Fourier Analysis

Problem Sheet 3

Problem 1. Let $f \in L^p(\mathbb{R}^n)$ for some $p \in [1, \infty]$. Show that

$$g_j(\xi) = \int_{B_j(0)} f(x) \mathrm{e}^{-\mathrm{i}\xi \cdot x} \,\mathrm{d}x \quad (j \in \mathbb{N})$$

converge to \widehat{f} in the sense of $\mathscr{S}'(\mathbb{R}^n)$ as $j \to \infty$. Hence find the limit of

$$\int_{-j}^{j} x^{k} \mathrm{e}^{-\mathrm{i}\xi x} \,\mathrm{d}x$$

in $\mathscr{S}'(\mathbb{R})$ as $j \to \infty$ for each $k \in \mathbb{N}_0$.

Problem 2. Let $p(x) \in \mathbb{C}[x]$ be a polynomial in n variables. Find the Fourier transform \hat{p} . Find all distributions $u \in \mathscr{S}'(\mathbb{R}^n)$ satisfying $\operatorname{supp}(\hat{u}) \subseteq \{0\}$. (*Hint:* Use a theorem about distributions with support in $\{0\}$ from B4.3.)

Problem 3. Prove that e^x is not in $\mathscr{S}'(\mathbb{R})$ but that $e^x e^{ie^x}$ is in $\mathscr{S}'(\mathbb{R})$.

Problem 4.

(a) Recall that we defined homogeneity of distributions $u \in \mathscr{D}'(\mathbb{R}^n)$ in B4.3 by declaring that u is *homogeneous of degree* α , where $\alpha \in \mathbb{R}$, if $d_r u = r^{\alpha} u$ holds for each r > 0.

Show that $u \in \mathscr{S}'(\mathbb{R}^n)$ is homogeneous of degree α if and only if \hat{u} is homogeneous of degree $-n - \alpha$.

(b) A distribution $u \in \mathscr{S}'(\mathbb{R}^n)$ is radial if $\theta_* u = u$ for each $\theta \in O(n)$.

Show that $u \in \mathscr{S}'(\mathbb{R}^n)$ is radial if and only if \hat{u} is radial. Next, show that if u is a regular distribution, then u is radial if and only if u(x) = f(|x|) a.e., where $f \colon \mathbb{R} \to \mathbb{C}$ is a univariate function. (You may use elementary properties of orthogonal matrices without proof.)

(c) Use the Fourier transform to show that there exists a constant $c \in \mathbb{R}$ (that you should not find) so that c/|x| is a fundamental solution to the Laplacian on \mathbb{R}^3 . (*Hint*: $|\xi|^{-2} \in L^1(\mathbb{R}^3) + L^2(\mathbb{R}^3)$.)

Problem 5. [The Wiener algebra $\mathcal{F}(L^1)$ is strictly smaller than C_0]

(a) Prove that for 0 < s < t we have

$$\left| \int_{s}^{t} \frac{\sin(\xi)}{\xi} \, \mathrm{d}\xi \right| \le 4.$$

(b) Show that if $f \in L^1(\mathbb{R})$ is an odd distribution (so $\tilde{f} = -f$), then

$$\left| \int_{s}^{t} \frac{\widehat{f}(\xi)}{\xi} \,\mathrm{d}\xi \right| \le 4 \|f\|_{1}.$$

(c) Let $g \in C_0(\mathbb{R})$ be an odd function so that $g(\xi) = 1/\log(\xi)$ for $\xi \ge 2$. Show that there does not exist an integrable function whose Fourier transform is g.

Problem 6. [S. Bernstein's inequality]

Let $f \in L^{\infty}(\mathbb{R}^n)$ and assume that \widehat{f} is supported in the closed ball $\overline{B_r(0)}$. Prove that $f \in C^{\infty}(\mathbb{R}^n)$ and that for each multi-index $\alpha \in \mathbb{N}_0^n$ there exists a constant $c = c(\alpha, n) \ge 0$ such that

$$\|\partial^{\alpha} f\|_{\infty} \le cr^{|\alpha|} \|f\|_{\infty}.$$

(*Hint*: Let $h \in \mathscr{S}(\mathbb{R}^n)$ be chosen so $\hat{h} = 1$ on $B_1(0)$ and $\hat{h} = 0$ off $B_2(0)$. Note that $f = f * h_{1/r}$.)