B4.4 Fourier Analysis HT22

Lecture 16: The Hilbert transform revisited

We follow up on examples from lectures 7 and 8 about the Hilbert
transform. The material should be covered in Week 8.
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The Hilbert transform was defined for each ¢ € . (R) in lecture 7 as

o= o)Jor-sm [+ )52

Hereby H: .7 (R) — .#’(R) is linear and it is the most basic example of a
singular integral operator. The distribution

1 1

Tov(s

—pv(7)
is tempered and of order 1. Its Fourier transform is —isgn(&) and so we
can use the extended convolution rule to define the Hilbert transform of a
tempered distribution u whose Fourier transform ' is a moderate C*™

function:

H(w) = 73 (s (@a(o)). 1

In fact, we can use this definition for all u € .#’(R) for which
—isgn(&)u(§) is a well-defined tempered distribution. But the question of

its natural and maximal domain is subtle.
Lecture 16 (B4.4) HT22 2/11



L
The Hilbert transform

An example where we can use (1) to define #(u) is when u € L*(R) since
then Riemann-Lebesgue ensures U is continuous. However, its Hilbert
transform will not be integrable in general. In fact, in lecture 7 we saw
examples where the Hilbert transform of Schwartz test functions are not
integrable (we used the Riemann-Lebesgue lemma).

In this connection we also record:

Example 1 For any a, b € R with a < b we calculate

X—a
x—b

1
H(L(ap)) (x) = p log

and this also is not integrable on R. Note that it is not bounded either.
But you can check that it is in LP(RR) for each p € (1, c0).

You might recall why this is not surprising when p = 2.
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The Hilbert transform on L2

Using Plancherel’'s theorem we proved in lecture 8 that H extends by
continuity to L?(IR) and that hereby the extended map

H: L2(R) — L*(R)

is unitary (isometric and onto). We can use (1) as definition again because
U € L?(R) and so

—~isgn(€)a(¢) € L*(R) © 7'(R).

Because 1, ) € L2(R) we therefore confirm our calculation that
H(1(ap)) € L*(R).
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The Hilbert transform on L2(R) satisfies 2 = —I, that is, minus the
identity on L%(R).
Proof. We use that for ¢ € .7(R),

—_— ~

H(¢) = —isgn(§)e(8), (@)

and since both the Hilbert and Fourier transforms are continuous on L?(R),
density of .#(R) in L?(R) allows us to extend (2) to ¢ € L?(R). But then
we get for ¢ € L?(R) that

o — —

HO)E) = —isen(©)H@)E)
_ —isgn(f)(—isgn(§)$<§))
-

concluding the proof. O
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The Hilbert transform on LP [Not examinable]

It can be shown that for each p € (1, 00) there exists a constant ¢, > 0
such that

7@, < <ll4ll, (3)

holds for all ¢ € .7(R). We can therefore extend H to LP(R) by continuity
(recall the abstract extension theorem from lecture 8). Note that Example
1 shows that (3) cannot hold for p =1 nor for p = cc.

Can we use the formula (1) to calculate #(¢) when ¢ € LP(R)?
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The Hilbert transform on LP [Not examinable]

We can use the formula (1) as definition of #(¢) when ¢ € LP(R) and
p € [1,2]. This is so because in these cases ¢ is a regular distribution and
so we can make sense of

—isgn(€)d(€)

as a tempered distribution. We have already mentioned this for p = 1 and
for p = 2. In the remaining cases p € (1,2) we have by Hausdorff-Young
(that we quoted but didn't prove) that ¢ € LI(R), where g is the Holder
conjugate exponent g = p/(p — 1). Thus

—~isgn(€)e(€) € LY(R) € .7'(R).

However, when p > 2 the Fourier transform ¢ € Z"'(R) of ¢ € LP(R) can
be a distribution of higher order making it impossible to directly use (1) as
definition of H(¢). But obviously the abstract extension theorem and (3)
still allow us to define the Hilbert transform in this situation — we just
cannot rely on the formula (1).
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A connection to holomorphic functions in the upper half-plane

For this we rely on the formula
1
x 410
Proof. Recall that we calculated the Fourier transform of Heaviside's
function in lecture 6, example 2:

H= —ipv(%) + mdg.
We will now calculate it in a different manner: put H.(t) = e ¢*H(t) for

e€>0. Then H. = —eH. + dp in .#'(R), so using the differentiation rule
we get by Fourier transformation:

= —7idg + pv(%). (4)

—~ 1 i
H, = = .
H(x) e+ix x—ie
Because H. — H in .¥/(R) as € \, 0 we get by .’ continuity of the
Fourier transform that

—i

0" —ipv(%) + mdo-
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A connection to holomorphic functions in the upper half-plane

To arrive at the formula (4) we apply the reflection in origin operation ()
on the previous identity. O

Now let ¢ € .#(R) be real-valued. Define
®(z) = 1/ ﬂ dt
T J X —t+1y

for z = x + iy € H, where H is the open upper half-plane in C. It is not
difficult to check that ®: H — C is holomorphic and that we can rewrite it

) o(z) = - <1,<z>(x— ~)> (5)

T \t+1iy

Consider its real and imaginary parts. They clearly are a pair of conjugate
harmonic functions on H.
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A connection to holomorphic functions in the upper half-plane

We have

Re(®(z)) = (Py * ¢)(x) and Im(®(z)) = (Qy * ¢)(x)
where P, is the Poisson kernel obtained by an L! dilation of

- 1
- 7r(1 + X2)

P(x)
and @, is the conjugate Poisson kernel obtained by an L! dilation of

X

Q(x) = 7_((1 +X2).

Note that P(x) > 0 and [P(x)dx =1, so (PY)y>o is an approximate
identity and we have P, * ¢ — ¢ uniformly on R as y \, 0. What is the
limit of Q, * ¢? Complication: Q is not integrable on R.
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A connection to holomorphic functions in the upper half-plane

To find the limit as y \, 0 we return to (5) and (4):

®(z) = (Py+¢)(x) +i(Q *0)(x) = i< : ¢(X—')>

T \t+iy’
— 71r<—7ri50+pv(1),¢(x—-)>
= ¢(x) +iH(¢)(x)

pointwise in x € R.
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