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Introduction

Commutative algebra is the study of commutative rings, with a focus on
the commutative rings which arise in algebraic geometry.

As will be explained in the Part C course Introduction to Schemes, a
commutative ring corresponds to an affine scheme and in this sense,
commutative algebra is a part of the theory of schemes.

Affine schemes are generalisations of affine varieties over fields.

The class of rings, which arise from affine varieties over fields (as their
coordinate rings) is the class of finitely generated algebras over fields, ie
quotients of polynomial rings K [x1, . . . , xk ], where K is a field.
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In the context of schemes, the most commonly studied affine schemes are
those which are of finite type over a noetherian affine scheme.

The corresponding class of rings is then the class of rings, which are
finitely generated over a noetherian ring.

This class is the prime object of study of this course.

Some history. Up to the end of the nineteenth century, one mainly studied
finitely generated algebras over fields given by explicit equations (ie by
polynomials generating an ideal I , when the algebra has the presentation
K [x1, . . . , xk ]/I ). The study of commutative rings in abstracto only started
in the 1930s and it gathered a lot of momentum in the 1960s, when many
geometric techniques became available through the theory of schemes.
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Preamble

All rings in these lectures are commutative unitary rings. A ring will
be short for a commutative unitary ring.

We assume that the reader is familiar with the content of the part A
course Rings and Modules.

The basic reference for this course is the book

Introduction to Commutative Algebra by M. F. Atiyah and I. G
MacDonald. Perseus Books.

For (a lot) more material and more explanations on the material presented
here, see the book

Commutative Algebra with a View Toward Algebraic Geometry by D.
Eisenbud. Springer, Graduate Texts in Mathematics 150.
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We now review some terminology.

Let R be a ring. If I ⊆ R is an ideal in R, we shall say that I is non trivial
if I 6= R (this is not entirely standard terminology).

The ideal I is principal if it can be generated by one element as an
R-module.

We shall write R∗ := R\{0}.
An element r ∈ R is said to be nilpotent if there exists an integer n ≥ 1
such that rn = r · r · · · r (n-times) = 0.

The ring R is local if it has a single maximal ideal.

The prime ring of a ring R is the image of the unique ring homomorphism
Z→ R (which sends n ∈ Z to the corresponding multiple of 1 ∈ R).
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If R,T are rings, then T is said to be a R-algebra if there is a
homomorphism of rings R → T .

If φ1 : R → T1 and φ2 : R → T2 are two R-algebras, a homomorphism of
R-algebras is a homomorphism of rings λ : T1 → T2 such that λ ◦φ1 = φ2.

A R-algebra φ : R → T is said to be finitely generated if there exists an
integer k ≥ 0 and a surjective homomorphism of R-algebras

R[x1, . . . , xk ]→ T .

If M is an R-module and S ⊆ M is a subset of M, we write

Ann(S) := {r ∈ R | rm = 0 for all m ∈ S}

The set Ann(S) is an ideal of R, called the annihilator of S .
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If I , J ⊆ R are ideals in R, we shall write

(I : J) := {r ∈ R | rJ ⊆ I}.

Let

· · · → Mi
di→ Mi+1

di+1→ · · ·

be a sequence of R-modules such that di+1 ◦ di = 0 for all i ∈ Z.

Such a sequence is called a complex of R-modules.

We shall say that the complex is exact if ker(di+1) = Im(di ) for all i ∈ Z.
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For the record, we recall the following two basic results:

Theorem 0.1 (Chinese remainder theorem)

Let R be a ring and let I1, . . . , Ik be ideals of R. Let

φ : R →
k∏

i=1

R/Ii

be the ring homomorphism such that φ(r) =
∏k

i=1(r (mod Ii )) for all
r ∈ R.

Then ker(φ) = ∩ki=1Ii .

Furthermore the map φ is surjective iff Ii + Ij = R for any i , j ∈ {1, . . . , k}
such that i 6= j . In that case, we have ∩ki=1Ii =

∏k
i=1 Ii .

(for the proof see Prop. 10 in AT).
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Proposition 0.2 (Euclidean division)

Let R be a ring. Let P(x),T (x) ∈ R[x ].

Suppose that the leading coefficient of T (x) is a unit of R.

Then there exist unique polynomials Q(x), J(x) ∈ R[x ] such that

P(x) = Q(x)T (x) + J(x)

and deg(J(x)) < deg(T (x)).
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We shall also need the following result from set theory.

A partial order on a set S is a relation ≤ on S , such that

- (reflexivity) s ≤ s for all s ∈ S ;

- (transitivity) if s ≤ t and t ≤ r for s, t, r ∈ S then s ≤ r ;

- (antisymmetry) if s ≤ t and t ≤ s for t, s ∈ S then s = t.

If we also have

- (connexity) for all s, t ∈ S , either s ≤ t or t ≤ s

then the relation ≤ is said to be a total order on S .

Let T ⊆ S be a subset and let b ∈ S . We say that b is an upper bound for
T if t ≤ b for all t ∈ T .

An element s ∈ S is said to be a maximal element of S if for all t ∈ S , we
have s ≤ t iff s = t.

An element s ∈ S is said to be a minimal element of S if for all t ∈ S , we
have t ≤ s iff s = t.

10 / 207



Proposition 0.3 (Zorn’s lemma)

Let ≤ be a partial order on a non-empty set S.

Suppose that for every subset T ⊆ S, which is totally ordered, there is an
upper bound for T in S.

Then there exists a maximal element in S.

Proof. Omitted. See any first course on set theory. Zorn’s lemma is a
consequence of the axiom of choice.

On the next slide we shall see a classical application of Zorn’s lemma.
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Lemma 1

Let R be a ring. If I ⊆ R be a non trivial ideal. Then there is a maximal
ideal M ⊆ R such that I ⊆ M.

Proof. Let S be the set of all non trivial ideals containing I .

Endow S with the relation given by inclusion.

If T ⊆ S is a totally ordered subset, then T has the upper bound ∪J∈T J.

Hence, by Zorn’s lemma, there is a maximal element M in S.

By definition, the ideal M has the property that whenever J is a non trivial
ideal containing I and M ⊆ J, then M = J.

If J is an ideal of R, which does not contain I , then we cannot have
M ⊆ J (since M contains I ).

We conclude that for any non trivial ideal J of R, we have M = J if
M ⊆ J.

Ie M is a maximal ideal of R, which contains I .

END OF LECTURE 1
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The nilradical and the Jacobson radical

Definition 0.4

Let R be a ring. The nilradical of R is the set of nilpotent elements of R.

The nilradical is obviously an ideal.

Examples. The nilradical of a domain is the zero ideal. The nilradical of
C[x ]/(xn) is (x).

A ring R is called reduced if its nilradical is {0}.
The nilradical captures the ”infinitesimal part” of a ring.

In the classical algebraic geometry of varieties, the coordinate rings were
always assumed to be reduced, and nilradicals did not play a role.

Part of the strength of scheme theory is that it allows the presence of
infinitesimal phenomena.
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Proposition 0.5

Let R be a ring. The nilradical of R is the intersection of all the prime
ideals of R.

Proof. Suppose that f ∈ R is a nilpotent element. Let p ⊆ R be a prime
ideal.

Some power of f is 0, which is an element of p. In particular,
f (mod p) ∈ A/p is a zero-divisor.

Since p is a prime ideal, the ring A/p is a domain and so
f (mod p) = 0 (mod p).

In other words, f ∈ p. We conclude that f is in the intersection of all the
prime ideals of R.

Conversely, suppose that f ∈ R is not nilpotent.

Let Σ be the set of non trivial ideals I of R, such that for all n ≥ 1 we
have f n 6∈ I .

The set Σ is non-empty, since (0) ∈ Σ.
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If we endow this set with the relation of inclusion, we may conclude from
Zorn’s lemma that Σ contains a maximal element M.

We claim that M is a prime ideal.

To prove this, suppose that x , y ∈ R and that x , y 6∈ M.

Note that the ideal (x) + M (resp. (y) + M) strictly contains M and
hence cannot belong to Σ (by the maximality property of M).

Hence there are integers nx , ny ≥ 1 such that f nx ∈ (x) + M and
f ny ∈ (y) + M.

In other words, f nx = a1x + m1, where a1 ∈ R and m1 ∈ M and
f ny = a2y + m2, where a2 ∈ R and m2 ∈ M.

Thus
f nx+ny = a1a2xy + m3

where m3 ∈ M.
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Hence xy 6∈ M, for otherwise we would have f nx+ny ∈ M, which is not
possible since M ∈ Σ.

Since x , y ∈ R were arbitrary, we conclude that M is a prime ideal.

Since M ∈ Σ, for all n ≥ 1 we have f n 6∈ M.

In particular we have f 6∈ M. In other words, we have exhibited a prime
ideal in R, which does not contain f .

In particular, f does not lies in the intersection of all the prime ideals of
R.
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Let I ⊆ R be an ideal.

Let q : R → R/I be the quotient map and let N be the nilradical of R/I .

The radical r(I ) of I is defined to be q−1(N ).

From the definitions, we see that the nilradical of R coincides with the
radical r((0)) of the 0 ideal.

From the previous proposition, we see that the radical of I has the two
equivalent descriptions:

- it is the set of elements f ∈ R such that there exists an integer n ≥ 1
such that f n ∈ I ;

- it is the intersection of the prime ideals of R, which contain I .

An ideal, which coincides with its own radical is called a radical ideal.
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Definition 0.6

Let R be a ring. The Jacobson radical of R is the intersection of all the
maximal ideals of R.

By definition, the Jacobson radical of R contains the nilradical of R.

Let I ⊆ R be a non trivial ideal.

Let q : R → R/I be the quotient map and let J be the Jacobson radical
of R/I .

The Jacobson radical of I is defined to be q−1(J ).

By definition, this coincides with the intersection of all the maximal ideals
containing I .

Again by definition, the Jacobson radical of I contains the radical of I .
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Proposition 0.7 (Nakayama’s lemma)

Let R be a ring. Let M be a finitely generated R-module.

Let I be an ideal of R, which is contained in the Jacobson radical of R.

Suppose that IM = M.

Then M ' (0).

Proof. Suppose for contradiction that M 6= (0).

Let x1, . . . , xs be a set of generators of M and suppose that s is minimal.

By assumption, there are elements a1, . . . , as ∈ I such that

xs = a1x1 + · · ·+ asxs

so that (1− as)xs lies in the submodule M ′ generated by x1, . . . , xs−1.
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Now the element 1− as is a unit.

Indeed, if 1− as were not a unit then it would be contained in a maximal
ideal m of R and by assumption as ∈ m so that we would have 1 ∈ m,
which is contradiction.

Hence
xs = ((1− as)−1a1)x1 + · · ·+ ((1− as)−1as−1)xs−1. (1)

Thus M has s − 1 generators, which is a contradiction.

Hence M ' (0).
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Corollary 0.8

Let R be a local ring with maximal ideal m. Let M be a finitely generated
R-module.

Let x1, . . . , xs ∈ M be elements of M and suppose that the elements

x1 (modm), . . . , xs (modm) ∈ M/mM

generate the R/m-module M/mM.

Then the elements x1, . . . , xs generate M.

Proof. Let M ′ ⊆ M be the submodule generated by x1, . . . , xs .

By assumption, we have M ′ + mM = M so that

m(M/M ′) = M/M ′.

By Nakayama’s lemma, we thus have M/M ′ ' (0), ie M = M ′.
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Definition 0.9

A ring R is called a Jacobson ring if for all the non trivial ideals I of R, the
Jacobson radical of I coincides with the radical of I .

From the definition, we see that any quotient of a Jacobson ring is also
Jacobson.

It is easy to see that the ring Z is Jacobson, and that any field is Jacobson.

So is K [x ], if K is a field, and in fact so is any finitely generated algebra
over a Jacobson ring.

On the other hand, a local domain is never Jacobson.

So for instance the ring of p-adic integers Zp (where p is a prime number)
is not Jacobson.

END OF LECTURE 2
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The spectrum of a ring

Let R be a ring. We shall write Spec(R) for the set of prime ideals of R.

If a ⊆ R is an ideal, we define

V (a) := {p ∈ Spec(R) | p ⊇ a}

Lemma 2

The symbol V (•) has the following properties:

V (a) ∪ V (b) = V (a · b);⋂
i∈I V (ai ) = V (

∑
i ai );

V (R) = ∅; V ((0)) = Spec(R).

Proof. Straightforward.
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An immediate consequence of the last lemma is that the sets V (a) (where
a is an ideal of R) form the closed sets of a topology on Spec(R).

This topology is called the Zariski topology.

The closed points in Spec(R) are precisely the maximal ideals of R.

If R is the coordinate ring of an affine variety W over an algebraically
closed field, the closed points correspond to the points of the variety,
whereas the other prime ideals correspond to the irreducible closed
subvarieties of W .

From the definitions, we see that R is a Jacobson ring iff the closed points
are dense in any closed set of Spec(R).
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If φ : R → T is a homomorphism of rings, there a map

Spec(φ) : Spec(T )→ Spec(R)

given by the formula
p 7→ φ−1(p).

If a is an ideal in R and b is the ideal generated in T by φ(a), we clearly
have Spec(φ)−1(V (a)) = V (b), so that Spec(φ) is a continuous map for
the Zariski topologies on source and target.

Lemma 3

Let φ : R → T be a surjective homomorphism of rings.

Then Spec(φ) is injective and the image of Spec(φ) is V (ker(φ)).

The map Spec(φ) is a homeomorphism onto its image.

Proof. Straightforward. See the notes for details.
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Lemma-Definition 0.10

Let f ∈ R. The set

Df (R) = Df = {p ∈ Spec(R) | f 6∈ p}

is open in Spec(R).

The open sets of Spec(R) of the form Df form a basis for the Zariski
topology of Spec(R).

Furthermore, the topology of Spec(R) is quasi-compact.

The open sets of the form Df are often called basic open sets (in Spec(R)).

Recall that a set B of open sets of a topological space X is said to be a
basis for the topology of X if every open set of X can be written as a
union of open sets in B.

A topological space X is called quasi-compact if: for every family (Ui∈I ) of
open sets in X such that

⋃
i∈I Ui = X there exists a finite subset I0 ⊆ I

such that
⋃

i∈I0 Ui = X .
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Proof. We first prove that Df is open. To see this, just notice that the
complement of Df in Spec(R) is precisely V ((f )), where (f ) is the ideal
generated by f .

We now prove that the open sets of Spec(R) of the form Df form a basis
for the Zariski topology of Spec(R).

Let a be an ideal. We have to show that

Spec(R)\V (a) := {p ∈ Spec(R) | p 6⊇ a} =
⋃
i∈I

Dr(i)

for some index set I and some function r : I → R. Let r : I → a be an
enumeration of a set of generators of a. In view of of the properties of the
symbol V (•), we have the required equality.
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Finally, we show that Spec(R) is quasi-compact.

In view of the fact that the open sets of Spec(R) of the form Df form a
basis, we only need to show that if

Spec(R) =
⋃
i∈I

Dr(i) (2)

where r : I → R is a some function, then there is a finite subset I0 ⊆ I
such that Spec(R) =

⋃
i∈I0 Dr(i).

Now notice that the equality (2) is equivalent to the equality⋂
i∈I

V ((r(i))) = V ((r(I ))) = ∅ (3)

where we have used the short-hand (r(I )) for the ideal generated by all the
r(i).

Now the equality V ((r(I ))) = ∅ says that no prime ideal contains (r(I )).

This is only possible if (r(I )) = R, for otherwise (r(I )) would be contained
in at least one maximal ideal and maximal ideals are prime.
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Now choose a finite subset I0 ⊆ I and a map c : I0 → R such that
1 =

∑
i∈I0 c(i) · r(i).

We then have
∑

i∈I0(r(i)) = R and thus
⋂

i∈I0 V ((r(i))) = ∅, which is
what we want.

Lemma 4

Let a, b be ideals in R. Then V (a) = V (b) if and only if r(a) = r(b).

Proof. This is a consequence of the fact that the radical of an ideal is the
intersection of all the prime ideals containing it.

So the Zariski topology ”does not see the nilradical”.

In particular, there is a one to one correspondence between radical ideals
in R and closed subsets of Spec(R).

The closed subsets corresponding to prime ideals are called irreducible.

If R is the coordinate ring of an affine variety W over an algebraically
closed field, the radical ideals correspond to the closed (but not necessarily
irreducible) subvarieties of W .
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Remark 0.11

Let R be a commutative ring and let a, b be two ideals in R. Then we
have

(a ∩ b) · (a ∩ b) ⊆ a · b ⊆ a ∩ b

and thus r(a · b) = r(a ∩ b). In particular, we have

V (a · b) = V (a ∩ b).

Note that if a and b are radical ideals then a ∩ b is also a radical ideal,
whereas a · b might not be.

END OF LECTURE 3
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Localisation

Let R be a ring. A subset S ⊆ R is said to be a multiplicative set if 1 ∈ S
and if xy ∈ S whenever x , y ∈ S .

A basic example of a multiplicative set is the set {1, f , f 2, f 3, . . . }, where
f ∈ R.

Let S ⊆ R be a multiplicative subset.

We define a relation ∼ on R × S as follows. If (a, s), (b, t) ∈ R × S then
(a, s) ∼ (b, t) iff there exists u ∈ S such that u(ta− sb) = 0.

The relation ∼ is an equivalence relation and we define

S−1R = (R × S)/ ∼,

ie S−1R is the set of equivalence classes of R × S under ∼.

If a ∈ R and s ∈ S , we write a/s for the image of (a, s) in S−1R.
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We define a map + : S−1R × S−1R → S−1R by the rule

(a/s, b/t) 7→ (at + bs)/(st).

We also define a map · : S−1R × S−1R → S−1R by the rule

(a/s, b/t) 7→ (ab)/(ts).

These two maps provide S−1R with the structure of a commutative
unitary ring, whose identity element is 1/1.

The 0 element in S−1R is then the element 0/1.

There is natural ring homomorphism from R to RS , given by the formula
r 7→ r/1.

By construction, if r ∈ S , the element r/1 is invertible in R, with inverse
1/r .

We shall see in Lemma-Definition 0.12 below that S−1R is the ”minimal
extension” of R making every element of S invertible.
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Note that if R is a domain, the fraction field of R is the ring RR\0.

Note also that if R is a domain and 0 6∈ S , then S−1R is a domain and
S−1R is naturally a subring of the fraction field of R.

Indeed suppose that R is domain and that (a/s)(b/t) = 0, where a, b ∈ R
and s, t ∈ S . Then by definition we have u(ab) = 0 for some u ∈ S , which
implies that ab = 0 so that either a = 0 or b = 0, in particular either
a/s = 0/1 or b/t = 0/1.

More generally, the kernel of the natural map R → S−1R is
∪s∈SAnn({s}).
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If M is an R-module, we may carry out a similar construction.

We define a relation ∼ on M × S as follows. If (a, s), (b, t) ∈ M × S then
(a, s) ∼ (b, t) iff there exists u ∈ S such that u(ta− sb) = 0.

The relation ∼ is again an equivalence relation and we define S−1M to be
(M × S)/ ∼, ie S−1M is the set of equivalence classes of M × S under ∼.

If a ∈ M and s ∈ S , we again write a/s for the image of (a, s) in S−1M.
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We define a map + : S−1M × S−1M → S−1M by the rule

(a/s, b/t) 7→ (at + bs/(st).

This is also well-defined.

Similarly, we define the map · : S−1R × S−1M → S−1M by the rule

(a/s, b/t) 7→ (ab)/(ts).

Again, this is well-defined. One checks that these two maps provide S−1M
with the structure of a S−1R-module.

The 0 element in S−1M is then the element 0/1.

The S−1R-module S−1M carries a natural structure of R-module via the
natural map R → S−1R and there a natural map of R-modules
M → S−1M, given by the formula m 7→ m/1.

We shall often write RS := S−1R and MS := S−1M.

The ring RS (resp. the R-module MS) is called the localisation of the ring
R at S (resp. localisation of the R-module M at S).
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Lemma-Definition 0.12

Let φ : R → R ′ be a ring homomorphism. Let S ⊆ R be a multiplicative
subset.

Suppose that φ(S) consists of units of R ′.

Then there is a unique ring homomorphism

φS = S−1φ : RS → R ′

such that
φS(r/1) = φ(r)

for all r ∈ R.

Proof. Unwind the definitions. See the notes for details.
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There is a similar result for modules:

Lemma 5

Let R be a ring and let S ⊆ R be a multiplicative subset.

Let M be a R-module and suppose for each s ∈ S, the ”scalar
multiplication by s” map M → M is an isomorphism.

Then there is a unique structure of RS -module on M such that

(r/1)m = rm

for all m ∈ M and r ∈ R.

Proof. Left to the audience.
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We also record the following important fact.

Lemma 6

Let R be a ring and let f ∈ R. Let S = {1, f , f 2, . . . }. Then the ring RS is
finitely generated as a R-algebra.

Proof. The R-algebra T := R[x ]/(fx − 1) has the universal property of
RS and so must be isomorphic to RS . For a more down to earth proof, see
the notes.

In view of Lemma on the last slide, if R is a ring and φ : N → M is a
homomorphism of R-modules, there is a unique homomorphism of
RS -modules φS : NS → MS such that φ(n/1) = φ(n)/1 for all n ∈ N.

We verify on the definitions that if ψ : M → T is another homomorphism
of R-modules then, we have (ψ ◦ φ)S = ψS ◦ φS .
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Lemma 7

Let R be a ring and let S ⊆ R be a multiplicative subset. Let

· · · → Mi
di→ Mi+1

di+1→ · · ·

be an exact complex of R-modules.

Then the sequence

· · · → Mi ,S
di,S→ Mi+1,S

di+1,S→ · · ·

is also exact.
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Proof. Let m/s ∈ Mi ,S (with m ∈ Mi and s ∈ S) and suppose that
di ,S(m/s) = (1/s)di ,S(m/1) = 0.

Then di ,S(m/1) = di (m)/1 = 0 so that there is a u ∈ S , such that
u · di (m) = di (um) = 0.

Now by assumption there is an element p ∈ Mi−1 such that di−1(p) = um.

Then we have di−1,S(p/(us)) = m/s.
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Let R be a ring and let p be a prime ideal in R. Then the set R\p is a
multiplicative subset.

Indeed, 1 6∈ p for otherwise p would be equal to R and if x , y 6∈ p then
xy 6∈ p, for otherwise either x or y would lie in p.

We shall use the shorthand Rp for RR\p.

If M is a R-module, we shall use the shorthand Mp for MR\p. If φ : M → N
is a homomorphism of R-modules, we shall write φp for φR\p : Mp → Np.
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Lemma 8

Let R be a ring and let S ⊆ R be a multiplicative subset.

Let λ : R → RS be the natural ring homomorphism.

Then the prime ideals of RS are in one-to-one correspondence with the
prime ideals p of R such that p ∩ S = ∅.
If q is a prime ideal of RS then the corresponding ideal of R is λ−1(q).

If p is a prime ideal of R such that p∩ S = ∅ then the corresponding prime
ideal of RS is ιp,S(pS) ⊆ RS , where ιp : p→ R is the inclusion map.

Furthermore, ιp,S(pS) is then the ideal generated by λ(p) in RS .

The proof is straightforward but requires a lot of trivial verifications. See
the notes for details.

42 / 207



Note the following rewording of part of the last lemma:

Spec(λ)(Spec(RS)) consists of the prime ideals in Spec(R), which do not
meet S .

In particular, in the notation of Lemma-Definition 0.10,

Spec(λ)(Spec(RS)) = Df (R)

if S = {1, f , f 2, f 3, . . . }.

Lemma 9

Let R be a ring and let p ⊆ R be a prime ideal. Then the ring Rp is a local
ring. If m is the maximal ideal of Rp and λ : R → Rp is the natural
homomorphism of rings, then λ−1(m) = p.
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Proof. By the last lemma, the prime ideals of Rp correspond to the prime
ideals of R which do not meet R\p, ie to the prime ideals of R which are
contained in p.

This correspondence preserves the inclusion relation, so every prime ideal
of Rp is contained in the prime ideal corresponding to p.

Now let I be a maximal ideal of Rp.

Since I is contained in the prime ideal corresponding to p, it must coincide
with this ideal by maximality.

So the prime ideal m corresponding to p is maximal and it is the only
maximal ideal of Rp.

By the last lemma, we have λ−1(m) = p.
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Lemma 10

Let R be a ring. Let

· · · → Mi
di→ Mi+1

di+1→ · · · (4)

be a complex of R-modules. Then the complex (4) is exact iff the complex

· · · → Mi ,p
di,p→ Mi+1,p

di+1,p→ · · · (5)

is exact for all the maximal ideals p of R.
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Proof. ”⇒”: already proved.

”⇐”: Suppose that the complex (4) is not exact.

Then ker(di+1)/Im(di ) 6= 0 for some i ∈ Z. We already know that there is
a natural isomorphism

(ker(di+1)/Im(di ))p ' ker(di+1)p/Im(di )p

for all the prime ideals p in R.

In particular, if (ker(di+1)/Im(di ))p 6= 0 for some prime ideal p, then the
complex (5) is not exact for that choice of prime ideal.

Since ker(di+1)/Im(di ) 6= 0, we see that there is an element
a ∈ ker(di+1)/Im(di ) such that Ann(a) 6= R (any non zero element of
ker(di+1)/Im(di ) will do).

Let p be a maximal ideal of R, which contains Ann(a).

Then (ker(di+1)/Im(di ))p 6= 0 for otherwise there would be an element
u ∈ R\p ⊆ R\Ann(a) such that ua = 0, which is contradiction.

END OF LECTURE 4
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Primary decomposition

In this section, we study a generalisation of the decomposition of integers
into products of prime numbers.

In a geometric context (ie for affine varieties over algebraically closed
fields) this generalisation also provides the classical decomposition of a
subvariety into a disjoint union of irreducible subvarieties.

Applied to the ring of polynomials in one variable over a field, it yields the
decomposition of a monic polynomial into a product of irreducible monic
polynomials.
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Let R be a ring.

Proposition 0.13

(i) Let p1, . . . , pk be prime ideals of R. Let I be an ideal of R. Suppose
that I ⊆ ∪ki=1pi . Then there is i0 ∈ {1, . . . , k} such that I ⊆ pi0 .
(ii) Let I1, . . . , Ik be ideals of R and let p be a prime ideal of R. Suppose
that p ⊇ ∩ki=1Ii . Then there is i0 ∈ {1, . . . , k} such that p ⊇ Ii0 . If
p = ∩ki=1Ii , then there is a i0 ∈ {1, . . . , k} such that p = Ii0 .

Proof. Skipped. See the notes.
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Definition 0.14

An ideal I of R is primary if it is non trivial and all the zero-divisors of R/I
are nilpotent.

In other words, I is primary if the following holds: if xy ∈ I and x , y 6∈ I
then x l ∈ I and yn ∈ I for some l , n > 1 (in other words, x , y ∈ r(I )).

From the definition, we see that every prime ideal is primary.

Example. The ideals (pn) of Z are primary if p is prime and n > 0.
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Lemma 11

Suppose that I is a primary ideal of R. Then r(I ) is a prime ideal.

Proof. Let x , y ∈ R and suppose that xy ∈ r(I ).

Then there is n > 0 such that xnyn ∈ I and thus

- either xn ∈ I or xn ∈ I ;

- or xnl , ynk ∈ I for some l , k ≥ 1.

Hence either x or y lies in r(I ).
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The previous Lemma justifies the following terminology.

If p is a prime ideal and I is a primary ideal, we say that I is p-primary if
r(I ) = p.

Note that if the radical of an ideal is prime, it does not imply that this
ideal is primary. For counterexamples, see AT, beginning of chapter 4.

We have however the following result:

Lemma 12

Let J be an ideal of R. Suppose that r(J) is a maximal ideal. Then J is
primary.

Proof. From the assumptions, we see that the nilradical r(R/J) of R/J is
maximal. Since any prime ideal contains r(R/J), we see that r(R/J) is the
only prime ideal of R/J. Since any non-unit of R/J is contained in a
maximal ideal, we deduce that r(R/J) is precisely the set of non-units of
R/J. In particular, the zero divisors of R/J lies in r(R/J). In particular, J
is primary.
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Lemma 13

Let I be a p-primary ideal and x ∈ R.

(i) If x ∈ I then (I : x) = R.

(ii) If x 6∈ I then r(I : x) = p.

(iii) If x 6∈ p then (I : x) = I .

Proof. (i) and (iii) follow directly from the definitions. We prove (ii).

Suppose that y ∈ r(I : x).

By definition, this means that for some n > 0, we have xyn ∈ I . As x 6∈ I ,
we see that y ln ∈ I for some l > 0 so that y ∈ r(I ) = p.

Hence r(I : x) ⊆ p.

Now consider that we have I ⊆ r(I : x) ⊆ p.

Applying the operator r(•), we see that we have

r(I ) = p ⊆ r(r(I : x)) = r(I : x) ⊆ r(p) = p

so that r(I : x) = p.
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Lemma 14

Let p be a prime ideal and let q1 . . . , qk be p-primary ideals. Then
q := ∩ki=1qi is also p-primary.

Proof. We compute
r(q) = ∩ki=1r(qi ) = p.

In particular, q is p-primary if it is primary.

We verify that q is primary.

Suppose that xy ∈ q and that x , y 6∈ q.

Then then there are i , j ∈ {1 . . . , k} such that x 6∈ qi and y 6∈ qj . Hence
there are l , t > 0 such y l ∈ qi and x t ∈ qj .

In other words,
x , y ∈ r(qi ) = r(qj) = p = r(q).
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We shall say that an ideal I of R is decomposable if there exists a
sequence q1 . . . , qk of primary ideals in R such that I = ∩ki=1qi .

Such a sequence is called a primary decomposition of I .

A primary decomposition as above is called minimal if

(a) all the r(qi ) are distinct;

(b) for all i ∈ {1, . . . , k} we have qi 6⊇ ∩j 6=iqj .

Note that any primary decomposition can be reduced to a primary
decomposition in the following way:

- first use the last lemma to replace the sets of primary ideals with the
same radical by their intersection; then (a) is achieved;

- then successively throw away any primary ideal violating (b).

In general, not all ideals are decomposable. We shall see later that all
ideals are decomposable if R is noetherian.

END OF LECTURE 5
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The following theorem examines what part of primary decompositions are
unique.

Theorem 0.15

Let I be a decomposable ideal. Let q1 . . . , qk be primary ideals and let
I = ∩ki=1qi be a minimal primary decomposition of I . Let pi := r(qi ) (so
that pi is a prime ideal).

Then the following two sets of prime ideals coincide

- the set {pi}i∈{1,...,k};
- the ideals among the ideals of the type r(I : x) (where x ∈ R), which are
prime.
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Proof. Let x ∈ R. Note that (I : x) = ∩ki=1(qi : x) and
r(I : x) = ∩ki=1r(qi : x).

Hence by Lemma 13, we have r(I : x) = ∩i ,x 6∈qipi .
Now suppose that r(I : x) is a prime ideal.

Then r(I : x) = pi0 for some i0 ∈ {1, . . . , k} by Proposition 0.13.

Conversely, note that for any i0 ∈ {1, . . . , k}, there exists an x ∈ R, such
that x 6∈ qi0 and such that x ∈ qi for all i 6= i0.

This follows from the minimality of the decomposition.

For such an x , we have r(I : x) = pi0 by the above.
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As a consequence of Theorem 0.15, we can associate with any
decomposable ideal I in R a uniquely defined set of prime ideals.

Note that the intersection of these prime ideals is the ideal r(I ).

Another consequence is that any radical decomposable ideal has a unique
minimal primary decomposition by prime ideals.

Examples. If n = ±pn1
1 · · · p

nk
k ∈ Z, where the pi are distinct prime

numbers, a primary decomposition of (n) is given by

(n) = ∩ki=1(pni )

(apply the Chinese Remainder Theorem). The set of prime ideals
associated to this decomposition is of course {(p1), . . . , (pk)}.
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A more complex example is the ideal (x2, xy) ⊆ C[x , y ].

Here
(x2, xy) = (x) ∩ (x , y)2

is a primary decomposition and the associated set of prime ideals is
{(x), (x , y)}.
For a justification, see the notes.
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Lemma 15

Let I be a decomposable ideal.

Let S be the set of prime ideals associated with some (and hence any)
minimal primary decomposition of I .

Let I be the set of all the prime ideals of R, which contain I .

View S (resp. I) as partially ordered by the inclusion relation.

Then the minimal elements of S coincide with the minimal elements of I.
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Proof. Clearly the minimal elements of I are also minimal elements of S.

We only have to show that the minimal elements of S are also minimal in
I.

Let Smin ⊆ S (resp. Imin ⊆ I) be the set of minimal elements of S (resp.
I).

Note first that by Theorem 0.15, we have r(I ) = ∩p∈Sp and thus we also
have r(I ) = ∩p∈Sminp.

Now let p0 ∈ Smin. Suppose for contradiction that p0 6∈ Imin.

Then there exists an element p′0 ∈ I such that p′0 ( p0.

On the other hand, we have p′0 ⊇ I , so that p′0 ⊇ p for some p ∈ Smin by
Proposition 0.13.

We conclude that p0 ) p, which contradicts the minimality of p0.
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In the second example given before Lemma 15, the set Smin consists only
of (x).

The elements of Smin are called the isolated prime ideals whereas the
elements of S\Smin are called the embedded prime ideals.

This terminology is justified by algebraic geometry.

Note the following important fact:

if I is a decomposable radical ideal, then there is a minimal primary
decomposition of I , which consist of the primes ideals which are minimal
among all the prime ideals containing I .

In particular, all the associated prime ideals of a radical ideal are isolated.

Note. One can show that all the minimal primary decompositions of a
decomposable radical ideal coincide. See notes for more details (but no
proof).

END OF LECTURE 6
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Noetherian rings

Let R be a ring.

We say that R is noetherian if every ideal of R is finitely generated.

In other words, if I ⊆ R is an ideal of R, then there are elements r1, . . . , rk
such that I = (r1, . . . , rk).

Examples. Fields and PIDs are noetherian (why?). In particular, Z and C
are noetherian, and so is K [x ], for any field K .

We shall see that ”most” rings that one encounters are noetherian. In fact
any finitely generated algebra over a noetherian ring is noetherian (see
below).
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We begin with some generalities.

Lemma 16

Let R be a noetherian ring. Let I1 ⊆ I2 ⊆ . . . be an ascending sequence of
ideals.

Then there exists a k ≥ 1 such that Ik = Ik+i = ∪∞t=1It for all i ≥ 0.

Proof. The set ∪∞t=1It is clearly an ideal (verify) and it is finitely
generated by assumption. A given finite set of generators for ∪∞t=1It lies in
Ik for some k ≥ 1. The conclusion follows.
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Lemma 17

Let R be a noetherian ring and I ⊆ R an ideal.

Then the quotient ring R/I is noetherian.

Proof. Let q : R → R/I be the quotient map. Let J be an ideal of R/I .
The ideal q−1(J) is finitely generated by assumption and the image by q
of any set of generators of q−1(J) is a set of generators for J.

Lemma 18

Let R be a noetherian ring and let S ⊆ R be a multiplicative subset.

Then the ring RS is noetherian.

Proof. Let λ : R → RS be the natural ring homomorphism. In the proof
of Lemma 8, we showed that for any ideal I of RS , the ideal generated by
λ(λ−1(I )) is I (see (ii) in the proof). The image of any finite set of
generators of λ−1(I ) under λ is thus a finite set of generators for I .
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Lemma 19

Let R be a noetherian ring.

Let M be a finitely generated R-module.

Then any submodule of M is also finitely generated.

Proof. Omitted. See the notes.

Lemma 20

Let R be a noetherian ring. If I ⊆ R is an ideal, then there is an integer
t ≥ 1 such that r(I )t ⊆ I . In particular, some power of the nilradical of R
is the 0 ideal.

Proof. By assumption, we have r(I ) = (a1 . . . , ak) for some
a1, . . . , ak ∈ R.

By assumption again, there is an integer n ≥ 1 such that ani ∈ I for all
i ∈ {1, . . . , k}.
Let t = k(n − 1) + 1. Then r(I )t ⊆ (an1 . . . , a

n
k) ⊆ I .
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The following simple but remarkable result will be used later to give a
simple proof of the so-called weak Nullstellensatz.

It also has several other applications (see exercises).

Theorem 0.16 (Artin-Tate)

Let T be a ring and let R, S ⊆ T be subrings.

Suppose that R ⊆ S and that R is noetherian. Suppose that T is finitely

generated as a R-algebra and that T is finitely generated as a S-module.

Then S is a finitely generated as a R-algebra.
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Proof. Let r1, . . . , rk be generators of T as a R-algebra.

Let t1, . . . , tl be a generators of T as an S-module.

By assumption, for any a ∈ {1, . . . , k}, we can write

ra =
l∑

j=1

sjatj

where sj ∈ S . Similarly, for any a, b ∈ {1, . . . , k}, we can write

tbtd =
l∑

j=1

sjbd tj

where sjbd ∈ S .
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Let S0 be the R-subalgebra of S generated by all the sja and sjbd .

Using the two formulae above, we see that T is finitely generated as a
S0-module, with generators t1, . . . , tl .

Furthermore, S0 is a finitely generated R-algebra by construction.

The R-algebra S is naturally a S0-algebra, in particular a S0-module, and
it is a S0-submodule of T .

Since R is noetherian, S0 is also noetherian as a consequence of the
Hilbert basis theorem (the next theorem) and since S is a submodule of a
finitely generated S0-module, S is also finitely generated as a S0-module
by Lemma 19.

In particular S is a finitely generated S0-algebra, and since S0 is finitely
generated over R, so is S .
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Theorem 0.17 (Hilbert basis theorem)

Suppose that R is noetherian. Then the polynomial ring R[x ] is also
noetherian.

Proof. Let I ⊆ R[x ] be an ideal. The leading coefficients of the
polynomials in I form an ideal J of R (check).

Since R is noetherian, J has a finite set of generators, say a1, . . . , ak .

For each i ∈ {1, . . . , k}, choose fi ∈ I such that
fi (x) = aix

ni + (terms of lower degree).

Let n be the maximum of the ni .

Let I ′ = (f1(x), . . . , fk(x)) ⊆ I be the ideal generated by the fi (x).
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Now let f (x) = axm + (terms of lower degree) be any polynomial in I .

By construction, we have a = r1a1 + · · ·+ rkak for some r1, . . . , rk ∈ R.

Suppose first that m ≥ n. The polynomial

f (x)− r1f1(x)xm−n1 + · · ·+ rk fk(x)xm−nk

is then of degree < m (the leading terms cancel) and it also lies in I .

Applying the same procedure to this polynomial we obtain a new
polynomial of degree < m− 1 and we keep going in the same way until we
obtain a polynomial of degree < n.
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Let M is the R-submodule of R[x ], generated by 1, x , x2, . . . , xn−1.

We have expressed the polynomial f (x) as an element of M ∩ I + I ′.

If m < n then we have f (x) ∈ M ∩ I so that we also have
f (x) ∈ M ∩ I + I ′.

Since f (x) was arbitrary, we have shown that

I = M ∩ I + I ′.

Now M ∩ I is an R-submodule of M ' Rn and is thus finitely generated
(as an R-module) by Lemma 19.

If we let g1(x), . . . , gt(x) ∈ M ∩ I be a set of generators, then the set
g1(x), . . . , gt(x), f1(x), . . . , fk(x) is clearly a set of generators of I (as an
ideal).
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From Theorem 0.17, we deduce that R[x1, . . . , xk ] is noetherian for any
k ≥ 0.

From this and Lemma 17, we deduce that every finitely generated algebra
over a noetherian ring is noetherian.

Proposition 0.18 (Lasker-Noether)

Let R be a noetherian ring. Then every ideal of R is decomposable.

Proof. Omitted. See the notes. The proof is in two steps.

Say that an idea I is irreducible if whenever I1, I2 are ideals of R and
I = I1 ∩ I2, we have either I = I1 or I = I2.

The first step of the proof is to show that any ideal can be written as an
intersection of irreducible ideals.

The second step is to show that any irreducible is primary.

Note. A primary ideal is not necessarily irreducible. See exercises.

73 / 207



Let R be a noetherian ring and let I ⊆ R be a radical ideal.

As explained after Theorem 0.15, a consequence of Proposition 0.18 is
that there is a unique set {q1 . . . , qk} of prime ideals in R such that
I = ∩ki=1qi and such that

- all the qi are distinct;

- for all i ∈ {1, . . . , k} we have qi 6⊇ ∩j 6=iqj .

Furthermore, the qi are precisely the prime ideals, which are minimal
among all the prime ideals containing I .

In terms of the spectrum of R, V (I ) is the union of the V (qi ).

If R is the coordinate ring of an affine variety over an algebraically closed
field, this decomposition is the classical decomposition of a closed
subvariety into its irreducible components.

END OF LECTURE 7
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Integral extensions

The notion of integral extension of rings is a generalisation of the notion
of algebraic extension of fields.

Let B be a ring and let A ⊆ B be a subring. Let x ∈ B.

We shall say that b is integral over A if there is a monic polynomial
P(x) = xn + an−1x

n−1 + · · ·+ a0 ∈ A[x ] such that

P(b) = bn + an−1b
n−1 + · · ·+ a0 = 0.

We shall say that b is algebraic over A if there is a polynomial
Q(x) ∈ A[x ] (not necessarily monic) such that Q(b) = 0.

Note that if A is a field, b is algebraic over A iff it is integral over A but
this is not true in general.

75 / 207



If S ⊆ B is a subset, we write A[S ] for the intersection of all the subrings
of B which contain A and S .

Note that A[S ] is naturally an A-algebra.

Abusing notation slightly, we shall write A[b] for A[{b}] and more
generally A[b1, . . . , bk ] for A[{b1, . . . , bk}].
Note that we have the explicit description

A[b1, . . . , bk ] := {Q(b1, . . . , bk) |Q(x1, . . . , xk) ∈ A[x1, . . . , xk ]}

and that we have

A[b1, . . . , bk ] = A[b1][b2] . . . [bk ].
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Proposition 0.19

Let R be a ring and let M be a finitely generated R-module.

Let φ : M → M be a homomorphism of R-modules.

Then there exists a monic polynomial Q(x) ∈ R[x ] such that Q(φ) = 0.

Proof. Omitted. See the notes.

The mechanism of the proof is to reduce to statement to a free finitely
generated R-module, where R is a ring a polynomials.

One can then apply the usual Cayley-Hamilton theorem.
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Proposition 0.20

Let A be a subring of the ring B.

Let b ∈ B and let C be a subring of B containing A and b.

(i) If the element b ∈ B is integral over A then the A-algebra A[b] is
finitely generated as a A-module.

(ii) If C is finitely generated as an A-module then b is integral.

Proof.

(i): if b is integral over A, we have

bn = −an−1b
n−1 − · · · − a1b − a0

for some ai ∈ A (where i ∈ {0, . . . , n − 1}).

Hence bn+k is in the A-submodule of B generated by 1, b, b2, . . . , bn−1 for
all k ≥ 0.

In particular A[b] is generated by 1, b, b2, . . . , bn−1 as an A-module.
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(ii): Let φ : C → C be the homomorphism of A-modules such that
φ(v) = b · v for all v ∈ C .

By Proposition 0.19, there a polynomial
Q(x) = xn + an−1x

n−1 + · · ·+ a0 ∈ A[x ] such that Q(φ) = 0.

Hence Q(φ)(1) = bn + an−1b
n−1 + · · ·+ a0 = 0.

In particular, b is integral over A.
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The following lemma and its proof is a generalisation of the tower law.

Lemma 21

Let φ : R → T be a homomorphisms of rings and let N be a T-module.

If T is finitely generated as a R-module and N is finitely generated as a
T-module, then N is finitely generated as a R-module.

Proof. Let t1, . . . , tk ∈ T be generators of T as a R-module and let
l1, . . . ls be generators of N as a T -module.

Then the elements ti lj are generators of N as a R-module.
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Corollary 0.21 (of Proposition 0.20)

Let A be a subring of B.

Let b1, . . . , bk ∈ B be integral over A.

Then the subring A[b1, . . . , bk ] is finitely generated as a A-module.

Proof. By Proposition 0.20 (i), A[b1] is finitely generated as an A-module,
A[b1, b2] = A[b1][b2] is finitely generated as a A[b1]-module etc.

Hence by Lemma 21, A[b1, . . . , bk ] is finitely generated as a A-module.
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Corollary 0.22 (of Corollary 0.21 and Proposition 0.20)

Let A be a subring of the ring B.

The subset of elements of B, which are integral over A, is a subring of B.

Proof. Let b, c ∈ B. Then b + c , bc ∈ A[b, c] and A[b, c] is a finitely
generated A-module by Corollary 0.21.

Hence a + b and ab are integral over A by Proposition 0.20 (ii).
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Let φ : A→ B be a ring homomorphism (in other words B is an
A-algebra).

We shall say that B is integral over A (or an integral A-algebra) if all the
elements of B are integral over the ring φ(A).

We shall say that B is finite over A (or a finite A-algebra) if B is a finitely
generated φ(A)-module.

Proposition 0.20 and Corollary 0.21 show that B is a finite A-algebra iff B
is a finitely generated integral A-algebra.

If A is a subring of a ring B, the set of elements of B, which are integral
over A, is called the integral closure of A in B.

This set is a subring of B by Corollary 0.22.

If A is a domain and K is the fraction field of K , we say that A is
integrally closed if the integral closure of A in K is A.

Example. Z and K [x ] are integrally closed, if K is a field. Fields are
obviously integrally closed. The integral closure of Z in Q(i) is the ring of
Gaussian integers Z[i ] (see exercises).
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Lemma 22

Let A ⊆ B ⊆ C, where A is a subring of B and B is a subring of C .

If B is integral over A and C is integral over B, then C is integral over A.

Proof. Let c ∈ C . By assumption, we have

cn + bn−1c
n−1 + · · ·+ b0 = 0

for some bi ∈ B.

Let B ′ = A[b1, . . . , bn−1].

Then c is integral over B ′ and so B ′[c] is finitely generated as a
B ′-module by Proposition 0.20 (i).

Hence B ′[c] is finitely generated as a A-module by Corollary 0.21 and
Lemma 21.

Hence c is integral over A by Proposition 0.20 (ii).
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Let A ⊆ B ⊆ C , where A is a subring of B and B is a subring of C .

A consequence of the previous lemma is that the integral closure in C of
the integral closure of A in B is the integral closure of A in C .

Lemma 23

Let A be a subring of B. Let S be a multiplicative subset of A.

Suppose that B is integral (resp. finite) over A.

Then the the natural ring homomorphism AS → BS makes BS into an
integral (resp. finite) AS -algebra.

Proof. Omitted. This is straightforward. See the notes.

END OF LECTURE 8

85 / 207



Theorem 0.23 (part of the Going Up Theorem)

Let A be a subring of a ring B and let φ : A→ B be the inclusion map.

Suppose that B is integral over A.

Then Spec(φ) : Spec(B)→ Spec(A) is surjective.
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To prove Theorem 0.23, we shall need the following lemma.

Lemma 24

Suppose that C is a subring of a ring D. Suppose that D (and hence C) is
a domain and that D is integral over C .

Then D is a field if and only if C is a field.

Proof.

”⇐”: Suppose that C is a field. Let d ∈ D∗. We need to show that d has
an inverse in D.

Let φ : C [t]→ D be the C -algebra map sending t on d . The kernel of this
map is a prime ideal, since D is integral.

Since non-zero prime ideals in C [t] are maximal (because C is a field), we
conclude that the image of φ contains an inverse of d .
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”⇒”: Suppose that D is a field.

Let c ∈ C ∗. We only have to show that the inverse c−1 ∈ D lies in C .

Let ec : C [c , 1/c]→ C [c, 1/c] be the map such that ec(z) = z/c for all
z ∈ C [c , 1/c].

By Proposition 0.19 and Proposition 0.20 (i), there is a polynomial
P(t) = tn + an−1 · tn−1 + · · ·+ a0 ∈ C [t] such that P(ec) = 0.

In particular, we have P(ec)(1) = P(1/c) = 0.

Thus we have cn−1 · P(1/c) = 0, ie

c−1 + an−1 + · · ·+ a0 · cn−1 = 0

which implies that c−1 ∈ C .
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We record the following consequence of Lemma 24:

Corollary 0.24 (of lemma 24)

Let A be a subring of a ring B and let φ : A→ B be the inclusion map.

Suppose that B is integral over A.

Let q be a prime ideal if B.

Then q ∩ A is a maximal ideal of A iff q is a maximal ideal of B.

Proof. The induced map A/(q ∩ A)→ B/q is injective and makes B/q
into an integral A/(q ∩ A)-algebra.

Since both A/(q ∩ A) and B/q are domains, the conclusion follows from
Lemma 24.
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Proof. (of Theorem 0.23) Write Bp for the localisation Bφ(A\p) of the ring
B at the multiplicative set φ(A\p).

Note that Bp is isomorphic to the localisation of B at p, when B is viewed
as an A-module.

By Lemma-Definition 0.12, we thus obtain a unique ring homomorphism
φp : Ap → Bp such that φp(a/1) = φ(a)/1.

Write λA : A→ Ap and λB : B → Bp for the natural ring homomorphisms.

We have λB ◦ φ = φp ◦ λA.
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We thus obtain a commutative diagram

Spec(Bp)
Spec(λB)

//

Spec(φp)

��

Spec(B)

Spec(φ)

��

Spec(Ap)
Spec(λA)

// Spec(A)
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By Lemma 9, p is the image of the maximal ideal m of Ap under the map
Spec(λA).

Thus it is sufficient to show that there is a prime ideal q in Bp so that
φ−1
p (q) =: Spec(φp)(q) = m.

Let q be any maximal ideal of Bp (this exists by Lemma 1).

Note that the map φp is injective by Lemma 7 and thus we obtain an
injective map Ap/φ

−1
p (q)→ Bp/q.

Now consider that the ring Bp is integral over Ap by Lemma 23, so that
Bp/q is also integral over Ap/φ

−1
p (q).

By assumption, the ring Bp/q is a field and so by Lemma 24, the ring
Ap/φ

−1
p (q) is also field.

In other words, φ−1
p (q) is a maximal ideal of Ap.

Since Ap is a local ring, we have m = φ−1
p (q).
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Corollary 0.25

Let φ : A→ B be a homomorphism of rings.

Suppose that B is integral over A.

Then the map Spec(φ) : Spec(B)→ Spec(A) is closed (ie it sends closed
sets to closed sets).
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Proof. Let a be an ideal of B.

We have to show that Spec(φ)(V (a)) is closed in Spec(A).

Let qa : B → B/a be the quotient map and let

µ := qa ◦ φ : A→ B/a.

Let
qµ : A→ A/ker(µ)

be the quotient map and let

ψ : A/ker(µ)→ B

be the ring homomorphism induced by µ.

We have the following commutative diagram:

A
φ

//

µ

%%

qµ
��

B

qa
��

A/ker(µ)
ψ

// B/a
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Since B is integral over A, B/a is also integral over A/ker(µ).

Furthermore, the map ψ is injective by construction.

By Theorem 0.23, we thus have

Spec(ψ)(Spec(B/a)) = Spec(A/ker(µ)).

Furthermore, by Lemma 3, we have

Spec(qa)(Spec(B/a)) = V (a)

and
Spec(qµ)(Spec(A/ker(µ)) = V (ker(µ)).

Thus Spec(φ)(V (a)) = V (ker(µ)), which is closed.
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Proposition 0.26

Let φ : A→ B be a ring homomorphism and suppose that B is finite over
A.

Then the map Spec(φ) has finite fibres.

Proof. Let q : A→ A/ker(φ) be the quotient map.

The map Spec(q) has finite fibres by Lemma 3 (since it is injective), so we
may replace A by A/ker(φ) and suppose that A is a subring of B.

Let p be a prime ideal of A.

We have to show that there are finitely many prime ideals q in B such that
q ∩ A = p.
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Let p̄ be the ideal of B generated by p.

Let q : A→ A/p (resp. q̄ : B → B/p̄) be the quotient map.

Let ψ : A/p→ B/p̄ be the ring homomorphism induced by φ.

By construction, we have a commutative diagram

Spec(B/p̄)

Spec(ψ)
��

Spec(q̄)
// Spec(B)

Spec(φ)
��

Spec(A/p)
Spec(q)

// Spec(A)
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Since any prime ideal q ∈ Spec(B) such that q ∩ A = p has the property
that q ⊇ p̄, we see (using Lemma 3) that any such prime ideal lies in the
image of Spec(q̄).

The corresponding prime ideals of Spec(B/p̄) are the primes ideals I such
that ψ−1(I ) = (0).

We thus have to show that Spec(ψ)−1((0)) is a finite set.
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Now let S = (A/p)∗. This is a multiplicative set.

Let
λA/p : A/p→ (A/p)S

and let
λB/p̄ : B/p̄→ (B/p̄)ψ(S)

be the natural ring homomorphisms.

There is also a natural ring homomorphism

ψS : (A/p)S → (B/p̄)ψ(S),

which is compatible with λA/p and λB/p̄.

We thus obtain a diagram

Spec((B/p̄)ψ(S))

Spec(ψS )

��

Spec(λB/p̄)
// Spec(B/p̄)

Spec(ψ)

��

Spec((A/p)S)
Spec(λA/p)

// Spec(A/p)
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Now notice that if q ∈ Spec(B/p̄) and ψ−1(q) = (0) then we have
q ∩ ψ(S) = ∅ so any such ideal lies in the image of Spec(λB/p̄).

It is thus sufficient to prove that the map Spec(ψS) has finite fibres.

Notice now that A/p is domain (since p is a prime ideal) and that (A/p)S
is none other than the fraction field of A/p.
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Note further that we may assume that p̄ ∩ A = p, or in other words that ψ
is injective.

Indeed, if there is a prime ideal q ∈ Spec(B) such that q ∩ A = p, then
p̄ ∩ A ⊆ q ∩ A = p.

Since we of course have p̄ ∩ A ⊇ p we then have p̄ ∩ A = p.

So either we have p̄ ∩ A = p or there are no prime ideals q ∈ Spec(B) such
that q ∩ A = p (in which case, there is nothing to prove - and this is
contradicted by Theorem 0.23 anyway).
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Now, since B is finite over A, B/p̄ is also finite over A/p and further,
applying Lemma 23, we see that (B/p̄)ψ(S) is finite over (A/p)S .

In other words, (B/p̄)ψ(S) is a finite-dimensional (A/p)S -vector space.

Write K := (A/p)S .

If q is a prime ideal in (B/p̄)ψ(S), then (B/p̄)ψ(S)/q is a domain, which is
finite over the field K and it is thus a field by Lemma 24.

Thus q is maximal.

So we only have to show that (B/p̄)ψ(S) has finitely many maximal ideals.
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Let q1, . . . , qk be any distinct maximal ideals of (B/p̄)ψ(S).

By the Chinese remainder theorem, we have a surjective homomorphism of
K -algebras

(B/p̄)ψ(S) →
k∏

i=1

(B/p̄)ψ(S)/qi

and each (B/p̄)ψ(S)/qi is a K -algebra, which has dimension > 0 as
K -vector space.

Hence (B/p̄)ψ(S) has dimension at least k as a K -vector space.

Hence there are at most dimK ((B/p̄)ψ(S)) prime (and therefore maximal)
ideals in (B/p̄)ψ(S).

END OF LECTURE 9
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The Noether normalisation lemma and Hilbert’s
Nullstellensatz

Noether’s normalisation lemma shows that any finitely generated algebra
over a field can be ”approximated” by a polynomial ring, up to a finite
injective homomorphism.

In terms of affine varieties, in say that for any affine variety, there is a
finite surjective map from the variety to some affine space.

Theorem 0.27 (Noether’s normalisation lemma)

Let K be a field and let R be a non zero finitely generated K-algebra.

Then there exists an injective homomorphism of K-algebras

K [y1, . . . , yt ]→ R

for some t ≥ 0 (where we set K [y1, . . . , yt ] = K if t = 0), such that R is
finite as a K [y1, . . . , yt ]-module.
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The idea of the proof is as follows.

It is easy to see that there is an injective homomorphism of algebras
K [y1, . . . , yt ]→ R so that R is algebraic over K [y1, . . . , yt ].

The proof of the normalisation lemma basically considers such a
homomorphism and tweaks it, using properties of polynomials, so that R
becomes integral over K [y1, . . . , yt ].
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Proof. (of Noether’s normalisation lemma). We will only prove this result
in the situation where K is infinite.

Let r1, . . . , rn ∈ R be a set of generators of minimal size (ie n is minimal)
for R as a K -algebra.

We proceed by induction on n.

If n = 1 then either R ' K [x ] or R ' K [x ]/I for some non trivial ideal I in
K [x ].

In the first case, we may set t = 1 in the theorem and in the second case
we may set t = 0.

So the theorem is proven when n = 1.

So suppose that n > 1 and that the theorem holds for n − 1.

Up to renumbering the generators, we may assume that there is a
k ∈ {1, . . . , n} such that for all i ∈ {1, . . . , k}, ri is not algebraic over
K [r1, . . . , ri−1] and such that rk+i is algebraic over K [r1, . . . , rk ] for all
i ∈ {1, . . . , n − k}.
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Now we may assume that k < n, for otherwise we may set t = k = n in
the theorem.

The generator rn is thus algebraic over K [r1, . . . , rn−1].

Let P1(x) ∈ K [r1, . . . , rn−1][x ] be a non zero polynomial (not necessarily
monic) such that P1(rn) = 0.

Since K [r1, . . . , rn−1] is the image of the polynomial ring K [x1, . . . , xn−1]
by the homomorphism of K -algebras sending xi to ri , there is a non zero
polynomial

P(x1, . . . , xn) ∈ K [x1, . . . , xn−1][xn] = K [x1, . . . , xn]

such that P(r1, . . . , rn) = 0 .

Let F (x1, . . . , xn) be the sum of the monomials of degree d := deg(P)
which appear in P (so that in particular deg(P − F ) < d).

Choose λ1, . . . , λn−1 ∈ K so that F (λ1, . . . , λn−1, 1) 6= 0.

107 / 207



Now let ui := ri − λi rn for all i ∈ {1, . . . , n − 1}.
We compute

P(r1, . . . , rn)

= P(u1 + λ1rn, u2 + λ2rn, . . . , un−1 + λn−1rn, rn)

= F (λ1, . . . , λn−1, 1)rdn + F1(u1, . . . , un−1)rd−1
n

+ · · ·+ Fd(u1, . . . , un−1)

= 0

for some polynomials F1, . . . ,Fd in the ui .

Thus

rdn + (F (λ1, . . . , λn−1, 1))−1F1(u1, . . . , un−1)rd−1
n + . . .

+(F (λ1, . . . , λn−1, 1))−1Fd(u1, . . . , un−1) = 0

and we see that rn is integral over K [u1, . . . , un−1]

and the proof is complete by induction.
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Noether’s normalisation lemma has the following fundamental corollary.

Corollary 0.28 (weak Nullstellensatz)

Let K be a field and let R be a finitely generated K-algebra.

Suppose that R is a field.

Then R is finite over K (ie R is a finite-dimensional K-vector space).

Proof. Let
K [y1, . . . , yt ]→ R

be as in Noether’s normalisation lemma.

Recall that by Theorem 0.23, the map Spec(R)→ Spec(K [y1, . . . , yt ]) is
surjective.

Now Spec(R) has only one element, since R is a field.

Hence Spec(K [y1, . . . , yt ]) has only one element.
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Thus t = 0, because for any t ≥ 1, Spec(K [y1, . . . , yt ]) has more than one
element.

We conclude that R is integral over K .

Since R is also finitely generated over K , it must be finite over K (see
after Corollary 0.22).

END OF LECTURE 10
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The weak Nullstellensatz has the following corollaries, which are of
fundamental importance in algebraic geometry.

Corollary 0.29

Let K be an algebraically closed field. Let t ≥ 1.

Then an ideal I of K [x1, . . . , xt ] is maximal iff it has the form
(x1 − a1, . . . , xt − at) for some a1, . . . , at ∈ K.

A polynomial Q(x1, . . . , xt) ∈ K [x1, . . . , xt ] lies in (x1 − a1, . . . , xt − at) iff
Q(a1, . . . , at) = 0.

Proof. We first prove the first statement.

”⇐”: Note that the ideal (x1 − a1, . . . , xt − at) is the image of the ideal
(x1, . . . , xt) under the automorphism of K [x1, . . . , xt ] sending xi to xi − ai
for all i ∈ {1, . . . , t}.
Now the ideal (x1, . . . , xt) is maximal since K [x1, . . . , xt ]/(x1, . . . , xt) ' K .

Hence (x1 − a1, . . . , xt − at) is also maximal.
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”⇒”: Suppose that I is maximal.

Note that K [x1, . . . , xt ]/I is a field, which is also a finitely generated
K -algebra.

Hence, by Corollary 0.28, K [x1, . . . , xt ]/I is finite, and it particular
algebraic over K . Since K is algebraically closed, this implies that
K [x1, . . . , xt ]/I is isomorphic to K as a K -algebra.

Let φ : K [x1, . . . , xt ]→ K be the induced homomorphism of K -algebras.

By construction, the ideal I contains the ideal

(x1 − φ(x1), . . . , xt − φ(xt)).

Since the ideal (x1 − φ(x1), . . . , xt − φ(xt)) is also maximal by the first
part, we must have

I = (x1 − φ(x1), . . . , xt − φ(xt)).
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For the second statement, note that the homomorphism of K -algebras
ψ : K [x1, . . . , xt ]→ K such that

ψ(P(x1, . . . , xt)) = P(a1, . . . , at)

is surjective and
ker(ψ) ⊇ (x1 − a1, . . . , xt − at).

In particular, ker(ψ) is maximal, and we must have

ker(ψ) = (x1 − a1, . . . , xt − at),

since
(x1 − a1, . . . , xt − at)

is maximal by the first part.
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Corollary 0.30

Let K be a field. Let R be a finitely generated K-algebra.

Then R is a Jacobson ring.

Proof. Let I ⊆ R be an ideal.

We need to show that the Jacobson radical of I of R coincides with the
radical of I .

In other words, we need to show that the nilradical of R/I coincides with
the Jacobson radical of the zero ideal in R/I .

Since R/I is also finitely generated over K , we may thus replace R by R/I
and suppose that I = 0.

Let f ∈ R and suppose that f is not nilpotent.

We need to show that there exists a maximal ideal m in R, such that
f 6∈ m.
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Let S = {1, f , f 2, . . . }.
Since f is not nilpotent, we have f k · f 6= 0 for all k ≥ 0 and thus the
localisation RS is not the zero ring.

Let q be a maximal ideal of RS (this exists by Lemma 1). Since RS is a
finitely generated K -algebra (see Lemma 6), the quotient RS/q is also
finitely generated over K .

Thus, by Corollary 0.28, the canonical homomorphism of rings K → RS/q
(giving the K -algebra structure) makes RS/q into a finite field extension of
K .

Let φ : R → RS/q be the homomorphism of K -algebras obtained by
composing the natural homomorphism R → RS with the homomorphism
RS → RS/q.

The image Im(φ) of φ is a domain (since RS/q is a domain, being a field),
which is integral over K and thus Im(φ) is a field by Lemma 24.

Thus ker(φ) is a maximal ideal of R.
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On the other hand, ker(φ) is by construction the inverse image of q by the
natural homomorphism R → RS .

Since f /1 is a unit in RS , we have f /1 6∈ q and thus f 6∈ ker(φ).

Thus we may set m := ker(φ).
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The following Corollary also contains a definition.

Corollary 0.31 (strong Nullstellensatz)

Let K be an algebraically closed field.
Let t ≥ 1 and let I ⊆ K [x1, . . . , xt ] be an ideal.

Let

Z (I ) := {(c1, . . . , ct) ∈ Kn |P(c1, . . . , cn) = 0 for all P ∈ I}

Let Q(x1, . . . , xt) ∈ K [x1, . . . , xt ].

Then Q ∈ r(I ) iff Q(c1, . . . , ct) = 0 for all (c1, . . . , ct) ∈ Z (I ).

The strong Nullstellensatz implies that the set of simultaneous roots of a
set of polynomials determines the radical of the ideal generated by the set
of polynomials.
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Proof. Let R := K [x1, . . . , xt ]. The implication ”⇒” is straightforward.

We prove the implication ”⇐”.

Let Q(x1, . . . , xt) ∈ K [x1, . . . , xt ] and suppose that Q(c1, . . . , ct) = 0 for
all (c1, . . . , ct) ∈ Z (I ).

Suppose for contradiction that Q 6∈ r(I ).

Since R is Jacobson ring (by Corollary 0.30), there exists a maximal ideal
m in R, such that m ⊇ I and Q 6∈ m.

By Corollary 0.29, we have m = (x1 − a1, . . . , xt − at) for some ai (where
i ∈ {1, . . . , t}).

By construction, we have P(a1, . . . , at) = 0 for all P ∈ m and hence for all
P ∈ I .

In other words, (a1, . . . , at) ∈ Z (I ).

By the second statement in Corollary 0.29, we see that Q(a1, . . . , at) 6= 0.

This is a contradiction, so Q ∈ r(I ).
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Jacobson rings

In this section, we collect more consequences of the weak Nullstelllensatz
and we show that the property of being a Jacobson ring is a very stable
property.

The Jacobson property enters the proof of Theorem 0.33 below via the
following lemma.

Lemma 25

Let R be a Jacobson ring. Suppose that R is a domain.

Let b ∈ R and let S := {1, b, b2, . . . }.
Suppose that RS is a field.

Then R is a field.
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Proof. We know from Lemma 8 that the prime ideals of R, which do not
meet b are in one to one correspondence with the prime ideals of RS .

Since RS is a field, there is only one such ideal in R, namely the 0 ideal.

Hence every non zero prime ideal of R meets b.

Now suppose for a moment that (0) is not a maximal ideal of R.

Since (0) is its own radical (since R is a domain) and since R is Jacobson,
the ideal (0) is the intersection of all the non zero maximal ideals of R.

However, we just saw that this intersection contains b, which is a
contradiction.

So (0) must be a maximal ideal of R. Hence R is a field .
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Corollary 0.32

Let T be a field and let R ⊆ T be a subring. Suppose that R is a
Jacobson ring.

Let K be the natural image of the fraction field of R in T .

Suppose that T is finitely generated over R and that T is finite over K .

Then R is a field (so that R = K). In particular, T is finite over R.

Note that by Corollary 0.28, the assumption that T is finite over K is
actually redundant.
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Proof. Let t1, . . . , tk ∈ T be generators of T as a R-algebra.

Let

Pi (x) = xdi + (ai ,di−1/bi ,di−1)xdi−1 + · · ·+ ai ,0/bi ,0 ∈ K [x ]

be a monic polynomial with coefficients in K , which annihilates ti .

Let b :=
∏k

i=1

∏di
j=1 bi ,di−j . Let S := {1, b, b2, . . . }.

Then there is a natural injective homomorphism of R-algebras from RS

into K , because R is a domain. We view RS as a sub-R-algebra of K .

By construction, T is generated by the ti as a RS -algebra and the
elements ti are integral over RS .

Hence T is finite over RS .

Also, since T is a field, it has a single prime ideal, which is maximal, and
we deduce from Corollary 0.24 and Theorem 0.23 that RS has a single
prime ideal, which is maximal. Hence RS is a field. Now Lemma 25
implies that R is a field.
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Corollary 26

Let ψ : R → T be a homomorphism of rings.

Suppose that R is Jacobson and that T is a finitely generated R-algebra.

Let m be a maximal ideal of T .

Then ψ−1(m) is a maximal ideal of R and the induced map

R/ψ−1(m)→ T/m

makes T/m into a finite field extension of R/ψ−1(m).

Proof. Note that T/m is a field which is finitely generated over
R/ψ−1(m).

Let L be the natural image of the fraction field of R/ψ−1(m) in T/m.

Then T/m is finitely generated over L and is thus finite over L by
Corollary 0.28.

Thus Corollary 0.32 implies the result.
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Theorem 0.33

A finitely generated algebra over a Jacobson ring is Jacobson.

Proof. The beginning of the proof is similar to the proof of Corollary 0.30.

Let R be a Jacobson ring and let T be a finitely generated R-algebra.

Let I ⊆ T be an ideal.

We need to show that the Jacobson radical of I of T coincides with the
radical of I .

In other words, we need to show that the nilradical of T/I coincides with
the Jacobson radical of the zero ideal in T/I .

Since T/I is also finitely generated over R, we may thus replace T by T/I
and suppose that I = 0.

Let f ∈ T and suppose that f is not nilpotent. We need to show that
there exists a maximal ideal m in T , such that f 6∈ m.
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Let S = {1, f , f 2, . . . }. Since f is not nilpotent, we have f k · f 6= 0 for all
k ≥ 0 and thus the localisation TS is not the zero ring.

Let q be a maximal ideal of TS . Since TS is a finitely generated R-algebra
(see Lemma 6), the quotient TS/q is also finitely generated over R.

Let φ : R → TS/q be the canonical ring homomorphism.

By Corollary 26, the kernel of φ is also maximal and TS/q is a finite field
extension of R/ker(φ).
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Now consider the map Φ : T → TS/q which is the composition of the
natural map T → TS with the quotient map.

The image Im(Φ) of φ is a R-subalgebra, and hence R/ker(φ)-subalgebra,
of TS/q.

Since TS/q is integral over R/ker(φ), we see that Im(Φ) is integral over
R/ker(φ) and hence Im(φ) is a field by Lemma 24.

In other words, ker(Φ) is a maximal ideal of T .

Finally, note that ker(Φ) is by construction the inverse image of q by the
natural homomorphism T → TS and that f /1 6∈ q, since f /1 is a unit in
TS .

Thus we have f 6∈ ker(Φ). We conclude that we may set m := ker(Φ).

Examples. The ring Z is Jacobson (prove this). Hence any finitely
generated algebra over Z is a Jacobson ring.

END OF LECTURE 11
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Dimension

The dimension of a ring R is an invariant of a ring, whose definition is
inspired by algebraic geometry. If R is the coordinate ring of an affine
algebraic variety over an algebraically closed field, the dimension of R is
the ordinary dimension of the variety.

Here is the formal definition.

Definition 0.34

Let R be a ring. The dimension of R is

dim(R) := sup{n | p0 ) p1 ) · · · ) pn, p0, . . . , pn ∈ Spec(R)}.

Let p be a prime ideal of R.

The codimension (also called height) of p is

ht(p) = sup{n | p ) p1 ) · · · ) pn, p1, . . . , pn ∈ Spec(R)}.
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Note that the dimension of R as well as the codimension of p might be
infinite.

From the definitions, we see that if q is a prime ideal and q ( p then we
have ht(p) > ht(q), provided ht(p) <∞.

Let R be a ring. If N is the nilradical of R, then N is contained in every
prime ideal of R and thus

dim(R) = dim(R/N)

and
ht(p (modN)) = ht(p)

for any prime ideal p of R.

Note finally that from the definitions, we have

dim(R) = sup{ht(p) | p ∈ Spec(R)}

More generally, for any ideal I ⊆ R, we clearly have dim(R) ≥ dim(R/I ).
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Lemma 27

Let R be a ring and let p ∈ Spec(R).

Then ht(p) = dim(Rp). Also, we have

dim(R) = sup{ht(p) | p a maximal ideal of R}.

Proof. Recall that the prime ideals of Rp are in one to one correspondence
with the prime ideals contained in p by Lemma 8.

Furthermore this correspondence preserves inclusion.

The first equality follows directly from this.
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For the second one, note that by definition, we have

dim(R) ≥ sup{ht(p) | p a maximal ideal of R}

so we only have to establish the reverse inequality.

To establish this, let p be a prime ideal, which is not maximal. Consider a
chain of prime ideals

p ) p1 ) · · · ) pn,

and let m be a maximal ideal containing p. We then have a chain

m ) p ) p1 ) · · · ) pn.

Hence ht(m) > ht(p) and thus we clearly have

sup{ht(p) | p a maximal ideal of R}
≥ sup{ht(p) | p a prime ideal of R}
= dim(R).
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Note that Lemma 27 has in particular the following consequence.

Let R be a ring and let S be a multiplicative subset of R.

Let p be a prime ideal of RS and let λ : R → RS be the natural ring
homomorphism.

Then ht(p) = ht(λ−1(p)).

If R is a ring and I ⊆ R is an ideal, we define the codimension or height
ht(I ) of I as follows:

ht(I ) := min{ht(p) | p ∈ Spec(R), p ⊇ I}.

(this generalises the definition of the height of a prime ideal given above).
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From the definition, we see that if J is another ideal and J ⊆ I , then
ht(J) ≤ ht(I ).

If ht(I ) <∞, there is a prime ideal p, which is minimal among all the
prime ideals containing I , and such that ht(p) = ht(I ).

This follows directly from the definitions.

The two next subsections contain some preliminary results (which are also
of independent interest) that we shall need before we resume the study of
dimension.
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Transcendence bases

Let k be a field and let K be a field containing k .

If S ⊆ K is a finite subset of K , we shall write k(S) for the smallest
subfield of K containing k and S .

By construction, k(S) is isomorphic to the field of fractions of the
k-algebra k[S ] ⊆ K .

If S = {α1, . . . , αh} then we shall as usual use the shorthand
k(α1, . . . , αh) for k({α1, . . . , αh}).
If S1,S2 ⊂ K are two finite subsets, we have from the definitions that
k(S1 ∪ S2) = k(S1)(S2).

Also, recall that if the elements of S are all algebraic (equivalently,
integral) over k , then we actually have k(S) = k[S ].
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If there is a finite subset S of K such that K = k(S) we say that K is
finitely generated over k as a field.

This is a weaker condition than finitely generated as a k algebra but by
the previous paragraph it coincides with it if all the elements of S are
algebraic over k.

We say that the set S ⊆ K is a finite transcendence basis of K over k if

- S is finite;

- the elements of S are algebraically independent over k ;

- K is algebraic (equivalently, integral) over the field k(S).

It is easy to see that if K is finitely generated over k as a field, then K has
a transcendence basis over k .
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Proposition 0.35

Let K be a field and k ⊆ K a subfield. Suppose that K is finitely
generated over k as a field.

Let S and T be two finite transcendence bases of K over k.

Then #S = #T.

Proof. Omitted. See the notes.

Let k be a subfield of a field K and suppose that K is finitely generated
over k as a field.

In view of the last proposition, we may define the transcendence degree
tr(K |k) of k over K as the cardinality of any transcendence basis of K
over k .

As a basic example, we have tr(k(x1, . . . , xn)|k) = n for any field k .

END OF LECTURE 12
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The lemma of Artin-Rees and Krull’s theorem

Let R be a ring.

A ring grading on R is the datum of a sequence R0,R1, . . . of additive
subgroups of R, such that R = ⊕i≥0Ri and such that Ri · Rj ⊆ Ri+j for
any i , j ≥ 0.

One can see from the definition that R0 is then a subring of R and that
⊕i≥i0Ri is an ideal of R for any i0 ≥ 0.

Each Ri naturally carries a structure of R0-module.

Finally, the natural map R0 → R/(⊕i≥1Ri ) is an isomorphism of rings and
we have natural isomorphism of R0-modules Ri0 ' (⊕i≥i0Ri )/(⊕i≥i0+1Ri )
for any i0 ≥ 0.

If r ∈ R, we shall often write [r ]i for the projection of r to Ri and we call
it the i -th graded component of r .
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For example, if k is a field, the ring k[x ] has a natural grading given by
(k[x ])i = {a · x i | a ∈ k}.
Any ring carries a trivial grading, such that R0 = R and Ri = 0 for all
i ≥ 0.

Suppose that R is a graded ring.

Let M be an R-module.

A grading on M (relative to the grading on R) is the datum of a sequence
M0,M1, . . . of additive subgroups of R, such that M = ⊕i≥0Mi and such
that Ri ·Mj ⊆ Mi+j for any i , j ≥ 0.

In this situation, we say that M is a graded R-module (this is slight abuse
of language because the reference to the grading of R is only implicit).

There is an obvious notion of homomorphism of graded R-modules.
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Lemma 28

Let R be a graded ring with grading Ri (i ≥ 0).

The following are equivalent:

(i) The ring R is noetherian.

(ii) The ring R0 is noetherian and R is finitely generated as a R0-algebra.

Proof. The implication (ii)⇒(i) is a consequence of Hilbert’s basis
theorem and Lemma 17.

For the the implication (i)⇒(ii) see the notes.
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Let R be a ring and let M be an R-module.

A (descending) filtration M• of M is a sequence of R-submodules

M = M0 ⊇ M1 ⊇ M2 ⊇ . . .

of M.

If I is an ideal of R, then M• is said to be a I -filtration if IMi ⊂ Mi+1 for
all i ≥ 0.

A I -filtration M• is said to be stable if IMi = Mi+1 for all i larger than
some fixed natural number.
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Now suppose given a ring R, an ideal I ⊆ R, a R-module M and a
I -filtration M• on M.

Note that the direct sum of R-modules R# := ⊕i≥0I
i carries a natural

structure of graded ring, with the grading given by the presentation
R# = ⊕i≥0I

i .

The ring R# is often called the blow-up algebra associated with R and I
(this terminology comes from algebraic geometry).

The direct sum M# := ⊕i≥0Mi of R-modules then carries a natural
structure of graded R#-module.

Note that R# is naturally a R-algebra, since there is an natural injective
homomorphism of rings R → R#, sending r ∈ R to the corresponding
element of degree 0.
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Lemma 29

Let R be a ring and let I ⊆ R be an ideal. Suppose that R is noetherian.

Then the ring R# associated with R and I is also noetherian.

Proof. Let r1, . . . , rk ∈ I be generators of I (this exists because R is
noetherian).

There is a homomorphism of R-algebras φ : R[x1, . . . , xk ]→ R#, given by
the formula P(x1, . . . , xk) 7→ P(r1, . . . , rk).

Here r1, . . . , rk are viewed as elements of degree 1 in R# and the
coefficients of P(x1, . . . , xk) are viewed as elements of degree 0.

By construction, φ is surjective and hence R# is also noetherian by the
Hilbert basis theorem and Lemma 17.

141 / 207



Lemma 30

Let R be a ring. Let I ⊆ R be an ideal. Let M• be a I -filtration on M.

Suppose that Mj is finitely generated as a R-module for all j ≥ 0.

Let R# be the corresponding graded ring and let M# be the
corresponding graded R#-module.

The following are equivalent:

(i) The R#-module M# is finitely generated.

(ii) The filtration M• is stable.
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Proof. Let n ≥ 0 and consider the graded subgroup

M#
(n) := (

n⊕
j=0

Mj)
⊕

(
∞⊕
k=1

I kMn)

of M#.

Note that M#
(n) is a sub-R#-module of M# by construction.

Note also that each Mj with j ∈ {0, . . . , n} is finitely generated as a

R-module by assumption and thus M#
(n) is finitely generated as a

R#-module (it is generated by
⊕n

j=0 Mj).

We have inclusions
M#

(0) ⊆ M#
(1) ⊆ M#

(2) ⊆ . . .

and by construction we have M# = ∪∞i=0M
#
(i).
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Note that saying that the I -filtration M• is stable is equivalent to saying
that M#

(n0+k) = M#
(n0) for all k ≥ 0 and some n0 ≥ 0.

We claim that M#
(n0+k) = M#

(n0) for all k ≥ 0 and some n0 ≥ 0 iff M# is

finitely generated as a R#-module.

Indeed, if M# is finitely generated as a R#-module, then M#
(n0+k) = M#

(n0)

for all k ≥ 0 as soon as M#
(n0) contains a given finite set of generators for

M# = ∪∞i=0M
#
(i).

On the other hand, if M#
(n0+k) = M#

(n0) for all k ≥ 0 then M# = M#
(n0),

and M# is finitely generated since M#
(n0) is finitely generated.
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Proposition 0.36 (lemma of Artin-Rees)

Let R be a noetherian ring. Let I ⊆ R be an ideal.

Let M be a finitely generated R-module and let M• be a stable I -filtration
on M.

Let N ⊆ M be a submodule.

Then the filtration N ∩M• is a stable I -filtration of N.

Proof. By construction, there is a natural inclusion of R#-modules
N# ⊆ M#.

By Lemma 30, the R#-module M# is finitely generated.

The module N# is thus also finitely generated by Lemma 29 and by
Lemma 19.

Hence N ∩M• is a stable I -filtration by Lemma 30.
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Corollary 0.37

Let R be a noetherian ring. Let I ⊆ R be an ideal and let M be a finitely
generated R-module.

Let N ⊆ M be a submodule.

Then there exists a natural number n0 ≥ 0 such that

I n(I n0M ∩ N) = I n0+nM ∩ N.

for all n ≥ 0.

Proof. Apply the lemma of Artin-Rees to the filtration I •M of M.
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Corollary 0.38 (Krull’s theorem)

Let R be a noetherian ring. Let I ⊆ R be an ideal and let M be a finitely
generated R-module.

Then we have
∩n≥0I

nM = ∪r∈1+Iker(rM)

where rM : M → M is the map such that rM(m) = r ·m for all m ∈ M.

Proof. Let N := ∩n≥0I
nM.

By Corollary 0.37, there exists a natural number n0 ≥ 0 such that

I (I n0M ∩ N) = IN = I n0+1M ∩ N = N

We deduce from Q4 of sheet 1 (the general form of Nakayama’s lemma)
that there exists r ∈ R such that r ∈ 1 + I and such that rN = 0.

Hence N = ∩n≥0I
nM ⊆ ∪r∈1+Iker(rM).
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On the other hand, if r ∈ 1 + I , y ∈ M and ry = 0, then
(1 + a)y = y + ay = 0 for some a ∈ I and so y ∈ IM.

Since y + ay = 0, we conclude that y ∈ I 2M. Continuing in this way, we
conclude that y ∈ N.

Corollary 0.39 (of Krull’s theorem)

Let R be a noetherian domain. Let I be an ideal of R.

Then ∩n≥0I
n = 0.

Proof. This is clear.
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Corollary 0.40 (of Krull’s theorem)

Let R be a noetherian ring and let I be an ideal of R. Let M be a finitely
generated R-module.

Suppose that I is contained in the Jacobson radical of R.

Then ∩n≥0I
nM = 0.

Proof. If r ∈ 1 + I then r is a unit.

Indeed, if r is not a unit, then r is contained in some maximal ideal m.

But then 1 is also contained in m, since I ⊆ m, which is a contradiction.

Hence ker(rM) = 0 and the result follows from Krull’s theorem.

Corollary 0.40 is especially useful when R is a local ring (in which case I is
always contained in the Jacobson radical).

END OF LECTURE 13
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Dimension theory of noetherian rings

We first examine the case of dimension 0.

We will call a ring Artinian if whenever we have a descending sequence of
ideals

I1 ⊇ I2 ⊇ I3 ⊇ . . .

in R, there exists an n ≥ 1 such that In+k = In for all k ≥ 0.

We then say that the sequence I• stabilises (compare with Lemma 16).
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Lemma 31

Let R be a noetherian local ring with maximal ideal m. The following are
equivalent:

(i) dim(R) = 0;

(ii) m is the nilradical of R;

(iii) mn = 0 for some n ≥ 1;

(iv) R is Artinian.

Proof.

(i)⇒(ii): If dim(R) = 0 then every prime ideal of R coincides with m.
Hence m is the nilradical of R.

(ii)⇒(iii): This is clear.

(iii)⇒(iv): See the notes.
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(iv)⇒(i): Suppose for contradiction that dim(R) 6= 0.

Then there are two prime ideals p0, p1 of R such that p0 ) p1.

In particular, we have m ) p1.

This implies that m is not the nilradical of R.

On the other hand, since R is Artinian, we know that there is a natural
number n0 ≥ 0 such that mn0 = ∩∞i=0m

i .

By Corollary 0.40, we have ∩∞i=0m
i = 0 so we have mn0 = 0.

In particular, every element of m is nilpotent and m is the nilradical of R.

This is a contradiction, so we cannot have dim(R) 6= 0.
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Theorem 0.41 (Krull’s principal ideal theorem)

Let R be a noetherian ring.

Let f ∈ R be an element which is not a unit.

Let p be minimal among the prime ideals containing f .

Then we have ht(p) ≤ 1.

Proof. Note that the maximal ideal of Rp is minimal among the prime
ideals of Rp containing f /1 ∈ Rp.

Furthermore, the height of p is the same as the height of the maximal
ideal of Rp.

Since Rp is also noetherian, we may thus suppose that R is a local ring
and that p is a maximal ideal.
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Let
p ) p1 ) p2 ) · · · ) pk0

be a chain of prime ideals starting with p.

We want to show that k0 ≤ 1.

We may suppose that k0 > 0 (because if there is no chain as above with
k0 > 0 there is nothing to prove).

Write q := p1. By assumption, we then have f 6∈ q.

Write λ : R → Rq for the natural map (sending r to r/1).

For n ≥ 1, write λ(qn) for the ideal of Rq generated by λ(qn).

We know that λ(qn) consists of the elements of the form r/t, where
r ∈ qn and t ∈ R\q (see Lemma 8).

Also, it is easily checked that λ(qn) = (λ(q))n.
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Now consider the ideal In := λ−1(λ(qn)) (this ideal is called the n-th
symbolic power of q).

By construction, we have In ⊇ qn.

Furthermore, we have I1 = q by Lemma 8.

The ideal In has the advantage over qn that if fr ∈ In for some r ∈ R, then
we must have r ∈ In, because

λ(fr)(1/f ) = λ(r) ∈ λ(qn),

noting that f ∈ R\q.
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Now consider the ring R/(f ).

The ring R/(f ) is also local (because if R/(f ) had more than one maximal
ideal, then so would R) and it is noetherian (by Lemma 17).

The ring R/(f ) has dimension 0, since its only maximal ideal (given by
p (mod (f ))) is a minimal prime ideal of R/(f ) by construction.

Now we are given a descending sequence of ideals

I1 ⊇ I2 ⊇ I3 . . . (6)

We conclude from Lemma 31 that the image of this sequence in R/(f )
must stabilise (note that the image of an ideal by a surjective
homomorphism is an ideal).
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In other words, there is an n0 ≥ 1 with the property that for any n ≥ n0,
we have In ⊆ In+1 + (f ).

Furthermore, in this situation, if r ∈ In, t ∈ In+1 and r = t + hf for some
h ∈ R, then we have r − t ∈ In, so that h ∈ In (see above).

This means that we actually have In ⊆ In+1 + (f )In, and in particular
In ⊆ In+1 + pIn.

In particular, the natural map In+1/pIn+1 → In/pIn is surjective.

By Nakayama’s lemma, we conclude that In+1 → In is surjective, so that
In+1 = In.

So the sequence (6) stabilises at n0.
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Now note that since In ⊇ qk for all n ≥ 1, we have

λ(In) = λ(qn) = (λ(q)
n
.

Hence the descending sequence of ideals of Rq

λ(q) ⊇ (λ(q))2 ⊇ (λ(q))3 ⊇ . . .

also stabilises at n0.

But now (this is the crucial step of the proof), Corollary 0.40 implies that

∩i≥0(λ(q))i = 0,

so that we have (λ(q))n0 = 0.

Since λ(q) is the maximal ideal of Rq (by Lemma 8), we conclude from
Lemma 31 that Rq has dimension 0.

In particular, we have ht(q) = 0 (by Lemma 27).

In other words, q cannot contain any prime ideal other than itself. Hence
k = 1.
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Corollary 0.42

Let R be a noetherian ring.

Let f1, . . . , fk ∈ R.

Let p be a prime ideal minimal among those containing (f1, . . . , fk).

Then ht(p) ≤ k.

Proof. By induction on k .

The case k = 1 is Krull’s principal ideal theorem. We suppose that k > 1
and that the statement is true for k − 1 in place of k.

Just as at the beginning of the proof of Krull’s principal ideal theorem, we
may suppose that R is a local ring with maximal ideal p.

Let
p ) p1 ) · · · ) phtp

be a chain of prime ideals beginning with p and of length ht(p).
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Note that by maximality, there are no prime ideals between p and p1, other
than p and p1.

We may suppose that ht(p) > 0, otherwise there is nothing to prove. Let
q := p1.

We claim that ht(q) ≤ k − 1.

We prove the claim.

By assumption, there exists an fi , say f1, such that fi 6∈ q.

Since there are no prime ideals between p and q other than p and q, we
see that p is minimal among the prime ideals containing q + (f1).

Hence the ring R/(q + (f1)) has dimension 0.

We conclude from Lemma 31 (iii) that the image of all the fi are nilpotent
R/(q + (f1)). In other words, for all i ∈ {2, . . . , k}, there are elements
ai ∈ R, bi ∈ q and ni ≥ 1 such that

f nii = ai f1 + bi .

160 / 207



Hence (f1, b2, . . . , bk) = (f1, f
n2

2 , f n3
3 , . . . , f nkk ). Note that

p ⊇ (f1, f
n2

2 , f n3
3 , . . . , f nkk )

and that p is also minimal among all the prime ideals containing
(f1, f

n2
2 , f n3

3 , . . . , f nkk ) = (f1, b2, . . . , bk), since

r((f1, f
n2

2 , f n3
3 , . . . , f nkk )) = r((f1, f2, . . . , fk)).

Write J := (b2, . . . , bk). Note that J ⊆ q.

Since p is minimal among all the prime ideals containing f1 and J, we see
that p (mod J) is minimal among all the prime ideals of R/J containing
f1 (mod J).
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On the other hand, we have

p (mod J) ) q (mod J)

so that ht(q (mod J)) = 0.

In other words, q is minimal among all the prime ideals containing J.

Applying the inductive hypothesis, we see that ht(q) ≤ k − 1.

Finally, we see from the assumptions that ht(p) ≤ ht(q) + 1 ≤ k and so
the corollary is proven.
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In particular, in a noetherian ring, the height of any prime ideal is finite.

Together with Lemma 27, this shows that the dimension of a noetherian
local ring is finite.

It is not true however that any noetherian ring has finite dimension. For
an example of such a ring, see Ex. 3 of chap. 11, p. 126 of AT.

Note also that Corollary 0.42 implies that ht((f1, . . . , fk)) ≤ k .

If we have ht((f1, . . . , fk)) = k , then any minimal prime ideal associated
with (f1, . . . , fk) has height k (because any such ideal has height ≥ k by
assumption, and height ≤ k by Corollary 0.42).

163 / 207



Corollary 0.43

Let R be a noetherian ring. Let

p0 ) p1 ) p2 ) . . .

be a descending chain of prime ideals of R.

Then there is i0 ≥ 0 such that pi0+i = pi0 for all i ≥ 0.

Moreover, if p0 is generated by c elements, we have i0 ≤ c.

The proof follows directly from Corollary 0.42 and the definition of the
height.
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Corollary 0.44

Let R be a noetherian ring. Let p be a prime ideal of height c.

Suppose that 0 ≤ k ≤ c and that we have elements t1, . . . , tk ∈ p such
that ht((t1, . . . , tk)) = k.

Then there are elements tk+1, . . . , tc ∈ p, such that ht(t1, . . . , tc) = c .

Proof. Skipped. By induction on k, using Proposition 0.13 (i). See the
notes.

END OF LECTURE 14
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The dimension of polynomial rings

We now turn to the computation of the dimension of polynomial rings.
The main result is

Theorem 0.45

Let R be a noetherian ring. Suppose that dim(R) <∞.

Then dim(R[x ]) = dim(R) + 1.

Before we start with the proof, we prove a few intermediate results.

Lemma 32

Let K be a field and let p be a non zero prime ideal of K [x ].

Then ht(p) = 1. In particular, we have dim(K [x ]) = 1.

Proof. Exercise. This follows from the fact that non zero prime ideals of
K [x ] are maximal and from the fact that the zero ideal in K [x ] is prime,
since K [x ] is a domain.
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If R is a ring and a is an ideal of R, we shall write a[x ] for the ideal
generated by a in R[x ].

The ideal a[x ] can easily be seen to consist of the polynomials with
coefficients in a (hence the notation).

If the ideal a is also prime, then so is a[x ], since

R[x ]/a[x ] ' (R/a)[x ]

and (R/a)[x ] is a domain, if R/a is a domain.
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The construction of the following Lemma already appears in Proposition
0.26.

Lemma 33

Let φ : R → T be a ring homomorphism.

Let p ∈ Spec(R) and let I be the ideal generated by φ(p) in T .

Write ψ : R/p→ T/I for the ring homomorphism induced by φ and let
S := (R/p)∗.

Write ψS : Frac(R/p)→ (T/I )ψ(S) for the induced ring homomorphism.

Finally, write ρ : T → (T/I )ψ(S) for the natural ring homomorphism.

Then Spec(ρ)(Spec((T/I )ψ(S)) consists precisely of the prime ideals q of
T , such that φ−1(q) = p.
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In diagrams:

T //

ρ

$$

T/I // (T/I )ψ(S)

R

φ

OO

// R/p

ψ

OO

// Frac(R/p)

ψS

OO

Spec(T )

Spec(φ)

��

Spec(T/I )

Spec(ψ)

��

oo Spec((T/I )ψ(S))

Spec(ρ)

vv

Spec(ψS )

��

oo

Spec(R) Spec(R/p)oo Spec(Frac(R/p))oo

The lemma is saying that the fibre of Spec(φ) above p is precisely the
image of Spec(ρ).

The proof is straightforward (see proof of Proposition 0.26). 169 / 207



The previous lemma will be applied below in the situation where
T = R[x ]. In this situation, we have

(T/I )ψ(S) = (R[x ]/p[x ])ψ(S) ' (R/p)[x ](R/p)∗ = Frac(R/p)[x ].

Here we used the fact that if A is a domain, we have a natural
identification

(A[x ])A∗ ' Frac(A)[x ]

(exercise).
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Lemma 34

We keep the notation of Lemma 33.

Suppose that we have a chain of prime ideals

q0 ) q1 ) · · · ) qk

in T , such that φ−1(qi ) = p for all i ∈ {0, . . . , k}.
Then k ≤ dim((T/I )ψ(S)).

Proof. Immediate from Lemma 33.
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Lemma 35

Let R be a ring and let N be the nilradical of R.

Then the nilradical of R[x ] is N[x ].

Proof. Any element of N[x ] is a polynomial with nilpotent coefficients
and its thus clearly nilpotent (check).

On the other hand, let P(x) = a0 + a1x + · · ·+ adx
d ∈ R[x ] be an

element of the nilradical of R[x ] (ie a nilpotent polynomial).

Suppose for contradiction that P(x) has a coefficient ai , which is not
nilpotent.

Let p ∈ Spec(R) be a prime ideal, such that ai 6∈ p.

Then P(x) (mod p) ∈ (R/p)[x ] is a non zero nilpotent polynomial.

This is contradiction, since (R/p)[x ] is a domain.
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Lemma 36

Let R be a noetherian ring and let p1, . . . , pk be the minimal prime ideals
of R.

Then the minimal prime ideals of R[x ] are the ideals p1[x ], . . . , pk [x ].

More generally, if a is an ideal of R and p1, . . . , pk are the minimal prime
ideals associated with a, then the ideals p1[x ], . . . , pk [x ] are the minimal
prime ideals associated with a[x ].
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Proof. We first prove the first statement. Note that we have⋂
i pi = r((0)), because the nilradical r((0)) of R is decomposable by the

Lasker-Noether theorem.

We deduce from this that
⋂

i pi [x ] = r((0))[x ]. Thus
⋂

i pi [x ] is a minimal
primary decomposition of r((0))[x ].

In view of Lemma 35, this implies that the minimal prime ideals of R[x ]
are precisely the ideals p1[x ], . . . , pk [x ] (use Theorem 0.15 and Lemma
15), which is what we wanted to prove.

For the second statement, apply the first statement to p (mod a), noting
that (R/a)[x ] ' R[x ]/a[x ] (or provide a direct proof, similar to the proof
for a = (0)).
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Lemma 37

Let R be a noetherian ring and let a be an ideal of R. Then
ht(a) = ht(a[x ]).

Proof. Suppose first that the lemma is proven if a is a prime ideal.

We know that there is a minimal prime ideal p associated with a, such
that ht(p) = ht(a).

We conclude from this that ht(a[x ]) ≤ ht(p[x ]) = ht(p) = ht(a).

On the other hand there is a minimal prime ideal q associated with a[x ]
such that ht(q) = ht(a[x ]).

By Lemma 36 we have q = (q ∩ R)[x ] so that
ht(a[x ]) = ht(q ∩ R) ≥ ht(a[x ] ∩ R) = ht(a).

Hence ht(a) = ht(a[x ]).

So we only need to prove the statement if a = p, where p is a prime ideal
of R.
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Let c := ht(p) and let a1, . . . , ac ∈ p be such that ht((a1, . . . , ac)) = c , so
that p is a minimal prime ideal associated with (a1, . . . , ac). This exists by
Corollary 0.44.

Let J := (a1, . . . , ac). By the previous lemma, p[x ] is a minimal prime
ideal associated with J[x ].

We conclude from Corollary 0.42 that ht(p[x ]) ≤ c (since the elements
a1, . . . , ac generate J[x ] in R[x ]).

On the other hand, if
p ) p1 ) p2 · · · ) pc

is a descending of prime ideals in R, then

p[x ] ) p1[x ] ) p2 · · · ) pc [x ]

is a descending chain of prime ideals in R[x ], so that ht(p[x ]) ≥ c . Hence
ht(p[x ]) = c.
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Lemma 38

Let q be a prime ideal of R[x ] and let a be an ideal of R such that
a ⊆ q ∩ R.

Suppose that q ∩ R is a minimal prime ideal associated with a.

Let q′ ⊆ q be a prime ideal of R[x ], which is a minimal prime ideal
associated with a[x ].

Then q′ = (q ∩ R)[x ].
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Proof. We have
q′ ∩ R ⊇ a[x ] ∩ R = a

and thus
(q′ ∩ R)[x ] ⊇ a[x ].

Hence
q′ ⊇ (q′ ∩ R)[x ] ⊇ a[x ].

By minimality, we thus have q′ = (q′ ∩ R)[x ].

On the other hand, we have q′ ⊆ q, so that

q′ = (q′ ∩ R)[x ] ⊆ (q ∩ R)[x ].

Now by Lemma 36, we know that (q ∩ R)[x ] is a minimal prime ideal
associated with a[x ] and thus we must have q′ = (q ∩ R)[x ].
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Proposition 0.46

Let R be a noetherian ring and m be a prime ideal of R[x ]. Then

ht(m) ≤ 1 + ht(m ∩ R).

If m is maximal, we even have

ht(m) = 1 + ht(m ∩ R).

Proof. Let δ := ht(m ∩ R) and let c := ht(m).

Note that since (m ∩ R)[x ] ⊆ m, we have δ ≤ c by Lemma 37. Let
a1, . . . , ac ∈ m be such that ht((a1, . . . , ai )) = i for all i ∈ {1 . . . , c}. This
exists by Corollary 0.44.

Using Lemma 37 again, we may suppose that a1, . . . , aδ ∈ m ∩ R.

In particular, (m ∩ R)[x ] is a minimal prime ideal associated with
(a1, . . . , aδ).
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We shall now inductively define a chain a of prime ideals

m = q0 ) q1 ) · · · ) qc

such that qi is a minimal prime ideal associated with (a1, . . . , ac−i ).

We let q0 := m and we suppose that i > 0 and that the ideals
q0, . . . , . . . qi−1 are given.

We then let qi be a (arbitrary) minimal prime ideal associated with
(a1, . . . , ac−i ), which is contained in qi−1.

We have thus constructed our chain of prime ideals.
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Note that we have by construction ht(qi ) = c− i (see after Corollary 0.42).

Now note the key fact that both qc−δ and (m ∩ R)[x ] are minimal prime
ideals associated with (a1, . . . , aδ).

Applying Lemma 38, we find that we actually have

qc−δ = (m ∩ R)[x ].

We thus see that for all i ∈ {0, . . . , c − δ}, we have

m ⊇ qi ⊇ (m ∩ R)[x ]

and thus
m ∩ R ⊇ qi ∩m ⊇ m ∩ R

so that qi ∩ R = m ∩ R.
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We now conclude from Lemma 34 and Lemma 32 that

c−δ ≤ dim((R[x ]/(m∩R)[x ])(R/(m∩R))∗) = dim(Frac(R/(m∩R))[x ]) ≤ 1.

This proves the first statement.

For the second one, note that if m is maximal then m 6= (m∩R)[x ] = qc−δ
(because (m ∩ R)[x ] is not maximal), so that c − δ ≥ 1.

In particular, we then have that c = δ + 1, as required.
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Proof of Theorem 0.45.

We first show that dim(R[x ]) ≥ dim(R) + 1.

For this, let
p0 ) p1 ) · · · ) pdim(R)

be a chain of prime ideals of maximum length in R.

From this, we obtain as earlier a chain

p0[x ] ) p1[x ] ) · · · ) p[x ]dim(R)

in R[x ]. Now p0[x ] is not a maximal ideal, so there is a maximal ideal m in
R[x ] so that

m ) p0[x ] ) p1[x ] ) · · · ) p[x ]dim(R)

In particular, dim(R[x ]) ≥ dim(R) + 1.
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We now show that dim(R[x ]) ≤ dim(R) + 1.

Let m be a maximal ideal of R[x ] so that ht(m) = dim(R[x ]).

This exists by Lemma 27. We then have ht(m) = 1 + ht(m ∩ R) by the
last proposition.

We must then have ht(m ∩ R) = dim(R).

Indeed, suppose for contradiction that ht(m ∩ R) < dim(R).

Then there is there a maximal ideal p in R, so that ht(p) > ht(m ∩ R).
Let N be a maximal ideal of R[x ], which contains p[x ].

By maximality, we have N ∩ R = p, so that
ht(N ) = 1 + ht(p) > 1 + ht(m ∩ R) = ht(m), a contradiction.

So we conclude that ht(m) = dim(R[x ]) = dim(R) + 1, as required.
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Remarks. Let R be a noetherian ring and let p ⊆ q be prime ideals of R.

We then obviously have

ht(p) + ht(q (mod p)) ≤ ht(q)

(where q (mod p) is an ideal of R/p).

However it is not true that ht(p) + ht(q (mod p)) = ht(q) in general.

One class of rings, where equality holds is the class of so called catenary
domains.

One can show that finitely generated algebras over fields are catenary.

So equality will hold if R is a domain, which is finitely generated over a
field (we will not prove this however).

Note that in the proof of Proposition 0.46, we showed that
ht((m ∩ R)[x ]) + ht(m/(m ∩ R)[x ]) = ht(m) (why?) and the fact that
equality holds in this situation was crucial in the proof.
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Corollary 0.47

Let R be a noetherian ring. Suppose that dim(R) <∞.

Then dim(R[x1, . . . , xt ]) = dim(R) + t.

Proof. This follows from Theorem 0.45 and Hilbert’s basis theorem.
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Corollary 0.48

Let k be a field and let R be a finitely generated k-algebra.

Suppose that R is a domain and let K := Frac(R).

Then dim(R) and tr(K |k) are finite and dim(R) = tr(K |k).
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For the proof of the corollary, we shall need the

Lemma 39

Let R be a subring of a ring T . Suppose that T is integral over R.

Then dim(T ) = dim(R).

Note that the lemma also holds if R or T has infinite dimension (in which
case it says that the other ring also has infinite dimension).
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Proof. (of the lemma) Suppose first that dim(R), dim(T ) <∞.

Let
p0 ) p1 ) · · · ) pdim(R)

be a descending chain of prime ideals in R, which is of maximal length.

By Theorem 0.23, there is a prime ideal qdim(R) in T such that
qdim(R) ∩ R = pdim(R).

Also, by Q6 of sheet 2, there are prime ideals qi in T , such that
qi ∩ R = pi and such that

q0 ) q1 ) · · · ) qdim(R).

Hence dim(T ) ≥ dim(R).
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Now, resetting terminology, let

q0 ) q1 ) · · · ) qdim(T ).

be a descending chain of prime ideals in T , which is of maximal length.

Then we have

q0 ∩ R ) q1 ∩ R ) · · · ) qdim(T ) ∩ R.

by Q1 of sheet 3. Hence dim(T ) ≤ dim(R) and thus dim(T ) = dim(R).

The argument in the situation where either dim(R) =∞ or dim(T ) =∞
proceeds along the same lines and is left to the reader.
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Proof of Corollary 0.48 . By Noether’s normalisation lemma, there is for
some d ≥ 0 an injection of rings k[x1, . . . , xd ] ↪→ R, which makes R into
an integral k[x1, . . . , xd ]-algebra.

From the previous lemma and Corollary 0.47, we deduce that dim(R) = d .

On the other hand, the fraction field k(x1, . . . , xd) of k[x1, . . . , xd ] is
naturally a subfield of K and since every element of R is integral over
k[x1, . . . , xd ], we see that every element of K is algebraic over
k(x1, . . . , xd) (why?).

Hence
tr(K |k) = tr(k(x1, . . . , xd)|k) = d = dim(R).

END OF LECTURE 15
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Dedekind rings

A Dedekind domain is a noetherian ring of dimension one, which is
integrally closed.

Examples of Dedekind domains include Z and polynomial rings in one
variable over a field.

We will see that in a Dedekind domain, every ideal can be written in
unique fashion as a product of powers of distinct prime ideals.

This unique decomposability generalises to ideals the decomposability into
irreducibles of an element that exists in a UFD (and in fact a Dedekind
domain is a UFD iff it is a PID - see Sheet 4).

We will also see below that the integral closure of Z in a finite extension of
Q is a Dedekind domain.

This last kind of ring is much studied in algebraic number theory.
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We first note a couple of simple facts:

Lemma 40

Let R be a Dedekind domain.

(i) All the non-zero prime ideals of R are maximal.

(ii) If q1, q2 are primary ideals and r(q1) 6= r(q2) then q1 and q2 are
coprime.

Proof. Skipped. See the notes. The proof uses the next lemma.
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Lemma 41

Let R be a ring. Suppose that the ideals r(I ) and r(J) of R are coprime.

Then I and J are coprime.

Proof. See the notes.

Lemma 42

Let R be an integrally closed domain.

Then Rp is also integrally closed for all p ∈ Spec(R).

Proof. Exercise. Use Lemma 23.
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Proposition 0.49

Let R be a noetherian local domain of dimension one with maximal ideal
m.

The following conditions are equivalent:

(1) R is integrally closed;

(2) m is a principal ideal;

(3) for any non-zero ideal I of R, we have I = mn for a uniquely
determined n ≥ 0.
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Proof. Let K be the fraction field of R.

(1)⇒(2): Let a ∈ m\{0}. Note that the ring R/(a) is local with maximal
ideal m (mod (a)) and noetherian (see the beginning of the proof of Krull’s
principal ideal theorem for details).

Furthermore, we have ht(m (mod (a))) = dim(R/(a)) = 0, because if there
were a prime ideal properly contained in m (mod (a)), this would lead to a
descending chain m ) p ) (0) of prime ideals in R, which contradicts the
assumption that ht(m) = 1.

By Lemma 31, the ideal m (mod (a)) is thus nilpotent. Let n > 0 be the
minimal integer such that

(m (mod (a)))n = (mn (mod (a))) = (0)

and let b ∈ mn−1 be such that b (mod (a)) 6= 0.

Now let x = a/b ∈ K . We have bm ⊆ mn ⊆ (a) so that x−1m ⊆ R.

Furthermore, we have x−1 6∈ R, for otherwise we would have
b = x−1 · a ∈ (a), which is excluded by assumption.
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We claim that we cannot have x−1m ⊆ m.

Indeed, suppose that x−1m ⊆ m.

Then x−1 induces a homomorphism of R-modules m→ m (given by
multiplication by x−1) and such a homomorphism is annihilated by a
monic polynomial P(x) with coefficients in R by Proposition 0.19 (because
m is finitely generated, as R is noetherian).

We then have P(x−1)(h) for any non zero element h ∈ m and since R is a
domain this implies that P(x−1) = 0.

Since R is integrally closed, this implies that x−1 ∈ R, which is a
contradiction.

Hence x−1m 6⊆ m and since R is local, we thus must have x−1m = R. In
other words, x ∈ R and m = (x).

(2)⇒(3): See the notes.

(3)⇒(1): See the notes.
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Corollary 0.50

The localisation of a Dedekind domain at a non zero prime ideal is a PID.

The proof is immediate.

Corollary 0.51

Let R be a Dedekind domain.

Then any primary ideal is equal to a power of its radical.

Proof. By localisation. See the notes.
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Proposition 0.52

Let R be a Dedekind domain. Let I be an ideal in R.

Then all the minimal primary decompositions of I are equal up to
reindexing.

Proof. Again by localisation. See the notes.

We conclude from Proposition 0.52 that

in a Dedekind domain, every ideal can be written in a unique way (up to
reindexing) as a product of powers of distinct prime ideals.
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The next three results require some knowledge of Galois Theory.

Proposition 0.53

Let R be an integrally closed domain and let K be its fraction field. Let
L|K be a finite separable extension. Then

(1) the fraction field of the integral closure of R in L is L;

(2) the integral closure of R in L is finite over R.

Proof. Omitted. See AT, Th. 5.17, p. 64. The proof of (1) is easy (prove
it).

The proof of (2) exploits the fact that the so-called ”trace form”
associated with a finite separable extensions is non-degenerate.
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Corollary 0.54

Let R be Dedekind domain with fraction field K. Let L be a finite
separable extension of K. Let T be the integral closure of R in L.

Then T is also a Dedekind domain.

Proof. The ring R is clearly a domain, and it is integrally closed by
Lemma 22 and Proposition 0.53 (1).

Also, the ring R is of dimension 1 by Lemma 39.

Finally, by the Hilbert basis theorem, T is noetherian.

Indeed, T is finite, and in particular finitely generated over R, and R is
noetherian by assumption.
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Proposition 0.55

Let R be an integrally closed domain and let K be its fraction field.

Let L|K be a finite Galois extension of K.

Let T be the integral closure of R in L.

Let p ∈ Spec(R) and let q1, q2 ∈ Spec(T ) be prime ideals of T such that
q1 ∩ R = q2 ∩ R = p.

Then there exists an element σ ∈ Gal(L|K ) such that σ(q1) = q2.

Note that σ(T ) ⊆ T for all σ ∈ Gal(L|K ) (why?).

In particular, each σ ∈ Gal(L|K ) induces an automorphism σ|T : T
∼→ T

of R-algebras, with inverse (σ−1)|T .
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Proof. Suppose first that

q2 ⊆
⋃

σ∈Gal(L|K)

σ(q1).

In this situation, Proposition 0.13 (i) implies that q2 ⊆ τ(q1) for a
particular τ ∈ Gal(L|K ).

According to Q1 of sheet 3, this is only possible if q2 = τ(q1) and hence
we are done in this situation.

Now suppose that

q2 6⊆
⋃

σ∈Gal(L|K)

σ(q1).

In particular, there is an element e ∈ q2 such that e 6∈ σ(q1) for all
σ ∈ Gal(L|K ), or in other words such that σ(e) 6∈ q1 for all σ ∈ Gal(L|K ).
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Now consider that the element f :=
∏
σ∈Gal(L|K) σ(e) is invariant under

Gal(L|K ) by construction.

Hence f lies in K ∩ T , since L|K is a Galois extension.

Since R is integrally closed, we have K ∩ T = R, so f ∈ R.

On the other hand, since e ∈ q2 and q2 is an ideal, we also have f ∈ q2, so
that f ∈ R ∩ q2 = p.

In particular, f ∈ R ∩ q1 = p.

Now since q1 is a prime ideal, this implies that one of the elements σ(e)
(for some σ ∈ Gal(L|K )) lies in q1, which is a contradiction.

Hence we must have q2 ⊆
⋃
σ∈Gal(L|K) σ(q1) and we can conclude using

the argument given above.
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The following final lemma (and the complement that follows) plays a key
role in Algebraic Number Theory.

Lemma 43

Let R be a Dedekind domain with fraction field K.

Let L|K be a finite separable extension of K and let T be the integral
closure of R in L (recall that T is also a Dedekind domain by Corollary
0.54).

Let p be a non-zero prime ideal in R.

Let p̄ = pT be the ideal generated by p in T .

Let
p̄ = qn1

1 · · · q
nk
k

be the minimal primary decomposition of p̄.

Then the qi are precisely the prime ideals q of T which have the property
that q ∩ R = p.
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Proof. We have already seen that qn1
1 · · · q

nk
k = qn1

1 ∩ · · · ∩ qnkk .

Hence qi ∩ R ⊇ p and thus qi ∩ R = p, since p is maximal.

Thus the qi are among the prime ideals q of T , with the property that
q ∩ R = p.

Conversely, let q be a prime ideal of T , such that q ∩ R = p.

Then
q ⊇ qn1

1 ∩ · · · ∩ qnkk

and thus by Proposition 0.13 (ii), we have q ⊇ qnii for some i .

Since qi is the radical of qnii , we thus have q ⊇ qi and thus q = qi (again
because qi is maximal).
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Complement. We keep the notation of the last lemma.

If F2|F1 is a finite field extension, recall that one writes [F2 : F1] for the
dimension of F2 as a F1-vector space.

Write fi := [T/qi : R/p].

One can show that ∑
i

ni fi = [L : K ].

See S. Lang, Algebraic Number Theory, I, par. 7, Prop. 21, p. 24 for a
proof.

The integer ni is called the ramification degree of qi over p.

Finally, note that it follows from Proposition 0.52 and Proposition 0.55
that the integers ni and fi are independent of i if L|K is a Galois extension
(why?).

END OF LECTURE 16
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