L, $)] < cS20(0)

and B
[(R, #)| < ¢S2,0(¢)
hold for all ¢ € .7(R).

Deduce that (7) remains valid for all continuous ¢: R — C with

§270(¢) + §270((/ﬁ\) < Q.
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The Poisson summation formula—proof

Proof. Put

U:Z5k

kEZ
Then it is not difficult to see that u € .#/(R), that it is 1-periodic and

7= Zefik£ _ Zeikﬁ.
kezZ keZ
By inspection, €U = & and 75,0 = . We have seen that the first
condition implies that
u= Z CkO2mk

kEZ

for constants ¢, € C. The second condition then implies that ¢, = ¢ for

all k € Z, thus
TI\Z Coz52ﬂ-k.
keZ
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The Poisson summation formula—proof
For ¢ € #(R) and x € (0,27] we apply U to 7x¢ € .7 (R):
(U,7x¢) = o) é(x+2mk)

keZ
= Z (;Aﬁ(k)eikx.
keZ
At first this identity holds pointwise in x € (0,27, but it is not difficult to
see that it holds uniformly in x € (0,27]. We can therefore integrate the
identity by integrating the series term-by-term:

27 2m(k+1 00
/ coz¢(x+27rk) dX:COZ/ ( )¢(x)dx:c0/ o(x) dx
0 kEZ, kez 2Tk —
equates
27 N ) 2w ) N
/ > o(k)e™dx =" / ¢ (k)e'™ dx = 27(0)
0 kez kez’0
and so ¢y = 2. O
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