Fourier Analysis

Problem Sheet 2

Problem 1. Prove that for every t > 0 and $\varphi \in \mathscr{S}(\mathbb{R})$ the identity

$$\int_{-t}^{t} \hat{\varphi}(\xi) \, \mathrm{d}\xi = 2 \int_{-\infty}^{\infty} \varphi(x) \frac{\sin(tx)}{x} \, \mathrm{d}x$$

holds true. Deduce that

$$\lim_{t \to \infty} \frac{\sin(tx)}{x} = \pi \delta_0 \quad \text{ in } \mathscr{S}'(\mathbb{R}),$$

where δ_0 is Dirac's delta-function concentrated at 0 on \mathbb{R} . (*Hint: For instance use the product rule and the Fourier Inversion Formula in* \mathscr{S}' *on the left-hand side of the identity.*)

Problem 2. Prove that $\mathscr{D}(\mathbb{R}^n)$ is \mathscr{S} dense in $\mathscr{S}(\mathbb{R}^n)$: for each $\phi \in \mathscr{S}(\mathbb{R}^n)$ there exists a sequence (ϕ_j) in $\mathscr{D}(\mathbb{R}^n)$ such that $\phi_j \to \phi$ in $\mathscr{S}(\mathbb{R}^n)$.

Problem 3. Define for $\alpha > 0$ the function $g(x) = (1 + |x|^2)^{-\frac{\alpha}{2}}$, $x \in \mathbb{R}^n$. (a) Explain why $g \in \mathscr{S}'(\mathbb{R}^n)$. For which values of $\alpha > 0$ is g integrable over \mathbb{R}^n ? (b) Show that there exists a positive constant $c = c(\alpha)$ such that

$$g(x) = c \int_0^\infty t^{\frac{\alpha}{2} - 1} e^{-t} e^{-t|x|^2} dt$$

holds for all $x \in \mathbb{R}^n$.

(c) Using (b) show that the Fourier transform \hat{g} is a positive and integrable function on \mathbb{R}^n . (*The function* \hat{g} *is called the Bessel kernel of order* α . *We shall return to it later in the course.*)

Problem 4. For each of the following functions from \mathbb{R} into \mathbb{C} calculate its Fourier transform:

- (i) $\cos, \sin, \cos^2, \cos^k$ for $k \in \mathbb{N}$.
- (ii) sinc (sinus cardinalis, see the lecture notes Example 1.4).
- (iii) H (Heaviside's function).
- (iv) $xH(x) = x^+, |x|, \sin |x|.$

Deduce that

$$\mathcal{F}_{x \to \xi}\left(\operatorname{fp}\left(\frac{1}{x^2}\right)\right) = -\pi |\xi|, \quad (x, \, \xi \in \mathbb{R})$$

where the finite part distribution was defined on the B4.3 Problem Sheet 4.

Problem 5. Prove that

$$\int_0^\infty \frac{\sin(ax)\sin(bx)}{x^2} \,\mathrm{d}x = \frac{\pi}{2}\min\{a,b\}$$

holds for all a, b > 0.

Problem 6. (*Optional*) For each $\varepsilon > 0$ we put $H^{\varepsilon}(x) := e^{-\varepsilon x}H(x)$, $x \in \mathbb{R}$, where H is Heaviside's function. Explain why $H^{\varepsilon} \in \mathscr{S}'(\mathbb{R})$ and show that

$$\frac{\mathrm{d}}{\mathrm{d}x}H^{\varepsilon} = -\varepsilon H^{\varepsilon} + \delta_0 \quad \text{in} \quad \mathscr{S}'(\mathbb{R}).$$

Show that

$$\frac{1}{\xi - \mathrm{i}\varepsilon} \underset{\varepsilon \searrow 0}{\longrightarrow} \mathrm{i}\widehat{H} \quad \text{ in } \quad \mathscr{S}'(\mathbb{R}).$$

Using for instance Problem 4(iii) deduce the *Plemelj-Sokhotsky jump relation*:

$$(x + i0)^{-1} - (x - i0)^{-1} = -2\pi i\delta_0,$$

where δ_0 is Dirac's delta-function on \mathbb{R} concentrated at 0 and we define

$$(x \pm i0)^{-1} = \lim_{\varepsilon \searrow 0} (x \pm i\varepsilon)^{-1}$$
 in $\mathscr{S}'(\mathbb{R})$.