Problem Sheet 3

Problem 1. Let $f \in \mathrm{~L}^{p}\left(\mathbb{R}^{n}\right)$ for some $p \in[1, \infty]$. Show that

$$
g_{j}(\xi)=\int_{B_{j}(0)} f(x) \mathrm{e}^{-\mathrm{i} \xi \cdot x} \mathrm{~d} x \quad(j \in \mathbb{N})
$$

converge to \widehat{f} in the sense of $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow \infty$. Hence find the limit of

$$
\int_{-j}^{j} x^{k} \mathrm{e}^{-\mathrm{i} \xi x} \mathrm{~d} x
$$

in $\mathscr{S}^{\prime}(\mathbb{R})$ as $j \rightarrow \infty$ for each $k \in \mathbb{N}_{0}$.
Problem 2. Let $p(x) \in \mathbb{C}[x]$ be a polynomial in n variables. Find the Fourier transform \widehat{p}. Find all distributions $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ satisfying $\operatorname{supp}(\widehat{u}) \subseteq\{0\}$.
(Hint: Use a theorem about distributions with support in $\{0\}$ from B4.3.)
Problem 3. Prove that e^{x} is not in $\mathscr{S}^{\prime}(\mathbb{R})$ but that $\mathrm{e}^{x} \mathrm{e}^{\mathrm{i} \mathrm{e}^{x}}$ is in $\mathscr{S}^{\prime}(\mathbb{R})$.

Problem 4.

(a) Recall that we defined homogeneity of distributions $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ in B 4.3 by declaring that u is homogeneous of degree α, where $\alpha \in \mathbb{R}$, if $d_{r} u=r^{\alpha} u$ holds for each $r>0$.
Show that $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is homogeneous of degree α if and only if \widehat{u} is homogeneous of degree $-n-\alpha$.
(b) A distribution $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is radial if $\theta_{*} u=u$ for each $\theta \in \mathrm{O}(n)$.

Show that $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is radial if and only if \widehat{u} is radial. Next, show that if u is a regular distribution, then u is radial if and only if $u(x)=f(|x|)$ a.e., where $f: \mathbb{R} \rightarrow \mathbb{C}$ is a univariate function. (You may use elementary properties of orthogonal matrices without proof.)
(c) Use the Fourier transform to show that there exists a constant $c \in \mathbb{R}$ (that you should not find) so that $c /|x|$ is a fundamental solution to the Laplacian on \mathbb{R}^{3}. (Hint: $|\xi|^{-2} \in \mathrm{~L}^{1}\left(\mathbb{R}^{3}\right)+\mathrm{L}^{2}\left(\mathbb{R}^{3}\right)$.)

Problem 5. [The Wiener algebra $\mathcal{F}\left(\mathrm{L}^{1}\right)$ is strictly smaller than C_{0}]

(a) Prove that for $0<s<t$ we have

$$
\left|\int_{s}^{t} \frac{\sin (\xi)}{\xi} \mathrm{d} \xi\right| \leq 4
$$

(b) Show that if $f \in \mathrm{~L}^{1}(\mathbb{R})$ is an odd distribution (so $\tilde{f}=-f$), then

$$
\left|\int_{s}^{t} \frac{\widehat{f}(\xi)}{\xi} \mathrm{d} \xi\right| \leq 4\|f\|_{1}
$$

(c) Let $g \in \mathrm{C}_{0}(\mathbb{R})$ be an odd function so that $g(\xi)=1 / \log (\xi)$ for $\xi \geq 2$. Show that there does not exist an integrable function whose Fourier transform is g.

Problem 6. [S. Bernstein's inequality]

Let $f \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{n}\right)$ and assume that \widehat{f} is supported in the closed ball $\overline{B_{r}(0)}$. Prove that $f \in$ $\mathrm{C}^{\infty}\left(\mathbb{R}^{n}\right)$ and that for each multi-index $\alpha \in \mathbb{N}_{0}^{n}$ there exists a constant $c=c(\alpha, n) \geq 0$ such that

$$
\left\|\partial^{\alpha} f\right\|_{\infty} \leq c r^{|\alpha|}\|f\|_{\infty}
$$

(Hint: Let $h \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ be chosen so $\widehat{h}=1$ on $B_{1}(0)$ and $\widehat{h}=0$ off $B_{2}(0)$. Note that $f=$ $\left.f * h_{1 / r}.\right)$

