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1 Motivation and Overview
To be added.

Some notational conventions:

• throughout the notes, we set c = ~ = 1; this means that [length] = [time] =
[mass]−1 = [energy]−1;

• signature convention for Lorentzian spacetime is (−,+,+, ...); the Minkowski
metric tensor is then ηi j = diag(−1,1, ...);

• we use lower-case Greek indices (µ, ν, ...) for spacetime, and Latin indices
(a, b, ...) for the string worldsheet;

• we write Gi jV iV j ≡ V · V for index contractions with a metric; in case of
multiple metrics, the correct one can be inferred from the text;

• partial derivatives ∂
∂x ≡ ∂x are denoted with subscripts; if the variable has an

index, we write ∂
∂xi
≡ ∂i;

• ...

2 Classical Relativistic String
In this chapter, we will study the relativistic propagation of a classical string in a
fixed background spacetimeM. We will make use of some differential geometry
facts that should have been covered in the General Relativity I lecture course in the
previous term.

2.1 Classical relativistic particle

To motivate the formalism that describes a string, we first revisit the description for
a point-like particle. Classically, a particle of mass m travels along a worldline λ in
spacetimeM with metric gµν. Denoting the (local) spacetime coordinates by Xµ,
µ = 0, ...,D − 1, we can introduce the parametrization, i.e., an embedding of the
worldline into spacetime,

λ : R→M, τ 7→ Xµ(τ) . (2.1)
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Recall from elementary differential geometry (e.g., from GR I), that we can use
this embedding to pullback the spacetime worldvolume, defined by the metric
gµν(X) ≡ gµν, to the line element, or volume form ds on the worldline,

ds =
√
−gµνdXµdXν =

√
−gµν

(
dXµ

dτ
dτ

) (
dXν

dτ
dτ

)
=

√
−

dX
dτ
·

dX
dτ

dτ . (2.2)

In less technical terms, ds is the infinitesimal proper length of the worldline.

In the absence of any external forces, the equations of motion should fix the
physical trajectory of the particle to be the one with minimal (extremal) proper
length,

∫
λ

ds, i.e., the particle moves along a geodesic. In other words, the action
(which has to be a dimensionless quantity) for a point particle is

S = −m
∫
λ

ds = −m
∫

dτ

√
−

dX
dτ
·

dX
dτ

. (2.3)

 

Fig. 1: Point-particle moving in spacetimeM traces out a worldline λ parametrized by τ.
The infinitesimal length at any point with spacetime coordinate Xµ(τ) is given by (2.2).

Since the indices µ, ν run from 0 to D − 1, it is tempting to conclude that the
system D degrees of freedom. On the other hand, the motion of a particle should be
entirely described by its (D − 1) spatial coordinates (plus initial conditions). The
reason for this discrepancy is an important property of the action (2.3): it is invariant
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under reparametrization τ → τ̃(τ). In physics language, this corresponds to a gauge
symmetry, which captures a redundancy of the description that we chose for the
system. For example, we could get rid of this redundancy by using the spacetime
time coordinate X0 ≡ t to parametrize the worldline, for which the action reduces to
the more familiar form

S = −m
∫

dt

√
1 − Û®X · Û®X , (2.4)

with Û®X = d
dt
®X = d

dt (X
1,X2, ...,XD−1).

In theoretical physics, gauge redundancies are oftentimes a good thing to have.
For example, they are essential to describe the nuclear and electromagnetic forces
within the Standard Model of particle physics. In the present case, having the
redundant parameter τ makes manifest the global symmetries of the system, namely,
the spacetime isometries (i.e., transformations on Xµ which leave invariant the line
element (2.2)). IfM is flat, i.e., gµν = ηµν = diag[−1,1, ...,1], then (2.3) would be
invariant under the Poincaré symmetry on R1,D−1.

One caveat of describing point particles using the action above is that it is strictly
speaking not defined for m = 0. Instead, one needs to use the action

S′ =
1
2

∫
dτ e(τ)

(
1

e2(τ)
gµν

dXµ

dτ
dXν

dτ
− m2

)
, (2.5)

where we have introduced a further, seemingly independent, field e(τ) on the
worldline. To maintain invariance under any reparametrization τ → τ̃(τ), or local
diffeomorphisms on the worldline, the fields must transform as

Xµ(τ) → X̃µ(τ̃(τ)) = Xµ(τ) , e(τ) → ẽ(τ̃) =
dτ
dτ̃

e(τ) . (2.6)

The equation of motion for e is

0 =
δS′

δe(τ)
⇐⇒

1
e2(τ)

dX
dτ
·

dX
dτ
+ m2 = 0 , (2.7)

For m , 0, this fixes e entirely in terms of Xµ, and, once plugged back into (2.5),
shows the equivalence to the first action (2.3).

More generally, we can use the reparametrization invariance to gauge fix e. A
convenient choice is to set it to constant, e.g.,

e(τ) =

{
1
m , m , 0
1 , m = 0 .

(2.8)
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Then, the variation of the action (2.5) with respect to Xµ just leads to the same
Euler–Lagrange equation, up to the constant factor 1/e, as those derived from the
action Lagrangian gµν(dXµ/dτ)(dXν/dτ). From General Relativity I, we know that
this is nothing but the geodesic equation,

d2Xµ

dτ2 + Γ
µ
ρσ

dXρ

dτ
dXσ

dτ
= 0 , (2.9)

with Γµρσ the Christoffel symbols associated to the spacetime metric gµν . Moreover,
the equation of motion (2.7) becomes the following constraint:

dX
dτ
·

dX
dτ
=

{
−1 , m , 0 ,
0 , m = 0 .

(2.10)

These tell us that the parametrization we chose above to gauge fix e corresponds to
τ being the proper time along the worldline. In fact, for any parametrization, the
field e(τ) is nothing but the worldline metric, gττ = e2(τ), in the parametrization
coordinate τ. The equations of motion for e simply states that this metric is not
any arbitrary one on a one-dimensional manifold, but rather the pullback of the
spacetime metric onto the worldline of the particle. We will revisit this interpretation
when we study the propagation of strings.

Last, but not least, there is a more general lesson here: Whenever we have a
redundant description (or, gauge symmetry), we may eliminate the superfluous
degrees of freedom by some choice of gauge fixing; however, the equations of
motions for these degrees of freedom remain important, as they become certain
constraints for the gauge-fixed system. In particular, such constraints will play a
crucial role if one wishes to further quantize the system.

2.2 Action principles for a string

Since the string is a one-dimensional object, it sweeps out a two-dimensional
worldsheet Σ, with coordinates ξa ≡ (ξ0, ξ1) = (τ,σ), as it moves through spacetime.
As the nomenclature suggest, we think of σ as the spatial coordinate along the
string, while τ is a time coordinate; of course, this is just a parametrization of a
geometric object, so the physics should eventually be invariant under any other
choice of parameters. It is convenient to pick σ to take values in an interval [0, l]
where l can be thought of as the length of the string as measured in some arbitrary
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units on Σ (the physical string length is a fixed parameter, see below). In the case of
closed strings, σ can be taken to be periodic, σ ≡ σ + l.

The configuration of the string in spacetime is then described by the embedding
Xµ(τ,σ), which specifies the spacetime coordinates Xµ of any given point ξa =
(τ,σ) on the worldsheet. Unlike a particle, the spatial extension of the string allows
for two different topological configurations: an open or a closed string. The latter is
characterized by the condition Xµ(τ,σ) = Xµ(τ,σ + l). For open strings, there will
be boundary conditions associated to the end points, which we will discuss later.

i

M

Fig. 2: Strings (closed or open) trace out a worldsheet Σ as they move through spacetime.
In the local coordinates ξa = (τ,σ), the infinitesimal area element dA is proportional to
dτdσ, with the proportionality factor given by

√
− det(h), with h the induced metric on Σ.

2.2.1 The Nambu–Goto action

For the point particle, we have seen that its dynamics is captured by an action which
is the proper length of its worldline. In (2.3), this was computed as a worldline
integral of the line element, or one-dimensional volume form, that is the pullback
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of the spacetime volume form by the embedding Xµ(τ). The natural generalization
to a string would then be an action that measures the area of the worldsheet Σ. The
corresponding “area element”, or two-dimensional volume form on Σ is

dA =
√
−(∂τX · ∂τX)(∂σX · ∂σX) + (∂τX · ∂σX)2 dτdσ ≡

√
− det(hab) dτdσ ,

(2.11)

where

hab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν(X(ξ)) (2.12)

is the induced worldsheet metric, i.e., the pullback of the spacetime metric onto
Σ by the embedding Xµ(ξ). Note that in a general curved spacetime, the metric
gµν are non-trivial functions in the worldsheet coordinates ξa through the explicit
dependence on the spacetime coordinates Xµ(ξ).

The natural action for a relativistic string, called the Nambu–Goto action, is
therefore

SNG[Xµ(ξ)] = −T
∫
Σ

dA = −T
∫ √
− det(hab) dτdσ . (2.13)

By dimensional analysis, the coefficient T must have (spacetime) mass dimension
2 since Xµ has mass dimension −1 (the worldsheet length dimensions cancel out
between the derivatives in hab and the differentials dτdσ), hence it can be thought
of as the string tension (energy/mass per unit length). Related quantities are:

T =
1

2πα′
, α′ : Regge-slope, (2.14)

`s = 2π
√
α′ , `s : string length, (2.15)

Ms =
1√
α′
, Ms : string (mass) scale. (2.16)

The Nambu–Goto action can be viewed as describing a two-dimensional
field theory on Σ with degrees of freedom given by Xµ(ξa). Note that Xµ is a
scalar field on Σ. This action manifestly has the spacetime isometries, e.g., for
gµν ≡ ηµν := diag(−1,1, ...,1), the Poincaré transformations,

Xµ(ξ) → Λ
µ
νXν(ξ) + bµ , Λ

µ
ν ∈ SO(1,D − 1) , bµ ∈ R1,D−1 , (2.17)
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as an internal, or global symmetry. Moreover, it is also invariant under reparametriza-
tion, or local diffeomorphisms, which as a redundancy of the description constitutes
a gauge symmetry.

By construction, the solutions to the Euler–Lagrange equations will extremize
the worldsheet area. Using the variation δ

√
− det(h) = 1

2
√
− det(h)habδhab, one

can derive the equations of motion

∂a

(√
− det(h)habgµν(X(ξ)) ∂bXν

)
= 0 , (2.18)

and study the classical dynamics of a string (see Problem Sheet 1). However, the
non-linear nature of these equations (originating from the square root), even in a flat
spacetime gµν ≡ ηµν, make the quantization procedure more challenging. As the
point-particle discussion foreshadows, it turns out that there is another, classically
equivalent starting point, that will be easier to quantize.

2.2.2 The Polyakov action

Just as for the point particle, the simplification comes from adding a superfluous
field to the system that describes the intrinsic geometry, i.e., the metric γab of the
worldsheet:

SP[Xµ(ξ), γab(ξ)] = −
T
2

∫
Σ

dτdσ
√
− det(γ) γab∂aXµ(ξ)∂bXν(ξ)gµν . (2.19)

This is the Polyakov action. Variations of this action with respect to the spacetime
coordinates Xµ gives the equations of motion

∂a

(√
− det(γ)γabgµν(X)∂bXν

)
= 0 , (2.20)

which structurally is identical to (2.18) that were derived from the Nambu–Goto
action. Whereas the worldsheet metric hab in (2.18) is itself an expression containing
Xµ, cf. (2.12), the crucial difference in (2.20) is that γab is a priori an independent
field. Hence, in a flat spacetime, gµν ≡ ηµν, this equation is linear in Xµ.

The worldsheet metric comes with its own equation of motion. Recalling from
GR I that the variation

Tab := −
2
T

1√
− det γ

δSP

δγab
(2.21)
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with respect to the metric is called the energy-momentum or stress tensor, the
equation of motion for γab are then (could be useful exercise for GR exam to verify!)

Tab = ∂aXµ∂bXνgµν︸            ︷︷            ︸
≡hab

−
1
2
γab

(
γbc∂bXµ∂cXνgµν

)
= 0 ,

=⇒ hab =
1
2
(γbchbc) γab .

(2.22)

This means that the dynamical worldsheet metric γab is proportional to the pullback
metric ∂aXµ∂bXνgµν = hab. The proportionality factor is itself a function on the
worldsheet, which, however, drops out in both the action (2.19) and the equation of
motion (2.20) for Xµ if we plug in the solution for γab. This shows that, on-shell,
the Nambu–Goto and the Polyakov action describe the same dynamics.

Symmetries of the Polyakov action The non-physicality of the prefactor γbchbc

reflects the fact that the 2d field theory on the worldsheet Σ, described by the Polyakov
action, has an additional symmetry. Namely, in addition to the global symmetries
in form of spacetime isometries (which does not affect γ), the reparametrization
(gauge) symmetry ξa → ξ̃a(ξ), which acts the worldsheet fields as

local diffeomorphisms:

{
Xµ(ξ) → X̃µ(ξ̃(ξ)) = Xµ(ξ) ,

γab(ξ) → γ̃ab(ξ̃(ξ)) = γcd(ξ)
∂ξc

∂ξ̃a

∂ξd

∂ξ̃b
,

(2.23)

we also have Weyl invariance, or local scale symmetry, which acts only on the
worldsheet metric:

Weyl transformation: γab(ξ) → γ̃ab(ξ) = e2ω(ξ)γab(ξ) , (2.24)

for some function ω(ξ) on Σ (the factor 2 is introduced for later convenience).

Notice that Weyl invariance is special to a string: for a k-dimensional object with
(k+1)-dimensional worldvolume, the analogous version of the Polyakov action (2.19)
would have

√
− det γγab → (e(k+1)ω

√
− det γ)(e−2ωγab), which is not invariant

unless k = 1. As we will learn later, Weyl symmetry is an essential ingredient for
the quantization procedure. The lack of Weyl symmetry for higher dimensional
membranes is in part the reason why our understanding of non-perturbative objects
in string and M-theory is still incomplete.
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A general consequence, also in higher dimensions, of Weyl invariance is the
tracelessness of the energy-momentum tensor. To see this, recall that, by definition,
the variation of the action with respect to variations of the metric is

δS =
δS
δγab

δγab ∝
√
− det γ Tabδγab . (2.25)

For an infinitesimal Weyl transformation (i.e., infinitesimal ω(ξ) in (2.24)), we have
δγab = 2ωγab. Weyl invariance then requires

0 = δS ∝ 2
√
− det γ ωTabγab (2.26)

for any ω, implying that Tabγab = Ta
a = 0. Note that this does not require any

fields to satisfy their equations of motion!

Furthermore, the local diffeomorphism invariance on the worldsheet can be
shown to enforce

∇aTab = 0 , (2.27)

where ∇a is the Levi-Civita connection associated to the worldsheet metric γab.
Importantly, this holds only on-shell for X , i.e., when Xµ satisfy their equations of
motion. Intuitively, this is because Tab only measures the response to variations in
hab while δXµ = 0.

As a final comment to this section, one can regard the Polyakov action (2.19)
as “matter fields” Xµ coupled to the worldsheet metric, i.e., 2d gravity. What about
other terms, that is, other types of interactions, in a typical (classical) theory of
gravity? It turns out that most other interactions are forbidden if we wish to preserve
Weyl invariance. E.g., a cosmological constant term, Λ

∫ √
− det γdτdσ(which is

the analog of the mass term in (2.5) for a particle), or any scalar potential term,∫ √
− det γV(X)dτdσ, explicitly break Weyl invariance. One may then wonder

what happens with the Einstein–Hilbert term, 1
2π

∫ √
− det γR(γ)dτdσ, with R(γ)

the Ricci scalar of γ. For a two-dimensional manifold, this integral is actually a
topological invariant, called the Euler characteristic,2 so it does not have any affect
on the (local) dynamics. This coins the phrase “2d gravity is trivial”, see Problem
Sheet 1.
2 For the worldsheet of open strings, i.e., 2d manifolds with boundaries, one needs to further add a

boundary term, see explanation on Problem Sheet 1.
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2.3 Classical solutions for the Polyakov string

Next, we will discuss in more detail the string solutions that solve the equations
of motions derived from the Polyakov action, for which the large gauge symmetry
(which were redundancies!) will be extremely important. For most of the lectures,
we will restrict our attention to a flat spacetime background, and we will make use
of the notation gµνVµVν = ηµνVµVν = V · V more frequently.

2.3.1 Gauge fixing the Polyakov String

Since the worldsheet has diffeomorphisms and Weyl transformations as gauge
symmetries, we can eliminate redundant degrees of freedom by gauge fixing. By
first choosing an appropriate reparametrization (i.e., coordinate change), we can
bring any metric into conformal gauge, i.e.,

γab → e2ω(ξ)ηab = e2ω(ξ) ( −1 0
0 1

)
. (2.28)

For an ad-hoc explanation, notice that, since we have two worldsheet coordinate
which we can reparametrize individually, we expect to be able to also fix two out of
the three independent metric entries. The final degree of freedom can be further
fixed, using Weyl rescaling; an obvious gauge choice is then unit gauge,

e2ω(ξ)ηab → ηab . (2.29)

Already in conformal gauge, the Polyakov action simplifies dramatically,

Sc.g.
P [X

µ] = −
T
2

∫
dτdσ ∂aX · ∂aX , (2.30)

which is a theory of D massless scalar fields Xµ in a (1+ 1)-dimensional Minkowski
space Σ. Their equations of motion (2.20) become, if the spacetime metric is flat,
just free wave equations on Σ,

∂a(gµν∂
aXν) = ∂a∂aXµ = 0 . (2.31)

As we learned from the point particle, the metric’s equations of motion become
constraints after gauge fixing. In conformal gauging, these constraints are

Tττ = Tσσ =
1
2
(∂τX · ∂τX + ∂σX · ∂σX) !

= 0 , Tτσ = ∂τX · ∂σX !
= 0 . (2.32)
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These restricts the solutions to the wave equations. Notice the tracelessness condition,
Ta

a = −Tττ + Tσσ = 0, holds irrespective of these constraints, and reduce the
number of inequivalent constraints to two.

2.3.2 Oscillator mode expansions

To solve the equations of motions (2.31) that describe the string’s motion in
spacetime, it will be useful to perform a coordinate change into the so-called
lightcone coordinates ξ̃a(ξ) ≡ (ξ+(τ,σ), ξ−(τ,σ)) on the worldsheet Σ:

ξ+ := τ + σ , ξ− := τ − σ ; ∂± :=
∂

∂ξ±
= 1

2 (∂τ ± ∂σ) . (2.33)

In these, the gauge fixed worldsheet metric γab = ηab becomes

γ++ = γ−− = γ
++ = γ−− = 0 , γ+− = γ−+ = −

1
2
, γ+− = γ−+ = −2 , (2.34)

for which the volume form (or integration measure) on Σ reads

dτdσ = dξ+dξ− det
∂(τ,σ)

∂(ξ+, ξ−)
=

1
2

dξ+dξ− . (2.35)

The equations of motion (2.31), which (recall we have fixed the spacetime
metric to be flat) in lightcone coordinates read

∂+∂−Xµ = 0 . (2.36)

Written in this way, it is easy to spot the general solutions:

Xµ(ξ+, ξ−) = Xµ
L (ξ
+) + Xµ

R(ξ
−) , (2.37)

where the summands describe waves moving in opposite directions along the string.
Conventionally, the part that depends on ξ+ (ξ−) is called left-(right-)moving.

We have not yet implemented to constraints. To do so, it is useful to expand the
waves into their Fourier modes. Here, the topology of the string makes a difference.
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Closed string expansion For a closed string, recall that we had the periodic
boundary condition

Xµ(τ,σ = 0) = Xµ(τ,σ = l) . (2.38)

The Fourier expansion for such a function into left- and right-moving parts is

Xµ
L (ξ
+) =

1
2

xµ +
πα′

l
pµξ+ + i

√
α′

2

∑
n∈Z, n,0

1
n
α̃
µ
n exp(− 2πi

l n ξ+) ,

Xµ
R(ξ
−) =

1
2

xµ +
πα′

l
pµξ− + i

√
α′

2

∑
n∈Z, n,0

1
n
α
µ
n exp(− 2πi

l n ξ−) ,

(2.39)

where

• the coefficients αµn , α̃
µ
n (not to be confused to be in any relation with the

string tension α′!) are independent modes that, by convention, correspond to
positive frequency modes for n < 0;

• the periodic boundary condition is satisfied by having the same coefficient
for the left-/right-moving zero mode,

α̃
µ
0 = α

µ
0 =

√
α′

2
pµ , (2.40)

• Xµ being a real-valued field, Xµ = (Xµ)∗, implies

xµ = (xµ)∗ , pµ = (pµ)∗ , (αµn )
∗ = α

µ
−n , (α̃

µ
n )
∗ = α̃

µ
−n . (2.41)

For later convenience, it is helpful to display the derivatives of the coordinate fields:

∂+Xµ = ∂τXµ
L =

2π
l

√
α′

2

∑
n∈Z

α̃
µ
n exp(−2πi

l n(τ + σ)) ,

∂−Xµ = ∂τXµ
R =

2π
l

√
α′

2

∑
n∈Z

α
µ
n exp(−2πi

l n(τ − σ)) .

(2.42)

Open string expansion While the equation of motion (2.36) remains the same
for open strings, there is an additional condition on the motion of the endpoints
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Xµ(τ,σ = 0) and Xµ(τ,σ = l). By doing the variation of the gauge fixed action
(2.30) including the boundary contributions more carefully, we find the condition

∂σXµδXµ = 0 at σ = 0, l , (2.43)

which of course should be familiar from a classical mechanics treatment of vibrating
strings: The two possibilities for each endpoint are Neumann (N) boundary con-
ditions, ∂σXµ |σ=bdry = 0, or Dirichlet (D) boundary conditions, δXµ |σ=bdry = 0.
Physically, Neumann endpoints can move freely, provided there is no momentum
flowing off the string; Dirichlet endpoints are fixed and cannot move.

Combining these for the two endpoints, an open string has the following possible
mode expansions:

1. Neumann boundary conditions at both ends (NN):

Xµ(τ,σ) = xµ +
2πα′

l
pµτ + i

√
2α′

∑
n∈Z, n,0

1
nα

µ
n exp(− iπn

l τ) cos(nπσl ) ,

(2.44)

where the left- and right-moving parts are no longer independent, α̃n = αn,
due to the boundary conditions. Again, reality imposes (αµn )∗ = α

µ
−n. Defining

α
µ
0 :=
√

2α′pµ, we find

∂±Xµ =
1
2
(∂τXµ ± ∂σXµ) =

π

l

√
α′

2

∑
n∈Z

α
µ
n exp(− iπn

l (τ ± σ)) . (2.45)

2. Dirichlet boundary conditions at both ends (DD): fixing endpoints means
δXµ(σ = 0, l) = ∂τXµ(σ = 0, l)δτ !

= 0, so ∂τXµ |σ=bdry = 0. Defining
xµ0 := Xµ(τ,σ = 0), xµ1 := Xµ(τ,σ = l), and αµ0 =

1√
2α′π
(xµ1 − xµ0 ), we have

Xµ(τ,σ) = xµ0 +
xµ1 − xµ0

l
σ +
√

2α′
∑

n∈Z, n,0

1
nα

µ
n exp(− iπn

l τ) sin(
nπσ
l ) ,

∂±Xµ = ±
π

l

√
α′

2

∑
n∈Z

α
µ
n exp(− iπn

l (τ ± σ))

(2.46)

with reality condition (αµn )∗ = α
µ
−n as before.
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3. Mixed boundary conditions (ND): fixing (N) at σ = 0 and (D) are σ = l with
Xµ(σ = l) = xµ (or the way around):

Xµ(τ,σ) = xµ + i
√

2α′
∑

n∈Z+ 1
2

1
n
α
µ
n exp(− iπn

l τ) cos(nπσl ) ,

∂±Xµ =
π

l

√
α′

2

∑
n∈Z+ 1

2

α
µ
n exp(− iπn

l (τ ± σ)) .

(2.47)

Notice that the Fourier coefficients, which must still satisfy (αµn )∗ = α
µ
−n, are

labelled by half-integers here.

Note that one can choose separate boundary conditions for each of the D scalar
fields Xµ individually. This means that the ends of a string can move freely in (D−p)
spacetime directions, but fixed in p others, as if they are attached to a p-dimensional
object that extends in these directions coordinates. It turns out that these objects,
which are called p-brane, are needed for internal consistency of string theory at a
non-perturbative level. We will come back to branes at a later point.

Poincaré charges To get some more physical intuition for the mode expansion,
let us consider the Poincaré symmetry charges of a moving string. In the worldsheet
description, these are the Noether charges associated to the global symmetry (2.17)
for the fields Xµ. Applying Noether’s theorem on their infinitesimal versions,

δXµ = εµ , (spacetime translations) (2.48)
δXµ = εµνXν , (Lorentz transformations) (2.49)

we find the currents (note that these are vectors on Σ!)

qµa(ξ) = −T∂aXµ , (spacetime translations)
(2.50)

Jµνa(ξ) = −T(Xµ∂aXν − Xν∂aXµ) = Xµqνa − Xνqµa , (Lorentz transformations)
(2.51)

which are conserved, i.e., ∂a(qµ)a = ∂a(Jµν)a = 0.
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The Noether charges are then the sptial integral over the temporal component
of each current. Plugging in the above mode expansions, we find for spacetime
translations the Noether charge∫ l

0
dσ (qµ)τ = pµ , (2.52)

for the closed string and the open string with (NN) boundary conditions, and 0
for open strings with Dirichlet boundary conditions. Clearly, the mode expansion
parameter pµ has the interpretation of the center-of-mass momentum of the string.

The Noether charges for Lorentz transformations are the angular momenta

Mµν =

∫ l

0
dσ(Jµν)τ =

{
`µν + Eµν + Ẽµν (closed string),
`µν + Eµν (open string),

(2.53)

where

`µν = xµpν − xνpµ (2.54)

is the center-of-mass contribution, and

Eµν =
∑
n,0
−

i
n
(α
µ
−nα

ν
n − α

ν
−nα

µ
n ) , Ẽµν =

∑
n,0
−

i
n
(α̃
µ
−nα̃

ν
n − α̃

ν
−nα̃

µ
n ) , (2.55)

are the contributions from the left- and right-moving waves on the string.

2.3.3 Imposing the constraints

Recall that the energy-momentum tensor Tab = ∂aX · ∂bX − 1
2ηab∂cX · ∂cX

(in conformal gauge) satisfies certain relations due to Weyl and diffeomorphism
invariance. In lightcone coordinates, these are

Ta
a = T+− + T−+ = 0 ⇒ T+− = T−+ = 0 ,

∇aTab = 0 ⇒ ∂−T++ = ∂+T−− = 0 .
(2.56)

The second conditions implies that T++ = −∂+X · ∂+X depends only on the
coordinate ξ+, and T−− = −∂−X · ∂−X only on ξ−. This is the 2d Lorentzian analog
to (anti-)holomorphicity, and implies the existence of infinite many conserved
charges.
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Closed strings To construct these conserved charges for the closed string, consider,
for any function f (ξ−),

Q f :=
∫

dσ f (ξ−)T−−(ξ−)

=⇒ ∂τQ f =

∫
dσ(2∂+ − ∂σ) f (ξ−)T−−(ξ−)

= −

∫
dσ ∂σ( f (ξ−)T−−(ξ−))

=
[

f (ξ−)T−−(ξ−)
��
σ=l
− f (ξ−)T−−(ξ−)

��
σ=0

] ��
fixed τ .

(2.57)

With periodic boundary conditions for X (and therefore also for Tab), ∂τQ f

vanishes if f (ξ−) is also periodic in σ. A complete set of such functions is
fm(ξ−) = exp(2πil mξ−). A straightforward computation, using the mode expansion
(2.39), then yields the conserved charges

Lm :=
T
2l

∫ l

0
dσe

2π i
l mξ−T−−(ξ−) =

T
2l

∫ l

0
dσe

2π i
l mξ− ∂−XR · ∂−XR

=
1
2

∑
n∈Z

αm−n · αn (with αµ0 =
√
α′

2 pµ) .
(2.58)

Similar considerations with T++ and fm(ξ+) = exp(2πil mξ+) lead to conserved
charges

L̃m :=
T
2l

∫ l

0
dσe

2πi
l mξ+T++(ξ+) =

1
2

∑
n∈Z

α̃m−n · α̃n (with α̃µ0 =
√
α′

2 pµ) .

(2.59)

The Lm’s and L̃m’s are just Fourier coefficients of T−− and T++, respectively. So
the constraints (2.32),

T++
!
= 0 , T−−

!
= 0 , (2.60)

are equivalent to Lm = 0 and L̃m = 0 for all m. Amongst these infinitely many
quadratic constraints, those for m = 0 are particularly interesting. From

L0 =
1
2

∑
n∈Z

α−n · αn =
1
2
α2

0 +

∞∑
n=1

α−n · αn =
α′

4
p2 +

∞∑
n=1

α−n · αn = 0 ,

L̃0 =
1
2

∑
n∈Z

α̃−n · α̃n =
1
2
α̃2

0 +

∞∑
n=1

α̃−n · α̃n =
α′

4
p2 +

∞∑
n=1

α̃−n · α̃n = 0 ,
(2.61)
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we obtain the level matching condition,
∞∑
n=1

α−n · αn =
α′

4
p2 =

∞∑
n=1

α̃−n · α̃n , (2.62)

which relates the left- and right-movers. Moreover, since αµ0 ∝ pµ is the spacetime
center-of-mass momentum of the string, the L0 and L̃0 constraints also give the
mass shell condition,

M2 = −p2 =
2
α′

∞∑
n=1
(α−n · αn + α̃−n · α̃n) , (2.63)

which quantifies the contributions of the oscillator modes to the effective mass of
the string in spacetime.

Open strings For open strings, the boundary conditions relate the left- and
right-moving waves, and, by extension, also the different components of the energy-
momentum tensor. For simplicity, let us focus here just on open strings with (NN)
boundaries, i.e., ∂σXµ = 0 for both σ = 0 and σ = l. At the boundaries, we
therefore have ∂+X = ∂−X = ∂τX , so T−− |σ=bdry = T++ |σ=bdry. Analogous to (2.57),
we can then show that the conserved charges are

Q f =

∫
dσ

(
f (ξ−)T−−(ξ−) + f (ξ+)T++(ξ+)

)
, (2.64)

if f (x − l) = f (x + l) is a 2l-periodic function. A complete set of charges for the
(NN) open string, with mode expansion (2.44), is then given by

Lm =
T
2l

∫ l

0
dσ

(
e
πi
l mξ−T−− + e

πi
l mξ+T++

)
=

1
2

∑
n∈Z

αm−n · αn , (2.65)

which for m = 0 gives the open-string mass shell condition

M2 = −p2 =
1
α′

∞∑
n=1

α−n · αn . (2.66)

2.3.4 Poisson brackets and conformal symmetry

So far, the discussion was in the Lagrangian formalism. There, we have explicitly
constructed the solutions (Xµ, ∂aXµ) of the equation of motions in terms of their
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mode expansion parameters (xµ, pµ, αµn , α̃
µ
n ), subject to the constraints Lm = L̃m = 0

for all m ∈ Z. For the usual quantization procedure, we need to pass to the
Hamiltonian formalism. Specifically, we need to compute the Poisson bracket
relations for classical observables, and then promote them to commutator relations
of quantum operators.

In Hamiltonian formalism, the solution space is parametrized by the fields Xµ

and their conjugate momenta. In conformal gauge, the Polyakov action (2.30) with
Lagrangian L = T

2 (∂τX · ∂τX − ∂σX · ∂σX), defines the conjugate momenta,

Π
µ =

δL

δ(∂τXµ)
= T∂τXµ . (2.67)

The Hamiltonian is then

H =
∫ l

0
dσ(∂τXµ

Πµ − L) =
T
2

∫ l

0
dσ[(∂τX)2 + (∂σX)2]

= T
∫ l

0
dσ[(∂+X)2 + (∂−X)2] =

{
2π
l (L0 + L̃0) , closed strings,
π
l L0 , open strings.

(2.68)

A general observable is then a functional F in (Xµ(τ,σ),Πµ(τ,σ)), which
are coordinates on the phase space. The Poisson bracket is a symplectic pairing
{F,G}PB = −{G,F}PB, defined by

{F,G}PB(τ,σ,σ
′) =

∫
dσ̃

(
δF(τ,σ)
δΠµ(τ, σ̃)

δG(τ,σ′)
δXµ(τ, σ̃)

−
δG(τ,σ′)
δΠµ(τ, σ̃)

δF(τ,σ)
δXµ(τ, σ̃)

)
.

(2.69)

The canonical equal time Poisson brackets are

{X,X}PB = {Π,Π}PB = 0 , {Πµ(τ,σ),Xν(τ,σ′)}PB = η
µνδ(σ − σ′) . (2.70)

From these, we can compute the Poisson brackets of the oscillator modes from
Fourier expansion. One finds the non-zero results

{α
µ
m, α

ν
n}PB = imδm+n,0 ηµν = {α̃

µ
m, α̃

ν
n}PB , {pµ, xν}PB = η

µν , (2.71)

where, for open strings, there is only one (independent) set of oscillators.
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We can use these to further compute the Poisson brackets for the Fourier modes
(Lm, L̃m) of the energy momentum tensor. Explicit computation (see problem sheet)
shows

{Lm,Xµ}PB = −
l

2π
e

2πi
l mξ−∂−Xµ , {L̃m,Xµ}PB = −

l
2π

e
2πi
l mξ+∂+Xµ , (2.72)

and the important relation

{Lm, Ln}PB = i(m − n)Lm+n , {L̃m, L̃n}PB = i(m − n)L̃m+n . (2.73)

These relations define a Lie algebra called the Witt algebra, which are the generators
for conformal transformations in 2d.

These transformations are diffeomorphisms of a Riemannian/Lorentzian mani-
foldM that preserves the metric up to rescaling,

g(x) → g̃(x̃) = e2ω(x̃)g(x̃) . (2.74)

What are the generators for such transformations on the worldsheet? Consider a
general infinitesimal diffeomorphism, which acts via

ξa → ξa + εa(ξ) , γab → γab + ∇aεb + ∇bεa . (2.75)

For this to be a conformal transformation, ε must satisfy the conformal Killing
equation ∇aεb + ∇bεa = (∇cεc)γab. In unit gauge (γab = ηab and ∇a = ∂a) and
lightcone coordinates (η+− = η−+ = −1

2, η
+− = η−+ = −2, all other entries zero),

this equation becomes quite simple:

(++) : ∂+ε+ = 0 ⇒ ∂+ε
− = 0 ⇒ ε− = ε−(ξ−) ,

(−−) : ∂−ε− = 0 ⇒ ∂−ε
+ = 0 ⇒ ε+ = ε+(ξ+) ,

(+−) : ∂+ε− + ∂−ε+ = −
1
2
(∂aεa) = −

1
2
(−2∂−ε+ − 2∂+ε−) (trivially true) .

(2.76)

This means that the conformal transformations are generated infinitesimally by
“(anti-)holomorphic” vector fields ε±(ξ±), for which we can, as before, pick a
complete set in terms of e

2π i
l nξ± .

When we represent (tangent) vector fields on a manifold as differential operators
(i.e., we use a local basis ea = ∂a for the tangent space, see GR I), this gives rise to
a complete set of operators

Vn = −
l

2π
e

2π i
l nξ−∂− , Ṽn = −

l
2π

e
2π i
l nξ+∂+ , (2.77)
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which have the commutator relations (see problem sheet)

[Vn,Vm] = i(n − m)Vn+m , (2.78)

and similarly for Ṽn,m’s. As claimed, these are precisely the defining relations of the
Witt algebra.

What this tells us is that the modes Lm and L̃m’s generate conformal transfor-
mations on the phase space.3 This means in particular that, even after fixing to unit
gauge, the worldsheet theory still has residual gauge symmetries, namely conformal
symmetry: The constraints Lm = 0 and L̃m = 0 can be understood as requiring all
observables to not vary under conformal transformations.

The appearance of conformal symmetry suggests a proper treatment using
conformal field theory (CFT). We will not be able to give a full introduction to
this topic, and instead simply “import” some tools as we move along; it is highly
recommended that you take the course in Trinity term (and/or consult the references).

However, we remark that the worldsheet theory is slightly different than an
ordinary CFT, in that here, the conformal symmetry is a gauge symmetry. One could
in principle imagine further gauge-fixing the system; however, it turns out there is
no way to do so without losing a manifestly spacetime-covariant description. One
such gauge-fixing procedure is lightcone gauge, which we will revisit briefly in the
next section.

To close our discussion of the classical string, we point out that conformal
symmetry in (1 + 1) dimensions is special in that the algebra has, as seen above,
infinitely many generators. This enormous symmetry is what makes the quantization
of the classical description possible in the first place. In d > 2 dimensions
(with Lorentzian signature), the conformal algebra is the finite algebra so(2, d).
Extrapolating to d = 2, so(2,2) � sl(2,R) ⊕ �sl(2,R) is only the “global part”,

3 More precisely, in the Hamiltonian picture, it is a standard feature that symmetry transformations
parametrized by ε are always generated by the conserved charges Qε via the Poisson bracket:
δεF = {Qε ,F}PB where δF is the infinitesimal change of an observable F under this transformation.
For transformations that arise from diffeomorphisms on spacetime (parametrized by a vector
field ε), there is an analogous concept called the Lie derivative, which encodes infinitesimal
transformations δF = LεF, or flows, of any differential form F. From GR I, you might recall
that the Lie bracket is intimately tied to commutators of vector fields; in particular, they satisfy
[Lε ,Lε ′](F) := (LεLε ′ − Lε ′Lε )(F) = L[ε ,ε ′](F). What we have shown above is that the flows
generated by the vector fields Vn are structurally identical to the phase space transformations
generated by the Ln’s, which further implies {Qε ,Qε ′}PB = Q[ε ,ε ′].
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generated by {V0,±1, Ṽ0,±1} of the full conformal algebra Witt ⊕ W̃itt. Consequently,
CFTs in higher dimensions are much more complicated to study.

3 The Quantum String
We now move to the quantum string. More specifically, we will quantize the (1+ 1)d
field theory on the worldsheet starting from the Polyakov action. As oftentimes with
“ordinary” field theories, there are generally new consistency conditions that arise
that go beyond the classical constraints. In the case of the bosonic string, one of the
main quantum consistency conditions is criticality: the number of scalar fields Xµ

— which is the spacetime dimension D — must be 26!

There are two quantization methods for the string, starting from the classical
Hamiltonian picture.

• In old covariant quantization (OCQ), which is what we will discuss in this
course, we promote the mode expansion coefficients to quantum operators,
and then impose the constraints at the level of the states. This manifestly
preserves spacetime covariance, but the quantum theory is only unitary in the
critical dimension D = 26.

• In lightcone quantization (LCQ), the constraints are implemented before
quantizing, leading to a manifestly unitary theory. However, spacetime
covariance is only restored in D = 26.

For completeness, note that there is also a third quantization method, starting
from the Lagrangian formulation, namely the path-integral quantization. This
manifestly covariant procedure is sometimes also called the modern covariant
quantization of the string. Again, the critical dimension arises as a consistency
condition, but the meaning of the phrase “the BRST algebra needs to be closed”
will be explained in the “Advanced QFT” course.

3.1 Old covariant quantization

3.1.1 Canonical quantization

The canonical quantization procedure promotes the fields Xµ and Πµ, which were
coordinates on phase space in the classical Hamiltonian picture, to operators (which
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we will, by laziness, denote with the same symbols) acting on the Hilbert space of
states. Their classical Poisson bracket relation is now promoted to an equal time
commutation relation, which reads

[Xµ(τ,σ),Πν(τ,σ′)] = −[Πν(τ,σ′),Xµ(τ,σ)] = iηµνδ(σ − σ′) . (3.1)

Accordingly, also the coefficients of the mode expansions become operators, and
complex conjugation becomes taking the Hermitian-conjugate operator:

[xµ, pν] = iηµν , xµ = (xµ)†, pµ = (pµ)†,

[α
µ
m, α

ν
n] = m δm+n,0 η

µν , α
µ
−n = (α

µ
n )
†, (3.2)

[α̃
µ
m, α̃

ν
n] = m δm+n,0 η

µν , α̃
µ
−n = (α̃

µ
n )
†.

This forms an infinite set of harmonic oscillator (after rescaling an = αn/
√

n) plus a
standard “Heisenberg pair” (x, p). This allows us to construct the Hilbert space in a
straightforward manner.

First, we look at the oscillators, and identify (αµ−n, α
µ
n )n>0 (same for the tilded

ones) as raising and lowering operators. With the oscillator vacuum state |0〉o
defined by

α
µ
n |0〉o = α̃

µ
n |0〉o = 0 for n > 0 , (3.3)

we then build the “oscillator Fock spaces” using the raising operators,

HFock
open = spanC


D−1∏
µ=0

∞∏
n=1

(
α
µ
−n

)Nµ
n |0〉o

���Nµ
n ≥ 0, finitely many , 0

 ,

HFock
closed = spanC


D−1∏
µ,ν=0

∞∏
n=1

∞∏
m=1

(
α
µ
−n

)Nµ
n
(
α̃ν−m

) Ñν
j |0〉o

��� Nµ
n , Ñ

ν
m ≥ 0, finitely many , 0


� H̃Fock

left ⊗ H
Fock
right � H

Fock
open ⊗ H

Fock
open .

(3.4)

As for the harmonic oscillator, there are “counting operators” N :=
∑

k>0 α−k ·αk
and Ñ =

∑
k>0 α̃−k · α̃k , which satisfy

[N, αµn ] = −nαµn , [N, (α
µ
n )
†] = [N, αµ−n] = nαµ−n , (3.5)
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(analogously for (Ñ, α̃µn )) and which measure the oscillation “quanta”,

N ©­«
D−1∏
µ=0

∞∏
n=1

(
α
µ
−n

)Nµ
n |0〉o

ª®¬ =
(
D−1∑
ν=0

∞∑
m=1

m Nν
m

) ©­«
D−1∏
µ=0

∞∏
n=1

(
α
µ
−nµ

)Nµ
n |0〉o

ª®¬ . (3.6)

This allows us to organize oscillator states into levels (eigenstates under N and Ñ).
Focusing on left- or right-movers only, or equivalently, the open string states, we
have basis vectors

N = 0 : |0〉o ;
N = 1 : α

µ
−1 |0〉o ;

N = 2 : α
µ
−2 |0〉o , α

µ
−1α

ν
−1 |0〉o ;

N = 3 : α
µ
−3 |0〉o , α

µ
−2α

ν
−1 |0〉o , α

µ
−1α

ν
−1α

ρ
−1 |0〉o ;

...

(3.7)

Since we also have the zero modes (xµ, pν) (which commute with the oscilla-
tors), the oscillator modes can be paired with the standard representations (“wave
functions”) for the Hilbert spaceHzero-modes � L2(R1,D−1) of D Heisenberg pairs.
We use the momentum space representation, in which the plane wave states |k〉,
k ∈ R1,D−1 are eigenvectors of the momentum operator, pµ |k〉 = kµ |k〉, and
〈k ′ |k〉 = δ(D)(k ′ − k). The full Hilbert space is then

Hopen = H
Fock
open ⊗ L2(R1,D−1) , Hclosed = H̃

Fock
left ⊗ H

Fock
right ⊗ L2(R1,D−1) . (3.8)

A basis for these spaces can be built starting from the “vacua” |0; k〉 with αµn |0; k〉 =
α̃
µ
n |0; k〉 = 0 for n > 0, and acting on it with the raising operators of the oscillators.

Within this Hilbert space, the states are labelled by spacetime momenta k and
spacetime tensor indices (µ, ν, ...), and so manifestly exhibit spacetime covariance
(i.e., they naturally furnish representations under spacetime Poincaré symmetry).
However, this desirable property also introduces (at face value) some severe
problems: the existence of negative-norm, or ghost states. An example of such states
are level-one states of the form α0

−1 |0; k〉, for which we have

〈0; k |α0
+ α

0
− |0; k ′〉 = 〈0; k |[α0

+, α
0
−]|0; k ′〉 = η00δ(D)(k − k ′) = −δ(D)(k − k ′) .

(3.9)
The existence of physical ghost states would lead to a violation of unitarity, which
in general is unacceptable in quantum theories. Therefore, we must ensure their
absence. Luckily, we still have the constraints Tab = 0 at our disposal. As we see
now, these will distinguish physical states with positive norms from ghost states.
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3.1.2 Implementing the constraints

Recall that the classical constraints were Lm = L̃m = 0. Once we quantize, the
constraints are now implemented as operator equations. However, as in the Gupta–
Bleuler quantization of QED (where the classical constraint ∂µAµ = 0 was to
implement Lorenz gauge), we only require the vanishing of the “matrix elements”
〈ϕ|Lm |ϕ

′〉 for physical states |ϕ〉, |ϕ′〉. Because L−m = (Lm)
† and L̃−m = (L̃m)

†, it
suffices to impose

∀m ≥ 0 : Lm |ϕ〉 = 0 ⇔ |ϕ〉 physical state . (3.10)

For m , 0, we can, without hesitation, identify the classical expressions,

Lm =
1
2

∑
n∈Z

αm−n · αn , L̃m =
1
2

∑
n∈Z

α̃m−n · α̃n , (3.11)

as good quantum operators, because αm−n and αn commute for m , 0.

However, for m = 0, the classical expressions,

L0 =
1
2

∑
n∈Z

α−n · αn , L̃0 =
1
2

∑
n∈Z

α̃−n · α̃n , (3.12)

suffer from an ordering ambiguity. That is, depending on how we order the
raising/lowering operators for each n, the action of L0 and L̃0 on one state can differ
by a c-number. Said differently, if we define the quantum operators L0 and L̃0 in
normal ordering,

L0 :=
1
2
α0 · α0 +

∞∑
n=1

α−n · αn =
1
2
α0 · α0 + N ,

L̃0 :=
1
2
α̃0 · α̃0 +

∞∑
n=1

α̃−n · α̃n =
1
2
α̃0 · α̃0 + Ñ ,

(3.13)

then we can only formulate the constraint for L0/L̃0 as

(L0 − a)|ϕ〉 = 0 , (L̃0 − ã)|ϕ〉 = 0 , ∀ physical |ϕ〉 , (3.14)

where (a, ã) are some constants that we cannot specify just yet. For now, we can, with
some more advanced arguments, relate the difference a− ã to a kind of gravitational
anomaly on the worldsheet, i.e., a violation of diffeomorphism invariance. Its
absence therefore sets a = ã.
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The Virasoro algebra The ordering issue will also modify the quantum commu-
tators [Lm, Ln], so that their expression deviates from the naive quantum version of
the classical Poisson bracket relations,

[Lm, Ln]Witt = (m − n)Lm+n . (3.15)

Namely, whenever m + n = 0, the right-hand side would be proportional to L0,
which, as discussed above, suffers from an ordering ambiguity. On the problem
sheet, you will show that if, as above, we define L0 to be normal ordered (3.13),
then the commutator must be

[Lm, Ln] = (m − n)Lm+n +
D
12
(m3 − m)δm+n,0 . (3.16)

This is the defining commutation relation of the Virasoro algebra with central
charge c = D (number of spacetime dimensions), and we will refer to the quantum
operators Lm (and L̃m) as the Virasoro generators. The Virasoro algebra is a
so-called central extension of the Witt algebra by C 3 c:

[x, y]Vir. := [x, y]Witt + c p(x, y) , ∀ x, y ∈ Witt ,
[x,a]Vir. := 0 , [a,a]Vir := 0 , ∀ x ∈ Witt, ∀ a ∈ C .

(3.17)

That is, we extend the original algebra (in this case Witt) by an element c (and any
complex multiple of it) that commutes with every element (hence, is “central”), but
that can appear in the commutator of other elements. The map p(x, y) ∈ C must be
bilinear and anti-symmetric.

The central charge can be understood as a quantum anomaly of conformal
symmetry; we will come back to this later. Notice how the central charge vanish
for the subalgebra generated by {L0,±1}. This means that the “global” conformal
transformations, sl(2,R), are non-anomalous.

3.2 Critical dimension as quantum consistency

The consistency of the quantized worldsheet theory hinges on consistently defining
the subspaceHphys ⊂ H of physical states by the Virasoro constraints,

|φ〉 ∈ Hphys ⇐⇒

{
∀m > 0 : L̃m |φ〉 = 0 ,
(L0 − a)|φ〉 = (L̃0 − a)|φ〉 = 0 .

(3.18)
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Given the basis vectors (3.7), we can try to implement these constraints level by
level, which turns the constraints into a set of linear equations. The non-trivial
consistency condition here is that the solutions of these equations, being physical
states, must not have negative norms. As we will see now, these arguments pose
restrictions to the normal ordering constant a and spacetime dimension D.

3.2.1 Ground state masses

The normal ordering constant has a very concrete physical meaning. Recall that,
classically, the L0 constraints gave rise to the mass shell conditions (2.63) and (2.66).
In the quantum theory, the ordering ambiguity enters these as (with α2

0 ∝ p2 ≡ −M2)

closed string :

{
(L0 + L̃0 − 2a)|φ; k〉 = 0 ⇔ α′M2 = 2N + 2Ñ − 4a
(L0 − L̃0)|φ; k〉 = 0 ⇒ (N − Ñ)|φ; k〉 = 0

open string : (L0 − a)|φ; k〉 = 0 ⇒ α′M2 = N − a
(3.19)

for |φ; k〉 that are physical eigenstates of the operators N (and Ñ).

At level zero, physical states |0; k〉 therefore have spacetime rest mass M2 = −k2

given by the normal ordering constant:

open: α′M2 = −a , closed: α′M2 = −4a . (3.20)

So, depending on the sign of a, the ground state is

• massive for a < 0,

• massless for a = 0,

• tachyonic for a > 0.

A tachyonic ground state is unusual, but a priori not inconsistent. It signals a
quantum instability, i.e., the ground state is not the true vacuum of the theory. For
the bosonic string, which eventually requires a = 1 > 0, it is believed that there is a
true vacuum state which is non-perturbative. In superstring theory, the additional
fermionic fields on the worldsheet will “lift” the tachyonic mode, and make the
perturbative oscillator vacua stable ground states.
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Note that at level zero, because of [N, Lm] = −mLm, the Virasoro constraint
Lm |0; k〉 = 0 is trivially satisfied for m > 0, because such a state would have negative
level. Alternatively, there is no ambiguity in bringing Lm>0 =

1
2
∑

n αn−m · αm into
normal ordering, which by definition level zero states.

3.2.2 Normal order constant from constraints at level one

Next, we inspect states at level one; recall from earlier that this is where we
encountered negative-norm states. Since the closed string Hilbert space is, in some
sense, just two copies of the (NN) open string Hilbert space, we will focus on the
latter for now.

A general level-one state takes the form

|ζ ; k〉 := ηµνζµαν−1 |0; k〉 , (3.21)

where ζ ∈ R1,D−1 labels the spacetime polarization. Their norm is

〈ζ ; k |ζ ′; k ′〉 = 〈0; k |(ζ · α1)(ζ
′ · α−1)|0; k ′〉 = 〈0; k |ζ · ζ ′ |0; k ′〉 = (ζ · ζ ′)δ(k − k ′) .

(3.22)

As before, we see from [N, Lm] = −mLm that the Virasoro constraints Lm |ζ ; k〉 are
automatically satisfied for m > 1. The L0 and L1 constraints are then

(L0 − a)|ζ ; k〉 = 0 ⇔ M2 = −k2 = 1
α′ (1 − a) ,

L1 |ζ ; k〉 = ηµνζµL1α
ν
−1 |0; k〉 = ηµνζµ[L1, α

ν
−1]|0; k〉 = ηµνζµαν0 |0; k〉

= ηµνζ
µ
√

2α′kν |0; k〉 = 0 ⇔ ζ · k = 0 ,
(3.23)

where we have used

[Lm, α
µ
n ] =

1
2

∑
k

[αm−k · αk, α
µ
n ] =

1
2

∑
k

ηρν

(
α
ρ
m−k
[ανk, α

µ
n ] + [α

ρ
m−k

, α
µ
n ]α

ν
k

)
= 1

2

∑
k

ηρν

(
α
ρ
m−k

k δk+n,0 ηνµ + (m − k)δm+n−k ,0 ηρµανk
)

= −nαµm+n .
(3.24)
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So, the full set of consistency condition for level-one physical states are

ζ2 ≥ 0 ⇔ ζ light- or space-like (to avoid negative-norm),
ζ · k = 0 ⇔ transverse polarization (L1 constraint),

α′k2 = a − 1 (L0 constraint)
(3.25)

Depending on the value of a, there are three physically inequivalent situations.

a) For a > 1, the L0 constraint tells us that kµ is space-like, and so the L1
constraint would be satisfied by time-like polarizations ζ . However, this
would lead to negative-norm states because ζ2 < 0 for time-like ζ . These
are the ghost states we encountered before, and, for a > 1, the Virasoro
constraints are not sufficient to eliminate them.

b) For a = 1, the spacetime momentum k is null. In this case, the polarization
vector ζ can be either transversal, ζT , or longitudinal, ζL ∝ k, to the
momentum. The transverse polarizations are (D − 2) states |ζT ; k〉 with
positive norm ∝ ζ2 > 0. This is the correct number of degrees of freedom for
a massless vector boson in D dimensions with polarization ζT in spacetime.
The longitudinal one, on the other hand, is a single degree of freedom |λk; k〉
with zero norm; in fact, it is orthogonal to all physical states |ζ ; k ′〉:

〈k; λk |ζ ; k ′〉 = λ(k · ζ)δ(k − k ′) = 0 since k ′ · ζ = 0 . (3.26)

Therefore, the longitudinal state decouples from the physical states. Similarly
to QED, this state is a “pure gauge” state and has no physical relevance; we
will come back to such state in more detail below. In summary, the Virasoro
constraints for a = 1 precisely restricts the level-one states to consistently
describe spacetime vector bosons.

c) For a < 1, k is time-like. So the polarization ζ is a space-like vector with
(D − 1) independent entries; the norm of such states is ζ2 > 0. This describes
a massive vector boson in D dimensions with positive norm states, which is a
priori acceptable from a spacetime perspective.

We conclude that implementing the Virasoro constraints at level one leads us to
restrict the normal ordering constant to a ≤ 1. For a = 1, we get massless vector
bosons with a correct decoupling behavior for the pure gauge states. However, as
we have seen above, the ground state would be tachyonic in this case. For a < 1, the
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level one states would describe massive vector bosons. In the following, we will
focus on the a = 1 case, and see how this eventually leads to a consistent picture if
D = 26. We will comment on a < 1 at the end of this section.

3.2.3 Spacetime dimension from constraints at level two

Consider level two states of the form

|φ〉 = (c1α−1 · α−1 + c2 k · α−2 + c3 (k · α−1)
2)|0; k〉 . (3.27)

We can adjust the prefactors ci and the spacetime momentum k to make this state
physical. That is, we can use the three parameters (overall scaling factor not physical)
to solve the three linear equations

(L0 − a)|φ〉 = (L0 − 1)|φ〉 = 0 , L1 |φ〉 = 0 , L2 |φ〉 = 0 , (3.28)

with all the higher Virasoro constraints satisfied automatically due to “negative
level” arguments. Making use of the commutator relations

[Lm, α
µ
n ] = −nαµm+n , (3.29)

it is a straightforward, but somewhat lengthy computation to show that the L0
constraint requires k2 = −2/α′. Then, L1 |φ〉 = L2 |φ〉 = 0 sets

c2 = c1
D − 1

5
, c3 = c1

D + 4
10

, (3.30)

where the spacetime dimension appears as the trace of the metric, D = ηµνηµν.

However, the norm of this state is

〈φ|φ〉 =
2|c1 |

2

25
(D − 1)(26 − D) , (3.31)

which is negative for D > 26 or D < 1. To avoid ghosts with a = 1, we must
therefore restrict ourselves to 1 ≤ D ≤ 26 spacetime dimensions.

In principle, we can continue with higher levels. A classic result by Brower and
Goddard/Thorn (1972) is the “No Ghost Theorem for OCQ”, which proves that, for
a = 1, D = 26, the space of physical states defined as the solutions of the Virasoro
constraints is free of ghosts. In this case, the above states all have vanishing norm,
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and correspond to so-called null states. In fact, as explained below for the interested
reader, the proliferation of null states in the critical dimension is a sign of a large
gauge symmetry, namely, conformal symmetry. This is the same underlying physical
principle as in the modern covariant quantization via the path-integral formalism,
where the critical dimension is required to cancel the “conformal anomaly”, i.e., to
restore conformal symmetry in the quantum theory.

In the formalism discussed here, we cannot address the cases a < 1 and/or
D < 26. However, a more refined analysis that includes string interactions will
uncover violations of unitarity in these cases. This leads us to the bosonic string
theory with a = 1 and D = 26.

Null states in the critical dimension

Here we will briefly comment on the appearance of states with vanishing norm, and
how these are a “desirable” feature of a theory with gauge symmetries.

Recall from the Gupta–Bleuler formulation of QED that canonically quantized
gauge theories have Hilbert spaces with states that are orthogonal to all physical
states. Such states are called spurious. It is possible for a physical state to be spurious
itself; in this case, it is also called a null state, as it must have zero norm (orthogonal
to itself).

Null states are physical states that decouple entirely from the dynamics. Roughly
speaking, they are excitations of the gauge field that can be generated by a residual
(i.e., respecting the gauge fixing) gauge transformation. Therefore, two physical
states are considered equivalent if they differ by a null state, |ψ〉phys ∼ |ψ〉phys+ |φ〉null.
It is then customary to define the reduced Hilbert state,

Hred :=
Hphys

Hnull
, (3.32)

which describes physically distinct states.

On the string worldsheet, we know that the Virasoro generators Lm generate
conformal gauge transformations. Classically, we set Lm = 0 for all m to ensure
conformal invariance. Quantum mechanically, we can only require Lm>0 to act
trivially on physical states. If conformal symmetry should remain a valid gauge
symmetry, then any physical state of the form L−m |φ〉 for m > 0 must be null. Since
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there are infinitely many L−m, we expect to find “many” null vectors in the physical
Hilbert space.

Let us make this slightly more precise now. For the worldsheet theory, the null
states are defined by

|s〉 null :⇐⇒

{
〈φ|s〉 = 0 ∀ physical |φ〉 , and
(L0 − a)|s〉 = 0 , Lm |s〉 = 0 (m > 0) .

(3.33)

The orthogonality condition, i.e., |s〉 being spurious, is satisfied by the ansatz

|s〉 =
∑
m>0

L−m |χm〉 . (3.34)

In fact, it can be argued rigorously that any spurious state must be of this form;
hence, it makes the intuition about spurious states being pure conformal gauge
transformations very concrete.

Therefore, null states are the subset of these that satisfy the Virasoro constraints.
It is easy to verify that the L0 constraint requires

L0 |χm〉 = (a − m)|χm〉 . (3.35)

To see the higher constraints in action, let us look at a simple example. We take any
state |χ2〉 with Lm>0 |χ2〉 = 0, and build the spurious state

|s〉 = (L−2 + γL2
−1)|χ2〉 = L−2 |χ2〉 + L−1(γL−1 |χ2〉) . (3.36)

It is easy to verify that, if L0 |χ2〉 = (a− 2)|χ2〉, then L0(L−1 |χ2〉) = (a− 1)L−1 |χ2〉,
so |s〉 satisfies (L0 − a)|s〉 = 0.

Because Lm>0 |χ2〉 = 0, the physical state conditions Lm |s〉 = 0 for m > 2 are
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automatically satisfied. For m = 1,2 we use the Virasoro commutation relations
(3.16) to compute

L1 |s〉 = ([L1, L−2] +

=0 on |χ2 〉︷︸︸︷
L−2L1 +γ(

=2L0︷    ︸︸    ︷
[L1, L−1]+L−1L1)L−1)|χ2〉

= (3L−1 + 2γL0L−1 + γL−1([L1, L−1] + L−1L1︸︷︷︸
=0 on |χ2 〉

))|χ2〉

= (3L−1 + 2γ([L0, L−1] + L−1L0) + 2γL−1L0)|χ2〉

= (3L−1 + 2γL−1 + 4γL−1L0)|χ2〉

= (3 + 2γ + 4γ(a − 2))L−1 |χ2〉
!
= 0

⇔ γ =
3

6 − 4a
,

(3.37)

and

L2 |s〉 = ([L2, L−2] +

=0 on |χ2 〉︷︸︸︷
L−2L2 +γ(

=3L1︷    ︸︸    ︷
[L2, L−1]+L−1L2)L−1)|χ2〉

= (4L0 +
D
2 + 3γL1L−1 + γL−1( [L2, L−1]︸    ︷︷    ︸

=3L1=0 on |χ2 〉

+ L−1L2︸︷︷︸
=0 on |χ2 〉

))|χ2〉

= (4L0 +
D
2 + 3γ(2L0 + L−1L1))|χ2〉

= ((4 + 6γ)(a − 2) + D
2 )|χ2〉

⇔ D = (8 + 12γ)(2 − a) .

(3.38)

From these, we deduce that when a = 1 (to impose physicality at level-one), then
the above states are only consistently null if γ = 3/2, which then implies the critical
dimension D = 26.

This construction generalizes to arbitrary level, provided D = 26. So the critical
dimension is to ensure that all states associated residual conformal transformations
generated by L−m indeed decouple.

Unfortunately, this argument is not quite enough to rule out consistency in
D < 26: In these cases, the above states would be orthogonal to all physical states,
but they cannot be made physical themselves. So a priori, there is no contradiction
to finding them in the Hilbert space. As mentioned before, the inconsistencies for
D < 26 only arise in string loops; and so far we have only discussed strings at “tree
level”.
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3.3 Closed strings and spacetime gravity

Let us now inspect the low-level physical states of the closed string in the critical
setting, a = 1 and D = 26. The physicality conditions are now imposed by both
“left-” and “right-moving” Virasoro generators, L̃m≥0 and Lm≥0. Recall that the
m = 0 constraints can be recast as level matching, N = Ñ , and mass shell condition,
M2 = −k2 = (2(N + Ñ) − 4a)/α′. Level matching allows us to organize the physical
states by a single level number, either the left- or the right-moving one.

At level zero, we just have the oscillator vacua |0, 0̃; k〉,4 which is still tachyonic,
since M2 = −k2 = −4a/α′ = 4/α′ for a = 1. Note that this is four times the
mass-squared of the open string ground state; or, closed string tachyon is twice as
“massive” as the open string tachyon.

At level one, the level matching condition requires one excitation in the left- and
right-moving sector each. So the general state takes the form

|Ω; k〉 := Ωµναµ−1α̃
ν
−1 |0, 0̃; k〉 . (3.39)

The mass shell condition then becomes M2 = −k2 = (2(1 + 1) − 4a)/α′ = 0 in the
critical setting. So all these states are massless in spacetime. The L1/L̃1 constraints
are then

L1 |Ω; k〉 = L1Ωµνα
µ
−1α̃

ν
−1 |0, 0̃; k〉 = Ωµν[L1, α

µ
−1]α̃

ν
−1 |0, 0̃; k〉

= Ωµνα
µ
0 α̃

ν
−1 |0, 0̃; k〉 =

√
α′

2 Ωµνkµα̃ν−1 |0, 0̃; k〉 !
= 0 ,

L̃1 |Ω; k〉 =
√
α′

2 Ωµνkναµ
−1 |0, 0̃; k〉 !

= 0 ,

=⇒ Ωµνkµ = 0 and Ωµνkν = 0 .

(3.40)

This is the condition for a 2-tensor to be transverse to the spacetime momentum
k. In the spacetime interpretation, we can think of |Ω; k〉 as the Fourier modes
(labelled by the momentum k) of a tensor field Ωµν(x).

4 Previously, when we wroteHFock
closed � H

Fock
open ⊗ H

Fock
open , we were slightly careless about the ground

state. In fact, we should have identified the two oscillator vacua on the right-hand side, which
amounts to modding out the tensor product by an equivalence relation. This gives a type of ground
states for the closed string, which we denote by |0, 0̃; k〉 here, to distinguish from the open string
ground states.
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There is more to be said about the properties of this field, due to the existence
of null states at level one. Consider

L−1(ζ · α̃−1 |0, 0̃; k〉) = (ζ · α̃−1)L−1 |0, 0̃; k〉 = (ζ · α̃−1)(α−1 · α0)|0, 0̃; k〉

=

√
α′

2 (ζ · α̃−1)(k · α−1)|0, 0̃; k〉 =
√
α′

2 kµζν︸︷︷︸
=ωµν

α
µ
−1α̃

ν
−1 |0, 0̃; k〉 .

(3.41)

By construction, this state is orthogonal to all physical states, and, analogously to
above, is physical if k2 = 0 (which implies ωµνkµ = 0) and

ωµνkν = kµζνkν !
= 0 ⇔ ζ · k = 0 . (3.42)

Hence, it is a null state. Likewise,

L̃−1(ζ
′ · α−1 |0, 0̃; k〉 =

√
α′

2 ζ ′µkν︸︷︷︸
ω′µν

α
µ
−1α̃

ν
−1 |0, 0̃; k〉 (3.43)

is a null state if ζ ′ · k = 0. Therefore, the level one states

|Ωµν; k〉 ∼ |Ωµν + kµζν + kνζ ′µ; k〉 = |Ωµν; k〉 +
√

2
α′ (|kµζν; k〉 + |kνζ ′µ; k〉)

(3.44)

are equivalent as physical states if k · ζ = 0 = k · ζ ′. In other words, the tensor Ωµν
enjoys a “spacetime gauge symmetry” Ωµν → Ωµν + kµζν + kνζ ′µ.

To make the spacetime interpretation more transparent, it is useful to recall
the decomposition of a general 2-tensor Ω into irreducible representations of the
spacetime Lorentz symmetry:

Ωµν = γ(µν)︸︷︷︸
symmetric,
traceless

+ b[µν]︸︷︷︸
anti-sym.

+ ϕ︸︷︷︸
trace

ηµν . (3.45)

Then, the physical states associated with γ(µν) are transverse (to k) symmetric
traceless tensors that enjoy the gauge invariance

γµν → γµν + kµζν + kνζµ (3.46)
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with ζ · k = 0 (so ζ ′ = ζ in the general parametrization above). In the spacetime
interpretation, this is exactly the same degrees of freedom as a graviton in traceless
harmonic gauge:

gµν(x) = ηµν + γµν(x) , with γµν(x) ∼ γµν(x) + ∂µζν(x) + ∂νζµ(x) , (3.47)

where ζ parametrizes the gauge transformations coming from diffeomorphisms. In
momentum space, this transformation evidently becomes γµν(k) ∼ γµν(k) + kµζν +
kνζµ, with k · ζ = 0 being the gauge fixing condition. This result suggests that a
quantum theory of strings automatically includes gravity.

Analogously, the anti-symmetric part (transverse to k) also enjoys a gauge
symmetry (with ζ ′ = −ζ),

bµν → bµν + kµζν − kνζµ . (3.48)

Moreover, notice that the gauge parameter ζ itself, which is constrained by ζ · k = 0,
has a redundancy in ζ → ζ + λk. Including both, we recognize that bµν has the
spacetime interpretation of a 2-form gauge field,

bµν(x)dxµ ∧ dxν ≡ b(2) ∼ b(2) + dζ (1) (ζ (1) ∼ ζ (1) + dλ) . (3.49)

Lastly, we turn to the trace part, which ought to be a spacetime scalar field. The
Virasoro constraints seem to eliminate all non-zero momentum modes,

L1(ϕ ηµνα
µ
−1α̃

ν
−1 |0, 0̃; k〉) = ϕ ηµνα̃ν−1([L1, α

µ
−1] + α

µ
−1L1)|0, 0̃; k〉

= ϕ ηµνα̃
ν
−1α

µ
0 |0, 0̃; k〉 = ϕ

√
α′

2 kνα̃ν−1 |0, 0̃; k〉 !
= 0 ,

L̃1(ϕ ηµνα
µ
−1α̃

ν
−1 |0, 0̃; k〉) = ϕ

√
α′

2 kµα
µ
−1 |0, 0̃; k〉 !

= 0

=⇒ kµ = 0 ,
(3.50)

which would force the field to be constant. So there would be no degree of freedom.

To see that the level-one states truly contain a spacetime scalar field, we define
the state

|ϕρ,ρ̃; k〉 := [(ρ · α−1)(α̃0 · α̃−1) + (α0 · α−1)(ρ̃ · α̃−1) + ϕ α−1 · α̃−1] |0, 0̃; k〉

=
[
(ρ · α−1)L̃−1 + (ρ̃ · α̃−1)L−1 + ϕ α−1 · α̃−1

]
|0, 0̃; k〉 .

(3.51)
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To make it physical, we need k2 = 0 to satisfy the L0/L̃0 constraints. The evaluate
the L1/L̃1 constraints, it is useful to compute their actions on each of the three terms
separately. For the first, we find

L̃1
[
(ρ · α−1)L̃−1 |0, 0̃; k〉

]
∝ L̃1 L̃−1 |0, 0̃; k〉 = 2L0 |0, 0̃; k〉 ∝ k2 = 0

L1
[
(ρ · α−1)L̃−1 |0, 0̃; k〉

]
= L̃−1

[
ρµ([L1, α

µ
−1] + α

µ
−1L1)|0, 0̃; k〉

]
= L̃−1ρµα

µ
0 |0, 0̃; k〉 =

√
α′

2 (ρ · k)(α̃−1 · α̃0)|0, 0̃; k〉

=

√
α′

2 (ρ · k)
(√

α′

2 kµα̃
µ
−1

)
|0, 0̃; k〉 .

(3.52)

For the second, the analogous computation shows

L1
[
(ρ̃ · α̃−1)L−1 |0, 0̃; k〉

]
= 0

L̃1
[
(ρ̃ · α̃−1)L−1 |0, 0̃; k〉

]
=

√
α′

2 (ρ̃ · k)
(√

α′

2 kµα
µ
−1

)
|0, 0̃; k〉 .

(3.53)

The third term was already computed above in (3.50). Therefore, the Virasoro
constraint for the state (3.51) leads to

L1 |ϕρ,ρ̃; k〉 =
[√

α′

2 (ρ · k)
(√

α′

2 kµα̃
µ
−1

)
+ ϕ

(√
α′

2 kµα̃
µ
−1

)]
|0, 0̃; k〉 !

= 0 ,

L̃1 |ϕρ,ρ̃; k〉 =
[√

α′

2 (ρ̃ · k)
(√

α′

2 kµα
µ
−1

)
+ ϕ

(√
α′

2 kµα
µ
−1

)]
|0, 0̃; k〉 !

= 0 ,
(3.54)

from which we conclude the physicality condition ρ · k = ρ̃ · k = −ϕ
√

2
α′ .

Naively, these are too many degrees of freedom for a spacetime scalar: we
have two vectors and one scalar, related by with two constraints, so 2D − 1 free
parameters for |ϕρ,ρ̃; k〉. However, we can still utilize the existence of null states,
to identify most of these degrees of freedom as redundant! Indeed, looking at the
ansatz (3.51), we immediately see that the first two terms are of the form L̃−1 |ρ〉

and L−1 | ρ̃〉, which are orthogonal to all physical states. So it is tempting to remove
these by subtracting an appropriate null state.

The null states in question are schematically of the same form,

|ρn; k〉 := L̃−1
[
ρn · α−1 |0, 0̃; k〉

]
, | ρ̃n; k〉 := L−1

[
ρ̃n · α̃−1 |0, 0̃; k〉

]
, (3.55)
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but in order to be null (hence the subscript n), they need k2 = 0 for the L0/L̃0
constraints, and ρn · k = ρ̃n · k = 0 for the L1/L̃1 constraints (which follow in
an obvious manner from (3.52) and (3.53)). These are 2D − 2 parameters that are
unphysical, or “pure gauge”, which can be used to always eliminate all but one
degree of freedom in |ϕρ,ρ̃; k〉.5

To summarize, we have seen that the critical closed bosonic string gives rise
to massless spacetime tensor fields at level one. Importantly, the spectrum of null
states behave just in the right way to describe, in the spacetime interpretation, the
following objects:

• A symmetric traceless tensor γµν with gauge symmetry γµν → γµν + ∂µζν +

∂νζµ; there are classic arguments that such a field must be metric perturbations,
i.e., dynamical gravity.

• An anti-symmetric tensor bµν with gauge symmetries bµν → bµν+∂µζν−∂νζµ
and ζµ → ζµ + ∂µλ; this means that b is a differential form of degree 2, or
a 2-form gauge field. In the string theory context, this field is known as the
“Kalb–Ramond” field.

• A scalar ϕ; this field is called the dilaton.

In String Theory II, you will learn that these spacetime fields persist for the
superstring, which has the additional benefit of having no tachyonic ground state.

The emergence of the symmetric tensor from quantized strings is one of the
reasons why string theory is generally said to be a quantum theory of gravity.
However, the other fields are just as important to furnish a consistent quantum
theory of gravity. We will come back to some basic aspects of these fields later on.

4 Scattering of Strings
So far, all discussion has been limited to the quantization of the Polyakov action
(2.30), which describes a free field theory in (1 + 1) dimensions. To describe

5 To see this directly, first note that |ϕρ,ρ̃; k〉 − |ρn; k〉 = |ϕρ−ρn ,ρ̃; k〉. Now imagine picking
spacetime coordinates such that the null momentum k is (t, t,0,0, ...). Physicality of |ϕρ,ρ̃; k〉 means

ρ =

(√
α′

2
ϕ
t + ρ

1, ρ1, ρ2, ...

)
. For |ρn; k〉 we can then pick ρn = (ρ1, ρ1, ρ2, ρ3, ...) which obviously

satisfies ρn · k = 0. This leaves ρ − ρn =
(√

α′

2
ϕ
t ,0,0, ...

)
, which depends only on ϕ (and the

momentum). Analogously, we can remove any free parameters in ρ̃.
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interactions, the standard procedure would be to add interaction terms to this action,
then utilize the LSZ formalism to compute scattering amplitudes via correlation
functions. However, in the case of the worldsheet theory, it is impossible to add any
(standard) interaction terms without breaking conformal invariance. As we have
seen previously (though in somewhat hidden way), having conformal invariance
as a gauge symmetry is crucial for the free theory to make sense; if broken, any
hope of doing perturbation theory around the free limit in a controllable manner is
lost. Miraculously, even though conformal symmetry seems to be forbidding any
QFT-esque interactions, it is also what makes stringy interactions possible.

The idea behind this goes back to the worldline formulation of relativistic
quantum mechanics and its interpretation inside a path-integral. There, interactions
are encoded in the splitting and joining of worldlines at “interaction vertices”, and
the resulting diagrams are (the position space version of) Feynman diagrams. Fixing
the rules of joining worldlines at vertices, which is equivalent to specifying the
details of the interactions, it is well-known that by summing all possible Feynman
diagrams with fixed external legs (and integrating over the positions of all vertices),
one recovers an asymptotic series expression for the scattering amplitude.
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Fig. 3: Feynman diagrams in QFT and their stringy version. The diagrams can be thought of
representing open and closed strings; for the open string, the solid lines are all boundaries,
while for the closed string, only the (obvious) ends are boundaries of the worldsheet. Notice
how different particle-diagrams become topologically equivalent string diagrams.

For the worldsheet theory, this gives an obvious generalization: we can draw all
possible diagrams of strings splitting and joining, with some chosen physical “in
and out” states on the external legs, and formally sum over all of them, see Figure 3.
By doing so, we immediately recognize a major difference to point particles and
worldlines. Whereas the vertices joining worldlines are “localized singularities” of
the Feynman diagram, any string diagram locally looks like a smooth 2d manifold.
So locally, there is neither any chance, nor any need, to “add an interaction term”.
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But then, how do we capture the global structure of the string diagram that
clearly exhibits some features of “interaction”? Here is the place where the magic of
2d conformal symmetry comes into play: any boundary component of a 2d manifold,
or surface, can be mapped by conformal transformations to a marked point, or
puncture, with suitable data that “keeps track” of the states on external leg.

Fig. 4: A cylinder can be conformally mapped to the plane, with a puncture at origin
representing one end. It can also be mapped to a sphere with two punctures at poles, which
can be seen as the one-point compactification of the plane (that additional point being the
second puncture for the other end of the cylinder).

As we will discuss in more detail below, the punctures (plus the physical data
attached to them) correspond to the insertion of so-called vertex operators, which
are certain local operators in the free worldsheet theory. Morally, they describe the
absorption/emission of one physical string state, see Figure 5.

The “value” of each diagram is then a correlation function of these operators,
evaluated according to the topology of the surface, see Figure 6. One important
difference to point-particles is, as already highlighted in Figure 3, is that there are
less distinct topologies, and hence string diagrams at given loop order than for
Feynman diagrams. This is a very crude explanation for why string diagrams are
“less” divergent than (unrenormalized) Feynman diagrams. In many ways, the finite
width of the string “resolves” some of the singularities, and provides a natural cutoff
for momenta running in loops. In the early days of string theory as an attempt to
describe the strong interaction, these properties correctly predicted some aspects
of the physics of mesons and baryons, and has led to the development of the “dual
resonance model”.
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Fig. 5: Vertex operators describe the emission and absorption of physical states. Open string
states are associated to vertex operator insertions on the boundary of the worldsheet, while
closed string states correspond to insertions on the interior.A DI 70ft
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Fig. 6: Using conformal symmetry, scattering amplitudes of strings are expressed as an
asymptotic series in topologies of 2d surfaces (genus expansion) with fixed punctures
labelled by vertex operators that encode the external states.



44

4.1 Vertex operators

To make the diagrammatic notion of “emitting/absorbing” a state on the string
worldsheet precise, note that any of the processes shown in figure 5 can be thought of
as a linear transformation |1〉 −→ |1′〉. Such a transformation should be implemented
by a local operator acting on Hilbert space. How do we describe such an operator?
Just as in standard QFT, a generic local operator O(ξ) on the worldsheet can be
build from the basic fields Xµ(ξ) and their conjugate momenta Πµ(ξ). But in the
worldsheet theory, associating an operator to any specific point on Σ would break
diffeomorphism invariance. To remedy this, we must integrate over the insertion
locus of the local operator. More precisely, we have

closed string:
∫
Σ

dτdσ O(τ,σ) ,

(NN) open string:
∫ ∞

−∞

dτ O(τ,σ = 0 or l) ,
(4.1)

where on the open string the operator is inserted on the boundary.

For such an operator insertion to describe a physical absorption/emission process,
it is obvious that we need to map physical states to physical states, and, moreover,
null states to null states. As in the previous section, this is implemented by the
Virasoro generators. Focusing on the (NN) open string with operators inserted on
the boundary, we have, for m > 0,

Lm

[∫
dτ O(τ,0)|phys〉

]
=

∫
dτ[Lm,O(τ,0)]|phys〉 !

= 0

⇐⇒ [Lm,O(τ,0)] ∝ ∂τ(. . .) ,∫
dτ O(τ,0) (L−m |φ〉) =

∫
dτ ([O(τ,0), L−m]|φ〉 + L−mO(τ,0)|φ〉)

⇐⇒ [O(τ,0), L−m] ∝ ∂τ(. . .) (if L−m |φ〉 is physical) .

(4.2)

These conditions specify the transformation behavior of O(τ,σ) under infinitesimal
conformal transformations.

More generally, in a conformally invariant theory, one defines so-called primary
operators A(τ) of weight h if under a conformal transformation τ → τ̃(τ), one has

A(τ) → Ã(τ̃) = A(τ)
(
∂τ
∂τ̃

)h
. (4.3)
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Clearly, the integrated operator
∫

dτ̃ Ã(τ̃) =
∫

dτ̃
(
∂τ
∂τ̃

)h
A(τ) is invariant if h = 1.6

Infinitesimally, τ → τ̃ = τ + ε(τ), the transformation of a primary operator
implies

Ã(τ̃) = A(τ)
(
∂τ
∂τ̃

)h
= A(τ)

(
∂τ̃
∂τ

)−h
= A(τ)(1 + ∂τε(τ) +O(ε2))−h

= A(τ)(1 − h∂τε(τ)) +O(ε2) .
(4.4)

On the other hand, we also have

Ã(τ̃) = Ã(τ + ε(τ)) = Ã(τ) + ε(τ)∂τ Ã(τ) +O(ε2)

= Ã(τ) + ε(τ)∂τ Ã(τ̃ − ε(τ)) +O(ε2)

= Ã(τ) + ε(τ)∂τ
[
Ã(τ̃) − ε(τ)∂τ̃ Ã(τ̃) +O(ε2)

]
+O(ε)2

= Ã(τ) + ε(τ)∂τA(τ) +O(ε2) ,

(4.5)

where we also make use of the transformation properties of A as a primary operator.
This means that

δε A(τ) = Ã(τ) − A(τ) = −ε(τ)∂τA(τ) − hA(τ)∂τε(τ)

= −∂τ(A(τ)ε(τ)) − (h − 1)A(τ)∂τε(τ) ,
(4.6)

which is a total derivative for h = 1.

Since this is the variation of A(τ) with respect to the infinitesimal conformal
transformation τ → τ̃ = τ+ε(τ), it also encodes the classical Poisson bracket action,
{Lm, A(τ)}PB = δεm A(τ), of the Virasoro generators Lm, which are parametrized by
the conformal Killing vectors εm = −eimτ .7 The quantum commutator expression is
then obtained via “[·, ·] � −i{·, ·}PB”, which is

[Lm, A(τ)] = eimτ(−i∂τ + mh)A(τ) , (4.7)

6 This is essentially just a definition of “primary” in the classical setting. There are subtleties arising
in the quantization, and will be discussed in detail in the CFT course.

7 We are at σ = 0, so ξ±(σ = 0) = τ. Moreover, we will from now on drop the length scale l on the
worldsheet, which means that σ is a dimensionless quantity that runs from 0 to 2π on the closed
string, and to π on the open string. This simplifies the expressions in Section 2, by setting 2π/l (in
expressions for the closed string) and π/l (in expressions for the open string) to 1. However, having
the explicit worldsheet scale l is useful when discussing, e.g., the Casimir energy and its relationship
to the normal ordering constant.
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which can be seen as an equivalent definition of weight h primaries in the open
string quantum theory. Sometimes h is also called the conformal dimension. A
vertex operator is then a primary operator of weight h = 1.

The story for the closed string is analogous when we are in lightcone coordinates.
Here, a primary operator is labelled by two weights, (h̄, h), and is characterized by

A(ξ+, ξ−) → Ã(ξ̃+, ξ̃−) =
(
∂ξ+

∂ξ̃+

) h̄ (
∂ξ−

∂ξ̃−

)h
A(ξ+, ξ−) , (4.8)

whose infinitesimal transformation under ξ̃± = ξ± + ε± is again a total derivative if
h = h̄ = 1:

δA = −∂+(ε+A) − (h̄ − 1)A∂+ε+ − ∂−(ε−A) − (h − 1)A(∂−ε) . (4.9)

For ε± = i
2 e2imξ± (we include the factor of (−i) so that the expression directly

matches the quantum commutators), this gives the action of the Virasoro generators:

[Lm, A(ξ±)] = 1
2 e2imξ−(−i∂− + 2mh)A(ξ±) ,

[L̃m, A(ξ±)] = 1
2 e2imξ+(−i∂+ + 2mh̄)A(ξ±) .

(4.10)

For now, let us restrict ourselves to the (NN) open string, and get some intuition
for (boundary) vertex operators. We start with the basic scalar field Xµ(τ,0) ≡ Xµ(τ).
To check its conformal dimension, we simply compute the action of the Virasoro
generators:

[Lm,Xµ(τ)] = 1
2

∑
n

[
αm−n · αn , xµ + 2α′pµτ + i

√
2α′

∑̀
,0

α
µ
`

`
e−i`τ

]
= −i
√

2α′
∑
n

α
µ
n e−i(n−m)τ = −ieimτ

∂

∂τ
(Xµ(τ)) ,

(4.11)

implying h = 0, and so it is not a vertex operator.

It turns out that the simplest vertex operator built from Xµ is of the form
exp(ikµXµ(τ)) = exp(ik · X(τ). Notice that, from a spacetime perspective, the
commutator [Pµ,exp(ik · X(τ))] = kµ exp(ik · X(τ)) suggests the interpretation that
this operator increases the spacetime momentum by k, just as colliding an incoming
state with another one that has momentum k, see Figure 7.
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k

T
9

Fig. 7: Inserting a vertex operator of the schematic form exp(ik · X) describes an incoming
state with momentum k.

One important subtlety is operator ordering in taking products of Xµ. As usual,
we work with the normal ordered product

Vk(τ) := :eik ·X(τ) :

= exp

(
√

2α′
∑
n>0

k · α−n
n

einτ
)

eik ·(x+2α′pτ) exp

(
−
√

2α′
∑
n>0

k · αn
n

e−inτ
)
.

(4.12)

There could in general be some normal ordering constants appearing here, stemming
from the fact that

exp(ik · αm) exp(ik · αn) = exp(ik · (αm + αn) − 1
2 (k · k)δm+n,0) ; (4.13)

notice that any such ambiguity vanishes for k2 = 0. On the Problem Sheet, you
will show that normal ordering in the definition of Vk(τ) gives the conformal
transformation

[Lm, :eik ·X(τ) :] = eimτ (−i∂τ + m (α′k · k)) :eik ·X(τ) : . (4.14)

Therefore, Vk(τ) is a vertex operator if α′k2 = 1, which is precisely the mass-shell
condition for the tachyon! In fact, this is the unique vertex operator that describes
the absorption/emission of a tachyon; more on that later.
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For level-one states, the mass-shell condition requires k2 = 0. So the associated
operator Vk(τ) has weight h = 0. To construct a vertex operator, i.e., a primary of
weight h = 1, we make use of

[Lm, ∂τVk(τ)] = ∂τ[Lm, Vk(τ)] = ∂τ

(
eimτ(−i∂τ + mh)Vk(τ)

)
h=0
= imeimτ(−i∂τ)Vk(τ) + eimτ(−i∂2

τ )Vk(τ)

= eimτ(−i∂τ + m)∂τVk(τ) ,

(4.15)

to identify ∂τVk(τ) = ik · ∂τX : eik ·X : as a candidate. Since k · ∂τX = kµ ∂τXµ ≡

kµ ÛXµ is really a sum of individual terms, it is not hard to see (and also not hard to
verify) that, in fact, the primary operator ÛXµ : eik ·X : also has weight h = 1. This
allows us to construct the vertex operator

Wζ ,k(τ) :=
√

1
2α′ (ζ ·

ÛX(τ)) :eik ·X(τ) : , (4.16)

where ζ can be interpreted as the polarization of the vector boson at level one,
whose absorption/emission is controlled by Wζ ,k(τ). One may wonder about the
normal ordering between ζ · ÛX and the exponential factor. Recall from (2.45) the
mode expansion (with π/l � 1)

ÛXµ(τ) ≡ ∂τXµ |σ=0 = (∂+ + ∂−)Xµ |σ=0 =
√

2α′
∑
n

α
µ
n e−inτ , (4.17)

from which it is not hard to see that all potential ambiguities come from commutators
of the form

[αm · ζ, αn · k] ∝ δm+n,0 (ζ · k) . (4.18)

This precisely vanishes for physical states |ζ ; k〉 at level one, where we have ζ · k = 0.
Since these are all physical states at level one, we have constructed a vertex operator
Wζ ,k(τ) for every one of them. Notice that for ζ ∝ k, i.e., the longitudinal modes,
we have

k · ÛXeik ·X = −i∂τ(eik ·X) , (4.19)

which formally vanishes after integrating over τ.

We could continue with at level two, and show with more elaborate arguments
that every physical state has a corresponding vertex operator. Of course, this
continues to any level. Moreover, it turns out that also the converse is true: every
vertex operator corresponds to a physical state.
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4.2 The State-Operator Correspondence

The identification between physical states and vertex operators is a special feature
of CFTs known as the state-operator correspondence: In a general 2d CFT, each
primary operator Aj (of any weight) is in one-to-one correspondence to so-called
highest weight states |φ j〉 ∈ H of the Hilbert space; by acting on these with Ln<0,
one obtains the entire Hilbert space. Focusing on the applications to the string
worldsheet, we can further sharpen the statement:

There is a one-to-one correspondence between physical states and primary
operators of weight h = 1(= h̄), i.e., vertex operators.

To see how this comes about, let us consider, for concreteness, the action of the
open string tachyon vertex operator (4.12) on the string vacuum. We can further use
the Hamiltonian H = π

l L0 ≡ L0 = α
′p2 + N as the time evolution operator, to write

Vk(τ)|0; 0〉 = eiτL0 :eik ·X(0) : e−iτL0 |0; 0〉︸        ︷︷        ︸
= |0;0〉

= eiτL0 exp

(
√

2α′
∑
n>0

k · α−n
n

)
eik ·x |0; 0〉

= eiτL0 exp

(
√

2α′
∑
n>0

k · α−n
n

)
|0; k〉 .

(4.20)

Now we perform a common method in field theory, namely Wick rotation, to pass
to imaginary or Euclidean time t = iτ on the worldsheet. Then, using α′k2 = 1 for
the tachyon, we have

:eik ·X(τ) : |0; 0〉 = etL0 exp

(
√

2α′
∑
n>0

k · α−n
n

)
|0; k〉

=etL0

[
1 +
√

2α′
(
k · α−1 +

k · α−2
2
+ ...

)
+

2α′

2

(
(k · α−1)

2 + ...
)
+ ...

]
|0; k〉

=

[
et + et(1+1)√2α′k · α−1 + et(1+2)

(√
α′

2 k · α−2 + α
′(k · α−1)

2
)]
|0; k〉 + ...

(4.21)
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From this, we recover the tachyon |0; k〉 in the limit

|0; k〉 = lim
t→−∞

e−tVk(−it)|0; 0〉

≡ lim
z→0

1
z

Vk(−i log z)|0; 0〉 ,
(4.22)

where, in the second line, we have defined z = eiτ = et .

The same procedure works for the “photon”, i.e., with level-one states (k2 = 0):

Wζ ,k(τ)|0; 0〉 = 1√
2α′
ζ · ÛX(τ) :eikX(τ) : |0; 0〉

= etL0
∑
n>0
(ζ · α−n) exp

(
√

2α′
∑
m>0

k · α−m
m

)
|0; k〉

= ... =
[
z(ζ · α−1) + z2(ζ · α−2 + (ζ · α−1)(k · α−1)) + ...

]
|0; k〉 ,

(4.23)

from which we then again have

|ζ ; k〉 = lim
z→0

1
z

Wζ ,k(−i log z)|0; 0〉 . (4.24)

It is not hard to guess the pattern for any physical state |ψ〉 with corresponding
vertex operator Vψ(τ):

|ψ〉 = lim
z→0

1
z

Vψ(−i log z)|0; 0〉 . (4.25)

Analogously, each vertex operators also generates an “out” state. For the tachyon
(α′k2 = 1), this would be

〈0; 0|Vk(τ) = 〈0; k | exp

(
√

2α′
∑
n>0

k · αn
n

)
e−iτL0

= 〈0; k |
[
e−t + e−2t√2α′k · α1 + ...

]
=⇒ 〈0; k | = lim

t→∞
et 〈0; 0|Vk(−it) = lim

z→∞
z〈0; 0|Vk(−i log z) .

(4.26)

Of course, there is an almost identical version for the closed string. Here, we just
have to be slightly more careful about the spatial coordinate since we are inserting
vertex operators on the interior of the worldsheet. Having Wick-rotated to Euclidean
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time, τ = −it, the lightcone coordinates become ξ± = −i(t ± iσ).8 The map from
vertex operators Vψ (i.e., primaries of weight h = 1 = h̄) to states |ψ〉 is then

|ψ〉 = lim
t→−∞

e−4tVψ(−it, σ)|0, 0̃; 0〉

= lim
|z |→0

1
(zz̄)2

Vψ(− i
2 log(zz̄),− i

2 log z
z̄ )|0, 0̃; 0〉 ,

(4.27)

with z = eiξ
+ and z̄ = eiξ

− .

Physically, what we have done is to time-evolve backwards the state generated
by acting with the vertex operator Vψ(τ) on the vacuum |0; k〉 to past infinity. In
Euclidean time, the evolution to past infinity, t → −∞ by etH , suppresses higher
energy-eigenstates, so the lowest-energy state dominates.

The coordinates (z, z̄) further give a geometric interpretation. Take a closed
string worldsheet that topologically it is a cylinder, so (τ,σ) are global coordinates
on it. After Wick rotation, the Euclidean metric is dt2 + dσ2 = d(iξ+)d(iξ−).
Then the new coordinate z = eiξ

+

= eteiσ ≡ |z |eiσ has a natural interpretation
as polar coordinates on the plane R2 � C. Note that the standard metric on C,
dzdz̄ = d(iξ+)d(iξ−)zz̄ = (dt2 + dσ2)e2t is clearly conformally equivalent to the
cylinder metric. This is precisely the first conformal transformation depicted in
Figure 4. Then, the state/operator map makes the introductory statement about
asymptotic states (initial state |ψ〉 prepared at τ = −it = −∞) being “generated” by
vertex operator insertions/punctures precise.

4.3 Tree-level string amplitudes

3-point scattering

We now have the technical tools to describe 3-point tree-level string amplitudes.
The simplest example is the scattering of three open string tachyons, |0; ki〉, with
α′k2

i = 1. We have already seen its corresponding diagram, on the left of Figure
5. The amplitude of this scattering process is just the transition amplitude from,
say, |0; k1〉 to |0; k3〉 via the absorption of |0; k3〉, the latter of which is equivalently

8 Implicitly we have also worked with these coordinates on the open string worldsheet above. However,
we only cared about vertex operators inserted on the boundary σ = 0.
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described by a vertex operator insertion. The naive guess of the amplitude is then
(with k3 incoming momentum)

〈0;−k3 |

∫
dτVk2(τ)|0; k1〉

=

∫
dτ〈0;−k3 |eiτL0Vk2(0)e

−iτL0 |0; k1〉 (L0 |0; ki〉 = α′k2
i |0; ki〉 = |0; ki〉)

=

∫
dτ〈0;−k3 |eiτVk2(0)e

−iτ |0; k3〉 (use normal ordering of Vk2)

=

∫
dτ〈0;−k3 |eik2 ·x |0; k1〉 =

∫
dτ〈0;−k3 |0; k1 + k2〉

= δ(k1 + k2 + k3)

∫
dτ .

(4.28)

The fact that the seemingly infinite number
∫ ∞
−∞

dτ appears is because the theory
still has unfixed gauge freedoms in terms of conformal transformations. To account
for this correctly, we need to “divide out” by their “volume Vol(confres)”, which is
equivalent to have fixed the gauge (e.g., following the Faddeev–Popov procedure, see
below), in which case the “empty integral” would not have appeared in the first place.
We should, however, include an a priori undetermined factor go that corresponds
to a “coupling constant” (for the open string). This results in the (correct) 3-point
amplitude with open string tachyons:

A3, open(k1, k2, k3) = go δ(k1 + k2 + k3) . (4.29)

The computation with closed string tachyons proceeds analogously. Though we
have not shown it explicitly, the closed-string tachyon vertex operator takes the same
form, Vcl

k
(ξ±) =: eik ·X(ξ

±) : with α′k2 = 4. The insertion into the bulk, as in the
middle of Figure 5, is described by an insertion at the “origin”, ξ± = 0, followed by
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a translation in ξ± using L̃0 and L0, respectively. Note that L0 |0; ki〉 = L̃0 |0; ki〉 =
|0; ki〉. The amplitude, with gc the closed string coupling constant, is then

A3, closed(k1, k2, k3)

= gc

∫
d2ξ〈0;−k3 | e2i(ξ−L0+ξ

+ L̃0)Vcl
k2
(0) e−2i(ξ−L0+ξ

+ L̃0) |0; k1〉/Vol(confres)

= gc

∫
d2ξ〈0;−k3 |eik2 ·x |0; k1〉/Vol(confres)

= gc δ(k1 + k2 + k3)

∫
d2ξ/Vol(confres) = gc δ(k1 + k2 + k3) .

(4.30)

On the problem sheet, you will also compute the 3-point amplitudes with tachyons
and level-one states.

The Veneziano amplitude

In the tree-level scattering of three states, we only have one relevant diagram. It
is most apparent for the open string, where, after the conformal transformation,
we are led to inserting the vertex operators on the boundary of a disc. After fixing
two insertions corresponding to |0; k1〉 and |0; k3〉 at the antipodal points, it makes
physically no difference where the third one between them sits. Notice that, a prior,
we could also have treated any other pair as in- and out-states, with the third being
inserted in between.

In fact, the state/operator correspondence gives another rather miraculous
feature of string amplitudes: it is given by a vacuum expectation value, or correlation
function, of vertex operators corresponding to all in- and out-states in a free 2d
theory. Where in QFT, one has to use the LSZ-machinery to reduce amplitudes to
correlation functions, the worldsheet description somehow provides this for free.

The modern way of computing correlation functions is via the path-integral
formalism. This is particularly powerful in dealing with residual gauge symmetries,
by means of the Faddeev–Popov method. If we perform this analysis on worldsheets
that are topologically a disk or a sphere, i.e., for tree-level diagrams of open or
closed string states, respectively, we reduce the full conformal group to

confres =

{
PSL(2,R) with dimR = 3 (disc),
PSL(2,C) with dimR = 6 (sphere).

(4.31)
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These residual transformations made it possible for the 3-point amplitudes to fix
the positions of all three vertex operators completely.9 For four or more states, we
can therefore completely fix the gauge by specifying the position of three vertex
operators, and then integrate over the remaining ones to maintain diffeomorphism
invariance.

With this intermezzo, let us now turn to the scattering of four open-string
tachyons |0; ki〉 ≡ |i〉. After conformally mapping to the disc and fixing, say, the
operator insertions for states i = 1,2,4, the remaining operator insertion can be split
into three contributions, see top row of Figure 8.

Y y t

In t

y
tideto Hit

111 115

11 sitFI
Fig. 8: After fixing the residual conformal gauge symmetries, the scattering of four open-
string tachyons can be divided into three contributions, depending on the insertion location
of the vertex operator Vk3 ≡ V3.

Let us focus on the first contribution. To evaluate it with the techniques available
to us, we have to map the disc back into the “strip” geometry; the second state
is associated to the vertex operator with fixed position at finite τ, say, at τ = 0,

9 Note that, since the open string vertex operators are inserted on the boundary, there are only three
real degrees of freedoms that precisely soak up the three generators of PSL(2,R). For closed string
vertices that are inserted in the interior, we can again soak up all real degrees of freedom for precisely
three states.
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see bottom row in Figure 8. Then the position of the second vertex operator is at
τ ∈ [−∞,0]. So, interpreting the diagram as a transition amplitude from |1〉 to |4〉,
we have

A
(1)
4, open = g2

o

∫ 0

−∞

dτ〈0;−k4 |Vk2(0)Vk3(τ)|0; k1〉 , (4.32)

where the coefficient g2
o can be intuitively explained by imagining the 4-point

diagram as joining two 3-point diagrams (we will give a better explanation later).
To obtain a convergent integral, it is again standard to Wick-rotate the integration
contour into the imaginary / Euclidean time. As usual in QFT, one must make sure
that the contour rotation does not cross any poles in the interior of the complex
τ-plane; this is indeed possible for the integral above. In the end, we end up with
the expression

∫ 0
−∞

dt〈0;−k4 |Vk2(0)Vk3(−it)|0; k1〉, which you are ask to compute
on the Problem Sheet. The final result is

A
(1)
4, open = g2

o δ

( 4∑
i=1

ki

)
Γ(−α(s))Γ(−α(u))
Γ(−α(s) − α(u))

, α(x) := 1 + α′x , (4.33)

where s = −(k1 + k2)
2 and u = −(k1 + k4)

2, and Γ(x) =
∫ ∞
0 dt tx−1e−t is Euler’s

Gamma function. The two other diagrams can be evaluated in a similar fashion, and
one finds

A
(2)
4, open = g2

o δ

(∑
i

ki

)
Γ(−α(u))Γ(−α(t))
Γ(−α(t) − α(u))

,

A
(3)
4, open = g2

o δ

(∑
i

ki

)
Γ(−α(s))Γ(−α(t))
Γ(−α(t) − α(s))

,

(4.34)

where we also introduced the third Mandelstam variable t = −(k1 + k3)
2.

Using the relationship B(a, b) = Γ(a)Γ(b)
Γ(a+b) between Euler’s Gamma and Beta (B)

functions, the full amplitude can be expressed as

A4, open = g2
o δ(

∑
i

ki) [B(−α(s),−α(u)) + B(−α(u),−α(t)) + B(−α(s),−α(t))] .

(4.35)

This is the famous Veneziano amplitude. It displays a variety of remarkable features
that highlights the difference between particle and string scatterings.
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The first one that is easy to see is the presence of poles at s = n−1
α′ , or u = n−1

α′ , or
t = n−1

α′ for n ∈ N0 a non-negative integer. These come from the Gamma functions
in the numerators, which have poles at −α(s,u, t) = 0,−1,−2, ... Notice that they
correspond precisely to the masses of level-n open string states! Of course, these
are just the on-shell resonances of tree-level 2-to-2 scatterings that should also
be familiar from point-particles. What is different is that there are infinitely many
of them, which would seem bizarre from a particle perspective, but can now be
naturally interpreted as all the excitations of a single string.

Another property worth mentioning is the “high-energy, fixed-angle” limit: we
let |1〉 and |2〉 collide head-on with s = −(k1+k2)

2 →∞ and “measure” the outgoing
states at a fixed angle θ, see Figure 9. This means that the ratios t/s ≈ − sin2 θ/2,
u/s ≈ − cos2 θ/2, and t/u ≈ tan2 θ/2 are fixed. Using Stirling’s approximation,
Γ(n + 1) = n! ≈

√
2πn(n/e)n, and the relationship s + t + u =

∑
i M2

i = −4/α′ for
Mandelstam variables, one can show that

A4, open ≈ F(θ)−α
′s , (4.36)

where F(θ) is a positive function in the angle θ.

ks

k

p
40 ka

ka

Fig. 9: Head-on collision of two particles / string states with momenta k1 and k3, producing
two new particles / states with momenta k3 and k4 that are deflected from the original
trajectories by an angle θ.

Contrast to this exponential fall-off behavior for strings, the fixed-angle scattering
of point-particles typically exhibits a power-law. E.g., in scatterings that exchange
spin-J, mass M particles, the amplitudes behaves as

A ∼
tJ

s − M2 . (4.37)
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Naively, having different contributions from higher-spin particles would make the
total amplitude diverge — which is the case for point-particle theories. However,
the string has an infinite tower of higher-spin states, and they conspire in a specific
way to cancel out the high-energy divergences. There is another interpretation:
Since the s→∞ limit probes smaller and smaller distances, the point-particle will
inevitably “detect” the singular nature of the interaction vertex. On the other hand,
the string length `s ∼

√
α′ naturally resolves this singularity, and thus regularizes

the amplitude by itself.

4.4 String coupling, loop amplitudes, and other remarks

In the following, we will discuss a few other distinct aspects of string amplitudes,
without going into the details too much.

More on the genus expansion

First, let us give some more motivation to the origin of the coupling coefficients go
and gc. They are tied to the “uniqueness” of worldsheet theory, in that we cannot
add any interaction terms without breaking conformal and Weyl invariance. There
is one exception that was discussed in Section 2 and on the first Problem Sheet: the
Euler density, whose integral gives the Euler number,

χ =
1

4π

∫
Σ

d2ξ
√
− det γR(γ) +

1
2π

∫
∂Σ

dsK(γ) . (4.38)

As a result of the Riemann–Roch-theorem, this is a topological invariant, and can
be expressed as

χ = 2 − 2g − b , (4.39)

where g is the genus (= number of handles) and b is the number of boundary
components. As a few example, we have

• sphere: (g, b) = (0,0), torus: (g, b) = (1,0), any closed compact surface:
(g, b) = (n,0);

• disc: (g, b) = (0,1), cylinder: (g, b) = (0,2), pants: (g, b) = (0,3).
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If we include this term, the full action becomes S[X, γ] = SP[X, γ] + λχ, with
λ ∈ R, which has the same local worldsheet dynamics. Now, in the path-integral
formalism, we have to sum over all possible background configurations; in the
present case, this now has to include different topologies of the worldsheet. Then
the correlation functions are computed schematically as

A(|1〉, ..., |n〉) =
∑

topologies

∫
D[X, γ]

Vol(confres)
e−S[X ,γ]

n∏
i=1
V|i〉

=
∑

topologies
(eλ)−χ

D[X, γ]
Vol(confres)

e−SP[X ,γ]
n∏
i=1
V|i〉 ,

(4.40)

whereV|i〉 are the integrated vertex operator insertions associated to the states |i〉.
Note that the sum over topologies is precisely the asymptotic series shown in Figure
6, with gs = eλ being the “expansion parameter”.

Moreover, consider any worldsheet and attaching a “handle” to it, see Figure 10,
top row. Since this increases g by one, the Euler characteristic decreases, χ → χ−2,
so the amplitude picks up a factor g2

s . Physically, this new diagram has a closed
string loop, which in the Feynman diagram limit would have two vertices, each
describing the emission and absorption of a closed string state. Hence, it is natural
to identify the closed string coupling constant with gc = gs = eλ.

Likewise, we can also add to any worldsheet an “interior” boundary (see Figure
10, bottom row), which increases b by one, so decreases χ → χ − 1. The two
corresponding amplitudes are related to each other by adding an open string loop,
which leads to an additional factor gs. Since this would also have two identical
vertices in the Feynman diagram limit describing open-string emission/absorption,
we conclude that go =

√
gs =

√
gc.

To keep track of the powers of gs that gives to a good particle-limit interpretation,
one defines the integrated vertex operatorsV|i〉 as carrying a factor of go if |i〉 is an
open-string state, and gc if |i〉 is a closed-string state. E.g., the open/closed string
tachyons would have the integrated vertex operators

V|0;k 〉o =
√
gs

∫
dτVk(τ) , V|0,0;k 〉c = gs

∫
d2ξ Vcl

k (ξ) . (4.41)

Inserting these for the 3- and 4-point tachyon amplitudes, with the Euler
characteristics of the disc / sphere, gives the coupling coefficients shown in the
results above.
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Age

Fig. 10: Top: adding a handle to a worldsheet, which changes g−χs → g
−χ
s g2

s corresponds
to adding a closed-string state in a loop, which comes with a factor g2

c . Bottom: adding
a boundary to a worldsheet, which changes g

−χ
s → g

−χ
s gs corresponds to adding an

open-string state in a loop, which comes with a factor g2
o.

Moduli space of Riemann surfaces and 1-loop amplitudes

After gauging fixing, the path-integral D[γ]
Vol(confres) over the metric reduces to an

integral over the so-called moduli space for topologies with χ ≤ 0. This is a space
of parameters that characterize the string worldsheet as a complex 2d compact
manifold, also known as a Riemann surface.

The easiest example is the torus with χ = 0. As a complex manifold, the torus
can be represented by a parallelogram in C, whose parallel sides are identified. The
metric on the torus is given by ds2 = |dx + τdy |2, where τ ∈ C (this is the standard
notation, not to be confused with time coordinate on Σ!) defines the “shape” of
parallelogram, see Figure 11. This is the single (complex) modulus of the torus,
also known as the complex structure.

Naively, one might expect that any τ ∈ C defines a distinct torus. However, the
gauge fixing procedure eliminates most of the complex plane, because different
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Fig. 11: The torus can be thought of a parallelogram with opposite sides glued together.
Equivalently, it can be thought of as the quotient C/Λ by a lattice Λ ⊂ C spanned by 2π and
2πτ. Möbius transformations τ 7→ τ′ leave the lattice invariant, hence also the associated
torus.

complex structure define the same torus if they are related by an PSL(2,Z), or
“Möbius transformation”,

τ → aτ+b
cτ+d ,

(
a b
c d

)
� −

(
a b
c d

)
∈ SL(2,Z) . (4.42)

Hence, inequivalent tori are labelled by points in the fundamental domain,

F0 =
C

PSL(2,Z)
= {τ | |τ | ≥ 1, − 1

2 ≤ Re(τ) ≤ 1
2 , Im(τ) > 0} , (4.43)

see Figure 12. For an n-point closed string scattering, the 1-loop amplitude is
the computed as follows. We first evaluate the path-integral over X , with n vertex
operator insertions, over a torus with fixed τ and the corresponding flat metric, and
then integrate the result as a function of τ over F0.
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Fig. 12: The fundamental domain F0 of PSL(2,Z); every τ ∈ F0 defines a unique torus.

To see the physical relevance of this prescription, let us turn to the simplest am-
plitude with no operator insertions: the 1-loop vacuum amplitude. The computation
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would require the full machinery of the path-integral, which we will not present
here; it can be found in varying level of details in any of the references to this course.
The result is the following expression

AT 2 ∼

∫
F0

dτdτ̄
Im(τ)2

Im(τ)−12 |η(τ)|−48 ; (4.44)

here, η(τ) is the so-called “Dedekind η function”. A generally crucial property
which we are just mentioning in passing here is that the integrand is modular
invariant, i.e., it is invariant under any PSL(2,Z) transformation on τ. Here it is
merely a consistency check on the result, but it is an extremely restricting property
for torus amplitudes of general 2d CFTs.

To get some more intuition about this expression, let us compare with the 1-loop
vacuum amplitude of an ordinary d-dimensional QFT of a free particle of mass m.
This is computed by summing over all particle paths that are topologically a circle
in spacetime, and yields, up to some irrelevant overall factors, the expression

AS1(m2) ∼

∫
ddk
(2π)d

∫ ∞

0

dl
l

exp(−l(k2 + m2))

∼

∫ ∞

0
dl

e−m
2l

l1+d/2 .

(4.45)

The exponent l(k2 + m2) comes from the Hamiltonian for the particle, and the
l-integral takes into account all values of the radius/circumference of the circle
(including accounting for the unfixed symmetry Diff(S1)) that the particles is moving
on; carrying out the momentum integral, we obtain (up to constant factors) the
second line. Now, if we would just approximate the string amplitude in the QFT-limit
as having infinitely many particle-like states, then the standard QFT prescription
would be to sum over all such states (more precisely, over all mass eigenstates). In
the closed string Hilbert space, the mass-squared of a mass eigenstate |ψ〉 is the
eigenvalue of 2

α′ (L0 + L̃0 − 2). Importantly, they are subject to the level matching
constraint, L0 = L̃0, which can be implemented via a Kronecker δ in its integral
representation,

δL0,L̃0
=

∫ 1
2

−
1
2

ds
2π

e2πis(L0−L̃0) . (4.46)
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So, the particle-motivated result for the 1-loop vacuum amplitude is

A1-loop ∼
∑
|ψ〉

∫ ∞

0
dl

1
l14

∫ 1
2

−
1
2

ds 〈ψ | exp(2πis(L0 − L̃0) −
2l
α′ (L0 + L̃0 − 2))|ψ〉

=

∫ ∞

0

dl
l2

∫ 1
2

−
1
2

ds
∑
|ψ〉

l−12〈ψ | exp(2πiτ(L0 − 1) − 2πiτ̄(L̃0 − 1))|ψ〉 ,

(4.47)

where we have defined τ = s + i l
πα′ .

It is a non-trivial result that the sum over all states |ψ〉 of the closed string Hilbert
space of the complicated looking exponential is precisely η(τ)−24η̄(τ̄)−24 = |η(τ)|−48.
Since up to constants we have l ∝ Im(τ), the final result is almost identical to
the string amplitude (4.44). The key difference is in the integration domain: while
in (4.47) we integrate Im(τ) from 0 onwards, the integral in (4.44) is over the
fundamental domain F0 of PSL(2,Z), which has Im(τ) ≥

√
3
4 .

This is significant because the l ≈ 0 region in the particle setting is responsible
for the UV-divergence of the amplitude: these correspond to arbitrarily high-energy
particles that run in the loop. In contrast, the actual string-theoretic amplitude avoids
this region completely. This is possible because, by the PSL(2,Z) transformation
τ → −1/τ, the Im(τ) ≈ 0 region is “already covered” by the integral over the
Im(τ) → ∞ region.

Therefore, the 1-loop vacuum amplitude is UV-finite in string theory. The
same principle — the integration domain being F0 — also applies to amplitudes
with vertex operator insertions (including gravitons!) on the torus, so all 1-loop
amplitudes are UV-finite. For higher loops, the computation quickly becomes
unfeasible. It is still an ongoing topic of research to show UV-finiteness at all loop
orders. However, with the state-of-the-art result extending to 5-loop amplitudes of
the superstring, it is widely believed that (super-)string theory is UV-finite.

What about the IR behavior? This is the limit Im(τ) → ∞, so the part where the
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would-be UV-divergent contributions are mapped onto by PSL(2,Z). In this regime
we can use the expansion η(τ) = q

1
24

∏∞
n=1(1 − qn), with q = e2πiτ , to find∫

F0

d2τ

Im(τ)14 |η(τ)|
−48 =

∫
F0

d2τ

Im(τ)14 (qq̄)−1(1 + 24q + ...)(1 + 24q̄ + ...)

=

∫ 1
2

−
1
2

dRe(τ)
∫ ∞

√
1−Re(τ)2

dIm(τ)
Im(τ)14

(
e4πIm(τ) + 242 + ...

)
,

(4.48)

where we have dropped terms that vanish upon integrating over Re(τ). From this,
we see that this integral does exhibit IR-divergence, but it comes from the term
e4πIm(τ). In a more careful analysis of the origin of the η function, one would find
that this term arises from having the tachyon; the next term, 242, comes from the
massless states, and is finite. All higher level states also give finite contributions.
For the superstring, the absence of a tachyon then implies that the 1-loop amplitude
is also IR-finite.

Open-close duality and tadpole cancellation

The 1-loop amplitude of the open string is defined by the cylinder-topology, see
left of Figure 13. There is only one modulus t that measures the circumference /
radius of the cylinder, which does not enjoy any modular symmetries like PSL(2,Z).
Hence, it can take any value, 0 ≤ t ≤ ∞. Quoting just the result of the computation,
the amplitude is

A ∼

∫ ∞

0

dt
t14 η(it)

−24 . (4.49)

The IR limit is very similar to the closed string: there is a contribution coming
from the tachyon, which diverges for t → ∞. Once we go to the superstring, the
amplitude becomes IR-finite.

However, unlike for the closed string, the UV-region, t ≈ 0, is part of the
integration domain, and there is no way to avoid the resulting divergence. Thus, it
seems that a theory with open strings contradicts our previous claim about string
theory being UV-finite.

Of course, there is a resolution of this contradiction, and it simply comes by
reinterpreting the cylinder-topology of the worldsheet as a tree-level amplitude of a
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closed string! (See Figure 13.) This is a general feature of string worldsheets called
the open-closed (string channel) duality, and can also be applied to other amplitudes.

It n a

II s o Elmo

Fig. 13: The open string 1-loop vacuum diagram has the worldsheet topology of a cylinder
with modulus t. This can be equivalently viewed as a tree-level propagation of closed string
modes with momenta |k | ≈ 1/s.

For the 1-loop open string vacuum amplitude, the corresponding tree-level
closed string amplitude can be technically obtained by exchanging the roles of
the (Euclidean) time and the spatial coordinates on the worldsheet. Geometrically,
this actually affects the modulus of the cylinder, via t → s = 1/t. Under this
transformation, the η function becomes η(it) =

√
s η(is), so the total amplitude

transforms as

A ∼

∫ ∞

0

dt
t14 η(it)

−24 = −

∫ 0

∞

ds
s2 s14 s−12η(is)−24 =

∫ ∞

0
ds η(is)−24

=

∫ ∞

0
ds(e2s + 24 + O(e−2s)) .

(4.50)

The closed string interpretation is that we have to sum over all possible closed
string states (which gives the η function) that propagate along the cylinder with
momenta |k | ∼ s (which is integrated over). Now, the divergence again comes from
the s→∞ region, where, as before, the tachyon gives the most divergent piece. In
superstring theories, the leading term is then due to the second contribution coming
from the massless states.

This kind of IR divergence is completely analogous to IR divergences in
standard QFTs. They arise from the propagator 1/k2 of massless particles of
vanishing momentum. There are may ways of dealing with such divergences in
QFT, e.g., introducing IR cutoffs, adding appropriate counterterms etc. For string
theory, there is another nice interpretation, namely the existence of so-called tadpole
diagrams, i.e., where a state is created from the vacuum. Indeed, the divergent
contributions to the above amplitude can be thought of as connecting two tadpoles
by the propagator of a massless string state, see Figure 14. In QFT, a tadpole is
another kind of instability to the vacuum, stemming from a perturbative expansion
around a field configuration φ0 that is not a critical point of the potential, V ′(φ0) , 0.
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Fig. 14: In the IR-region s→∞, the closed string amplitude can be loosely interpreted as
coming from two closed string tadpoles that are connected by a propagator of a massless
particle with momentum |k | ∼ 1/s→ 0.

To guarantee the stability of the vacuum, we must therefore “cancel” the tadpoles.
It turns out that the way to do it correctly is to introduce spacetime filling branes, to
which the endpoints of the open strings that caused the problem in the first place
are attached. The nature and number of such branes can be determined by more
involved computations of string amplitudes on non-oriented worldsheets (such as
the Möbius strip or the Klein bottle). The result of this analysis, however, actually
implies the existence of non-abelian gauge fields in spacetime!

This comes about because the massless states of the open string, which were
spacetime vector bosons, now carry “labels” (so-called Chan–Paton factors) of the
brane that they end on. As we will elaborate on in Section 5.3.2, these labels can be
interpreted as vector indices of elements in a Lie algebra g. Moreover, the tree-level
scattering amplitudes of these vector bosons turn out to be consistent with those of
a g-gauge field at low energies, thus justifying the interpretation above.

In the bosonic string, the brane system that facilitates the tadpole cancellation
gives rise to the gauge algebra g = so(8192) = so(213). In (one of the) superstring
theories, similar arguments fix the gauge symmetry in 10d to be so(32).

These numbers may look arbitrary and just a result of some complicated
computations. But one may also view them as a profound feature of string theory
that further distinguishes it from ordinary QFTs: to facilitate a consistent UV-finite
theory that includes both gauge bosons and gravitons in the (low-energy) particle-
limit, the allowed gauge dynamics is heavily constrained. There are many more
such examples of consistency conditions on effective field theories that arise in
the particle-limit of string theory, and they culminate in the development of the
“Swampland Program”, which is an active field of research.
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String theory, non-perturbatively

By now, it should have become clear that the genus expansion is essentially the stringy
version of Feyman diagram expansion in QFT. While powerful for small couplings,
there are many field theory phenomena that cannot be handled in this perturbative
ansatz. These not only include strong-coupling effects such as confinement, but also
non-perturbative effects like instantons and solitons at weak coupling.

In field theory, the path-integral in principle provides a fully non-perturbative
definition. In the modern perspective, the fields over which we path-integrate have
quantized fluctuations that give rise to the particles whose worldlines build up the
Feynman diagrams. If we want to extend this picture to string theory, then we would
need “string fields”, whose excitations are strings.

This is the approach of string field theory, and it has had some remarkable
successes, particularly with open strings, including finding and understanding the
true, non-perturbative vacuum of bosonic string theory. However, it struggles with
closed strings, and in some sense, this is related to the fact that the closed string
sector includes a theory of gravity, which does not have off-shell quantities. As we
have seen above, an open string theory must also incorporate closed strings, and
just how to describe this from string field theory is still to be understood.

Another approach is based on the background field description which we
will introduce momentarily. In this approach, non-perturbative gs-effects can be
often understood via (spacetime) geometry, branes, and (string) dualities. An
important fine print here is that these approaches usually rely on some (spacetime)
supersymmetry to be computationally feasible. Nevertheless, frameworks such as
M-/F-theory or the AdS/CFT correspondence gave rise to tremendous insights about
non-perturbative dynamics in field theory limits with and without gravity.

5 Strings in Background Fields
Having seen the various intriguing features of string amplitudes from the spacetime
perspective, we will now further study the implications of having propagating strings
in spacetime.
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5.1 Einstein’s equations from the worldsheet

After having introduced the Polyakov action SP (2.19) with an arbitrary spacetime
metric gµν in the classical setting, we have quickly resorted to setting it to the flat
Minkowski background to simplify things. However, having seen that there are
massless gravitons in the closed string spectrum, we can get some intuition for the
general setting, by adding a small perturbation to the flat metric,

gµν = ηµν + hµν . (5.1)

If we insert this into the path-integral, then the exponential of the action (gauge
fixed to have flat worldsheet metric) becomes

exp(−S[h]) = exp(−SP)

(
1 −

1
4πα′

∫
Σ

d2ξ∂aXµ∂aXνhµν(X(ξ)) + ...
)
. (5.2)

This can be interpreted as the insertion of an operator

Vh =
1

2πα′

∫
d2ξ∂aXµ∂aXνhµν(X(ξ)) . (5.3)

But we know about consistency conditions of such operator insertions: they must be
vertex operators!

Though we have not discussed this explicitly for the closed string states, it is
apparent that, if we choose hµν(X) = γµν :eik ·X :, with γµν a symmetric traceless
tensor, this precisely corresponds to a vertex operator that generates a plane gravity
wave with polarization γµν . A general vertex operator is a linear superposition hµν
of such plane waves — this is the physical consistency condition on the perturbation
hµν that comes from having a quantum string in spacetime.

Extending this to a general spacetime metric gµν is hard, because the worldsheet
theory defined by the Polyakov action,

S =
1

4πα′

∫
d2ξ gµν(X)∂aXµ∂aXν , (5.4)

will no longer be free. To see the type of (worldsheet) interactions such a modification
would introduce, we now make a “perturbation ansatz” for the coordinate fields,

Xµ(ξ) = Xµ
0 (ξ) +

√
α′Yµ(ξ) . (5.5)
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For simplicity, we will assume that the “background value” Xµ
0 (ξ) is constant on

the worldsheet, though this need not be the case. Then, a Taylor expansion of gµν in
the Lagrangian yields

gµν(X)∂aXµ∂aXν

=α′
[
gµν(X0) +

√
α′gµν,ρ(X0)Yρ(ξ) +

α′

2
gµν,ρσ(X0)Yρ(ξ)Yσ(ξ) + ...

]
∂aYµ∂aYν ,

(5.6)

where we have use the standard GR-notation gµν,ρ ≡ ∂ρgµν. In this expansion,
each term now represents an interaction for the fluctuations Yµ, with interaction
coefficient given by the metric derivatives gµν,....

Notice that this expansion is controlled by powers of
√
α′. In a spacetime with

“typical” length scales rc (e.g., radius of sphere, Hubble constant, ...), the metric
derivatives behave like ∂g/∂X ∼ 1/rc, so the effective dimensionless coupling
constant is of order

√
α′/rc . Hence, the above couplings can be treated perturbative

if
√
α′ ∼ `s � rc, i.e., when the size of the string is much smaller than typical

length scales. At each α′-order, we still have the full genus expansion for amplitude
computations on the worldsheet. This means that perturbative string theory enjoys a
double expansion in gs and α′.

For `s/rc � 1, the results may be interpreted as an infinite set of particles
(with special properties coming from the genus expansion) that probe the spacetime
geometry. However, for `s/rc ≈ 1, this interpretation breaks down badly; now, the
spatial extension of the string becomes important, and gives rise to the notion of
“stringy geometry”. E.g., while particle interactions would break down in geometries
with certain singularities, a string can effectively “resolve” such singularities and be
well-behaved.

Of course, all of these statements only make sense if we actually can rely on
the genus expansion. More explicitly, the results of the previous sections relied
heavily on the conformal gauge invariance of the worldsheet theory. Classically,
the action built from (5.6) is conformally invariant, but this is not necessarily true
at the quantum level, because, unlike before, we now have an interacting field
theory on the worldsheet. These interactions can lead to unphysical divergences of
(worldsheet) correlation functions. In a typical field theory, the go-to method to
deal with this issue is renormalization. However, as you will learn in the “Advanced
QFT” course, renormalization generally introduces an explicit scale dependence of
correlation functions, in which case the theory is no longer conformally invariant. A
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prime example of a classically conformally invariant theory that develops a scale
dependence quantum mechanically is Yang–Mills theory.

In slightly more technical terms, the scale dependence comes in the form of the
“running of the coupling”. That is, a coupling parameter, in this case the spacetime
metric gµν , in the properly renormalized theory depends on the energy scale M , or
momenta of the involved states; it is measure by the so-called β-function,

β(gµν) = M
∂

∂M
gµν . (5.7)

So, if we insist on preserving conformal invariance of the quantum worldsheet
theory in the presence of the interactions (5.6), then we must ensure that the
β-functions of the couplings all vanish. This in turn constrains the spacetime
metric gµν(X). Note that this is indeed the generalization of the constraints on the
infinitesimal metric perturbations (5.1) to define vertex operators.

To actually compute the β-function, let us first make a simplification familiar
from GR: locally around X0, we choose Riemann normal coordinates; this has the
effect that the metric locally takes the form

gµν(X0 +
√
α′Y ) = ηµν −

α′

3
Rµλνκ(X0)YλY κ + O(Y3) , (5.8)

with Rµλνκ(X0) the spacetime Riemann tensor at X0. Then, the action with the
Lagrangian (5.6) becomes

S =
1

4π

∫
d2ξ

(
(∂aY ) · (∂aY ) −

α′

3
RµλνκYλY κ∂aYµ∂aYν + ...

)
, (5.9)

with the leading interaction being a quartic coupling in Y .

Such an interaction can be treated in the standard fashion: we use (momentum
space) Feynman diagrams (now for the 2d worldsheet theory!) with the Feynman
rule

' Rµλνκpµa(p
a)ν , (5.10)
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where pµa (a = 0,1) is the 2d momentum of the scalar field Yµ. This gives the
divergent 1-loop contribution

q

p p

=

∫
d2q
(2π)2

Rµλνκpµa(p
a)ν

ηλκ

q2 , (5.11)

where ηλκ/q2 is the propagator in the loop.

The leading order divergence can be determined using “dimensional regulariza-
tion”, which yields∫

ddq
(2π)d

Rµλνκpµa(p
a)ν

ηλκ

q2
d=2+ε
=

1
2πε

Rµνpµa(p
a)ν + ... , (5.12)

with Rµν the Ricci tensor associated to the metric gµν. To cancel this divergence,
one needs to add to the interaction the counter-term

RµλνκYλY κ∂aYµ∂aYν → RµλνκYλY κ∂aYµ∂aYν −
1
ε

Rµν∂aYµ∂aYν . (5.13)

One can show that this can be absorbed by a “wave-function renormalization” and a
“coupling renormalization”,

Yµ → Yµ +
α′

ε
RµνYν , gµν → gµν +

α′

ε
Rµν , (5.14)

which then implies the 1-loop β-function

β(gµν) ∝ α
′Rµν . (5.15)

Thus, worldsheet conformal invariance restricts the spacetime metric gµν to be
Ricci-flat, Rµν = 0. This in particular implies that it solves the vacuum Einstein
equation,

Rµν −
1
2
gµνR = 0 . (5.16)

So a (probe) quantum string enforces, on scales rc � `s ∝
√
α′, the dynamics of

General Relativity.
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If we continue to higher loops, i.e., to higher orders in α′, then we start to find
deviations from standard GR. For example, including the 1- and 2-loop contributions,
the beta function is

β(2)(gµν) = α
′Rµν +

1
2
(α′)2RµλρσRνλρσ

!
= 0 . (5.17)

5.2 The non-linear σ-model

In analogy to identifying the (spacetime) metric perturbations as insertions of the
graviton vertex operator, we can try to extend the Polyakov action such that the net
effect in the path-integral is to generate operator insertions for the Kalb–Ramond
(bµν) and dilaton (ϕ) fields. It turns out that the corresponding action, called a
non-linear σ-model, takes the form

Sσ =
1

4πα′

∫
Σ

d2ξ
√
− det γ

[(
γabgµν(X) + iεabbµν(X)

)
∂aXµ∂bXν + α′Rϕ(X)

]
,

(5.18)

where we have re-introduced the worldsheet metric γab (not to be confused with
the graviton tensor). The coupling to the b-field requires the 2d Levi-Civita symbol
εab (the factor i is due to the Euclidean signature), and R ≡ R(γ) the Ricci scalar
on the worldsheet.

Let us briefly explain the name “non-linear σ-model” for this kind of action.
Roughly, a σ-model is a field theory for a field φ : Σ → M that takes values in
a manifold M. Traditionally, Σ is the spacetime on which the field theory lives,
andM is called the target space. If the target space carries some kind of “linear
structure”, e.g., a vector space, then the whole physical system is called a linear
σ-model. For general manifolds, such as generic Riemannian/Lorentzian manifolds,
it is then called a “non-linear” σ-model.10

Returning to the specific σ-model for the string, we recognize the last term
in (5.18) as a generalization to the topological term λχ ∝

∫
d2ξλR which gave

rise to the string coupling constant. However, in view of the σ-model, we learn
that the string coupling is actually not a constant, but rather a spacetime field

10 Studying the (σ-model) spacetime renormalization effects on the target spaceM, such as we did to
find Einstein’s equations, is an instance of so-called “Ricci flow”. This mathematical framework
has many applications in the study of geometric and topological questions. In particular, it was
instrumental in Grigori Perelman’s proof of the Poincaré Conjecture.
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eϕ(X)! In particular, this means that there are regions in spacetime where the genus
expansion for string amplitudes breaks down, namely, when |ϕ| → ∞. In certain
superstring theories, such regions can be understood as the vicinity of branes, which
are “sources” for ϕ or gs. These can be treated fully non-perturbatively in the
framework of F-theory. For the upcoming discussion, it is useful to define the string
coupling by the asymptotic value of the dilaton,

gs := eϕ0 , with ϕ0 = lim
|X |→∞

ϕ(X) . (5.19)

To understand the second term in (5.18) from the spacetime perspective, let us
briefly recall that, in classical electrodynamics, the coupling of a charged particle
along a worldline Γ : τ 7→ Xµ(τ) to a background electromagnetic field with gauge
potential Aµ is described by the term∫

Γ

Aµ(X(τ)) ÛXµ(τ) dτ . (5.20)

In the language of differential forms, A = AµdXµ is a 1-form, and this integral is
simply the integral of the pull-back of this 1-form to the worldline. In this form,
gauge invariance is simply a consequence of Stokes’ theorem,∫

Γ

dτ Aµ(X(τ)) ÛXµ(τ) =

∫
Γ

A −→
∫
Γ

(A + dλ) =
∫
Γ

A + λ |∂Γ =
∫
Γ

A , (5.21)

with the usual assumption that the gauge parameter λ vanishes at infinity, i.e., the
boundaries of Γ.

The generalization from a particle to a string proceeds straightforwardly, by now
having a 2-form b = 1

2 bµνdXµ ∧ dXν instead of a 1-form gauge potential which we
pull-back to the worldsheet. This pull-back is precisely

bµν∂aXµ∂bXνdξa ∧ dξb = bµν∂aXµ∂bXνεab d2ξ . (5.22)

Therefore, the σ-model action describes the string as the charged object under
the 2-form gauge field b. The gauge invariance under b → b + dc, i.e., bµν →
bµν + ∂µcν − ∂νcµ can be checked straightforwardly. The physically invariant field
strength is then a 3-form,

H = db , with Hµνρ = ∂µbνρ + ∂νbρµ + ∂ρbµν . (5.23)
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As for the spacetime metric, we can interpret the additional terms to the
Polyakov action as interaction terms of the 2d worldsheet theory, and compute their
β-functions from having properly renormalized the divergences they introduce. The
1-loop results are the following:

β(gµν) = α
′
(
Rµν −

1
4

HµρκHνρκ + 2∇µ∇νϕ
)
+ O(α′2) ,

β(bµν) = α′
(1
2
∇ρHρµν + ∇

ρϕHρµν

)
,

β(ϕ) =
D − 26

6
+ α′

(1
2
∇µϕ∇

µϕ −
1
2
∇2ϕ −

1
24

HµνρHµνρ
)
+ O(α′2) ,

(5.24)

which have to all vanish as a consistency condition (worldsheet conformal invari-
ance).

The (D − 26)/6 term in the last line clearly vanishes for the critical setting, but
it is worth mentioning its origins. Basically, this is due to the quantum breaking of
Weyl invariance in the free worldsheet theory. Each coordinate field Xµ contributes
1/6 to this “Weyl anomaly”. The proper path-integral treatment will, however,
dictate the addition of “ghost”-fields to implement the gauge-fixing conditions à la
Faddeev–Popov. The ghost system in turn contributes −26/6 to this anomaly. In the
β(ϕ)-function computation, this anomaly shows up again at leading order.

5.2.1 The low-energy effective action in spacetime

We have seen that the spacetime background fields (g, b, ϕ) are constrained by
the conformal invariance of the string. From a spacetime perspective, these fields
should be dynamical, so the constraint equations β = 0 should be their equations of
motions. As you will see on the Problem Sheet, one can indeed derive them from
the Euler–Lagrange equations for the low-energy effective action

S(S)D =
1

2κ2
0

∫
dD x

√
− det ge−2ϕ

(
2(26 − D)

3α′
+ R(g) −

1
12

HµνρHµνρ + 4∇µϕ∇µϕ
)
.

(5.25)

The superscript (S) stands for “string frame”, because the spacetime fields (g, ϕ)
appear as in the string σ-model action.
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For spacetime calculations, it is often more convenient to go to the “Einstein
frame”, by defining κ = κ0eϕ0 , ϕ̃ = ϕ − ϕ0, and raise/lower indices with the metric
g̃ = exp(ϕ/6)g:

S(E)D =
1

2κ2

∫
dD x

√
− det g̃

(
2(26 − D)

3α′
e2(ϕ0−ϕ̃) + R(g̃) −

e−ϕ̃/3

12
|H |2 −

1
6
|∇µ ϕ̃|

2
)
.

(5.26)

Now the Einstein–Hilbert term takes the canonical form, and so we can identify
κ2 = 8πGN with the gravitational coupling, and GN as Newton’s constant in this D
dimensional theory. Hence, we can see explicitly in this “frame” (really, its just a
convenient choice of field variables) that the spacetime theory is General Relativity,
coupled to additional matter fields.

Note that these actions reproduce only the 1-loop β-functions as equations of
motions. To capture the additional terms at higher-loops, e.g., the Riemann2-term in
the 2-loop β-function (5.17), the spacetime action also needs α′ corrections:

SD = S(0)D︸︷︷︸
S
(S)
D /S

(E )
D

+α′ S(1)D︸︷︷︸
4-deriv. terms

+(α′)2 S(2)D︸︷︷︸
6-deriv. terms

+... (5.27)

This is an “effective field theory” expansion with cutoff scale MS = (α
′)−1/2, and

can be interpreted as the effective action obtained upon integrating out massive
string states.

To summarize, in the spacetime perspective there are several different scales, or
expansion parameters:

• The gravitational coupling, κ = κ0eϕ0 ∼ G1/2
N ∼ (MPlanck)

(2−D)/2, is related
to the Planck scale, and determines the scale above which genuine quantum
gravity effects become important.

• The “string scale”, Ms = (α
′)−1/2, is the scale where the finite size of the

string will start to become important. The net effect are deviations from GR,
in form of higher-derivative terms in the classical effective action.

• The dimensionless ration Ms/MPlanck ∼ e2ϕ0/(D−2) is proportional to (some
power of) the string coupling, and it controls the higher contributions in the
genus expansion, which are higher-loop orders, i.e., quantum effects from the
spacetime perspective.



75

This (hopefully) clarifies the notion of the low-energy effective action: it is an action
for dynamics at energy scales E � Ms in the limit Ms/MPlanck → 0, so we also
suppress spacetime quantum effects. In turn, the worldsheet quantum corrections,
controlled by α′, are corrections to the classical action, and can be incorporated as
deviations from GR.

5.3 Open strings in background fields and D-branes

So far, we have looked at the background fields associated to massless states from
the closed string sector. We can repeat the analysis for the open string, and this will
lead us to the Dirac–Born–Infeld (DBI) action, which is the worldvolume action for
D-branes.

Recall that for the open string, the massless states at level one assemble into the
degrees of freedom of a vector boson. The corresponding vertex operator was

Wζ ,k ∼

∫
∂Σ

dτ ζ · ÛX :eik ·X : , (5.28)

with k2 = k · ζ = 0. Following the same logic around (5.3) as we argued for
the general metric perturbations hµν(X) to be a superposition of plane waves
γµν : eik ·X :, we can also identify a spacetime vector field Aµ(X) whose Fourier
modes are the vertex operators ζµ :eik ·X :. Because of the freedom of adding null
states, Aµ(X) → Aµ(X) + ∂µλ(X) is a gauge symmetry. The corresponding term
that one needs to add to the Polyakov action to produce this operator insertion in the
path-integral is then

Sendpoints =

∫
∂Σ

Aµ(X)∂τXµdτ . (5.29)

But this is just like coupling the endpoints of the open string to an electromagnetic
gauge potential Aµ!

More precisely, we had established in Section 2 that the boundary conditions
for the coordinate fields Xµ can be separated into Neumann-type and Dirichlet-type.
The endpoint of the string can move in the Neumann-type directions µ = 0,1, ..., p
(which we take to include a time-like direction in spacetime), and are fixed in the
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Dirichlet-type directions I = p+1, ...,D−1. We can split the total worldsheet action
as S = SNeumann + SDirichlet, with

SNeumann =
1

4πα′

∫
Σ

d2ξ ∂aXµ∂aXνηµν + i
∫
∂Σ

Aµ(X) ÛXµdτ (µ, ν = 0, ..., p) ,

SDirichlet =
1

4πα′

∫
σ

d2ξ ∂aX I∂aXJδIJ (I, J = p + 1, ...,D − 1) ,

(5.30)
where the imaginary factor in the coupling to Aµ is due to being in Euclidean
signature on the worldsheet. Furthermore, we have again restricted ourselves to flat
spacetime metric for simplicity.

While the Dirichlet part just goes along for a ride, the Neumann part introduces
worldsheet interactions with couplings associated to the spacetime vector field Aµ,
which can introduce a scale dependence in the renormalized quantum theory. So
we can again impose conformal invariance as a consistency condition to constrain
the spacetime dynamics of Aµ and its associated field strength Fµν = ∂µAν − ∂νAµ.
Going through the 1-loop computations and properly renormalize the divergences,
the vanishing of the β-function turns out to imply

∂µ

(
Fνρ

ηµν

1 − 4πα′2F2

)
= 0 (all indices from 0 to p) . (5.31)

Note that, to zeroth order in α′, this is just the familiar equation of motion ∂µFµρ = 0
for electromagnetism.

This equation of motion has been known for a long time, and arises in the
Born–Infeld (BI) model which is a non-linear alternative to Maxwell’s theory.11 The
corresponding spacetime action is

S = −Tp

∫
dp+1x

√
− det(ηµν + 2πα′Fµν) , (5.32)

which is an integral only over the Neumann-type spacetime directions. For field
strengths that are small compared to the string tension, |Fµν | � 1/α′, this action
can be expanded as

S = −Tp

∫
dp+1x

(
1 +
(2πα′)2

4
FµνFµν + O(α′2)

)
, (5.33)

11 The Born–Infeld model resolves the (classical) divergence of the electric field at the location of
a point-charge, by modifying the equations of motions for large field values |Fµν | ≈ 1/α′; in the
original model, 1/α′ is just a large parameter of mass dimension 2 that controls the deviation from
Maxwell’s equations, which in string theory gets identified with the (inverse) string tension.
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which gives the (p + 1)-dimensional volume, and then the Maxwell action,∫
dp+1x 1

4gFµνFµν.

In the full D-dimensional spacetime, this describes the propagation of U(1)
gauge field along a (p + 1)-dimensional submanifold. This submanifold is the
worldvolume of a Dp-brane, which is an extended object with tension Tp. Notice
that the combination of brane and string tension, ((2πα′)2Tp)

−1 = T2/Tp = g, gives
the U(1) gauge coupling.

5.3.1 The DBI action

One can generalize the analysis now to non-flat spacetimes, including non-trivial
backgrounds for the dilaton ϕ and the Kalb–Ramond 2-form field b. Of course, there
is a corresponding worldsheet computation that can be carried out that will justify
the resulting spacetime, or rather worldvolume description. In the following, we
will give some more intuitive explanation for the form of the effective field theory
action.

First, we should introduce again “intrinsic” coordinates ξa, a = 0, ..., p, on the
worldvolume, with spacetime coordinate fields Xµ(ξ) that describe the embedding
of the brane into spacetime. Then, the ηµν-term in the BI action (5.32) should be
replaced with the pull-back metric

hab = ∂aXµ∂bXνgµν . (5.34)

In fact, switching off A, ϕ and b, the worldvolume action S =

−Tp

∫
dp+1ξ

√
− det(hab) is the obvious generalization of the Nambu–Goto

action (2.13) for the string.

The gauge field A = Aadξa is now a 1-form on the worldvolume, with
corresponding field strength Fab = ∂aAb − ∂bAa. Combining with the pull-back
metric, we obtain the generalization that historically is known as the Dirac–Born–
Infeld (DBI) action,

S = −Tp

∫
dp+1ξ

√
− det(hab + 2πα′Fab) . (5.35)
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Turning to the Kalb–Ramond field, it is helpful to look at the classical string
worldsheet action including both the b field and the gauge field A. The relevant
terms are

1
4πα′

∫
Σ

d2ξ εab ∂aXµ∂bXbbµν︸            ︷︷            ︸
=Bab

+

∫
∂Σ

A =
1

2πα′

∫
Σ

B +
∫
∂Σ

A , (5.36)

written in differential-form notation, with B = 1
2 Babdξa ∧ dξb the pull-back of the

spacetime 2-form b onto Σ (strictly speaking, A here is also a pulled-back 1-form).
Now consider the effect of a spacetime gauge transformation,

b→ b + dc
pull-back
=⇒ B→ B + dC (5.37)

for c a 1-form, which pulls-back to C on Σ. This shifts the first term by a total
derivative, which vanishes automatically for the closed string, so we did not bother
discussing it. However, for the open string, this results in a boundary contribution;
using Stokes’ theorem in differential-form notation, this is easily shown to be∫

Σ

B→
∫
Σ

(B + dC) =
∫
Σ

B +
∫
Σ

dC =
∫
Σ

B +
∫
∂Σ

C (5.38)

The worldsheet action is then only invariant if the U(1) gauge fields also shifts with
the gauge parameter C, namely as

A→ A −
1

2πα′
C . (5.39)

A symmetry structure where a lower-degree gauge field, in this case A transform
under a gauge transformation of a higher-degree gauge field, in this case b, is
nowadays known as a higher-group symmetry. It is quite remarkable that this
relatively recently developed concept has been in plain sight within string theory for
decades!

Returning to our spacetime action, this means that, in the presence of a non-trivial
b-field background, it is not the U(1) field strength F, but rather the combination

Bab + 2πα′Fab (5.40)

which is the gauge invariant anti-symmetric tensor that replaces Fab under the
square-root in (5.35). Physically, it is basically the statement that the charged objects
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under b and A in spacetime are not independent of each other, but rather just the
same one: it’s the string and its endpoints!

For the dilaton, we do not have any slick spacetime argument for how to include
it correctly, so we will now just state the full DBI-action:

S = −Tp

∫
dp+1ξ eϕ0−ϕ

√
− det(hab + 2πα′Fab + Bab) . (5.41)

This means that the value of the dilaton actually modifies the effective brane tension
Tpeϕ̃ . Implicitly, this relates the “asymptotic” brane tension Tp to the asymptotic
string coupling, Tp ∼ 1/gs = e−ϕ0 .

5.3.2 Non-Abelian gauge fields from brane stacks

As we have seen, open strings ending on a Dp-brane give rise to a U(1) gauge field
in the (p + 1)-dimensional worldvolume. For completeness, let us also mention that
string theory provides a straightforward way to obtain non-Abelian gauge fields,
namely by stacking branes.

More precisely, this procedure relies on the ingenious realization by Polchinski
that branes are not just booking keeping devices for open string endpoints, but
are dynamical objects themselves (that are non-perturbative in gs, as their tension
behave as Tp ∼ 1/gs). This means that we can talk about moving several Dp-branes
relative to each other. In particular, we can put N of them on top of each other, so
that they fill the same worldvolume.

Though it may seem a bit odd a first, it turns out that the correct way to
describe open string on such a stack is to assign labels n = 1, ...,N to each endpoint.
Schematically, in the coupling (5.29), we could divide up the boundary ∂Σ into two
parts (for the two endpoints) and assign to each one a label. The result is the same
as if we just declare that the gauge field A now carries two additional labels:

(Aa)
m
n . (5.42)

Note that these still should be thought of as coming from level-one states |ζ ; k〉mn

of the open string, now “starting” on the m-th and “ending” on the n-th brane, but
which are still massless vector bosons.

The labels (m,n) are called Chan–Paton labels, and can be shown to endow
the set of vector fields (Aa)

m
n with the structure of the adjoint representation of



80

U(N). This gives the hint that the spacetime (or worldvolume) interpretation of
these open string modes should be that of a U(N) gauge field. Indeed, the set
of gauge transformations determined by the adding null states in the open string
Hilbert space with Chan–Paton labels turns out to be the adjoint action of U(N)
on the states |ζ ; k〉mn. The corresponding low-energy effective action on the brane
worldvolume then includes the standard Yang–Mills form, which we won’t write
out here explicitly.

Note that with oriented string, we are limited to U(N) gauge groups. However,
as already mentioned earlier, this limitation is lifted once we include non-oriented
strings, which can be equivalently thought of as having brane-like objects which
“reverse” the orientation of the strings that end on them. These so-called orientifold-
planes, or Op-planes for short, are more exotic branes, in that they can have negative
tension. But we can still stack them on Dp-branes, in which case the worldvolume
can exhibit SO(N) or Sp(N) gauge groups. In non-perturbative regions (where
gs is not small, and thus are most naturally described in F-theory), one can have
exceptional groups En and more exotic non-simply laced Lie groups.

6 Circle Compactification and T-Duality
The fact that string theory is only well-defined in more than four spacetime
dimensions is clearly troublesome to anyone who is interested in understanding our
universe. The most straightforward process method to bridge this conceptual gap
is “compactification”: we take our higher-dimensional spacetime (D = 26 for the
bosonic string)MD to be a productMD = R

1,D−1−d × Xd, and postulate that the
size of Xd is “small” enough, so that we can hide any dynamics happening “inside”
Xd in an effective field theory description on R1,D−1−d, whose cutoff is the (inverse
length) scale of Xd.

The idea of compactification predates string theory, and has already been studied
in the 1920s by Kaluza and Klein. In these early works, it was shown that, classically,
the circle or S1 reduction of 5d general relativity, i.e., taking

M5 = R
1,3 × S1 , (6.1)

leads to 4d GR plus an electromagnetic field satisfying Maxwell’s equations, and an
electrically charged scalar field in the limit of small circle radius. Moreover, the
circle radius determines the charge-to-mass ratio of the quantum excitations of the
scalar field.
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The methods of Kaluza and Klein apply also to higher-dimensional internal
manifolds Xd, and more general (quantum) field theories inMD . In such Kaluza–
Klein (KK) reductions, the geometric and topological properties of Xd determine
the parameters of the low-energy effective theory in R1,D−1−d. In string compact-
ifications, this interplay becomes even richer and more intricate, and has led to
cross-fertilization between research in geometry/topology and physics.

The key difference between a field-theoretic KK-reduction and the compactifi-
cation of string theory is again due to the finite size of the string, which sees the
internal geometry in a different way than particles. Below, we will study explicitly an
S1-compactification, and see how the genuinely stringy phenomenon of “T-duality”
arises from the σ-model description.

6.1 KK-reduction on a circle

Let us first understand the circle reduction in the field theory context. To illustrate the
role of the S1, we keep the remaining directions to be flat, i.e.,MD = R

1,D−2 × S1,
with coordinates Xµ = (X i,XD−1) where i = 0, ...,D − 2. For further simplicity,
we consider for now only field configurations that are independent of the circle
direction of radius r , XD−1 ∼ XD−1+2πr . Then, the field components of the metric,
a 2-form field bµν, and a scalar ϕ in D dimensions decompose into

gµν(X) −→ {gi j(X i), gi,D−1(X i), gD−1,D−1(X i)} ,

bµν(X) −→ {bi j(X i), bi,D−1(X i)} ,

ϕ(X) −→ ϕ(X i) .

(6.2)

This gives a set of fields (gi j(X i), bi j(X i), ϕ(X i)) that are the (D − 1)-dimensional
versions of the graviton, 2-form, and the dilaton fields. In addition, we also have two
vector fields, gi,D−1 and bi,D−1 in R1,D−1, which are called the graviphoton and the
Kalb–Ramond photon, and an additional scalar field gD−1,D−1, the radion.

The two vector fields are actually 1-form fields, i.e., U(1) gauge fields, in
R1,D−2. The graviphoton inherits this gauge symmetry from the D-dimensional
diffeomorphisms, δεgµν = ∇µεν + ∇νεµ: by taking εD−1 = λ(X i) for any (scalar)
function λ, and other ε-directions to be 0, we have

Ai := gi,D−1 → gi,D−1 + δgi,D−1 = Ai + ∇iλ = Ai + ∂iλ . (6.3)
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Similarly, the Kalb–Ramond photon (or Kalb–Ramond U(1)) also inherits the gauge
symmetry

Ãi := bi,D−1 → Ãi + ∂i λ̃ , (6.4)

by picking the gauge parameter as cD−1 = λ̃(X i) for the D-dimensional symmetry
δcbµν = ∂µcν − ∂νcµ. These gauge symmetries are correctly reflected in the (D− 1)-
dimensional action. To obtain that (see Problem Sheet), one follows, more carefully,
the Kaluza–Klein ansatz,

gµνdXµdXν = gi jdX idX j + e2σ(dXD−1 + AidX i)2 , with gD−1,D−1 = e2σ ,

bµνdXµ ∧ dXν = bi jdX i ∧ dX j + ÃidX i ∧ dXD−1 ,

φ ≡ ϕ(D−1) = ϕ −
σ

2
,

(6.5)

and plugs this into the D-dimensional effective action.

Now we can start adding non-trivial profiles for the D-dimensional fields on
the circle. For that, one can simply use a Fourier decomposition in the periodic
coordinate XD−1, in which case the (D − 1)-dimensional fields we have considered
so far are the zero-modes of this decomposition. For illustration, consider the dilaton
field:

ϕ(Xµ) =
∑
n∈Z

einX
D−1/r ϕn(X i) (with ϕ∗n = ϕ−n). (6.6)

From the kinetic term in the D-dimensional action, we obtain, after integrating over
the circle,∫

dDX ∂µϕ∂
µϕ =

∫
dDX ((∂iϕ)2 + (∂D−1ϕ)

2)

= 2πr
∫

dD−1X
∑
n∈Z

(
∂iϕn∂

iϕ−n +
n2

r2 |ϕn |
2
)
.

(6.7)

That is, a single scalar field in R1,D−2 × S1 looks like an infinite tower of scalar
fields on R1,D−2 labelled by the Kaluza–Klein level n, with mass

M2
n =

n2

r2 . (6.8)
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The level n field in (D−1) dimensions arise from D-dimensional field configurations
that have a definite momentum p(D) = n/r along the circle. In the limit r → 0,
or equivalently, at energy scales E � 1/r ∼ MKK, all KK modes with n , 0
decouple, and the low-energy effective theory in R1,D−2 just contains the massless
KK zero-modes.

Finally, re-consider the effect of diffeomorphisms εD−1 = λ(X i) that gave rise to
the gauge transformation (6.3) for the graviphoton Ai . At the level of the spacetime
coordinates, this diffeomorphism is simply a “rotation” XD−1 → XD−1 + λ(X i) on
the S1. From the Fourier decomposition (6.6), we can see that this also has an effect
on the KK-modes:

ϕn → einλ/rϕn . (6.9)

This tells us that the n-th KK-mode, in addition of having mass Mn ∝ n, also has
electric charge Qn ∝ n under the graviphoton Ai in (D − 1)-dimensions.

On the other hand, there are no charged objects under the Kalb–Ramond photon
Ãi coming from the (field-theoretic) KK-reduction of the D-dimensional effective
action. We will see momentarily how the perspective from the string worldsheet
changes this.

6.2 Strings on a circle

Intuitively, strings differ from particles in S1-compatifications by being able to wind
around the circle. In the remaining spacetime directions, this gives another type of
particle-like objects that are not present in the field-theoretic KK-reduction; these
will turn out to now be charged under the Kalb–Ramond U(1).

To see this in detail, we turn to the non-linear σ-model (5.18) of the worldsheet,
and specify the target space to be the D = 26 dimensional manifold R1,24 × S1. In
the classical theory, the periodic target space direction has two immediate effects.
First, it leads to a quantized spacetime momentum in the mode expansions,

p25 =
n
r
, n ∈ Z . (6.10)

Moreover, for the closed string, we can relax the boundary condition X(ξ1 + 2π) =
X(ξ1) to

X25(ξ1 + 2π) = X25 + 2πwr , (6.11)
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where w ∈ Z encodes how many times the string winds around S1. For this reason,
it is also called the winding number.

Classically, the momentum and winding numbers label disconnected components
of phase space. That is, the mode expansion differs by discrete parameters (n,w),

X25 = x25 + α′p25ξ0 + wrξ1 + oscillators = X25
L + X25

R , (6.12)

with the left- and right-movers (in lightcone coordinates ξ± = ξ0 ± ξ1) given by

X25
L (ξ

+) =
1
2

x25 +
1
2
α′

(n
r
+
wr
α′

)
︸      ︷︷      ︸
=:pL

ξ+ + i

√
α′

2

∑
m,0

1
m
α̃25
m exp(−imξ+) ,

X25
R (ξ

+) =
1
2

x25 +
1
2
α′

(n
r
−
wr
α′

)
︸      ︷︷      ︸
=:pR

ξ− + i

√
α′

2

∑
m,0

1
m
α25
m exp(−imξ−) .

(6.13)

These are mostly identical to the original mode expansion (2.39), but differ crucially
in the zero-mode oscillator part,

α25
0 :=

√
α′

2 pR ,

√
α′

2 pL =: α̃25
0 ,

=⇒ α̃25
0 + α

25
0 =
√

2α′p25 =
√

2α′ nr , α̃25
0 − α

25
0 =

√
2
α′wr ,

(6.14)

The quantization proceeds with these modified zero-mode operators. More
precisely, while we previously had α̃25

0 = α
25
0 as quantum operators, now they differ

by a “c-number”. This does not affect commutators of the oscillators, so the oscillator
Fock space is identical to (3.4), and organizes the states into levels labelled by the
eigenvalues under N and Ñ . However, whereas the oscillator vacuum |0, 0̃; k(26)〉

was previously labelled by a 26d momentum vector k, it is now labelled by a 25d
momentum vector and the integers (n,w) that describes the basis in momentum
space,

|0, 0̃; k,n,w〉 , k ∈ R1,24 ,

with pi |0, 0̃; k,n,w〉 = k i |0, 0̃; k,n,w〉 ,

p25
L/R |0, 0̃; k,n,w〉 =

(
n
r ±

wr
α′

)
|0, 0̃; k,n,w〉 .

(6.15)



85

Likewise, the expressions for the Virasoro generators remain the same, but it is
more appropriate to reorganize them using v · v′ := vi v

i as the 25d scalar product,

L0 =
1
2
(
α0 · α0 + (α

25
0 )

2) +
N︷                           ︸︸                           ︷∑̀

>0
α−` · α` +

∑̀
>0
α25
−`α

25
` ,

Lm =
1
2

∑̀
αm−` · αm +

1
2

∑̀
α25
m−`α

25
` ,

(6.16)

and similarly for the left-movers L̃m. Because the structures are identical, the normal
ordering and criticality discussions go through as before, but now the mass-shell
and level-matching conditions are modified:

L0 − 1 =
α′

4
(p · p + p2

R) + N − 1 !
= 0 ⇒ M2

(25) = −p · p = p2
R +

4
α′
(N − 1) ,

L̃0 − 1 =
α′

4
(p · p + p2

L) + Ñ − 1 !
= 0 ⇒ M2

(25) = −p · p = p2
L +

4
α′
(Ñ − 1) ,

(6.17)

which after reorganizing becomes

M2
(25) =

1
2
(p2

R + p2
L) +

2
α′
(N + Ñ − 2) =

n2

r2 +
w2r2

α′2
+

2
α′
(N + Ñ − 2) ,

N − Ñ =
α′

4
(p2

L − p2
R) = nw .

(6.18)

Note that in the mass-shell condition (first line), the mass in 25 dimensions
receives both contributions from the momentum along the circle (same as in the
KK-reduction), as well as the winding modes (these are now genuine stringy
contributions).

String spectrum in 25d

First, we can recover the familiar massless states in 25d, which we had already found
in the Kaluza–Klein reduction, from level one string states with zero momentum
and winding along the circle, i.e., (n,w) = (0,0):

• The graviton, Kalb–Ramond field, and the dilaton are of the form
αi
−1α̃

j
−1 |0, 0̃; k,0,0〉.
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• The graviphoton Ai and the Kalb–Ramond photon Ãi are associated to states
of the form (αi

−1α̃
25
−1+α

25
−1α̃

i
−1)|0, 0̃; k,0,0〉 and (αi

−1α̃
25
−1−α

25
−1α̃

i
−1)|0, 0̃; k,0,0〉,

respectively.

• The radion is associated to α25
−1α̃

25
−1 |0, 0̃; k,0,0〉 .

As before, their gauge symmetries and correct number of degrees of freedom is
guaranteed by the physicality constraints imposed by the Virasoro generators. In the
correspondence between spacetime fields and worldsheet vertex operators, the two
photons are associated to vertex operators

V±[ζ, k] =
1
√

2α′

∫
d2ξ ζi(∂+X i∂−X25 ± ∂+X25∂−X i) :eik ·X : . (6.19)

The states with non-trivial circle momentum and winding are in general not
massless, due to the modified mass-shell formula. The simplest example would be
a “winding tachyon” |0, 0̃; k,n = 0,w〉 with −k2 = (wr/α′)2 − 4/α′. We can now
compute a tree-level 3-point scattering for two such winding tachyons with the
Kalb–Ramond photon,

A ∼ 〈0, 0̃;−k3,0,w |V−[ζ, k2] |0, 0̃; k1,0,w〉
= 1√

2α′
〈0, 0̃;−k3,0,w | (ζ · α̃0)α

25
0 − (ζ · α0) α̃

25
0 |0, 0̃; k1 + k2,0,w〉

= 1√
2α′
ζ · (k1 + k2)〈0, 0̃;−k3,0,w | α25

0 − α̃
25
0 |0, 0̃; k1 + k2,0,w〉

= −
wr
α′

ζ · (k1 + k2) δ(k1 + k2 + k3) =
wr
α′
(ζ · k3) δ(k1 + k2 + k3) .

(6.20)

In the 25d spacetime, this is the tree-level contribution to an emission/absorption of
a Kalb–Ramond photon from a winding tachyon with winding number w. As usual
in spacetime gauge theories, this means that the winding tachyon is charged under
the Kalb–Ramond U(1)-field Ãi with charge proportional to wr/α′.

More generally, one can show that, for states with general circle momentum
and winding numbers (n,w), their graviphoton-charge is pL + pR ∼

n
r , and their

Kalb–Ramond U(1)-charge is pL − pR ∼
wr
α′ . The latter is quite obvious following

our discussion in the previous section, where we saw that the entire string is
electrically charged under bµν in 26 dimensions. This gives a full charge lattice of
in general massive states under the U(1) ×U(1) gauge symmetry in 25d.

On the Problem Sheet, you will further show an interesting phenomenon that only
occurs in string compactifications, and not in “standard” field-theory reductions.



87

Namely, for special values of the circle radius r, the momentum and winding
contributions can cancel against the oscillator contributions in the mass-shell
formula, to give additional massless states. These massless states can enhance the
U(1) × U(1) gauge symmetry, depending on r up to SU(2) × SU(2) at r =

√
α′.

Such a non-Abelian gauge enhancement is again a genuinely stringy effect that is
absent in field theoretic compactifications.

6.3 T-duality

The circle compactification of the bosonic string exhibits another remarkable feature
which is the prototype of a string duality. Such dualities generally relate seemingly
different descriptions of the same underlying physical system. In the present case,
the differently looking descriptions are compactifications on circles with radii r1
and r2 = α

′/r1.

As Kaluza–Klein reductions, different circle radii would lead to genuinely
different physical models in lower dimensions, since the KK-tower would have
different masses. However, if we look at the mass-shell and level matching condition
(6.18) for string states on an S1, we see that they are invariant under the exchange,
known as a T-duality transformation,

r → r ′ = α′/r , (n,w) → (n′,w′) = (w,n) , (6.21)

i.e., the roles of momentum and winding modes are exchanged as go from a “small”
circle to a “large” circle and vice versa.

Consider first the limit r →∞. This clearly “decompactifies” the S1-direction,
thus giving back the 26d theory. At the level of the mass spectrum, this is signaled
by the momentum modes labelled by n developing a continuum of massless states.
Naively, the opposite limit r → 0 should correspond to the limit of obtaining a
genuine 25d theory, by decoupling the massive momentum modes. However, the
string also has winding modes labelled by w that become light and form a continuum
in this limit, indicating another “dual” space dimensions that opens up.

To make this more precise, let us inspect more closely the worldsheet CFT.
Here, the relevant data are the Hilbert spaceH of states

∏
` α−n` |0; k,n,w〉, and the

separation into (un-)physical and null states by the Virasoro generators. These are in
turn derived from the stress tensor T±± = −∂±Xµ∂±Xµ. Any “transformation” that
results in a re-organization of this data that do not modify the physicality structure
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onH , i.e., leave the Virasoro algebra invariant, will therefore not change the actual
physical system, but instead just provide a change in the description.

We can easily verify that the T-duality transformation (6.21) is precisely of this
type. To see this, note that in the mode expansion (6.13), the transformation acts on
the momenta,

pL =
n
r
+
wr
α′
→

wr
α′
+

n
r
= pL , pR =

n
r
−
wr
α′
→

wr
α′
−

n
r
= −pR ,

⇒ α25
0 → −α

25
0 , α̃25

0 → α̃25
0 .

(6.22)

Motivated by this, we define a new “coordinate” fields,

Y i = X i for i = 0, ...,24 , Y25(ξ+, ξ−) = X25
L (ξ

+) − X25
R (ξ

−) . (6.23)

If we move around the spatial coordinate on the worldsheet, i.e., ξ1 → ξ1 + 2π, we
see from (6.13) that

Y25(ξ0, ξ1 + 2π) = Y25(ξ+ + 2π, ξ− − 2π) = Y25(ξ±) +
2πα′n

r
, (6.24)

so this is a 2πr ′-periodic target space direction. From these fields, we can equivalently
extract from the mode expansions the Heisenberg pairs (x, p) and the oscillators
(αm, α̃m).12 Moreover, because

∂+Y25 = ∂+X25
L = ∂+X25 , ∂−Y25 = −∂−X25

R = −∂−X25 , (6.25)

the stress tensor is invariant,

T ′++ := ∂+Y · ∂+Y = ∂+X · ∂+X = T++ ,

T ′−− := ∂−Y · ∂−Y = ∂−X · ∂−X = T−− .
(6.26)

Therefore, the Fourier modes which give rise to the Virasoro generators Ln and L̃m

are also the same.

This construction explicitly shows that in the limit r → 0 for the circle with
coordinate X25, the “T-dual” circle with coordinate Y25 becomes infinitely large,
r ′ = α′/r → ∞, as the continuum of massless states have indicated above. This
also means that there is, in a very concrete sense, a “smallest” circle radius that
an S1-compactification of the bosonic string can have. This is the self-dual radius
rc =

√
α′, which is precisely the case of maximal gauge enhancement in the

non-compact 25 dimensions.

12 There is a subtlety regarding the zero-mode in Y25, in that the center-of-mass coordinate x25 cancels
out classically. However, this ultimately does not matter, because the CFT defined by Yµ with radius
r ′ = α′/r is the same as that defined by Xµ with radius r .
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Open strings under T-duality

For T-duality to work in the closed string sector, it was crucial that the string can
wind around the circle. For open strings, there is no invariant notion of a winding
number (see Figure 15), and we are only left with the circle momentum p25 = n/r
as a discrete parameter in the mode expansions. So what is T-duality “exchanging”
for the open string?
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Fig. 15: An open string on a circle can unwind if its endpoints can move freely in the circle
direction X25.

To answer this question, we revisit the splitting into left- and right-movers,
which we did not bother to write down around (2.44). The general ansatz that solves
the equations of motion ∂+∂−Xµ = 0 is still

Xµ
L (ξ
+) = 1

2 xµ + α′pµξ+ + i
√
α′

2

∑
m,0

1
m α̃

µ
me−imξ

+

, (6.27)

Xµ
R(ξ
−) = 1

2 xµ + α′pµξ− + i
√
α′

2

∑
m,0

1
mα

µ
me−imξ

−

, (6.28)

with the relations between the coefficients now fixed by the boundary conditions:

• Neumann boundary conditions (NN), ∂ξ1 Xµ |ξ1=0,π = 0, require αµm = α̃
µ
m;

• Dirichlet boundary conditions (DD), Xν |ξ1=0,π = cν , require xν = cν , pν = 0,
and ανm = −α̃νm.

Now let us assume that we have Neumann boundary conditions (NN) in the
2πr-periodic spacetime coordinate X25 = X25

L + X25
R is 2πr (so p25 = n/r), meaning

that both string endpoints can move freely on the circle. Then, we follow the same
procedure as for the close string and define

Y25 = X25
L − X25

R = α
′p25(ξ+ − ξ−) + i

√
α′

2

∑
m,0

1
mα

25
m (e

−imξ+ − e−imξ
−

)

= 2α′p25ξ1 + i
√

2α′
∑
m,0

1
mα

25
m e−imξ

0
sin(mξ1) .

(6.29)
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As before, this is a 2πr ′ = 2πα′/r-periodic direction, which should be thought of
as the “T-dual circle”. Because we have

Y25(ξ1 = 0, π) = 0 mod
2πnα′

r︸ ︷︷ ︸
=2πα′p25

, n ∈ Z , (6.30)

the open string now has (DD) boundary conditions in the T-dual circle direction,
with no possibility to move its center of mass along that direction. Hence, it has
no momentum along the circle Y25. Moreover, in the T-dual setting, the term
2α′p25ξ1 = 2nα

′

r ξ
1 in the mode expansion of Y25 now counts the winding of

the string. It is straightforward to check that, starting from Dirichlet boundary
conditions on a circle, the T-dual setting will have Neumann boundary conditions
on the T-dual circle, and the winding number becomes the momentum number. This
is summarized in Figure 16. Again, because from the worldsheet perspective this is
just a rearrangement of the CFT data, the physics of both descriptions must agree.
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Fig. 16: Under a T-duality transformation, an open string with (NN) boundary conditions on
the circle X25 becomes an open string with (DD) boundary conditions on the T-dual circle
Y25. Just as for closed strings, this duality exchanges momentum and winding numbers.

Recall from the last section that, in the spacetime perspective of open strings it
is more appropriate to think of the (p + 1) spacetime directions in which one has
Neumann boundary conditions to be filled by a Dp-brane. Then, applying T-duality
on an S1 with radius r that is contained, or “wrapped” by the worldvolume of a
Dp-brane, we obtain an equivalent theory on an S1 with radius r ′ = α′/r and a
D(p − 1)-brane that does not wrap the S1, and vice versa. Said differently, T-duality
exchanges the types (in this case labelled just by their dimension p) of D-branes.

6.4 Dualities beyond T

T-duality is just one example of dualities in string theory. In general, the no-
tion of “dual” descriptions (not to be confused with proverbial dualities such as
“wave-particle duality”) can be an extremely powerful tool, in that it can provide
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complementary ways to understand the very same physical system. While dualities
in concrete examples (such as electromagnetic duality) have appeared throughout
the history of physics, it is fair to say that the concept of duality has been popularized
only through string theory.

In fact, the main propellant of (super-)string theory was what is now known as
the “second string revolution” in the late 90s, when it was recognized that the five
different versions of the superstring where actually all related, through a web of
dualities, among each other and an 11d theory called M-theory, see Figure 17. Thus,
dualities help clarify that there is a unique (non-perturbative) theory underlying all
superstring theories.

11d SUGRA

S1

S1/Z2

heterotic E8 × E8

T-dual

heterotic SO(32)

S-dual

type I type IIB

T-dual

type IIA
M-theory

Fig. 17: A web of T-dualities and S-dualities relate the five differently looking superstring
theories (type I, type IIA/IIB, heterotic E8 × E8/SO(32)) in 10d, and 11d supergravity (via
S1 or S1/Z2 compactification). These are all “perturbative” limits of a non-perturbative
theory, M-theory, in eleven dimensions.

Besides T-duality, this web also uses “S-duality”, which is a generalization of
electromagnetic duality (Fµν 7→ (?F)µν , (?F)µν 7→ −Fµν). In the context of QFTs,
S-duality maps the coupling, i.e., the coefficient 1

4g2 for FµνFµν , to g2/4. That is, it
exchanges a strongly-coupled QFT for a weakly-coupled QTF, both describing the
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same system. For this reason, S-duality is also called “strong/weak duality”. This
is also how it appears in the duality web: heterotic SO(32) string theory at string
coupling gs is dual to type I string theory at string coupling g′s = 1/gs; and type
IIB is S-self-dual, i.e., it is the same at string coupling g and 1/g. This is clearly a
useful kind of duality, in that it allows us to use Feynman diagrams to understand
strong-coupling effects! There are many incarnations of S-duality in quantum field
theory (typically supersymmetric), and oftentimes it is a string-theoretic realization
of such QFT models that provides the first evidence for the existence of an S-dual
description.

There is also a generalization of T-duality to higher dimensional compactification
manifolds. That is, for a given string compactification on a manifold Xd, there is
another compactification on X̃d that leads to the same physics in lower dimensions.
Such a duality is known as mirror symmetry. The name stems from the fact that
certain invariants of Xd and X̃d known as Hodge numbers, when organized into
(literally) the shape of a diamond, are related to each other by mirroring along a
diagonal line in the diamond. As can be shown (at the level of rigor acceptable to
physicists) from the worldsheet perspective, i.e., in terms of equivalent σ-model
CFTs, it relates compactifications of type IIA on a so-called Calabi–Yau manifold
Xd to compactifications of type IIB on the mirror-dual Calabi–Yau X̃d. This duality
is highly interesting for mathematicians, because it gives a entirely novel method to
learn about (hard-to-come-by) properties of Xd by performing (sometimes much
easier) computations on X̃d. In the context of “homological mirror symmetry”, this
has been formalized mathematically into a conjectured equivalence between certain
(derived) categories.

Another, perhaps by now the most studied duality originating from string theory,
is gauge/gravity duality, also known as the holographic principle. In this duality,
the two descriptions with the same underlying physical system are so vastly different,
that, prior to concrete string theoretic examples, their physical equivalence would
not have been conceivable. Under this duality, a quantum field theory (typically
a gauge theory) in d dimensions ought to be equivalent to a quantum gravity in
(d + 1) dimensions. Compared to others, this duality not only equates having no
gravity with having gravity, but also physics in different dimensions!

In string theory, the first concrete realization of this duality is the AdS/CFT
correspondence, which relates a conformal field theory in d-dimensional flat space
with a quantum gravity theory (realized by a string theory) in (d + 1)-dimensional
Anti-de Sitter (AdS) spacetime. The CFT can be thought of as living on the boundary
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of AdS, hence it has the flavor of being a hologram for the dynamics in the interior.13
In a special limit, the CFT becomes a strongly-coupled field theory with large
number of degrees of freedom, whereas the quantum gravity theory reduces to
a weakly-coupled (supersymmetric version of) Einstein-gravity in AdS. In this
case, one can learn about non-perturbative effects in CFTs using standard GR
computations.

More recently, the holographic principle has also been a gateway for ideas
in quantum information theory to enter the study of quantum gravity. Namely,
certain insights about quantum information on the QFT-side of the duality can be
translated into statements about the dual gravitational theory, which provides new
insights into the quantum nature of gravity. For example, it gives a concrete way
to make precise the statement “spacetime is emergent from quantum dynamics”,
by re-deriving geodesic equations on the gravity side (i.e., basic principles for
gravitational dynamics) from quantum entanglement on the QFT-side. Furthermore,
holography seems to also provide the intuition (as shown in some restrictive, but
very concrete settings) how the “black hole information paradox” is resolved in a
consistent theory of quantum gravity.

13 The name “holographic principle” actually goes back further, and originates from the Bekenstein–
Hawking formula for black hole entropy SBH =

k
4GN

A (with k being Boltzmann’s constant, and
GN the gravitational coupling constant), which scales not with the volume, but rather the surface
area A of the event horizon. Since the entropy is supposed to be counting degrees of freedom of the
black hole, it appears as if all the relevant data is stored on the surface, just as in a hologram.


	Motivation and Overview
	Classical Relativistic String
	Classical relativistic particle
	Action principles for a string
	The Nambu–Goto action
	The Polyakov action

	Classical solutions for the Polyakov string
	Gauge fixing the Polyakov String
	Oscillator mode expansions
	Imposing the constraints
	Poisson brackets and conformal symmetry


	The Quantum String
	Old covariant quantization
	Canonical quantization
	Implementing the constraints

	Critical dimension as quantum consistency
	Ground state masses
	Normal order constant from constraints at level one
	Spacetime dimension from constraints at level two

	Closed strings and spacetime gravity

	Scattering of Strings
	Vertex operators
	The State-Operator Correspondence
	Tree-level string amplitudes
	String coupling, loop amplitudes, and other remarks

	Strings in Background Fields
	Einstein's equations from the worldsheet
	The non-linear sigma-model
	The low-energy effective action in spacetime

	Open strings in background fields and D-branes
	The DBI action
	Non-Abelian gauge fields from brane stacks


	Circle Compactification and T-Duality
	KK-reduction on a circle
	Strings on a circle
	T-duality
	Dualities beyond T


