Exercise sheet 1. Prerequisites: sections 1-5. Week 4.

Q1. Let R be a ring. Show that the Jacobson radical of R coincides with the set $\{x \in R \mid 1-x y$ is a unit for all $y \in R\}$.
Solution. Suppose x lies in the Jacobson radical of R. Suppose for contradiction that $1-x y$ is not a unit for some $y \in R$. Let \mathfrak{m} be a maximal ideal containing $1-x y$. We know that $x y \in \mathfrak{m}$ since $x \in \mathfrak{m}$ and thus we conclude that $1 \in \mathfrak{m}$, a contradiction.

Suppose now that $x \in R$ and that $1-x y$ is a unit for all $y \in R$. Suppose for contradiction that there is a maximal ideal \mathfrak{m} such that $x \notin \mathfrak{m}$. Then $x(\bmod \mathfrak{m})$ is a unit in R / \mathfrak{m} and hence there is a $y \in R$ such that $x y(\bmod \mathfrak{m})=1(\bmod \mathfrak{m})$. In other words, $1-x y \in \mathfrak{m}$ and so $1-x y$ is not a unit.

Q2. Let R be a ring.
(i) Show that if $P(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in R[x]$ is a unit of $R[x]$ then a_{0} is a unit of R and a_{i} is nilpotent for all $i \geq 1$.
(ii) Show that the Jacobson radical and the nilradical of $R[x]$ coincide.

Solution.
(i) Let $Q(x)=b_{0}+\cdots+b_{t} x^{t} \in R[x]$ be an inverse of $P(x)$. Then $P(0) Q(0)=a_{0} b_{0}=1$ so that a_{0} and b_{0} are units. Let \mathbb{F}_{p} be a prime ideal. Let $j \geq 0$ be the largest integer so that $a_{j}(\bmod \mathfrak{p}) \neq 0$ and let $l \geq 0$ be the largest integer so that $b_{l}(\bmod \mathfrak{p}) \neq 0$. If $j>0$ we have $a_{j} b_{l}=0(\bmod \mathfrak{p})($ since $P(x) Q(x)=1)$, which is not possible because R / \mathfrak{p} is a domain. Hence $j=0$ and in particular $a_{i} \in \mathfrak{p}$ for all $i>0$. Since \mathfrak{p} was arbitrary, we see that a_{i} lies in the nilradical of R for all $i>0$.
(ii): We only have to show that any element of the Jacobson radical if $R[x]$ is nilpotent. So let $P(x) \in$ $a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in R[x]$ be an element of the Jacobson radical. By Q1, we know that for any $T(x) \in R[x]$, the element $1-P(x) T(x)$ is a unit. In particular,

$$
1+x P(x)=1+a_{0} x+a_{1} x^{2}+\cdots+a_{k} x^{k+1}
$$

is a unit. By (i), a_{i} is thus nilpotent for all $i>0$. In particular $a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ is nilpotent (since the radical of a ring is an ideal).

Q3. Let R be a ring and let $N \subseteq R$ be its nilradical. Show that the following are equivalent:
(i) R has exactly one prime ideal.
(ii) Every element of R is either a unit or is nilpotent.
(iii) R / N is a field.

Solution. (i) \Rightarrow (ii): Let \mathfrak{p} be the unique prime ideal. Suppose that $r \in R$ is not a unit. Then r is a contained in a maximal ideal, which must coincide with \mathfrak{p}. Since \mathfrak{p} is the only prime ideal, the ideal \mathfrak{p} is the nilradical N of R and hence r is nilpotent.
(ii) $\Rightarrow($ iii): Suppose that R / N is not a field. Then either R / N is the zero ring or there is an element $x \in(R / N)^{*}$, which is not a unit. If R / N is the zero ring, then every element of R is nilpotent (and in fact R is the zero ring). If there is an element $x \in(R / N)^{*}$, let $x_{1} \in R$ be a preimage of x. Then x_{1} is not a unit and is not nilpotent. So we have proven the contraposition of (ii) \Rightarrow (iii).
(iii) \Rightarrow (i): We prove the contraposition. If R has more than one prime ideal then R / N has a non zero prime ideal (since any prime ideal contains N). But this contradicts the fact that R / N is a field.

Q4. Let R be a ring and let $I \subseteq R$ be an ideal. Let $S:=\{1+r \mid r \in I\}$.
(i) Show that S is a multiplicative set.
(ii) Show that the ideal generated by the image of I in R_{S} is contained in the Jacobson radical of R_{S}.
(iii) Prove the following generalisation of Nakayama's lemma:

Lemma. Let M be a finitely generated R-module and suppose that $I M=M$. Then there exists $r \in R$, such that $r-1 \in I$ and such $r M=0$.

Solution. (i): This is clear.
(ii): The ideal I_{S} generated generated by I in R_{S} consists of the elements a / b such that $a \in I$ and $b \in S$. By Q1, we thus only have to show that if a / b is such that $a \in I$ and $b \in S$, then $1-(a / b)(c / d)$ is a unit for all $c \in R$ and $d \in S$. Now $1 / b$ and $1 / d$ are units of R_{S}, hence we only have to show that $b d-a c$ is a unit for a, b, c, d as in the previous sentence. Now $b d=\left(1+b_{1}\right)\left(1+d_{1}\right)=1+b_{1}+d_{1}+b_{1} d_{1}$ for some $b_{1}, d_{1} \in I$, and thus $b d-a c=1+b_{1}+d_{1}+b_{1} d_{1}-a c$. Since $b_{1}+d_{1}+b_{1} d_{1}-a c \in I$ we see that $b d-a c=1+b_{1}+d_{1}+b_{1} d_{1}-a c \in S$ and hence is a unit of R_{S}.
(iii) If $I M=M$ we clearly have $I_{S} M_{S}=M_{S}$. Hence by (ii) and the form of Nakayama's lemma proven in the course, we have $M_{S}=0$. Now m_{1}, \ldots, m_{k} be generators of M. Since M is the kernel of the natural map $M \rightarrow M_{S}\left(\right.$ since $M_{S}=0$), there is an element $s_{i} \in S$ such that $s_{i} m_{i}=0$ for all i (see the beginning of section 5). Let $s=\prod_{i} s_{i}$. Then s annihilates all the m_{i} and hence M. By construction, $s-1 \in I$ so we are done.

Q5. Let R be a ring and let M be a finitely generated R-module. Let $\phi: M \rightarrow M$ be a surjective homomorphism of R-modules. Prove that ϕ is injective, and is thus an automorphism. [Hint: use ϕ to construct a structure of $R[x]$-module on M and use the previous question.]

Solution. View M as an $R[x]$-module by setting $P(x) \cdot m=P(\phi)(m)$. We have $(x) M=M$ by construction and hence by Q4 (iii), there is a polynomial $Q(x) \in R[x]$ such that $Q(x)-1 \in(x)$ and $Q(x) M=0$. Let $m_{0} \in \operatorname{ker}(\phi)$. Then $Q(x)\left(m_{0}\right)=m_{0}$ and hence $m_{0}=0$. Thus ϕ is injective.

Q6. Let R be a ring. Let \mathcal{S} be the subset of the set of ideals of R defined as follows: an ideal I is in \mathcal{S} iff all the elements of I are zero-divisors. Show that \mathcal{S} has maximal elements (for the relation of inclusion) and that every maximal element is a prime ideal. Show that the set of zero divisors of R is a union of prime ideals.

Solution. If \mathcal{T} is a totally ordered subset of \mathcal{S}, then the union of its elements is an ideal, and it clearly consists of zero divisors. So every totally ordered subset of \mathcal{T} has upper bounds and thus by Zorn's lemma, the ordered set \mathcal{T} has maximal elements. Note that we may refine this reasoning as follows. Let $I \in \mathcal{S}$. Consider the subset \mathcal{S}_{I} of \mathcal{S}, which consists of ideals containing I. By a completely similar reasoning, the subset \mathcal{S}_{I} has maximal elements for the relation of inclusion. We contend that if $J \in \mathcal{S}_{I}$ is a maximal element, then it is also maximal in \mathcal{S}. Indeed, suppose that $J^{\prime} \supseteq J$ for some ideal $J^{\prime} \in \mathcal{S}$. Then $J^{\prime} \in \mathcal{S}_{I}$ and hence $J^{\prime}=J$. Now note that

$$
\{\text { zero-divisors of } R\}=\cup_{r \in R, r \text { a zero-div. }}(r) \subseteq \cup_{r \in R, r \text { a zero-div. }} J(r)
$$

where $J(r)$ a maximal element of \mathcal{S} containing the ideal (r). Since $J(r)$ also consists of zero-divisors, we conclude that

$$
\{\text { zero-divisors of } R\}=\cup_{r \in R, r \text { a zero-div. }} J(r)
$$

Hence we only have to prove that the maximal elements of \mathcal{S} are prime ideals.
Let I be a maximal element of \mathcal{S}. Let $x, y \in R \backslash I$ and suppose for contradiction that $x y \in I$. Then we have

$$
((x)+I)((y)+I) \subseteq I
$$

By maximality of I, there are elements $a \in(x)+I$ and $b \in(y)+I$, which are not zero divisors. Hence $a b \in I$ so that $a b$ is a zero divisor, which is contradiction (note that the set of non zero divisors is a multiplicative set). So we must have $x \in I$ or $y \in I$, so I is prime.

Q7. Let R be a ring. Consider the inclusion relation on the set $\operatorname{Spec}(R)$. Show that there are minimal elements in $\operatorname{Spec}(R)$.
Solution. Let \mathcal{T} be a totally ordered subset of $\operatorname{Spec}(R)$ for the relation \supseteq. Note that the maximal elements for the relation \supseteq are the minimal elements for the inclusion relation (which is \subseteq). Let $I:=\cap_{\mathfrak{p} \in \mathcal{T}}$. Then I is an ideal. We claim that I is prime.

To see this, let $x, y \in R$ and suppose for contradiction that $x, y \in R \backslash I$ and that $x y \in I$. By assumption there are prime ideals $\mathfrak{p}_{x}, \mathfrak{p}_{y} \in \mathcal{T}$ such that $x \notin \mathfrak{p}_{x}$ and $y \notin \mathfrak{p}_{y}$. Suppose without restriction of generality that $\mathfrak{p}_{x} \supseteq \mathfrak{p}_{y}$ (recall that \mathcal{T} is totally ordered). We have $x y \in \mathfrak{p}_{y}$ and thus either x or y lies in \mathfrak{p}_{y}. This contradicts the fact that $x, y \notin \mathfrak{p}_{y}$. The ideal I thus lies in $\operatorname{Spec}(R)$ and it is a lower bound for \mathcal{T}. We may thus apply Zorn's lemma to conclude that there are minimal elements in $\operatorname{Spec}(R)$.

