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1 Motivation

1.1 RG flows and scale invariance

Progress in science is possible thanks to the concept of e↵ective theories. When describing
a physical system we need to specify the relevant scale, and the description of such system
will depend on this scale. Beyond such a scale our description will break down.

We will take the point of view that any quantum field theory is fundamentally defined with
a ultra-violet (UV) cut-o↵ scale ⇤, corresponding to very small distances, or very large
momenta. This scale is physically significant and the QFT description should not be trusted
beyond it. The renormalization group flow gives us a systematic way to parametrise our
ignorance of physics at energies above the scale ⇤, in terms of coupling constants among the
low energies degrees of freedom. In other words, it parametrises how quantities which are
measurable at low energies depend on high energies degrees of freedom, with momenta of
order ⇤.

Let us see how this works in a simple example. Consider the following Lagrangian for a
single scalar field in d Euclidean dimensions

L =
1

2
(@µ�)

2 +
1

2
m2�2 +

�

4!
�4, (1.1)

and consider the functional integral

Z =

Z
[D�]⇤e�

R
ddxL(�) (1.2)

where

[D�]⇤ =
Y
|k|<⇤

d�(k) (1.3)

Namely, the independent degrees of freedom are given by the Fourier modes of the scalar
field

�space(x) =

Z
ddk

(2⇡)d
eik·x�(k),

and according to (1.3) we integrate over the Fourier modes with momentum up to |k| = ⇤
and set the rest to zero.

We want to study how the description in terms of low energy/momentum degrees of freedom
depends on the cut-o↵ ⇤. In order to do this we integrate out the degrees of freedom with
high energy. We introduce a real parameter 0 < b < 1 and split the integration variables in
two groups. The high momentum degrees of freedom are given by
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�̂(k) =

8<:
�(k) for b⇤  |k| < ⇤

0 for |k| < b⇤
(1.4)

Then we define a new scalar field �new(k) identical to the old one in the region |k| < b⇤ and
zero otherwise. Hence in the functional integral (1.2) we can replace

�(k) = �new(k) + �̂(k) ! �(k) + �̂(k) (1.5)

where we have renamed the new field simply by �(k), which now includes the degrees of
freedom with |k| between zero and b⇤ only. Upon this replacement we obtain

Z =

Z
[D�]b⇤

Z
D�̂ e�

R
ddxL(�+�̂) (1.6)

=

Z
[D�]b⇤e�

R
ddxL(�)

Z
D�̂e�

R
ddx( 1

2 (@µ�̂)
2+ 1

2m
2�̂2+� 1

6�
3�̂+··· )

Now we proceed as follows:

• Assume m,� are small and expand the second exponential order by order in these
parameters.

• Integrate over D�̂ term by term in this expansion.

• Recast everything as an exponential for the low energy degrees of freedom.

Although tedious, each step above is in principle a straightforward exercise in perturbation
theory. The details can be found on chapter 12 of the QFT book by Peskin and Schroeder.
One ends up with an expression of the form:

Z =

Z
[D�]b⇤e�

R
ddxL

eff

(�) (1.7)

where

Leff =
1

2
(@µ�)

2 +
1

2
m2�2 � �

4!
�4 +

1

2
µ2�2 +

⇣

4!
�4 +�C (@µ�)

4 +�D �6 + · · · (1.8)

In general, we can write

Leff =
1

2
(1 +�Z)(@µ�)

2 +
1

2
(m2 +�m2)�2 � 1

4!
(�+��)�4 +�C (@µ�)

4 + · · · (1.9)

where �Z, etc, depend on b in some complicated manner. The extra terms/corrections to the
original Lagrangian take into account that now we are only considering degrees of freedom
with |k| < b⇤: the interactions through higher energy degrees of freedom have been replaced
by these extra terms. This has to be necesarilly the case. After all, the functional integrals
(1.2) and (1.7) are actually equivalent!
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Renormalization group flow

In order to compare these equivalent formulations purely at the level of the Lagrangian,
consider the functional integral (1.7) and rescale distances and momenta:

x0 = xb, k0 = k/b, ! |k0| < ⇤ (1.10)

so that the integration regions of both functional integrals coincide. FurthermoreZ
ddxLeff =

Z
ddx0b�d

✓
1

2
(1 +�Z)b2(@0µ�)

2 +
1

2
(m2 +�m2)�2 + · · ·

◆
(1.11)

Next we rescale the scalar field as to have a canonical kinetic term (this will lead to a
canonical propagator):

�0 =
�
b2�d(1 +�Z)

�1/2
�, (1.12)

to arrive to the following expressionZ
ddxLeff =

Z
ddx

✓
1

2
(@µ�)

2 +
1

2
m02�2 +

�0

4!
�4 + · · ·

◆
(1.13)

where we have suppressed the primes on the field. This has very much the form of the
original Lagrangian, except the parameters have changed! More precisely

m02 = (m2 +�m2)(1 +�Z)�1b�2

�0 = (�+��)(1 +�Z)�2bd�4 (1.14)

C 0 = (C +�C)(1 +�Z)�2bd

and so on. In summary, we have managed to implement the process of integrating out high
energy degrees of freedom as a transformation at the level of the Lagrangian! We can now
assume b = 1 � �, very close to one, and consider redoing the above process many many
times. This will generate a continuous transformation acting on the space of Lagrangians.
This continuous transformation is called the renormalization group flow.

If one is interested in a process with typical energies E2 ⌧ ⇤2 it is useful to follow the above
procedure and flow

L(⇤) ! Leff (E)

Note that the flow is always from the UV to the infra-red (IR), a description with smaller
energy scale, see figure:
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Scale invariant theories

Consider the free-field Lagrangian

L0 =
1

2
(@µ�)

2 (1.15)

This Lagrangian is actually a fixed point of the renormalization group transformations. Since
the Lagrangian is quadratic, this is termed a Gaussian fixed point. Physically, a Lagrangian
on a fixed point of the renormalization group flow describes a scale invariant theory.

Let us now turn into a more interesting example. Imagine a Lagrangian very close to L0,
namely, m,�, etc are very small parameters. In this case �m2,��,�Z, etc in (1.14) are of
second order and can be discarded. Hence

m02 = m2b�2

�0 = �bd�4 (1.16)

C 0 = Cbd

As we flow from the UV (high energies) to the IR (low energies) we apply the above trans-
formation with b = 1� � and many many times. Three things can happen:

• A coupling gets multiplied by a negative power of b. In this case, it grows along the
flow, taking us away from the fixed point (like an unstable perturbation). We say that
the corresponding operator is relevant and that we have perturbed L0 by a relevant
operator. An example is �2 above.

• A coupling gets multiplied by a positive power of b. In this case the perturbation
decays along the flow. We call this an irrelevant perturbation. An example is (@µ�)4

above.

• Some operators are marginal, such as �4 in d = 4. In this case their couplings do not
scale with b 1.

1Usually this ceases to be true when higher orders in perturbation theory are taken into account. The
existence of exactly marginal operators in a theory usually requires extra symmetries.
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The power of b multiplying a given coupling, and whether an operator is relevant or
irrelevant, can be understood by dimensional analysis. Consider an action of the form

S =

Z
ddx

✓
1

2
(@µ�)

2 + ↵m,n@
m�n

◆
where @m�n is a generic insertion with m derivatives and n scalar fields. Recall that
distances have mass dimension �1, while derivatives have mass dimension +1. In order
for the action to be dimensionless the free scalar field in d dimensions should have mass
dimension:

[�] =
d� 2

2
from this we can deduce

[@m�n] = n
d� 2

2
+m ! [↵m,n] = d� n

d� 2

2
�m

Along the flow distances get rescaled according to (1.10) so that

↵ ! ↵0 = ↵b�[↵]

The three examples above correspond to [↵0,2] = 2, [↵0,4] = 4 � d and [↵4,4] = �d,
consistent with the correct rescaling.

A very important consequence of this discussion is that, for d > 2, there is only a small
number of relevant operators. Indeed, @m�n will be relevant for

d� n
d� 2

2
�m > 0

Going back to our example, let us consider the flow diagrams in the (m2,�) plane. Whether
�4 is relevant or not depends on the number of dimensions d. For d > 4 �4 is irrelevant and
we obtain the following flow diagram

�

m2

As we move toward lower energies, from the UV to the IR, we see that the perturbation
proportional to �4 dies o↵, while the relevant perturbation proportional to �2 take us away
from the fixed point. From this example, we learn a very important and general lesson: no
matter how complicated the Lagrangian is in the UV, just a few, relevant terms, will survive
at low energies. This explains the success, and simplicity, of low energy e↵ective theories.
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For d = 4 the flow diagram looks very much the same as for d > 4, although one would
need to go to higher order in order to check this. For d < 4 things are more interesting.
In this case the operator �4 is relevant, so that this perturbation also takes us away from
the Gaussian fixed point. However, as � gets larger, higher order corrections become more
important. It turns out that the Lagrangian flows to another, non-gaussian, fixed point, with
� 6= 0, and the flow diagram looks like

�

m2

Gaussian fixed point Wilson-Fisher fixed point

This second, non-gaussian fixed point is called Wilson-Fisher fixed point. As already men-
tioned for the gaussian case, the theory will be scale invariant at that point. However,
note that it will not be described by a weakly coupled Lagrangian (unless the number of
dimensions is very close to four, in which case both fixed points are very close to each other).

General picture

In general, a Lagrangian may contain any combination of fields and their derivatives, con-
sistent with the symmetries of the problem. Quantum field theories with fixed Lagrangian
L(m,�, · · · ) are points of a manifold. The renormalization group flow gives us flows (paths
with orientation) in this manifold.

• •

This flow has fixed points. We can think of the fixed points as fixing the ”topology” of the
above manifold. It is furthermore believed (but it hasn’t been proven) that any QFT may be
obtained by starting from a fixed point and adding an appropriate relevant deformation 2.

2Possible counterexamples to this would be a closed loop or a flow line that extends to infinity in both
directions, not ending at any point.
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Hence, the study of these fixed points is necessary to understand the structure of the space
of QFTs.

A quantum field theory at an arbitrary point of the above manifold should be Poincare
invariant. Furthermore, as we have discussed, at fixed points the theory is in addition scale
invariant. We will assume that Poincare invariance together with scale invariance imply full
conformal invariance (to be defined below). This is actually the case for every known relevant
theory. This should be a very strong motivation to study conformal field theories!

1.2 Scale invariance in statistical mechanics

Before we proceed, let us discuss briefly how scale invariance arises in statistical models. The
best known and simplest example is the Ising model, a quantum system consisting on spins
�i = ±1 on a square lattice. The Hamiltonian of the system is given by

H = �
X
hi,ji

�i�j (1.17)

where the sum is only performed over nearest neighbours. For a total of N sites, there are
2N configurations, which we denote as {�}. The system has two ground states (states of
minimal energy), namely all spins up or all spins down. The system can be considered at
finite temperature T . The thermal partition function is given by

Z(�) =
X
{�}

e��H (1.18)

where � = 1/T . Thermal expectation values are then defined with respect to this partition
function

hOi =
P

{�} O({�})e��H

Z(�)
(1.19)

A natural observable to study in any spin system is the spin correlator h�i�ji, which for large
lattices and due to translation invariance is expected to be a function of the distance |i� j|.
The behaviour of the correlator depends on the temperature of the system. If the temperature
is very small the system will choose one of its two grounds states and h�i�ji ! h�i2, which is
a constant. If the temperature is very high (above certain critical value), we expect the spins
to be randomly aligned and the correlator to fall quite fast as a function of the distance.
Indeed:

h�i�ji ⇠ e�|i�j|/⇣(T ), T > Tc (1.20)

where ⇣(T ) is a correlation length. As T ! Tc from above, something very interesting
happens. The correlation length diverges, with a specific behaviour

⇣(T ) ⇠ (T � Tc)
�⌫

This divergence leads to a change in the behaviour of the correlator and now:
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h�i�jiT
c

⇠ 1

|i� j|d�2+⌘
(1.21)

⌫ and ⌘ are examples of what is called critical exponents. We will see that the behaviour
(1.21) is characteristic of correlators in conformal field theories.

In order to understand how scale invariance arises near criticality, let us apply the ideas of
the renormalization group flow to spin systems. Assume we are near criticality, so that the
correlation length is very large. In this case nearby spins |i�j| ⌧ ⇣ should be well correlated
and we should be able to replace a block of 2⇥ 2 spins by an e↵ective spin (since inside each
blocks the spins are approximately aligned):

this is called a block spin transformation. Note that in terms of the e↵ective spin the
correlation length changed as

⇣ ! ⇣ 0 = ⇣/2 (1.22)

Furthermore, we can describe the system in terms of a Hamiltonian for the e↵ective spins,
which can be in principle derived from the original Hamiltonian. Note the very close analogy
between this discussion and the discussion above regarding QFT. At criticality the corre-
lation length tends to infinity, and the system will present self-similarity under the block
spin transformation (assuming the lattice has no boundaries) and the theory describing the
e↵ective degrees of freedom should be invariant under scale transformations.
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2 Conformal transformations

A conformal theory is a theory which is invariant under conformal transformations, so we
start by defining them. First we will discuss how they act on space-time coordinates and
then their action on fields.

2.1 Conformal transformations

Denote by gµ⌫ the metric tensor in a d�dimensional space-time. A conformal transformation
of coordinates is an invertible map x ! x(x0) which leaves the metric invariant up to (local)
rescaling:

g0µ⌫(x
0) = ⇤(x)gµ⌫(x) (2.1)

Two comments are in order:

• Isometries correspond to ⇤(x) = 1, so that they are a subset of conformal transfor-
mations. When gµ⌫ = ⌘µ⌫ , flat space, the group of isometries is simply the Poincare
group, given by translations plus Lorentz rotations.

• Scale transformations/dilatations correspond to ⇤(x) = const. so that a confor-
mal transformation looks locally like a scale transformation plus a rotation plus
a translation. In particular, they do not change the angle between intersecting
curves, and from this derives their name: transformations which do not change the
form.

Let us look at the condition (2.1) for an infinitesimal coordinate transformation:

xµ ! x0µ = xµ + ✏µ(x) (2.2)

where ✏µ(x) is very small. Under a general coordinate transformation

g0µ⌫ =
@x↵

@x0µ
@x�

@x0⌫ g↵� (2.3)

so that
gµ⌫ ! gµ⌫ � (@µ✏⌫ + @⌫✏µ) +O(✏2) (2.4)

The requirement (2.1) with ⇤(x) ' 1 + f(x) is then equivalent to

@µ✏⌫ + @⌫✏µ = f(x)gµ⌫ (2.5)

Taking the trace of this relation fixes

10



f(x) =
2

d
@⇢✏

⇢ (2.6)

Although conformal transformations can be studied in general backgrounds, we will assume
the original metric is ⌘µ⌫ = diag(1, 1, · · · , 1) (the treatment would be identical in Minkowski
space). Taking partial derivative @⇢ of (2.5) plus permutations one can show

2@µ@⌫✏⇢ = ⌘µ⇢@⌫f + @⌫⇢@µf � ⌘µ⌫@⇢f (2.7)

from where we deduce

2@2✏µ = (2� d)@µf (2.8)

But then, @⌫ of this equation together with @2 of (2.5) lead to

(2� d)@µ@⌫f = ⌘µ⌫@
2f ! (d� 1)@2f = 0 (2.9)

It is clear from this equations that there is a crucial di↵erence between d = 2 and d > 2.
The case d = 2 will be studied later at length. For the moment, let us assume d > 2. In this
case (2.9) imply @µ@⌫f = 0, so that f is at most linear in the coordinates:

f = A+Bµx
µ (2.10)

where A,Bµ are some constants. At the level of ✏ this implies that ✏ is at most quadratic!
So that

✏µ = aµ + bµ⌫x
⌫ + cµ⌫⇢x

⌫x⇢ (2.11)

with cµ⌫⇢ = cµ⇢⌫ . For now aµ, bµ⌫ and cµ⌫⇢ are arbitrary constants. Finally, we can plug this
form of ✏µ into (2.5) and require the condition to be satisfied for all x. This leads to the
following:

• aµ is free of constraints, and corresponds to infinitesimal translations.

• bµ⌫ = ↵⌘µ⌫ + mµ⌫ , with mµ⌫ = �m⌫µ. The trace part corresponds to an infinites-
imal scale transformation. mµ⌫ corresponds to an infinitesimal Lorentz transforma-
tion/rotation.

• cµ⌫⇢ = ⌘µ⇢b⌫ + ⌘µ⌫b⇢ � ⌘⌫⇢bµ, for a constant vector bµ.

The last transformation acts on coordinates as

xµ ! x0µ = xµ + 2(x · b)xµ � bµx2 (2.12)

and is called a special conformal transformation. The finite versions of these transformations
are given by
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· Translations: x0µ = xµ + aµ

· Rigid rotations: x0µ = Mµ
⌫x

⌫

· Dilatations: x0µ = ↵xµ

· Special CT: x0µ = xµ�bµx2

1�2b·x+b2x2

This is the complete set of conformal transformations. Note that the first two, translations
and rigid rotations, form the Poincare transformations. Let us count the number of genera-
tors in d dimensions. There are d generators of translations, d(d�1)

2 generators of rotations,
one dilatation generator and d generators of special conformal transformations. So that in
total we have (d+1)(d+2)

2 generators.

Before proceeding, let us make one important remark. We can introduce the inversion I, a
finite transformation with I2 = 1, such that

I : xµ ! x0µ =
xµ

x2
(2.13)

It can be checked that performing an inversion, followed by a translation, followed by another
inversion, is actually equivalent to a special conformal transformation.3 We will return to
this fact later.

2.2 The conformal group

Conformal transformations posses the structure of a group: the composition of conformal
transformations is another conformal transformation and given a conformal transformation
its inverse is also a conformal transformation. In the following we will construct a represen-
tation of the conformal generators as di↵erential operators acting on functions/fields. This
will allow to study the conformal group.

Given a coordinate transformation x ! x0 = x0(x) we can define its action on functions �(x)
by defining the transformed functions

�0(x0) ⌘ �(x) (2.14)

A infinitesimal coordinate transformation can always be written in the form

x0µ = xµ + !a
�xµ

�!a

(2.15)

where !a is very small. We define the generator Ga of such transformation by

3One should be careful with the following subtlety. The inversion may not be a symmetry of our problem,
even if full conformal transformations are. For instance, the inversion takes the origin to the point at infinity,
which may not be part of the manifold on which the theory is defined. One can add the point at infinity,
but has to be careful about subtleties.
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�!�(x) = �
0(x)� �(x) = �i!aGa�(x) (2.16)

From (2.14) we obtain

i!aGa�(x) = �(x)� �0(x) = �(x)� �(x� !a
�xµ

�!a

) (2.17)

So that

iGa�(x) =
�xµ

�!a

@µ�(x) (2.18)

So far the discussion has been pretty general, let us know focus on conformal transformations.
For instance, consider infinitesimal translations by !µ. In this case the a index in !a is just a
space-time index and �xµ

�!⌫

= �µ⌫ . The generator of translations on functions, usually denoted
by Pµ, then follows from (2.18) and takes the form

Pµ = �i@µ (2.19)

Infinitesimal Lorentz transformations take the form

x0µ = xµ + !µ
⌫x

⌫ = xµ + !⇢⌘⌘
⇢⌫x⌫ (2.20)

where !⇢⌘ is antisymmetric. Now the index a = ⇢⌫ and

�xµ

�!⇢�

=
1

2
(⌘⇢µx⌫ � ⌘⌫µx⇢) (2.21)

from where the form of the Lorentz generators follows. Proceeding this way, we obtain a
explicit representation for the generators of the conformal algebra as di↵erential operators
acting on functions:

· Translations: Pµ = �i@µ

· Rigid rotations: Lµ⌫ = i (xµ@⌫ � x⌫@µ)

· Dilatations: D = �ixµ@µ

· Special CT: Kµ = �i (2xµx⌫@⌫ � x2@µ)

It is now straightforward (although quite tedious!) to compute the commutator among these
operators. We obtain the conformal algebra
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Conformal Algebra

[D,Pµ] = iPµ, [D,Kµ] = �iKµ, [Kµ, P⌫ ] = 2i (⌘µ⌫D � Lµ⌫)

[Lµ⌫ , P⇢] = �i (⌘µ⇢P⌫ � ⌘⌫⇢Pµ) , [Lµ⌫ , K⇢] = �i (⌘µ⇢K⌫ � ⌘⌫⇢Kµ)

[Lµ⌫ , L⇢�] = �i (Lµ⇢⌘⌫� � Lµ�⌘⌫⇢ � L⌫⇢⌘µ� + L⌫�⌘µ⇢)

[D,Lµ⌫ ] = 0, [Pµ, P⌫ ] = 0, [Kµ, K⌫ ] = 0, [D,D] = 0

Defining

Jµ,⌫ = Lµ⌫ , J�1,µ =
1

2
(Pµ �Kµ) (2.22)

J�1,0 = D, J0,µ =
1

2
(Pµ +Kµ) (2.23)

and Ja,b = �Jb,a, for a = �1, 0, 1, · · · d, one can check the generators Ja,b satisfy the SO(d+
1, 1) commutation relations (or SO(d, 2) in Minkowski space), which indeed has a total of
(d+ 1)(d+ 2)/2 generators. Hence, the conformal Algebra in d dimensions is isomorphic to
SO(d+ 1, 1) or SO(d, 2).

Before proceeding, note the following important point. Lµ⌫ and Pµ form the Poincare group.
On the other hand, Lµ⌫ , Pµ and D form also a subgroup. So mathematically full conformal
symmetry is not necessarily implied by scale symmetry plus Poincare invariance.

2.3 Action on operators

In quantum field theory symmetries should be realised as operators acting on the Hilbert
space (Schrodinger picture) or on local operators (Heisenberg picture). From now on we will
follow this second view. Imagine we have a multicomponent operator �↵(x) (there is more
than one component if the operator has spin). In the Heisenberg picture the x-dependence
is given by

�↵(x) = e�iPx�↵(0)e
iPx (2.24)

taking a derivative with respect to x

@µ�↵(x) = e�iPx(�iPµ�↵(0) + �↵(0)iPµ)e
iPx = �i[Pµ,�↵(x)] (2.25)

we obtain the action of the generator Pµ on the operator:

[Pµ,�↵(x)] = i@µ�↵(x) (2.26)
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In order to find the action of the remaining generators of the conformal group we apply the
following strategy. First we focus in the stability group, which is the subgroup that leaves
the origin invariant. In the case of the conformal group this is spanned by Lorentz rotations
Lµ⌫ , the dilatation operator D and special conformal transformations Kµ. Next we declare
the following actions of these operators at the origin:

[D,�↵(0)] = i��↵(0) (2.27)

[Lµ⌫ ,�↵(0)] = i(Sµ⌫)
�
↵��(0) (2.28)

[Kµ,�↵(0)] = 0 (2.29)

where � is called the scaling dimension and Sµ⌫ is a matrix that depends on the Lorentz
spin of the field, and is zero for scalar fields. We take the transformations (2.27) - (2.29)
as the definition of a primary operator of scaling dimension �. In particular, an operator
is primary if it is annihilated by special conformal transformations at the origin. Actually,
the Schur’s lemma implies the right hand side of (2.29) has to be zero if the operator is in a
irreducible representation of the Lorentz group, in other words, if it is not the derivative of
another operator.

By using �↵(x) = e�iPx�↵(0)eiPx together with the conformal algebra derived above we can
then work out the action of the conformal generators on �↵(x). For instance:

[D,�↵(x)] = De�iPx�↵(0)e
iPx � e�iPx�↵(0)e

iPxD

= e�iPx
�
eiPxDe�iPx�↵(0)� �↵(0)e

iPxDe�iPx
�
eiPx

= e�iPx[D̂,�↵(0)]e
iPx

where we have defined D̂ = eiPxDe�iPx. D̂ can be computed by using the conformal algebra

D̂ =

✓
1 + ixP � (xP )2

2
+ · · ·

◆
D

✓
1� ixP � (xP )2

2
+ · · ·

◆
= D + ixµ[Pµ, D]� 1

2
xµx⌫ [Pµ, [P⌫ , D]] + · · ·

but due to the structure of the conformal algebra [Pµ, [P⌫ , D]], as well as higher terms,
vanishes. Actually, for any generator the above series truncates just after one or two terms!
We obtain

D̂ = D + xµPµ (2.30)

the action [D̂,�↵(0)] can then be obtained from the definition (2.27) and we obtain

[D,�↵(x)] = i (�+ xµ@µ)�↵(x) (2.31)
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The same trick can be applied to the rest of the generator. The complete list of the action
of conformal generators on operators is

[Pµ,�↵(x)] = i@µ�↵(x) (2.32)

[D,�↵(x)] = i (�+ xµ@µ)�↵(x) (2.33)

[Lµ⌫ ,�↵(x)] = �i (xµ@⌫ � x⌫@µ)�↵(x) + i(Sµ⌫)↵���(x) (2.34)

[Kµ,�↵(x)] = 2ixµ��↵(x) + i
�
2xµx

⌫@⌫ � x2@µ
�
�↵(x) + 2ix⇢(S⇢µ)↵���(x) (2.35)

From these transformations we can work out the finite transformations for primary fields4.
For instance, for a primary scalar field (hence spinless) of scaling dimension � we find

�(x) ! �0(x0) =

����@x0

@x

������/d

�(x) (2.36)

under conformal transformations x ! x0.
��@x0

@x

�� is the Jacobian of the transformation. Re-
calling ����@x0

@x

���� = ⇤(x)�d/2 (2.37)

we obtain

�0(x0) = ⇤(x)�/2�(x) (2.38)

In the next section we will study the consequences of this fact. Let us close this section with
the following interesting side remarks

In quantum mechanics one focuses on eigenstates of the Hamiltonian operator P0. In
CFT we rather focus on eigenstates of the dilation operator D, and their eigenvalues
�. From the conformal algebra it follows that P will raise the dimension by one, while
K will lower the dimension by one. The situation is very much as for the harmonic
oscillator, with P and K playing the role of creating and annihilation operators. As for
the harmonic oscillator, we cannot lower the dimension forever. At some point we reach
a state O� such that further application of K annihilates it:

K · O� = 0

Such states are called primaries. Once we have identified the primaries, all other states
in the CFT can be obtained by applying the ”creation” operators P :

4We think of fields as fields operators, as usually done in second quantization.
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Pµ · · ·P⌫ · O�

These ”descendant” operators are then simply derivatives of the primaries.

Actually, it turns out that the dilatation operator D can be though of as the Hamiltonian
of another theory. Consider Rd in spherical coordinates

ds2 = dr2 + r2d⌦d�1 = r2

dr2

r2
+ d⌦d�1

�
Now let t = log r so that

dr2

r2
+ d⌦d�1 = dt2 + d⌦d�1

which is the metric on R ⇥ Sd�1. Now, if we are considering a CFT on Rd, the theory
should be invariant under rescaling of the metric! so that studying a CFT on Rd should
be equivalent to study the theory on R⇥ Sd�1:

Rd R⇥ Sd�1

A very interesting feature of this map is that it takes circles of constant radius in Rd

to constant t slices on R ⇥ Sd�1. As a consequence, the dilatation operator on Rd,
which maps circles onto circles with di↵erent radius, corresponds to time translations on
R⇥ Sd�1, so it behaves as a Hamiltonian!
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3 Consequences of conformal invariance

3.1 Classical symmetries in quantum field theory

Conformal transformations are continuous transformations of space-time and fields. Let us
recall a few things about continuous transformations in QFT . Consider a general action

S =

Z
ddxL(�, @µ�) (3.1)

depending on a collection of fields � and their derivatives. A general transformation takes
the form

x ! x0 = x0(x) (3.2)

�(x) ! �0(x0) = F(�(x)) (3.3)

Let us now consider the transformed action. We can show

S[�0] =

Z
ddxL(�0(x), @µ�

0(x))

=

Z
ddx0L(�0(x0), @0µ�

0(x0))

=

Z
ddx0L(F(�(x)), @0µF(�(x)))

=

Z
ddx

����@x0

@x

����L(F(�(x)),
@x⌫

@x0µ@⌫F(�(x))) (3.4)

For a given transformation, we would like to understand under which conditions the classical
action is invariant S[�0] = S[�] , so that it will lead to a theory with that symmetry at the
classical level. Consider first translations:

x0µ = xµ + aµ (3.5)

�0(x+ a) = �(x) (3.6)

so that @x⌫

@x0µ = �µ⌫ and F = Id, the identity. In this case the action is invariant unless it
depends explicitly on x. Let us consider now Lorentz transformations

x0µ = ⇤µ
⌫x

⌫ (3.7)

�0(⇤ · x) = L⇤�(x) (3.8)
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where ⌘µ⌫⇤µ
⇢⇤

⌫
� = ⌘⇢� and the matrices L⇤ form a representation of the Lorentz group,

depending on the spin of � 5. For these transformations���� @x@x0

���� = 1 (3.9)

so that

S[�0] =

Z
ddxL(L⇤�,⇤

�1 · @(L⇤�)) (3.10)

For instance, for scalar fields L⇤ = 1 and the action is invariant under Lorentz transforma-
tions provided the derivatives @µ appear in a Lorentz invariant way (properly contracted).

Let us now analyse scale transformations

x0 = �x !
���� @x@x0

���� = �d (3.11)

�0(�x) = ����(x) (3.12)

where � is the scaling dimension of the field. Hence

S[�0] = �d
Z

ddxL(����,��1��@µ�) (3.13)

For instance, the action for the free scalar field

S['] =

Z
dd@µ'@

µ' (3.14)

is invariant provided � = 1/2d � 1 for the scalar field, in agreement with our expectations
on dimensional grounds! Furthermore, in d�dimensions we can add a term:

S[']int =

Z
ddx'n (3.15)

provided �d

�n� = 1 so that n = d
� = 2d

d�2 , for instance, we can add '4 in four dimensions and
'3 in six.

5Infinitesimally L⇤ = 1� 1
2!⇢⌫S

⇢⌫ , where S

⇢⌫ are the matrices previously introduced.

19



3.2 Infinitesimal transformations and conserved quantities

Along the lines of the discussion above, let us consider infinitesimal transformations

x0µ = xµ + !a
�xµ

�!a

�0(x0) = �(x) + !a
�F
�!a

(3.16)

A very important result is the

�

⇢

⇠

⇡

Noether’s theorem

To every continuous symmetry of the action one may associate a current which is
classically conserved.

Let us assume (3.16) is a symmetry of the action. Namely, it leaves the action invariant,
where !a is a rigid parameter, i.e. independent of x. Provided this is true one can promote
!a ! !a(x), an arbitrary function of x, and show that the infinitesimal variation of the
action is given by

�S = �
Z

ddxjµa@µ!a (3.17)

with the current associated to the transformation given by

jµa =

✓
@L

@(@µ�)
@⌫�� �⌫⌫L

◆
�x⌫

�!a

� @L
@(@µ�)

�F
�!a

(3.18)

Now, if the field configuration satisfies the classical equations of motion, then �S = 0, as
against any variation. Then, integrating (3.17) by parts and since !a(x) is arbitrary we
obtain

@µj
µ
a = 0 (3.19)

which is the conservation equation! from this we can define a conserved charge

Qa =

Z
dd�1xj0a (3.20)

where the integral is over a constant time slice. This charge can be shown to be conserved
provided the conservation equation holds and the fields decay at infinity su�ciently fast.

Let us make the following remark. Given a conserved current jµa we could always redefine it

jµa ! jµa + @⌫B
µ⌫
a
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with Bµ⌫ = �B⌫µ and this new current would also be conserved. This extra term is called
”improvement” term, since the new current may have nicer properties. We will use this
freedom momentarily.

Energy momentum tensor

The conserved current associated with translational invariance is the energy momentum
tensor. For an infinitesimal translation xµ ! xµ + ✏µ we have �x⌫

�✏µ
= �⌫µ and �F

�✏⌫
= 0 so that

T µ⌫
c = �⌘µ⌫L+

@L
@(@µ�)

@⌫� (3.21)

where the subindex c stands for ”canonical” energy momentum tensor. The conservation law
is then

@µT
µ⌫
c = 0 (3.22)

while the conserved charge is the momentum:

P ⌫ =

Z
dd�1xT 0⌫

c (3.23)

For instance, the energy P 0 is given by

P 0 =

Z
dd�1x

✓
@L
@�̇

�̇� L
◆

(3.24)

Which hopefully you all recognise!

It turns out that if the theory is Poincare invariant, namely, also invariant under Lorentz
rotations, we can ”improve” the stress tensor by using the freedom above:

T µ⌫
c ! T µ⌫ (3.25)

such that the new energy momentum tensor is symmetric T µ⌫ = T ⌫µ. This is called the
Belinfante construction and is the stress tensor we will refer to.

The following feature will be important in what follows. We can consider a general infinites-
imal coordinate transformation

x0µ = xµ + ✏µ(x) (3.26)

as a translation with an x�dependent parameter ✏µ(x). Hence from (3.17), with jµa ! T µ⌫ ,
we obtain

�S = �
Z

ddxT µ⌫@µ✏⌫ = �1

2

Z
ddxT µ⌫ (@µ✏⌫ + @⌫✏µ) (3.27)
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where we have assumed T µ⌫ is symmetric, which we can. Finally, let us mention that
the stress tensor also generates the deformations under more general conformal transforma-
tions. Given ✏⌫ corresponding to an infinitesimal conformal transformation, the correspond-
ing Noether current is jµ = Tµ⌫✏⌫ .

Stress tensor and conformal invariance

What are the consequences of scale and conformal symmetry for the stress tensor? As we
have just discussed for a translation invariant QFT we can construct a conserved stress tensor
@µT µ⌫ = 0. Furthermore, if the theory possesses Poincare invariance, then T µ⌫ can be chosen
to be symmetric. Furthermore:

�S = �1

2

Z
ddxT µ⌫ (@µ✏⌫ + @⌫✏µ) (3.28)

recall that for a conformal transformation @µ✏⌫ + @⌫✏µ = ⌘µ⌫f(x) so that

�S = �1

2

Z
ddxf(x)T µ

µ (3.29)

Scale invariance implies �S = 0 for f(x) = ↵, so that for scale invariant theories T µ
µ is a

total derivative:

T µ
µ = @⌫J

⌫ (3.30)

Jµ is usually called a virial current. Finally, if the stress tensor is traceless T µ
µ = 0, then

�S = 0 also for f(x) corresponding to special conformal transformations, and the theory is
conformally invariant. Note however, that this is a stronger condition and is in principle not
implied by (3.30) 6

In summary a conformal field theory must have a conserved stress tensor @µT µ⌫ = 0, which
is symmetric T µ⌫ = T ⌫µ and traceless T µ

µ = 0.

Example: The free boson

Let us consider for example the Euclidean action for the free boson

S['] =
1

2

Z
ddx@µ'@

µ'

The canonical stress tensor can be computed from (3.21) and we obtain

T µ⌫ = �1

2
⌘µ⌫@⇢'@

⇢'+ @µ'@⌫'

6Since f(x) is not general it may seem that the requirement Tµ
µ = 0 is too strong. The precise condition

is that it exists a rank two current such that Tµ
µ = @⌫@⇢J

⌫⇢. However, if such was the case, the stress tensor
can always be improved as to make it traceless.
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which is already symmetric. It is straightforward to check that @µT µ⌫ = 0, upon using
the equations of motion @µ@µ' = 0. On the other hand

T µ
µ = �1

2
(d� 2)@⇢'@

⇢' = �1

2
(d� 2)@⇢('@

⇢')

In d = 2 this vanishes so that the theory is conformal invariant. In general dimensions
it is possible to prove that there is an improvement term such that the new stress-tensor
is traceless as well.

Often an alternative definition of the stress tensor is given, namely as measuring the
response of the action under small variations of the metric. More precisely:

Tµ⌫ =
2
p
g

�S

�gµ⌫

����
g
µ⌫

=⌘
µ⌫

where g = det gµ⌫ . In order to compute this we need to couple our theory to gravity. In
other words, we need to promote the metric to a dynamical field. For instance, for the
free scalar field

S[', gµ⌫ ] =
1

2

Z
ddx

p
ggµ⌫@µ'@⌫'

Under a variation gµ⌫ ! gµ⌫ + �gµ⌫ we obtain

�
p
g = � 1

2
p
g
gµ⌫�g

µ⌫

So that

T µ⌫ = �1

2
⌘µ⌫@⇢'@

⇢'+ @µ'@⌫'

which precisely agrees with what we obtained before. More generally the stress tensor
obtained this way could di↵er from the canonical stress tensor by a improvement term.

3.3 Quantum conformal symmetry: implications for correlators

Once we have an action invariant under some symmetry, i.e. the theory has a classical
symmetry, we focus on the quantum theory. At quantum level the natural object to study
are correlation functions

h�(x1) · · ·�(xn)i =
1

Z

Z
[d�]�(x1) · · ·�(xn)e

�S[�] (3.31)

We will assume both the action and the functional integration measure [d�] are invariant.
The later is higher non-trivial for scale transformations, as we have seen that QFT comes
endowed with a scale (the UV cut-o↵). If a symmetry of the classical theory is broken at the

23



quantum level we say that there is an anomaly. Scale invariance is preserved at the quantum
level at fixed points of the renormalization group flow, which requires a very precise tuning
of the parameters of the theory. Provided a symmetry is present one can show:

h�(x0
1) · · ·�(x0

n)i = h�0(x0
1) · · ·�0(x0

n)i = hF(�(x1)) · · · F(�(xn))i (3.32)

Indeed Z
[d�]�(x0

1) · · ·�(x0
n)e

�S[�] =

Z
[d�0]�0(x0

1) · · ·�0(x0
n)e

�S[�0]

=

Z
[d�]F(�(x1)) · · · F(�(xn))e

�S[�] (3.33)

In the first line we have renamed the dummy integration variable �! �0. In the second line
we have changed variables and assumed [d�0] ! [d�] with Jacobian one, together with the
invariance of the metric. Recall that �0(x0) = F(�(x)).

For instance, for translations (3.32) implies

h�(x1 + ~a) · · ·�(xn + ~a)i = h�(x1) · · ·�(xn)ii (3.34)

So that in a theory with translation invariance the correlator is only a function of relative
positions, as well known! Next, consider Lorentz transformations on scalar operators, (3.32)
implies

h�(⇤µ
⌫x

⌫
1) · · ·�(⇤µ

⌫x
⌫
n)i = h�(x1) · · ·�(xn)i (3.35)

So that indices have to be contracted in a Lorentz invariant way.

Conformal invariance constraint on correlators

In addition to Poincare invariance, let us assume a theory has full conformal symmetry at the
quantum level. As mentioned above operators are classified into primaries and descendants
(which are derivatives of the primaries). For each primary there is a tower of descendants.
Correlators involving descendants are fixed in terms of the correlators of their corresponding
primaries, by taking derivatives. Hence we will focus on correlators of primaries. From now
on we will focus on scalars, so that (3.32) implies

h�(x0
1) · · ·�(x0

n)i =
����@x0

@x

������1/d

x=x1

· · ·
����@x0

@x

������
n

/d

x=x
n

h�(x1) · · ·�(xn)i (3.36)

or equivalently

h�(x1) · · ·�(xn)i =
����@x0

@x

�����1/d

x=x1

· · ·
����@x0

@x

�����n

/d

x=x
n

h�(x0
1) · · ·�(x0

n)i (3.37)

this is a relation involving the same fields, but di↵erent points in space. Let us analyse the
consequences of this relation case by case.
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Two-point functions of scalars

Poincare invariance (translations plus rotations) implies

h�1(x1)�2(x2)i = f(|x1 � x2|) (3.38)

Scale transformations x ! x0 = �x further imply

h�1(x1)�2(x2)i = ��1+�2h�1(�x1)�2(�x2)i
so that f(x) = ��1+�2f(�x) and hence

h�(x1)�(x2)i =
C12

|x1 � x2|�1+�2

Finally, let us take into account special conformal transformations. These satisfy����@x0

@x

���� = 1

(1� 2b · x+ b2x2)d
(3.39)

also, one can show the following very useful property

|x0
i � x0

j| =
|xi � xj|
�1/2i �1/2j

, (3.40)

where we have introduced �i = 1 � 2b · xi + b2x2
i . Special conformal transformations then

imply

C12

|x1 � x2|�1+�2
=

1

��1
1 ��2

2

C12

|x0
1 � x0

2|�1+�2
=

(�1�2)
�1+�2

2

��1
1 ��2

2

C12

|x1 � x2|�1+�2
(3.41)

Since �1 and �2 are independent this can only be satisfied provided �1 = �2. Hence, two
primary fields are correlated only if they have the same scaling dimension:

h�1(x1)�2(x2)i =

8<:
0 �1 6= �2

C12
|x12|2� �1 = �2

(3.42)

where we have introduced the notation x12 = x1 � x2 and we could have normalized the
operators such that C12 = 1.

Three-point functions of scalars

In a Poincare invariant theory

h�1(x1)�2(x2)�3(x3)i =
C123

|x12|a|x23|b|x13|c
(3.43)
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Scale invariance requires

a+ b+ c = �1 +�2 +�3 (3.44)

However, this does not fix a, b, c completely, and in principle the answer could a sum over
such allowed contributions. Finally, special conformal transformations require

C123

|x12|a|x23|b|x13|c
=

(�1�2)a/2(�2�3)b/2(�3�1)c/2

��1
1 ��2

2 ��3
3

C123

|x12|a|x23|b|x13|c
(3.45)

since all �i are independent, this constraint for all x1, x2, x3 fixes a, b, c fully

a = �1 +�2 ��3

b = �2 +�3 ��1 (3.46)

c = �3 +�1 ��2

So that

h�1(x1)�2(x2)�3(x3)i =
C123

|x12|�1+�2��3 |x23|�2+�3��1 |x13|�3+�1��2
(3.47)

Note the following. Once we have normalized the operators such that Cij = 1, we have no
more freedom, so Cijk, for three given primaries, has non-trivial physical content.

Fields with Lorentz indices

A natural question is what can conformal symmetry say about correlators of fields with
Lorentz indices. Let us see some important examples. We start with the two point correlator
of operators with one Lorentz index Jµ(x). Translational invariance allows us to write

hJµ(x)J⌫(y)i =
↵µ⌫(x� y)

|x� y|2� (3.48)

where ↵µ⌫(x � y), to be determined, should be invariant under scaling transformations.
Furthermore, ↵µ⌫(x) should have the correct Lorentz structure: namely, it has two indices
µ, ⌫, should be symmetric under µ $ ⌫ and should be built from the ingredients entering
the problem. The most general form consistent with these constraints is

↵µ⌫(x) = ⌘µ⌫ + ↵
xµx⌫

x2
(3.49)

where ↵ is a constant to be fixed and we have chosen a normalization factor. Recall the
general transformation rule for a vector field

J 0
µ(x

0) =
@x⌫

@x0µJ⌫(x) (3.50)
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We can combine this with hJµ(x0)J⌫(y0)i = hJ 0
µ(x

0)J 0
⌫(y

0)i for the case of special conformal
transformations. This fixes

↵µ⌫(x) = Iµ⌫(x) = ⌘µ⌫ � 2
xµx⌫

x2
(3.51)

I is called the inversion tensor. Consider again

hJµ(x)J⌫(y)i =
Iµ⌫(x� y)

|x� y|2� (3.52)

And assume now that the vector Jµ is a conserved current @µJµ = 0. This implies

@µx
Iµ⌫(x� y)

|x� y|2� = 0 ! � = d� 1 (3.53)

so that a conserved current has dimension d � 1. It turns out that two point functions of
higher order tensors can also be constructed in terms of the inversion tensor. The most
important example is the two point function of the stress tensor. Conformal symmetry
implies

hTµ⌫(x)T⇢�(y)i =
c

|x� y|2�
✓
1

2
(Iµ�(x� y)I⌫⇢(x� y) + Iµ⇢(x� y)I⌫�(x� y))� 1

d
⌘µ⌫⌘�⇢

◆
(3.54)

Note that the stress tensor has already been defined. As a result, the constant c is unam-
biguous. c is called the central charge and is the most important parameter characterising a
conformal field theory. We will return to it repeatedly.

Finally, as for the case of conserved rank one currents, the conservation of the stress tensor,
@µTµ⌫ = 0, fixes its dimension. Indeed

@µx hTµ⌫(x)T⇢�(y)i ! � = d. (3.55)

so that the dimension of the stress tensor in d dimensions is always� = d. If a conformal field
theory has a Lagrangian, this also follows from the canonical definition (3.21), however, the
result we just obtained is more general and does not rely on the theory having a Lagrangian.

In showing that a correlator has the correct properties under special conformal trans-
formations, it is sometimes more convenient to show it has the correct properties under
inversions:

xµ ! x0µ =
xµ

x2

hence, the correct properties un special conformal transformations follow. This is spe-
cially true for operators with Lorentz indices. In such proofs the following property

Iµ↵(x)I↵�(x� y)I�⌫(y) = Iµ⌫(x
0 � y0)

27



can be very helpful. Here x0, y0 are the transforms of x, y under inversions.

four-point functions and higher

We have seen explicitly how conformal invariance fixes fully the spatial dependence of two
and three point functions, which can hence be written in terms of scaling dimensions and
constants Cijk. Starting from four-point functions something new occurs. Under special
conformal transformations:

x02
ij =

x2
ij

�i�j
(3.56)

where �i only depends on xi. Hence, given four points x1, x2, x3, x3 we can construct the
following cross-ratios7

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

(3.57)

which are invariant under special conformal transformations and actually the whole confor-
mal group. Hence

h�1(x1)�2(x2)�3(x3)�4(x4)i =
F (u, v)Q
i<j |x2

ij|�ij
(3.58)

with
P

j 6=i �ij = �i, due to scale transformations, is the constraint from conformal symmetry.
F (u, v) could in principle be any function of the cross-ratios. In order to attack four point
functions and higher, in the next section we will develop a new tool.

7Other cross ratios are not independent.
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4 Radial quantization and the OPE

4.1 Radial quantization

In this section we will advocate a parallel view of correlators, from the point of view of Hilbert
space and quantum mechanical evolution. In QFT in Minkowski space you can foliate the
space-time by surfaces of equal time, or leafs, such that in each surface/time slice a Hilbert
space is defined. ”in” states of a given Hilbert space can be created by inserting operators in
the past of the corresponding surface:

t

| ini• O1

• O2

• O3

equivalently an ”out” state is created by inserting operators in the future of the surface:

t h out|• O1

• O2

• O3

In this language the correlator among the operators that created the states is given by the
overlap

h out| ini
If the states | ini and h out| live on di↵erent leafs, we need to evolve them with the evolution
operator U = e�iP0�t and then the correlator is

h out|U | ini
Furthermore, in this language we characterize states living on these surfaces (belonging to
the Hilbert space) by their momenta P µ|ki = kµ|ki, since the generators P µ commute with
P 0.

Consider now a CFT in Euclidean space. In CFT it is more convenient to foliate the space
by sphere Sd�1 with the origin at the center:
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Note that in Euclidean signature, there is no di↵erence between this choice and the equal
time choice! Now in and out states are defined by inserting operators inside and outside the
sphere, for instance

• O1

• O2
• O3 | ini

Now, the operator translating from a sphere to another sphere of di↵erent radius is the
dilatation operators, hence U = eiD�⌧ , with ⌧ = log r. States are now classified according to
their scale dimension and their SO(d) spin ` (since only Lµ⌫ commutes with D):

D|�, `i = i�|�, `i (4.1)

Lµ⌫ |�, `i↵ = i(Sµ⌫)
�
↵ |�, `i� (4.2)

we will simply use |�i to denote scalar states. This picture is called radial quantization.

4.2 State/operator correspondence

As seen above, we generate states living on the sphere | i by inserting operators inside the
sphere. In order to gain some intuition on how this works, let us see some examples.

Examples of states

• The vacuum state |0i corresponds to no insertion, has zero dilatation eigenvalue and
is annihilated by all generators (P,K,L).

• Inserting a primary operator at the origin ��(0) we get a state |�i = ��(0)|0i with
eigenvalue � under dilatations. Indeed:

D|�i = D��(0)|0i = [D,��(0)]|0i+ ��(0)D|0i = i���(0)|0i = i�|�i
which is primary, in the sense that it is annihilated by K, indeed:

K|�i = K��(0)|0i = [K,��(0)]|0i = 0
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• If we insert a primary operator not at the origin ��(x), we get a state | i = ��(x)|0i
which is not an eigenstate of the dilatation operator. Rather

| i = ��(x)|0i = e�ixP��(0)e
ixP |0i = e�ixP��(0)|0i = |�i � ix · P |�i+ · · ·

where the eigenvalue of P |�i under dilatations is given by (�+ 1), indeed:

DPµ|�i = ([D,Pµ] + PµD) |�i = i(�+ 1)Pµ|�i

Note that Pµ|�i is not a primary:

K⌫Pµ|�i = ([K⌫ , Pµ] + PµK⌫) |�i = [K⌫ , Pµ]|�i 6= 0

as expected, since it is just a descendant of |�i. Hence | i is a linear combination of
the primary | i plus all its descendants.

Exactly as Pµ raises the dimension, it can be checked that Kµ lowers it by one unit. It turns
out that there is a lower bound in the dimension of the states, so that at some point we will
get to a state annihilated by K:

Kµ| i = 0 (4.3)

The state/operator correspondence says that such a state corresponds to the insertion at the
origin of a local primary operator! of the form ��(0)|0i. Furthermore, each eigenstate of
the dilatation operator |Eni is either a primary or a descendant (or linear combinations of
those).

4.3 OPE in CFT

In QFT the operator product expansion (OPE) says that given two operators close to each
other we can expand their product in terms of local operators at the middle point. In the
following we will see how the OPE picture arises from radial quantization and why the
structure of the OPE is more robust in CFT that in generic QFT.

Consider the insertion of two operators inside the sphere:

�2(0)
�1(x)

| i

and consider the state they generate

| i = �1(x)�2(0)|0i (4.4)
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We can expand | i in a basis of eigenstates of the dilatation operator:

| i =
X

cn|Eni (4.5)

where cn will in general depend on x, cn = cn(x). However, due to the state/operator
correspondence each |Eni is a linear combination of primaries plus descendants! So that

�1(x)�2(0)|0i =
X

primaries �

C�(x, @)��(0)|0i (4.6)

which is exactly the statement of the OPE! Note that this works for any x inside the sphere,
not necessarily close to the origin. In CFT the OPE is just the result of expanding states
in a complete basis, and hence has an algebraic origin. Because of this it is also denoted
operator algebra. Sometimes the OPE is written as

�1(x)�2(0) =
X

primaries �

C�(x, @)��(0) (4.7)

This is rigorously true only inside a correlator, and provided the other operators are su�-
ciently far. More precisely, there should exist a sphere including only these two operators.

What can we say about the function C�(x, @)? In order to answer this question let us focus
on a single primary plus its tower of descendants:

�1(x)�2(0)|0i =
const

|x|k (��(0) + · · · ) |0i (4.8)

where ��(0) is a primary operator and the dots stand for descendants of that operator
(and we are disregarding contributions from other primaries). Let us act with the dilatation
operator D on the l.h.s. of (4.8):

D�1(x)�2(0)|0i = i(�1 + xµ@µ)�1(x)�2(0)|0i+ i�2�1(x)�2(0)|0i

= i(�1 +�2 � k)
const

|x|k (��(0) + · · · ) |0i (4.9)

where in the second line we have used the functional dependence (4.8) itself. Now, acting on
the r.h.s. of (4.8):

D
const

|x|k (��(0) + · · · ) |0i = i�
const

|x|k (��(0) + · · · ) |0i (4.10)

we are led to

k = �1 +�2 �� (4.11)

Fixing the small x behaviour in the above expansion! Let us go now one order higher:
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�1(x)�2(0)|0i =
const

|x|�1+�2��
(��(0) + ↵xµ@µ��(0) + · · · ) |0i (4.12)

Let us show how conformal symmetry can be used to fix ↵. The idea is to act on both sides
of (4.12) with Kµ, recalling that for a scalar operator:

[Kµ,��(x)] = 2ixµ���(x) + i
�
2xµx

⌫@⌫ � x2@µ
�
��(x) (4.13)

Acting on the l.h.s. of (4.12) we obtain

Kµ�1(x)�2(0)|0i =
�
2ixµ�1 + i

�
2xµx

⌫@⌫ � x2@µ
��
�1(x)�2(0)|0i (4.14)

= ixµ(�1 ��2 +�)
const

|x|�1+�2��
(��(0) + · · · ) |0i (4.15)

while acting on the r.h.s we obtain

Kµ

✓
const

|x|�1+�2��
(��(0)� i↵x⇢P⇢��(0) + · · · ) |0i

◆
= (4.16)

=
const

|x|�1+�2��
(2i↵�xµ��(0) + · · · ) |0i (4.17)

so that as a consequence of conformal invariance

↵ =
�1 ��2 +�

2�
(4.18)

We could go to higher orders. Actually it turns out that conformal invariance fixes fully the
functions C�(x, @), up to an overall factor C12�. This would not be the case if the theory
was scale but not conformal invariant. Note that C�(x, @) depends only on the dimensions
�1,2 and the dimension of the intermediate primary.

Practical method to compute C�(x, @)

Consider a three-point function of primaries and take the OPE of the first two operators:

h�1(x)�2(0)��(z)i =
X

primaries �0

C12�0C�0(x, @) h��0(y)��(z)i|y=0

as we have seen conformal invariance implies that two primaries are correlated only if
their dimensions agree, so that

h�1(x)�2(0)��(z)i = C12�C�(x, @) h��(y)��(z)i|y=0

where we have assumed there is a unique primary with dimension �. On the other hand,
two and three-point functions are fixed by conformal invariance:
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h��(y)��(z)i =
1

|y � z|2�

h�1(x)�2(0)��(z)i =
C12�

x�1+�2��z�2+���1 |x� z|�1+���2

so that expanding around x = 0 we can fix all the coe�cients in C�(x, @). In particular,
note that the coe�cient appearing in the OPE expansion is exactly the same as the
one appearing in the three-point function. Such coe�cient is called OPE coe�cient or
structure constant.

4.4 Conformal blocks

Consider the four-point function of four scalar primaries, assumed to be identical for simplic-
ity, of scaling dimension �E. According to our discussion in section 3, conformal invariance
implies

h�(x1)�(x2)�(x3)�(x4)i =
G(u, v)

|x12|2�E |x34|2�E

(4.19)

Now, we can use the OPE decompositions:

�(x1)�(x2) =
X
�

c�C�(x12, @y) ��(y)|y=x1+x2
2

(4.20)

�(x3)�(x4) =
X
�

c�C�(x34, @z) ��(z)|z=x3+x4
2

(4.21)

where the sum runs over the primary fields in the theory and c� are the OPE coe�cients 8.
Hence

h�(x1)�(x2)�(x3)�(x4)i =
X
�

c2� [C�(x12, @y)C�(x34, @z) h��(y)��(z)i]|y=x1+x2
2 ,z=

x3+x4
2

(4.22)
since the functions C�(x12, @y), as well as the two-point functions, are fixed by conformal
symmetry, the whole object in bracket is! We define:

[C�(x12, @y)C�(x34, @z) h��(y)��(z)i]|y=x1+x2
2 ,z=

x3+x4
2

=
G�,`(u,v)

|x12|2�E |x34|2�E

(4.23)

The functions G�,`(u, v) are called conformal blocks: they depend on the dimension of the
”external” operators, �E and the dimension � and spin ` (whose index we have suppressed)

8Of course, only primary operators whose three-point functions with � ⇥ � is di↵erent from zero will
appear.
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of the intermediate primary. This allows to decompose the four-point correlator in conformal

partial waves.

G(u, v) =
X
�,`

c2�,`G�,`(u, v). (4.24)

This expansion gives the four-point function in terms of conformal blocks, which are fully
fixed by conformal symmetry, together with the data appearing in lower order correlators.
Actually, the same can be said about higher point correlators. Hence, we conclude the
following remarkable fact: In a CFT, the dimensions of primaries, plus OPE coe�cients,
together with the structure of the OPE are enough to write any higher point correlation! (at
least in principle).
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5 Conformal invariance in two dimensions

In this section and the next, we will apply the general formalism above to two dimensions.
As we will see, conformal symmetry becomes extremely powerful in two dimensions and this
makes the subject beautiful, but also greatly developed.

5.1 Conformal algebra in two dimensions

For d = 2 and gµ⌫ = ⌘µ⌫ , Euclidean flat metric, the condition

@µ✏⌫ + @⌫✏µ =
2

d
@⇢✏

⇢ (5.1)

becomes the Cauchy-Riemann equation

@0✏0 = @1✏1, @0✏1 = �@1✏0 (5.2)

It is then natural to use complex coordinates

z = z0 + iz1, z̄ = z0 � iz1

@ ⌘ @z =
1

2
(@0 � i@1) (5.3)

@̄ ⌘ @z̄ =
1

2
(@0 + i@1)

with metric gzz = gz̄z̄ = 0 and gzz̄ = gz̄z = 1/2 and inverse metric gzz = gz̄z̄ = 0 and
gzz̄ = gz̄z = 2. Introducing ✏ = ✏0 + i✏1 and ✏̄ = ✏0 � i✏1 the condition for a conformal
infinitesimal transformation reduces to

@̄✏ = 0 ! ✏ = ✏(z) (5.4)

@✏̄ = 0 ! ✏̄ = ✏̄(z̄) (5.5)

For arbitrary holomorphic and anti-holomorphic functions! Hence two dimensional conformal
transformations coincide with analytic coordinate transformations

z ! z0 = f(z), z̄ ! z̄0 = f̄(z̄) (5.6)

which generates an infinite dimensional algebra! to calculate the commutation relations of
this conformal algebra we take as a basis:

z0 = z + ✏(z), ✏n(z) =
X
n

cnz
n+1 (5.7)
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so that a spinless and dimensionless field satisfying �0(z0, z̄0) = �(z, z̄) transforms as

�� =
X
n

�
cn`n + c̄n ¯̀n

�
�(z, z̄) (5.8)

where we have introduced the generators

`n = �zn+1@z, ¯̀
n = �z̄n+1@z z̄ (5.9)

It is easy to see these generators satisfy the algebras

[`m, `n] = (m� n)`m+n, [¯̀m, ¯̀n] = (m� n)¯̀m+n (5.10)

together with [`m, ¯̀n] = 0. Hence the conformal algebra is the direct sum of two infinite
dimensional algebras, each called a Witt algebra. As we will see, quantum mechanically
these algebras will get corrected by a tiny, but very important! contribution. Since two
independent algebras naturally arise, it is usually convenient to regard z and z̄ as independent
coordinates. Then, we can impose the physical condition z̄ = z⇤ whenever convenient.

The generators `n, ¯̀n generate a local conformal algebra. However, not all generators are
globally well defined on the Riemmann sphere S2 = C [1. Indeed, holomorphic conformal
transformations are generated by vector fields

v(z) = �
X
n

cn`n =
X
n

cnz
n+1@z (5.11)

regularity of v(z) as z ! 0 allows cn 6= 0 only for n � �1. In order to investigate the
behaviour at infinity we perform the transformation z ! z0 = �1/z, under which:

v(z) !
X
n

cn

✓
� 1

z0

◆n�1

@z0 . (5.12)

regularity at infinity allows cn 6= 0 only for n  1. Hence, only the conformal transformations
generated by `0, `±1 are globally defined. Exactly the same considerations apply to the anti-
holomorphic part. In two dimensions the global conformal group is generated by conformal
transformations that are well defined and invertible on the Riemann sphere, namely

{`1, `0, `1} [ {¯̀1, ¯̀0, ¯̀1}

Following our discussion on section 2 we identify `�1, ¯̀�1 as generators of translations, `0+ ¯̀
0

and i(`0� ¯̀
0) as generators of dilatations and rotations respectively and `1, ¯̀�1 as generators

of special conformal transformations. The finite form of these transformations is

z ! z0 =
az + b

cz + d
, z̄ ! z̄0 =

āz̄ + b̄

c̄z̄ + d̄
(5.13)

where a, b, c, d 2 C and ad � bc = 1. This is the group SL(2,C) ' SO(3, 1). Note that
SO(3, 1) agrees with the conformal group we calculated in section 2 for d = 2, but in addition,
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there exist an infinite number of locally defined generators. This is a feature exclusively of
two dimensions.

In 2d CFT it is convenient to work with a basis of eigenstates of the operators `0 and ¯̀
0. We

denote their eigenvalues by h and h̄. These are known as the conformal weights of the state
and we should think of them as independent real parameters. Since `0+ ¯̀

0 and i(`0� ¯̀
0) are

identified with the generators of dilatations and rotations, the scaling dimension � and the
spin s of the state are given by

� = h+ h̄, s = h� h̄. (5.14)

Before proceeding, let us analyse the properties of the stress tensor in a 2d CFT. In complex
coordinates the stress tensor has components Tzz, Tz̄z̄ and Tzz̄ = Tz̄z. The condition of zero
trace translates into

gµ⌫Tµ⌫ = 2(Tzz̄ + Tz̄z) = 0 ! Tzz̄ = Tz̄z = 0. (5.15)

The conservation law g↵µ@↵Tµ⌫ = 0 then implies

@z̄Tzz = 0, @zTz̄z̄ = 0 (5.16)

so that the non-vanishing components of the stress tensor have holomorphic and anti-
holomorphic dependence

T (z) ⌘ Tzz(z), T̄ (z̄) ⌘ Tz̄z̄(z̄) (5.17)

5.2 2d Correlation functions

Primaries and quasi-primaries

In analogy with (2.36) we define a primary field of conformal weight (h, h̄) as one which
under conformal transformations z ! z0 = f(z) transforms as

�0(z0, z̄0) =

✓
@f

@z

◆�h✓@f̄
@z̄

◆�h̄

�(z, z̄). (5.18)

A field with the transformation property (5.18) under global conformal transformations is
denoted quasi-primary, also denoted as SL(2,C) primary. A primary field is also quasi-
primary, but the converse is of course not true. This distinction arises only in two dimensions.
A field which is not a primary is called a secondary. Under an infinitesimal variation z !
z0 = z + ✏(z) the variation of a (quasi-)primary field is

�✏,✏̄�(z, z̄) = �0(z0, z̄0)� �(z, z̄) = � (h(@✏) + ✏@)�(z, z̄)�
�
h̄(@̄✏̄) + ✏̄@̄

�
�(z, z̄) (5.19)
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Correlators

Consider the correlator of n primary fields of conformal weights (hi, h̄i). Relation (3.32)
expressed in terms of holomorphic and anti-holomorphic coordinates becomes

h�1(z
0
1, z̄

0
1) · · ·�n(z

0
n, z̄

0
n)i =

nY
i=1

✓
@f

@z

◆�h
i

z=z
i

✓
@f̄

@z̄

◆�h̄
i

z=z
i

h�1(z1, z̄1) · · ·�n(zn, z̄n)i (5.20)

Global conformal invariance fixes two and three point functions. For two point functions it
is required that h1 = h2 = h and h̄1 = h̄2 = h̄ and the result is

h�1(z1, z̄1)�2(z2, z̄2)i =
C12

z2h12 z̄
2h̄
12

(5.21)

the result for the three point function is

h�1(z1, z̄1)�2(z2, z̄2)�3(z3, z̄3)i = C123
1

zh1+h2�h3
12 zh1+h3�h2

13 zh2+h3�h1
23

1

z̄h̄1+h̄2�h̄3
12 z̄h̄1+h̄3�h̄2

13 z̄h̄2+h̄3�h̄1
23
(5.22)

These results are the analog of (3.42) and (3.47) but the novelty here is that the fields have
spin (they are not necessarily scalars). Note the factorization between holomorphic and anti-
holomorphic parts. This is a recurrent feature of observables in 2d. As before, the four-point
function is not fully determined. Given four complex coordinates z1, · · · z4 we can construct
the cross-ratio 9

⌘ =
z12z34
z13z24

(5.23)

which is invariant under global conformal transformations. Hence, the four-point function
takes the general form

h�1(z1, z̄1)�2(z2, z̄2)�3(z3, z̄3)�4(z4, z̄4)i = g(⌘, ⌘̄)
Y
i<j

z
h/3�h

i

�h
j

ij z̄
h̄/3�h̄

i

�h̄
j

ij (5.24)

where h =
P4

i=1 hi and h̄ =
P4

i=1 h̄i and g(⌘, ⌘̄) is, as far as global conformal symmetry
is concerned, a general function. The form of four-point functions can be understood as
follows. Given three distinct points in the complex plane z1, z2, z3, we can use global SL(2,C)
transformations to map them to the points 0, 1 and 1. Given four points, we can map them
to (0, ⌘, 1,1), then a four point correlator would depend only on ⌘. By global conformal
transformations then we recover the full spatial dependence. This also explains why two and
three point functions are fixed.

9In 2d, all other cross-ratios will depend on this one.
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5.3 Radial quantization in 2d CFT

In order to study in more detail the consequences of conformal invariance in a two dimensional
QFT we need to quantize the theory. Radial quantization is particularly well suited for 2d
Euclidean CFT, as it allows to use the full power of complex analysis.

Consider a CFT in flat Euclidean space-time, with a space coordinate �1 and a ”time”
coordinate �0. We can introduce complex coordinates

⇣ = �0 + i�1 (5.25)

⇣̄ = �0 � i�1 (5.26)

In order to eliminate long distance divergences from observables, it is customary to compact-
ify the space coordinate �1 ⇠= �1 + 2⇡. This defines a cylinder in the (�0, �1) coordinates.
Next consider the conformal map ⇣ ! z = e⇣ = e�

0+i�1
. This maps the cylinder to the

complex plane, or more precisely the Riemann sphere, coordinatized by z. We call this plane
the conformal plane.

�0

�1

z

Infinite past and future on the cylinder �0 = ⌥1 are mapped to the origin and the point
at infinity respectively. Equal time surfaces �0 = const map to circles of constant radius on
the z�plane. Finally, ”time” translations �0 ! �0 + a are mapped to dilatations z ! eaz.
Hence, the dilatation generator on the conformal plane can be regarded as the Hamiltonian
of the system, and the Hilbert space is built up on surfaces of constant radius.

As seen in section 3 symmetry generators can be constructed via the Noether prescription.
Recall that the corresponding charge was defined as the integral of the time-component along
a constant time surface. In two dimensional radial quantization we should integrate along
a contour of constant radius, schematically

R
jrd✓. In the conformal plane local conformal

transformations are generated by the non-zero components of the stress tensor, T and T̄ , so
that the infinitesimal charge is given by

Q =
1

2⇡i

I �
dzT (z)✏(z) + dz̄T̄ (z̄)✏̄(z̄)

�
(5.27)
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where the integrals are performed over a circle of constant radius in the counter clockwise
sense. In the quantum theory, the variation of a field under the corresponding transformation
is given by the ”equal-time” (or in this case ”equal-radius”) commutator with the charge10

�✏ (w) = � 1

2⇡i

I
[dzT (z)✏(z), (w)] (5.28)

where we have focused in a purely holomorphic variation, for simplicity.

Radial quantization and the OPE

Within radial quantization the time ordering that appears in the definition of correlation
functions becomes radial ordering. We introduce the radial ordering operator, explicitly
defined by

R (�1(z)�2(w)) =

8<:
�1(z)�2(w) if |z| > |w|

�2(w)�1(z) if |z| < |w|
(5.29)

with a minus sign in front of the second relation if both fields are fermions. Since all field
operators within correlation functions must be radially ordered, the l.h.s. of an OPE will
always be assumed to be radially ordered (since remember, the OPE makes sense inside
correlators).

There is a neat relation between the OPE and equal time commutation relations. Consider
two holomorphic fields a(z), b(z) and the following contour integralI

C
w

dza(z)b(w) (5.30)

where the integration contour is a small circle around w. Consider the above contour integral
as an operator inside a correlator, so that the product a(z)b(w) is really radially ordered
a(z)b(w) ! R (a(z)b(w)). We then split the integration contour into two circles going on
opposite directions, as shown in the figure

0

w

= 0

w

- 0

w

10We are following the conventions of the Di Francesco et.al. book, which have an opposite sign with
respect to many others.
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Our integral is now seen to be a commutatorI
C

w

dzR (a(z)b(w)) =

I
C1

dza(z)b(w)�
I
C2

dzb(w)a(z) = [Qa, b(w)] (5.31)

where C1 and C2 are two circles of constant radius just a little bigger and a little smaller
than |w| and we have defined Qa =

H
a(z)dz. This can be interpreted as an equal time (or

equal-radius) commutator.

Going back to (5.28) we can write the variation of the field as

�✏ (w) = � 1

2⇡i

I
C

w

✏(z)R(T (z) (w)) (5.32)

where the contour of integration is a small circle around z = w. Now it comes a very
important point. For a primary field this variation should be (5.19) so that

1

2⇡i

I
C

w

✏(z)R(T (z) (w)) = (h(@✏(w)) + ✏(w)@) (w) (5.33)

In order for this to be satisfied the product R(T (z) (w)) should have the correct short
distance behavior:

R(T (z) (w)) =
h

(z � w)2
 (w) +

1

z � w
@w (w) + · · · (5.34)

where the dots represent regular terms as z ! w. In concluding this, it was important that
✏(z) is general, so that we are considering a primary operator (and not only quasi-primary).
Including both, holomorphic and non-holomorphic parts, and suppressing the radial ordering
operator (which is always to be understood in an OPE) we obtain

T (z) (w, w̄) =
h

(z � w)2
 (w, w̄) +

1

z � w
@w (w, w̄) + · · · (5.35)

T̄ (z̄) (w, w̄) =
h̄

(z̄ � w̄)2
 (w, w̄) +

1

z̄ � w̄
@w̄ (w, w̄) + · · · (5.36)

we have derived the OPE between a primary operator and the stress tensor! sometimes
this serves as the definition of a primary field of weights (h, h̄). Note that the singularity
behaviour follows from our general discussion in section 4, given that the stress tensor has
dimension 2.

Example: The free boson

Consider the action for a free scalar field in two dimensions

S =

Z
d2z@'@̄'

We can calculate the propagator and obtain
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h'(z, z̄)'(w, w̄)i = � 1

4⇡
log |z � w|2

For solutions to the equations of motion '(z, z̄) = '(z)+'(z̄) we can split the field into
a holomorphic and an anti-holomorphic piece. Let us focus in the holomorphic piece
with propagator

h'(z)'(w)i = � 1

4⇡
log(z � w)

Note that the field '(z) doesn’t transform nicely under conformal transformations. On
the other hand

h@'(z)@'(w)i = � 1

4⇡

1

(z � w)2

So that the field @' has a chance to be a field of conformal weight (1, 0). Let us check
that this is the case. Let us compute the holomorphic component of the stress tensor.
Classically we obtain T (z) = �2⇡@'(z)@'(z) . However, in the quantum theory we need
to be careful, because we get a divergence when the first operator @' gets close to the
second. Hence we define the stress tensor T (z) via the normal ordering prescription

T (z) = �2⇡ :@'(z)@'(z): = �2⇡ lim
w!z

✓
@'(z)@'(w) +

1

4⇡

1

(z � w)2

◆
which is finite and well defined in the limit. Using Wick contractions we can compute

T (z)@'(w) = �2⇡ :@'(z)@'(z): @'(w)

= � 4⇡ :@'(z)@'(z): @'(w) + · · ·

=
@'(z)

(z � w)2
+ · · ·

where we have disregarded terms of the form :@'3:, which are regular in the z ! w limit.
Finally, taylor expanding we get

T (z)@'(w) =
@'(w)

(z � w)2
+
@2w'(w)

(z � w)
+ · · ·

In perfect agreement with (5.35) for a primary of conformal weights (1, 0).

5.4 Conformal Ward identities

Ward identities are relations satisfied by correlation functions as a consequence of the sym-
metries of a theory. In the following we will derive conformal Ward identities satisfied by
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correlation functions of primary fields in a 2d CFT. Although it is possible (and not very
di�cult!) to derive Ward identities in general dimensions, in our derivation we will use the
methods of 2d CFT.

Consider the correlator of n primary fields of conformal weights (hi, h̄i). By global confor-
mal invariance these correlators satisfy (5.20). To get additional constraints from the local

conformal algebra take operators �i(w, w̄) at points wi and consider the following contour
integral

h
I

dz

2⇡i
✏(z)T (z)�1(w1, w̄1) · · ·�n(wn, w̄n)i (5.37)

where the contour of integration is a great circle enclosing all operators. By analyticity the
contour can be deformed to a sum over small contours, each encircling one operator, see
figure.

•w1

•w2

•w3

= •w1

•w2

•w3

So that

h
I

dz

2⇡i
✏(z) T (z) �1(w1, w̄1) · · ·�n(wn, w̄n)i =

=
nX

j=1

h�1(w1, w̄1) · · ·
✓I

dz

2⇡i
✏(z)T (z)�j(wj, w̄j)

◆
· · ·�n(wn, w̄n)i

= �
nX

j=1

h�1(w1, w̄1) · · · �✏�j(wj, w̄j) · · ·�n(wn, w̄n)i (5.38)

But recall

�✏�(w, w̄) = �(h(@✏) + ✏@)�(w, w̄) (5.39)

So that the above equality can only work for general ✏ provided the following unintegrated
relation holds true

hT (z)�1(w1, w̄1) · · ·�n(wn, w̄n)i =
jX

i=1

✓
hj

(z � wj)2
+

1

z � wj

@

@wj

◆
h�1(w1, w̄1) · · ·�n(wn, w̄n)i

(5.40)
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This is called the conformal Ward identity, and it will be used later in the course.

6 The Virasoro algebra

6.1 Central charge and the Virasoro algebra

Central charge

Not all the fields satisfy the simple transformation property (5.18) under conformal transfor-
mations, or the corresponding OPE with the stress tensor (5.35). An example of field that
does not satisfy (5.18) or (5.35) is the stress energy tensor itself! The OPE T (z)T (w) is most
easily computed by performing two conformal transformations in succession. We obtain

T (z)T (w) =
c/2

(z � w)4
+

2T (w)

(z � w)2
+
@T (w)

z � w
+ · · · (6.1)

The fourth order pole, with constant coe�cient c, is allowed by analyticity, Bose symmetry
and scale invariance. The constant c is known as the central charge and its value will depend
on the CFT under consideration. As already mentioned, a field which is not primary is called
secondary. Secondary fields are characterised by higher order poles in their OPE with the
stress tensor, as for the case at hand. Identical considerations apply to T̄ , so that we can
introduce another central charge c̄, in principle independent of c.

The infinitesimal transformation law for T (z) induced by (6.1) is

�✏T (w) = � 1

2⇡i

I
dz✏(z)T (z)T (w)

= �2T (w)@w✏(w)� ✏(w)@wT (w)�
c

12
@3w✏(w)

which under conformal transformations z ! z0 = f(z) can be integrated to

T 0(z0) =

✓
@f

@z

◆�2 ⇣
T (z)� c

12
{f(z), z}

⌘
(6.2)

where the Schwartzian derivative

{f(z), z} =
@zf@3zf � 3

2(@
2
zf)

2

(@zf)2
(6.3)

is the unique object of weight two which vanishes when restricted to the global subgroup of
the two dimensional conformal group. The stress tensor is thus an example of a quasi-primary
field which is not primary.
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For the free boson we obtain

T (z)T (w) = 4⇡2 :@'(z)@'(z)::@'(w)@'(w):

=
1/2

(z � w)4
� 2⇡

:@'(z)@'(w):

(z � w)2
+ · · ·

=
1/2

(z � w)4
� 4⇡

:@'(w)@'(w):

(z � w)2
� 2⇡

:@2'(w)@'(w):

(z � w)
+ · · ·

=
1/2

(z � w)4
+

2T (w)

(z � w)2
+
@T (w)

z � w
+ · · ·

In agreement with (6.1). Furthermore, we conclude that for a free boson in 2d, c = 1.

Virasoro Algebra

As seen above, conformal transformations are generated by the holomorphic and anti-holomorphic
components of the stress tensor, which in the quantum theory are operators. It is convenient
to consider the Laurent expansion of the stress tensor

T (z) =
X
n2Z

z�n�2Ln, Ln =
1

2⇡i

I
dzzn+1T (z) (6.4)

T̄ (z̄) =
X
n2Z

z̄�n�2L̄n, L̄n =
1

2⇡i

I
dz̄z̄n+1T̄ (z̄) (6.5)

In terms of modes Ln, L̄n which are operators themselves. The contour of integration in the
above integrals are circles around the origin. Consider the expansion of the infinitesimal
variation ✏(z)

✏(z) =
X
n2Z

zn+1✏n (6.6)

Then the expression (5.27) for the corresponding conformal charge Q✏ becomes

Q✏ =
X
n2Z

✏nLn (6.7)

so that the modes Ln, L̄n generate all conformal transformations. In order to compute the
algebra of the modes, we need to compute the commutator of two contour of integrations
[
H
dz,
H
dw]. This is done as follows. First we fix w and deform the di↵erence between the

two z integrations to a single z contour which is a small circle around w, exactly as discussed
in section 5.3. Once we have done this, we can use the OPE expansion and compute the
integral over z by using residue theorem. Then the w integration is performed without
further subtleties. This gives
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[Ln, Lm] =
1

(2⇡i)2

I
dwwm+1

I
C

w

dzzn+1R (T (z)T (w))

=
1

(2⇡i)2

I
dwwm+1

I
C

w

dzzn+1

✓
c/2

(z � w)4
+

2T (w)

(z � w)2
+
@T (w)

z � w
+ reg.

◆
=

1

2⇡i

I
dwwm+1

⇣ c

12
n(n2 � 1)wn�2 + 2(n+ 1)wnT (w) + wn+1@T (w)

⌘
=

c

12
n(n2 � 1)�n+m,0 + 2(n+ 1)Lm+n �

1

2⇡i

I
dwwn+m+2@T (w) (6.8)

where Cw is a small circle around w while the integral over dw is around the origin. After
integration by parts the last integral contributes to Lm+n. The same considerations apply
to the anti-holomorphic modes and we obtain the

'

&

$

%

Virasoro Algebra

[Ln, Lm] = (n�m)Ln+m +
c

12
n(n2 � 1)�n+m,0

[Ln, L̄m] = 0

[L̄n, L̄m] = (n�m)L̄n+m +
c̄

12
n(n2 � 1)�n+m,0

We find two copies of an infinite dimensional algebra called the Virasoro algebra. It depends
on the central charge of the conformal field theory (usually c = c̄). Note a very important
point. The commutation relations among L±1 and L0 do not depend on the central charge,
and agree with the classical commutations among the `± and `0. The reason for this is that
they generate the global transformations.

6.2 The Hilbert space

In the following we will discuss some generalities regarding the space of states of a two
dimensional conformal field theory. Let us start with the vacuum state |0i. The requirement
that T (z)|0i and T̄ (z̄)|0i are well defined as z, z̄ ! 0 implies

Ln|0i = 0, L̄n|0i = 0, for n � �1 (6.9)

In particular this implies L0|0i = L±1|0i = 0, namely, the vacuum is invariant under global
conformal transformations, as it should in a conformal field theory. On the other hand,
L�n|0i, for n = 2, 3, · · · , will be in general di↵erent from zero11.

11For instance L�2|0i = 1
2⇡i

H
dzz

�1
T (z)|0i = T (0)|0i.
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Next consider a primary state with weights (h, h̄) acting on the vaccum at the origin

|h, h̄i = �h,h̄(0, 0)|0i (6.10)

going back to the theory on the cylinder, this maps to an incoming asymptotic state, since
the origin is mapped to the infinite past, eigenstate of the Hamiltonian. From the OPE of
the stress tensor with a primary, eq. (5.35), we see

T (z)|h, h̄i = lim
w,w̄!0

T (z)�h,h̄(w, w̄)|0i =
✓

h

z2
 (0, 0̄) +

1

z
@ (0, 0̄) + · · ·

◆
|0i (6.11)

but recall T (z) =
P

n2Z z
�n�2Ln. Together with their non-holomorphic analogous relations

this implies

L0|h, h̄i = h|h, h̄i, L̄0|h, h̄i = h̄|h, h̄i, (6.12)

Ln|h, h̄i = 0, L̄n|h, h̄i = 0, for n > 0. (6.13)

Actually, this is commonly taken as the definition of a (Virasoro) primary in the Hilbert
space. Once we have a primary we can obtain Virasoro descendants by acting with the
raising operators L�1, L�2, · · · . By virtue of the commutation relations [L0, L�m] = mL�m,
acting with these operators will raise the eigenvalue of L0. Exactly the same considerations
apply to the anti-holomorphic part. For example, for the lowest levels we have:

Level dimension states

0 h |hi
1 h+ 1 L�1|hi
2 h+ 2 L�2|hi, L2

�1|hi
3 h+ 3 L�3|hi, L�1L�2|hi, L3

�1|hi

The subset of the full Hilbert space generated by the primary state |hi and all its descendants
is closed under the action of the Virasoro generators and thus forms a representation of
the Virasoro algebra, with |hi the highest weight state. This subset is called a Verma
module. Note that from (6.11) it also follows that L�1|hi = @�(0)|0i, so that acting with
L�1 corresponds to the usual derivative descendant (also present in higher dimensions). The
Verma module, however, has a much richer structure!

This is a good place to introduce the concept of adjoint

�(z, z̄)† = �(
1

z̄
,
1

z
)
1

z̄2h
1

z2h̄
(6.14)

for a (quasi-)primary field of conformal weights (h, h̄). This expression is better understood
going back to the picture of the cylinder. If �(z, z̄) defines an incoming state, from the infinite
past, we would like �(z, z̄)† to defined a outgoing state, to the infinite future. However, time
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reversal on the cylinder �0 ! ��0 maps to the inversion in the conformal plane z ! z
|z|2 ,

or z ! 1/z⇤ on the real slice. We then understand (6.14) as the inverse acting on a quasi-
primary field. The definition of an adjoint operation leads to a natural inner product. With
this definition

h�out|�ini = lim
z,z̄,w,w̄!0

h0|�(z, z̄)†�(w, w̄)|0i

= lim
z,z̄,w,w̄!0

z̄�2hz�2h̄h0|�(1/z̄, 1/z)�(w, w̄)|0i

= lim
z,z̄!0

z̄�2hz�2h̄h�(1/z̄, 1/z)�(0, 0)i (6.15)

which is finite and well defined, as a virtue of (5.21). In a theory with a Hermitian stress
tensor the above relation implies the following two quantities are equal:

T (z)† =
X
n2Z

z̄�n�2L†
n,

1

z̄4
T (

1

z̄
) =

X
n2Z

1

z̄4
z̄n+2Ln (6.16)

so that

L†
n = L�n (6.17)

This allows to define an inner product in the Hilbert space, and in particular the norm of
states. More precisely, the inner product of two states L�k1 · · ·L�k

m

|hi and L�`1 · · ·L�`
n

|ki
is given by

hh|Lk
m

· · ·Lk1L�`1 · · ·L�`
n

|ki
where the dual state satisfies hh|Lj = 0 for j < 0. This inner product can be computed by
commuting the annihilation operators to the right and hitting |ki.

Null vectors

Before going ahead, let us mention one important point. In constructing the Verma module
we have considered a primary of generic dimension h in a CFT with generic central charge
c. For special cases, it could happen that some linear combination of descendants, lets call
it |�i, satisfies itself the highest weight state condition:

Ln|�i = 0, for n � 1 (6.18)

In this case |�i plus all its descendants will provide themselves a representation of the
Virasoro algebra. Note furthermore that such a state is orthogonal to all descendants of |hi,
indeed:

h�|L�k1 · · ·L�k
n

|hi = 0 (6.19)
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Since h�|L�k1 = (Lk1 |�i)† = 0. In particular, |�i is orthogonal to itself, and hence has zero
norm. We call such a state null. It also follows that all its decendants are also null. In
order to obtain an irreducible representation of the Virasoro algebra we then need to take
the original Verma module and quotient by such states. Namely, we identify two states that
di↵er by a null one.

6.3 Correlators of descendants

Very much as for the higher dimensional case, it can be shown that correlators involving
Virasoro descendants can be computed in terms of the correlators for the corresponding
primary fields. Let us focus in the holomorphic part only and consider a primary operator
�(z) of weight h, which generates a state |hi. A descendant for this state:

L�n|hi = L�n�(0)|0i =
1

2⇡i

I
dzz1�nT (z)�(0)|0i (6.20)

leads naturally to the descendant field

�(�n)(w) = (L�n�) (w) =
1

2⇡i

I
C

w

dz

(z � w)n�1
T (z)�(w) (6.21)

so that �(�n)(0)|0i = L�n|hi. Consider now the correlator of the descendant field with a
chain of primary fields

h�(�n)(w)�h1(w1) · · ·�h
n

(wn)i =
1

2⇡i

I
C

w

dz

(z � w)n�1
hT (z)�(w)�h1(w1) · · ·�h

n

(wn)i (6.22)

There are di↵erent way to relate this to the correlator of primary fields. The most direct
one is to use the conformal Ward identities (5.40) to rewrite the correlator in the integrand
in terms of h�(w)�h1(w1) · · ·�h

n

(wn)i. Then it is straightforward to perform the contour
integral (since the z dependence is explicit). We obtain

h�(�n)(w)�h1(w1) · · ·�h
n

(wn)i = L�nh�(w)�h1(w1) · · ·�h
n

(wn)i (6.23)

where the di↵erential operator L�n is given by

L�n =
nX

i=1

✓
(n� 1)hi

(wi � w)n
� 1

(wi � w)n�1
@w

i

◆
(6.24)

Note in particular that L�1 = �
P

i=1 @wi

= @w, since @w+
P

i=1 @wi

annihilates any correlator
translational invariant.

An important consequence of this discussion is the following. Given a primary field � we
define its conformal family [�] as the set of the primary plus all its descendants. It follows
that two members of a conformal family are correlated only if their respective primaries are
correlated. Furthermore, they will only be correlated if they are descendants of the same
level.
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6.4 OPE and conformal blocks

Invariance under scaling transformations requires the operator algebra to have the following
form

�1(z, z̄)�2(0, 0) =
X
p

X
k,k̄

Cp,{k,k̄}
12 zhp

�h1�h2+|k|z̄h̄p

�h̄1�h̄2+|k̄|�(k,k̄)
p (0, 0) (6.25)

where the sum over p runs over primary fields and �(k,k̄)
p (0, 0) are secondary fields belonging

to the conformal family [�p(0, 0)]. k, k̄ are indices denoting the precise descendant, and
|k|, |k̄| are the levels in the holomorphic and anti-holomorphic sectors. Let us assume for
simplicity that the spectrum of primary operators is non-degenerate. Taking the correlator of
(6.25) with a third primary field �q(w, w̄), we learn that the OPE coe�cient Cp,{0,0̄}

12 ⌘ C12p

is exactly the coe�cient appearing in the three-point function, for canonically normalised
two-point functions. Furthermore, by taking the correlator with descendants of �q(w, w̄) at

a given level, and using (6.23), we can fix the coe�cients Cp,{k,k̄}
12 in terms of C12p:

Cp,{k,k̄}
12 = C12p�

p,{k}
12 �̄p,{k̄}

12 (6.26)

It is then customary to write

�1(z, z̄)�2(0, 0) =
X
p

C12pz
h
p

�h1�h2 z̄h̄p

�h̄1�h̄2 p(z, z̄|0, 0) (6.27)

where we have defined

 p(z, z̄|0, 0) =
X
{k,k̄}

�p,{k}
12 �̄p,{k̄}

12 z|k|z̄|k̄|�(k,k̄)
p (0, 0) (6.28)

Now we can consider a four-point function of primary operators, which we consider identical
for simplicity, of weights (h, h̄) . We choose the following convenient locations

lim
z1,z̄1!1

z2h1 z̄2h̄1 h�(z1, z̄1)�(1, 1)�(z, z̄)�(0, 0)i = G(z, z̄) (6.29)

so that G(z, z̄) = hh, h̄|�(1, 1)�(z, z̄)|h, h̄i. Note that in this limit the previously introduced
cross-ratio ⌘ = z12z34

z13z24
exactly coincides with z. By using (6.27) to write the OPE of the two

fields on the right

�(z, z̄)�(0, 0) =
X
p

Cpz
h
p

�2hz̄h̄p

�2h̄ p(z, z̄|0, 0) (6.30)

we can write

G(z, z̄) =
X
p

C2
pA(p|z, z̄) (6.31)

where each of the partial waves is given by
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A(p|z, z̄) = C�1
p zhp

�2hz̄h̄p

�2h̄hh, h̄|�(1, 1) p(z, z̄|0, 0)i (6.32)

We have rewritten the four-point function as a sum over intermediate conformal families,
labeled by the index p, exactly as it was done in section 4.4. Since three point functions of
primaries or descendants are fixed by the Virasoro algebra, this whole object is. Furthermore,
it is clear that the partial waves have the factorized form

A(p|z, z̄) = Fh(p|z)F̄h(p|z̄) (6.33)

where

Fh(p|z) = zhp

�2h
X
{k}

�p,{k}z|k|
hh|�(1)L�k1 · · ·L�k

n

|hpi
hh|�(1)|hi (6.34)

these functions are called conformal blocks, or Virasoro conformal blocks. They are much
harder to compute that the conformal blocks in general dimensions,discussed in section 4.4,
since the structure of the Virasoro algebra is much more intricate that its globally defined
subgroup. On the other hand, as we will see, they are much more powerful.

7 Minimal models

7.1 Unitarity

So far we have been studying 2d CFT with arbitrary values of the central charge and where
the spectrum of Virasoro primaries {hi, h̄i} can be arbitrary. It is of great interest to classify
the possible 2d CFTs by requiring additional physical constraints. An important constraint
on quantum theories is that of unitarity. In particular, a probabilistic interpretation of
quantum mechanics requires states to have positive norm. In this section we will study
the constraints of unitarity on 2d CFT. More precisely, for a given value of the central
charge c we will ask which highest weight states |hi lead to unitary representations. Namely,
representations which do not contain negative norm states.

Given a primary state |hi, let us consider L�n|hi. Its norm is given by

hh|LnL�n|hi = hh|
✓
L�nLn + 2nL0 +

1

12
cn(n2 � 1)

◆
|hi =

✓
2nh+

1

12
cn(n2 � 1)

◆
hh|hi
(7.1)

Taking n su�ciently large, we see we should require c > 0. In other words, all representations
are non-unitary if the central charge is negative. For n = 1 we obtain h � 0. h = 0
corresponds to the vacuum state, and we see that all representations with negative conformal
dimension are also non-unitary. In summary, if we are after unitary representations we should
focus on the positive quadrant in the (c, h) plane.
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Let us now consider the descendants of |hi at level ` and choose a basis {s1, s2, · · · } =
{L`

�1|hi, · · · , L�`|hi} of linearly independent states. Let us call p(`) the number of such
states. The Gram matrix is defined as the p(`)⇥ p(`) matrix given by the inner products

M (`)
ij = hsi|sji, i, j = 1, · · · , p(`) (7.2)

In this subspace there will be negative norm states if and only if M (`) has one or more
negative eigenvalues. For instance, normalising hh|hi = 1 we can compute

M (0) = 1 (7.3)

M (1) = 2h (7.4)

M (2) =

✓
4h(2h+ 1) 6h

6h 4h+ c/2

◆
(7.5)

From M (0) and M (1) we don’t recover any new conditions. For M (2) is it simpler to study
its trace and determinant, both of which have to be non-negative. For the trace we obtain

TrM (2) = 8h(h+ 1) + c/2 (7.6)

so that no new condition arises. For the determinant we obtain

detM (2) = 32(h� h1,1)(h� h1,2)(h� h2,1) (7.7)

with

h1,1 = 0 (7.8)

h1,2 =
1

16

⇣
5� c�

p
(1� c)(25� c)

⌘
(7.9)

h2,1 =
1

16

⇣
5� c+

p
(1� c)(25� c)

⌘
(7.10)

The first root is telling us that the Verma module contains a null state if h = 0. Indeed,
the vacuum satisfies L�1|0i = 0. For h > 0 and c > 1 the determinant is always positive
and hence consistent with unitarity. For 0 < c  1 something more interesting occurs. As a
function of c, h1,2 and h2,1 describe two curves that join at c = 1:
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1

10/16

h2,1

h1,2

c

h

The determinant is negative in the region between these two curves (shown as a shaded
area). Furthermore, Verma modules associated to (c, h) lying on the curves are reducible, as
there are null states at level two. We will come back to this later.

Considering M (3) excludes yet another region for c < 1 (while it does not impose constraints
for c � 1). The determinant has two non-trivial roots, denoted by h3,1 and h1,3 and the region
between these two curves again corresponds to non-unitary representations. See figure.

1

h2,1

h1,2

h3,1

h1,3
c

h

The same situation occurs at higher levels. There is a formula for the determinant of the
Gram matrix, called the Kac determinant

detM (`) = ↵`

Y
r,s�1
rs`

(h� hr,s(c))
p(`�rs) (7.11)

where ↵` is positive and the relation between hr,s(c) and the central charge is better written
implicitly
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c(m) = 1� 6

m(m+ 1)
(7.12)

hr,s(m) =
((m+ 1)r �ms)2 � 1

4m(m+ 1)
(7.13)

where m > 2 is a real parameter. It turns out that all representations are unitary for
c > 1, h > 0. For c < 1 the situation is much more restricted and all regions are excluded
except for isolated points. The final result can be summarised as follows

• The central charge has to be of the form

c(m) = 1� 6

m(m+ 1)
, m = 2, 3, 4, · · ·

• For eachm there is only a finite number of primaries leading to unitary representations,
of dimensions

hr,s(m) =
((m+ 1)r �ms)2 � 1

4m(m+ 1)
, 1  r  m� 1

1  s  r

Conformal field theories with such a spectrum exist and are called unitary minimal models.
They will be the subject of the rest of this section.

7.2 Correlators and OPE in unitary minimal models

In the following we will study in detail the models introduced above. Since the spectrum
of primary operators for these models fall into vanishing curves h = hr,s, the corresponding
Verma modules will have null states. For a primary operator with h = hr,s, this happens
at level r ⇥ s. The existence of null vectors imposes strong constraints on the structure of
correlators and the structure of the operator algebra. In this course we will focus on a simple
example which will show all the main ingredients.

Let us study a simple example of reducible Verma module. Consider a primary |hi and the
following descendant at level two:

|�i =
�
L�2 + ⌘L2

�1

�
|hi. (7.14)

We want to choose ⌘ and h in such a way that |�i is null. It will su�ce to require L1|�i =
L2|�i = 0, as Ln|�i = 0 for n > 2 will then follow from the Virasoro algebra. We obtain

L1|�i = (3 + 2⌘ + 4h⌘)L�1|hi (7.15)

L2|�i = (
c

2
+ 4h+ 6hn)L�1|hi (7.16)
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Hence |�i is null provided

⌘ = � 3

2(2h+ 1)
(7.17)

h =
1

16

⇣
5� c±

p
(c� 1)(c� 25)

⌘
(7.18)

As expected, the condition on h is either h = h1,2 or h = h2,1. Let us denote by �(z) the
field corresponding to the primary operator. To |�i we can associate a descendant null field
�(z) given by

�(z) = �(�2)(z)� 3

2(2h+ 1)

@2

@z2
�(z) (7.19)

As already mentioned, the null state is orthogonal to the whole Verma module, or to any
state in the theory. In terms of correlators this translate into

h�(z)�h1(z1) · · ·�h
n

(zn)i = 0 (7.20)

however, according to (6.23) this implies✓
L�2 �

3

2(2h+ 1)
L2

�1

◆
h�(z)�h1(z1) · · ·�h

n

(zn)i = 0 (7.21)

where the operators L�n have been defined in (6.24). More explicitly

 
nX

i=1


hi

(z � zi)2
+

1

z � zi

@

@zi

�
� 3

2(2h+ 1)

@2

@z2

!
h�(z)�h1(z1) · · ·�h

n

(zn)i = 0 (7.22)

This is a beautiful equation! For two point functions it does not add new information.
However, let us consider its e↵ect on a three-point function of �(z) with two other primaries:

h�(z)�h1(z1)�h2(z2)i =
Ch,h1,h2

(z � z1)h+h1�h2(z1 � z2)h1+h2�h(z � z2)h+h2�h1
(7.23)

where we have focused in the holomorphic dependence only and Ch,h1,h2 is a constant not
fixed by global conformal invariance. As discussed in the previous section, it appears in
the operator algebra, and is the coe�cient with which the primary �h2 appears in the OPE
�⇥ �h1 . Applying (7.22) to this three-point function we see that Ch,h1,h2 vanishes unless the
following constraint holds

2(2h+ 1)(h+ 2h2 � h1) = 3(h� h1 + h2)(h� h1 + h2 + 1) (7.24)

This can be seen as a quadratic equation for h2. We then arrive to the conclusion that in
the OPE of the degenerate field �(z) with another primary there are only two conformal
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families! (i.e. two primaries plus all its descendants). Assume now that �h1(z) is one of the
primaries of a minimal model, so that h1 = hr,s, given in (7.12), we obtain

h = h1,2, h1 = hr,s ! h2 = hr,s�1 or h2 = hr,s+1 (7.25)

h = h2,1, h1 = hr,s ! h2 = hr�1,s or h2 = hr+1,s

Denoting by �(r,s) the field corresponding to |hr,si, we can write these relations in a symbolic
form

�(1,2) ⇥ �(r,s) = �r,s�1 + �r,s+1 (7.26)

�(2,1) ⇥ �(r,s) = �(r�1,s) + �(r+1,s)

Telling us which conformal families can appear in the OPE of the left hand side. The
conditions under which a given conformal family occurs in the short-distance product of two
conformal fields are called the fusion rules of the theory. Be aware that there are implicit
coe�cients (the OPE coe�cients) which may even be zero. One can derive similar fusion rules
for more general OPE �r,s ⇥ �r0,s0 . A very important property, already manifest in (7.26), is
that the conformal families [�(r,s)] associated with reducible modules form a closed set under
the operator algebra. The final result for minimal models is a finite set of conformal families
(as claimed above) which closes under fusion. This last property allows minimal models to be
consistent CFTs. Let us make the following two remarks. First, the field �1,1(z) has a level
one null descendant. But at level one the only descendant is (L�1�1,1) so that, @z�1,1(z) = 0
inside any correlator. We hence identify �1,1(z) with the identity operator �1,1(z) = I. This
also fits with h1,1 being zero, since �1,1(0)|0i = I|0i = |0i. The fusion relation involving the
identity operator is of course

�(r,s) ⇥ �(1,1) = �r,s (7.27)

Finally, when writing fusion relations it sometimes happens that the conformal families on
the r.h.s fall outside the range defining a minimal model. It is sometimes convenient to take
conformal families �(r,s) with 1  r  m� 1 and 1  s  m with the identification

�(r,s) = �(m�r,m+1�s) (7.28)

So far our discussions were restricted to the holomorphic sector. The Hilbert space of a phys-
ical theory is in fact constructed out of tensor products of holomorphic and anti-holomorphic
modules. In the example below we will restrict ourselves to a ”diagonal” choice where we
associate to each holomorphic module M(c, hr,s) the corresponding anti-holomorphic module
M̄(c, hr,s) (and c̄ = c). The Hilbert space of the theory will then be of the form

H =
M
r,s

M(c, hr,s)⌦ M̄(c, hr,s) (7.29)
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7.3 Example: The Ising model

The simplest non-trivial unitary CFT is called the critical Ising model. In addition to the
identity it contains two fields, �(z, z̄) and ✏(z, z̄), of conformal dimensions

(h, h̄)� =

✓
1

16
,
1

16

◆
, (h, h̄)✏ =

✓
1

2
,
1

2

◆
(7.30)

This allows to identify this CFT with the unitary minimal model with m = 3. Furthermore,
if we focus in the holomorphic part of the theory we can make the following identification

I , �(1,1) = �(2,3)

� , �(2,2) = �(1,2) (7.31)

✏ , �(2,1) = �(1,3)

Then the fusion rules (7.26) lead to

� ⇥ � = I+ ✏ (7.32)

� ⇥ ✏ = � (7.33)

✏⇥ ✏ = I (7.34)

In order to see the power of (7.22) into action, let us consider the four point correlator
of identical fields �(z, z̄). Focusing for the moment only in the holomorphic dependence
conformal invariance allows to write

h�(z1)�(z2)�(z3)�(z4)i =
g(⌘)

z2h12 z
2h
34

, ⌘ =
z12z34
z13z24

(7.35)

With h = 1/16. The equation (7.22) written in this case: 
4X

i=2


h

(z1 � zi)2
+

1

z1 � zi

@

@zi

�
� 3

2(2h+ 1)

@2

@z21

!
h�(z1)�(z2)�(z3)�(z4)i = 0 (7.36)

implies a di↵erential equation on g(⌘). Precisely:

g00(⌘) +
�4⌘ + 4⌘h� 8h+ 2

3⌘ � 3⌘2
g0(⌘)� 2h(2h+ 1)

3(1� ⌘)2
g(⌘) = 0 (7.37)

where remember h = 1/16. This has two linearly independent solutions

g±(z) =

p
1±p

⌘

(1� ⌘)1/8
(7.38)
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Building up the solution

Let us reinsert back the anti-holomorphic dependence on the full correlator

h�(z1, z̄1)�(z2, z̄2)�(z3, z̄3)�(z4, z̄4)i =
g(⌘, ⌘̄)

|z12|4h|z34|4h
(7.39)

Our previous result, plus its anti-holomorphic analog, implies

g(⌘, ⌘̄) = ++g+(z)g+(z̄) + +�g+(z)g�(z̄) + �+g�(z)g+(z̄) + ��g�(z)g�(z̄) (7.40)

So that we have fixed the correlator up to four constants! can we do better than this? which
other requirements should this correlator satisfy?

• Single valued: On the real section ⌘̄ = ⌘⇤, g(⌘, ⌘̄) should be single-valued as we move
⌘ around the complex plane. The non-trivial points are ⌘ = 0, 1. We define the
monodromy transformations around ⌘ = 0 and ⌘ = 1 as

M0 (g(⌘, ⌘̄)) = lim
t!1�

g(⌘e2⇡it, ⌘̄e�2⇡it) (7.41)

M1 (g(⌘, ⌘̄)) = lim
t!1�

g(1 + (⌘ � 1)e2⇡it, 1 + (⌘̄ � 1)e�2⇡it) (7.42)

g(⌘, ⌘̄) should be invariant under both transformations.

• Crossing relations: since the operators are identical, the correlator should be invariant
under the exchanges of any two of them:

1 $ 2 : ⌘ $ ⌘

⌘ � 1
! g(⌘, ⌘̄) = g(

⌘

⌘ � 1
,

⌘̄

⌘̄ � 1
) (7.43)

1 $ 3 : ⌘ $ 1� ⌘ ! g(⌘, ⌘̄)

|z12|4h|z34|4h
=

g(1� ⌘, 1� ⌘̄)

|z23|4h|z14|4h
(7.44)

In particular this last condition reads

g(⌘, ⌘̄) =

���� ⌘

1� ⌘

����4h g(1� ⌘, 1� ⌘̄) (7.45)

• Consistency with the OPE of �⇥ �. In particular, we know that the lowest dimension
field in the OPE is the identity field, so that (see (6.25))

�(z1, z̄1)�(z2, z̄2) =
1

z1/812 z̄1/812

+ . . .

with exact coe�cient one. Where we have assumed canonical normalization for � and
used CI

�� = 1. This fixes the small ⌘, ⌘̄ behaviour of the answer to be:

g(⌘, ⌘̄) = 1 + · · ·
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Let us start with single-valuedness. The monodromy transformations around zero and one
act as

M0 :

8<:
p

1 +
p
⌘ !

p
1�p

⌘,
p
1 +

p
⌘̄ !

p
1�p

⌘̄p
1�p

⌘ !
p
1 +

p
⌘,

p
1�p

⌘̄ !
p

1 +
p
⌘̄

(7.46)

M1 :

8<:
p
1 +

p
⌘ !

p
1 +

p
⌘,

p
1 +

p
⌘̄ !

p
1 +

p
⌘̄p

1�p
⌘ ! �

p
1�p

⌘,
p
1�p

⌘̄ ! �
p

1�p
⌘̄

Or at the level of the basis of solutions

M0 : g+ $ g� (7.47)

M1 : g� $ �g�

Invariance under both transformations fixes the solution up to an overall constant! This
constant is then fixed by requiring the correct behaviour for small ⌘, ⌘̄. We obtain the final
answer:

g(⌘, ⌘̄) =
|1 +p

⌘|+ |1�p
⌘|

2|1� ⌘|1/4 (7.48)

We have chosen the prefactors in defining g(⌘, ⌘̄) in such a way that the partial decomposition
in terms of conformal blocks takes the form

g(⌘, ⌘̄) =
X
p

C2
pF(p|⌘)F̄(p|⌘̄) (7.49)

where now
F(p|⌘) = ⌘hp (1 + a⌘ + · · · ) (7.50)

starts with ⌘ to the dimension of the intermediate operator, and di↵ers from (6.34) just by the
overall power ⌘�2h. An important point is that the normalization is fixed and all subsequent
powers of ⌘ are integer powers times ⌘hp . The explicit answer can be decomposed as

g(⌘, ⌘̄) = F(0|⌘)F̄(0|⌘̄) + C2
✏F(1/2|⌘)F̄(1/2|⌘̄) (7.51)

where C✏ = 1/2 and

F(0|⌘) =
p

1 +
p
⌘ +

p
1�p

⌘

2(1� ⌘)1/8
= ⌘0

✓
1 +

⌘2

64
+ · · ·

◆
(7.52)

F(
1

2
|⌘) =

p
1 +

p
⌘ �

p
1�p

⌘

(1� ⌘)1/8
= ⌘1/2

⇣
1 +

⌘

4
+ · · ·

⌘
(7.53)
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correspond to the conformal blocks of the identity operator and the ✏ operator! This is
consistent with the fusion rule �⇥� = I+ ✏. Graphically, we represent the decomposition as

�

�

�

�

= +
I ✏

Let us close this section with a discussion of the crossing relations. Under ⌘ ! ⌘
⌘�1 each

conformal block transforms to itself up to a phase, which cancels between holomorphic and
anti-holomorphic pieces. The symmetry ⌘ ! 1� ⌘ is more interesting:

⌘1/8

(1� ⌘)1/8

0@F(0|1� ⌘)

F(12 |1� ⌘)

1A =

0@ 1p
2

1
2
p
2

p
2 � 1p

2

1A0@F(0|⌘)

F(12 |⌘)

1A (7.54)

This transformation properties are such that g(⌘, ⌘̄) has the correct symmetry! Note the
following feature: the conformal blocks transform to a finite linear combination of conformal
blocks under ⌘ ! 1�⌘, this is very peculiar! and is specific to these models in two dimensions.
Finally, note that we could have considered

g(⌘, ⌘̄) = F(0|⌘)F̄(0|⌘̄) + C2
✏F(1/2|⌘)F̄(1/2|⌘̄) (7.55)

with arbitrary OPE coe�cient C✏. Crossing symmetry, plus the explicit transformations
for the conformal blocks, would have fixed it! In this way we have fixed a dynamical (not
fixed by conformal symmetry) quantity, such as C✏, by considering a higher point function,
and resorting to the structure of the OPE and crossing symmetry. This is the spirit of the
conformal bootstrap.
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8 Conformal bootstrap in d > 2

After our discussions in two dimensions, let us return to the less gentle world of d > 2. Over
this course we have seen that a conformal field theory in d dimensions is characterised by

• The spectrum of primary operators: a list of their scaling dimensions �i and the SO(d)
representations under which they transform, labelled by `.

• The constants Cijk that appear in the three-point functions of primaries and the OPE
of two primaries.

• Some additional data, such as the central charge. Some theories also admit exactly
marginal deformations, so that one can introduce a coupling ⌧ , such that the theory
is conformal for all values of this coupling. The spectrum and OPE coe�cients will in
general depend on these parameters.

We have seen that four-point functions are determined by conformal symmetry, and the
structure of the operator algebra, once this CFT data is known, and this is also true for
higher point functions. A natural question arises: does any CFT data define a consistent
CFT? while we haven’t defined consistent yet, the answer to this question is clearly no! we
have seen already in two dimensions that by requiring the correct properties of a given four-
point function we were able to fix the OPE coe�cients in the critical Ising model! In this
section we will attempt to pursue a similar program in d > 2, and try to determine which
CFT data defines a consistent CFT.

8.1 Crossing symmetry and the bootstrap equation

Consider the correlator of four identical scalar operators of dimension ��. Due to conformal
invariance

h�(x1)�(x2)�(x3)�(x4)i =
G(u, v)

x
2�

�

12 x
2�

�

34

(8.1)

where we have introduced the cross-ratios

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

(8.2)

By considering the OPE �(x1)�(x2) and �(x3)�(x4) we have seen we can expand the above
correlator in conformal partial waves

G(u, v) =
X
�,`

c2�,`G�,`(u, v). (8.3)

where the sum runs over intermediate conformal primaries, in other words, the conformal
primaries present in the OPE �(x1)�(x2). c2�,` are the square of the OPE coe�cients and
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G�,`(u, v) denotes the conformal block of the corresponding primary. We can express this
decomposition diagrammatically

h�(x1)�(x2)�(x3)�(x4)i =
X
�,`

�(x1)

�(x2)

�(x4)

�(x3)

c�,` c�,`

G�,`(u, v)

It is convenient to single out the contribution from the identity operator: it is always present
in the OPE of two identical operators, has OPE coe�cient c0,0 = 1 and has no descendants,12

so that we can write:

G(u, v) = 1 +
X
�,`

c2�,`G�,`(u, v) (8.4)

In case you are curious, in four-dimensions the conformal blocks for external scalar
operators have a closed expression and for the case at hand take the form

G�,`(z, z̄) =
1

z � z̄

�
z`+1k�+`(z)k��`�2(z̄)� (z $ z̄)

�
k�(z) = 2F1

✓
�

2
,
�

2
, �; z

◆
where we have introduced u = zz̄ and v = (1�z)(1� z̄) not to be confused with complex
coordinates.

Of course, we could have considered instead the OPE �(x2)�(x3) and �(x1)�(x4), this would
have led to an expansion of the form

h�(x1)�(x2)�(x3)�(x4)i =
X
�,`

G
�
,`
(v
,u
)

c�,`

c�,`

�(x1) �(x4)

�(x2) �(x3)

12As we have seen, the situation is very di↵erent in two dimensions, since we have many more ”creation”
operators L�2, L�3, · · · in addition to the globally well defined one L�1, which annihilates the identity
operator.
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The attentive reader may have noted that the cross ratios are exchanged u $ v, as we are
e↵ectively exchanging points x1 $ x3. However, the answer of course should be exactly the
same! so that both conformal wave expansions should be equivalent. More precisely, crossing
symmetry implies

G(u, v)

x
2�

�

12 x
2�

�

34

=
G(v, u)

x
2�

�

23 x
2�

�

14

+ (8.5)

v��

 
1 +

X
�,`

c2�,`G�,`(u, v)

!
= u�

�

 
1 +

X
�,`

c2�,`G�,`(v, u)

!

which can be rearranged into the

'

&

$

%

Conformal bootstrap equation

X
�,`

c2�,`

✓
v��G�,`(u, v)� u�

�G�,`(v, u)

u�
� � v��

◆
= 1

This is a remarkable equation. Unlike in two dimension, there is an infinite number of
primaries on the OPE �⇥ �. This equation is telling us, that whatever the spectrum �i, `i
is and whatever the OPE coe�cients c�,` are, the combination above has to be exactly one!
and this should be true for all values of u, v and any value of extra parameters (such as the
central charge).

The idea

The bootstrap equation turns out to be particularly powerful when supplemented by unitar-
ity. In general dimensions, unitarity imposes the following constraints:

• Lower bounds on the spectrum. For a field of spin `, in the symmetric traceless repre-
sentation:

� � `+ d� 2 if ` = 1, 2, 3, · · ·

� � d/2� 1 if ` = 0

• The OPE coe�cients are real, so that c2�,` � 0.

Let us write the bootstrap equation as follows
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X
�,`

c2�,`F�,`(u, v) = 1 (8.6)

How do we extract information from this? The procedure is simple: first assume a spectrum
consistent with unitarity bounds, namely, a list of �i’s for each spin, for instance:

Putative spectrum:

• For ` = 0, �i = {1, 3/2, 2, · · · }

• For ` = 1, �i = {3, 4, 5, · · · }

• For ` = 2, �i = {5, 5 + 3/2, 5 + 3, · · · }

and so on. Now it comes the interesting part. Immagine you can find a linear operator �,
which acts on functions of u, v, such that

� (F�,`(u, v)) � 0, for all the putative spectrum (8.7)

�(1) < 0 (8.8)

Since c2�,` > 0 due to unitarity, this means the spectrum you have chosen is no good! since
it would imply some of the OPE coe�cients are negative. As a result, you can rule the
spectrum out. From a more mathematical standpoint, we can understand this problem as
follows: choosing a spectrum is equivalent to choose a basis of function F�

i

,`
i

(u, v). The
bootstrap equation (8.6) can then be seen as an expansion of the function 1 in terms of
our basis. If one of the coe�cients in that expansion is negative, then this means that the
basis we have chosen (namely the spectrum) is not consistent with unitarity. Following this
procedure, one can rule out entire families of spectra!

Results

Let us discuss the kind of results that the conformal bootstrap gives, for a particular example.
Imagine a generic four-dimensional CFT, with a scalar operator ' of dimension �'. Its OPE
with itself will be of the form

'(x)⇥ '(0) =
1

|x|2�'

�
1 + C|x|�'

2'2(0) + · · ·
�

(8.9)

where by '2 we denote the lowest twist operator (after the identity) in the OPE above. Of
course, in a free theory this would be : '' : but here we are taking about a generic CFT,
which may not even have a Lagrangian description. Let us say that the dimension of this
operator is �'2 . The conformal bootstrap gives upper bounds for �'2 for fixed values of �'

(See for instance Rychkov lectures):

65



1 1.5 2 2.5 3

2

2.5

3

3.5

4

bound

�'

�'2

These bounds are very robust, and have not even assumed the theory has a Lagrangian!
Although not as powerful as in two dimensions, consistency conditions in higher dimensions
have led to a variety of very interesting results, but this will take us outside the scope of this
course.
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