Fourier Analysis

Problem Sheet 2

Problem 1. Prove that for every $t>0$ and $\varphi \in \mathscr{S}(\mathbb{R})$ the identity

$$
\int_{-t}^{t} \hat{\varphi}(\xi) \mathrm{d} \xi=2 \int_{-\infty}^{\infty} \varphi(x) \frac{\sin (t x)}{x} \mathrm{~d} x
$$

holds true. Deduce that

$$
\lim _{t \rightarrow \infty} \frac{\sin (t x)}{x}=\pi \delta_{0} \quad \text { in } \mathscr{S}^{\prime}(\mathbb{R})
$$

where δ_{0} is Dirac's delta-function concentrated at 0 on \mathbb{R}.
(Hint: For instance use the product rule and the Fourier Inversion Formula in \mathscr{S}^{\prime} on the lefthand side of the identity.)

Problem 2. Prove that $\mathscr{D}\left(\mathbb{R}^{n}\right)$ is \mathscr{S} dense in $\mathscr{S}\left(\mathbb{R}^{n}\right)$: for each $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ there exists a sequence $\left(\phi_{j}\right)$ in $\mathscr{D}\left(\mathbb{R}^{n}\right)$ such that $\phi_{j} \rightarrow \phi$ in $\mathscr{S}\left(\mathbb{R}^{n}\right)$.

Problem 3. Define for $\alpha>0$ the function $g(x)=\left(1+|x|^{2}\right)^{-\frac{\alpha}{2}}, x \in \mathbb{R}^{n}$.
(a) Explain why $g \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$. For which values of $\alpha>0$ is g integrable over \mathbb{R}^{n} ?
(b) Show that there exists a positive constant $c=c(\alpha)$ such that

$$
g(x)=c \int_{0}^{\infty} t^{\frac{\alpha}{2}-1} \mathrm{e}^{-t} \mathrm{e}^{-t|x|^{2}} \mathrm{~d} t
$$

holds for all $x \in \mathbb{R}^{n}$.
(c) Using (b) show that the Fourier transform \widehat{g} is a positive and integrable function on \mathbb{R}^{n}.
(The function \widehat{g} is called the Bessel kernel of order α. We shall return to it later in the course.)
Problem 4. For each of the following functions from \mathbb{R} into \mathbb{C} calculate its Fourier transform:
(i) $\cos , \sin , \cos ^{2}, \cos ^{k}$ for $k \in \mathbb{N}$.
(ii) sinc (sinus cardinalis, see the lecture notes Example 1.4).
(iii) H (Heaviside's function).
(iv) $x H(x)=x^{+},|x|, \sin |x|$.

Deduce that

$$
\mathcal{F}_{x \rightarrow \xi}\left(\operatorname{fp}\left(\frac{1}{x^{2}}\right)\right)=-\pi|\xi|, \quad(x, \xi \in \mathbb{R})
$$

where the finite part distribution was defined on the B4.3 Problem Sheet 4.

Problem 5. Prove that

$$
\int_{0}^{\infty} \frac{\sin (a x) \sin (b x)}{x^{2}} \mathrm{~d} x=\frac{\pi}{2} \min \{a, b\}
$$

holds for all $a, b>0$.
Problem 6. (Optional) For each $\varepsilon>0$ we put $H^{\varepsilon}(x):=\mathrm{e}^{-\varepsilon x} H(x), x \in \mathbb{R}$, where H is Heaviside's function. Explain why $H^{\varepsilon} \in \mathscr{S}^{\prime}(\mathbb{R})$ and show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} H^{\varepsilon}=-\varepsilon H^{\varepsilon}+\delta_{0} \quad \text { in } \quad \mathscr{S}^{\prime}(\mathbb{R})
$$

Show that

$$
\frac{1}{\xi-\mathrm{i} \varepsilon} \underset{\varepsilon \searrow 0}{\longrightarrow} \mathrm{i} \widehat{H} \quad \text { in } \quad \mathscr{S}^{\prime}(\mathbb{R})
$$

Using for instance Problem 4(iii) deduce the Plemelj-Sokhotsky jump relation:

$$
(x+\mathrm{i} 0)^{-1}-(x-\mathrm{i} 0)^{-1}=-2 \pi \mathrm{i} \delta_{0}
$$

where δ_{0} is Dirac's delta-function on \mathbb{R} concentrated at 0 and we define

$$
(x \pm \mathrm{i} 0)^{-1}=\lim _{\varepsilon \searrow 0}(x \pm \mathrm{i} \varepsilon)^{-1} \quad \text { in } \quad \mathscr{S}^{\prime}(\mathbb{R}) .
$$

