
0. BACKGROUND MATERIAL
There is a good deal of background material in this chapter. It is hoped, given the course’s
pre-requisites and recommedations, that most students will have met some, perhaps most, of
this material but very few may have met it all. At no single point in this course will all this
material be simultaneously necessary, but it will be helpful to either do preparatory reading
on a topic ahead of the relevant lectures or revisit the material if you …nd yourself rustier than
you expected.

As a guide:

² arc length, curvature and surface area will prove useful ahead of Chapter 3.

² the real projective plane’s topology will also appear in Chapters 1 and 2.

² the real and complex projective planes will appear in Chapter 7.

² holomorphic branches will prove useful in Chapter 7.

² multivariable di¤erentiability will prove somewhat helpful in Chapter 3.

² identi…cation spaces will be important ahead of Chapter 2.

0.1 Arc Length and Curvature
This is largely material from Prelims Introductory Calculus.

De…nition 0.1 A smooth parameterized curve in R3 is a map γ : I ! R3 from an open
interval I µ R such that

² γ is smooth, i.e. γ has derivatives of all orders;

² γ : I ! γ(I) is a homeomorphism;

² γ0(t) 6= 0 for all t 2 I.

The requirement that γ be a homeomorphism onto its image is somewhat unusual here.
Some authors will omit this requirement which allows the possibility of self-intersections, for
the curve crossing itself. De…ning a smooth parameterized curve as above means that the curve
has no singular points and also mirrors the later de…nition of a smooth parameterized surface
(see De…nition 1.7).

A smooth parameterized curve γ is a curve in R3 with a preferred parameterization. The
image of γ is also the image of other smooth parameterized curves. It’s important to check that
our de…nitions relating to curves and surfaces are independent of the choice of parameterization.
For example, a simple application of the chain rule shows that the tangent line to a curve and
arc length on a curve (as de…ned below) are independent of the choice of parameter. Arc length
is an ‘intrinsic’ parameter for a curve.
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De…nition 0.2 Let γ : I ! R3 be a smooth parameterized curve with t0 2 I. Then the arc
length s(t) from γ(t0) to a point γ(t) is de…ned by the integral

s(t) =

Z t

t0

jγ0(u)j du.

As γ0(t) 6= 0 for all t then there is a well de…ned tangent line at each point of γ(I).

De…nition 0.3 Let γ : I ! R3 be a smooth parameterized curve with t0 2 I.
(a) The tangent line to γ at γ(t0) is the line containing the point γ(t0) and parallel to

γ0(t0).
(b) The unit tangent vector t(s) is the tangent vector

t(s) =
dγ

ds
,

when γ is parameterized by arc length s.
(c) The curvature κ(s) of γ at γ(s) is de…ned to be

κ(s) =

¯
¯
¯
¯
dt

ds

¯
¯
¯
¯ =

¯
¯
¯
¯
d2γ

ds2

¯
¯
¯
¯ .

Example 0.4 (Logarithmic spiral) Let γ(t) =
¡
aebt cos t, aebt sin t

¢
for t > 0 and real con-

stants a > 0 > b. Show that γ has …nite arc length.

Solution. The tangent vector γ 0(t) equals

(aebt(b cos t ¡ sin t), aebt(b sin t+ cos t)),

and has magnitude

aebt
p
((b cos t ¡ sin t)2 + (b sin t+ cos t)2) = aebt

p
b2 + 1.

So the arc length from γ(0) = (a, 0) to limt!1 γ(t) = (0, 0) equals

a
p
1 + b2

Z 1

0

ebudu = a
p
1 + b¡2.

Figure 0.1 – The logarithmic spiral Figure 0.2 – The cycloid
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Example 0.5 The tractrix is the curve given by

γ(t) =

µ

¡ cos t+ log tan

µ
t

2

¶

, sin t

¶

, 0 < t <
π

2
.

Show that the length of the tangent line from a point γ(t), to the point where the tangent meets
the x-axis, is always 1 (see Figure 3.5).

Solution. Di¤erentiating we …nd that γ0(t) equals

µ
¡ cos2 t

sin t
, cos t

¶

, 0 < t <
π

2
.

So the tangent from the curve at γ(t) meets the x-axis at

γ(t) + (cos t,¡ sin t),

a point distance 1 away.

Example 0.6 A circular disc of radius r in the xy-plane rolls without slipping along the x-axis.
The locus described by a point of the circumference of the disc is called a cycloid (see Figure
0.2). Determine the arc length of a section of the cycloid which corresponds to a complete
rotation of the disc.

Solution. Assume that the disc begins with its centre at (0, r). Consider the curve described
by the point (0, 0) as the disc rolls. After the disc has rolled distance rθ then the point (0, 0)
has moved on to

(x(θ), y(θ)) = (r(θ ¡ sin θ), r(1¡ cos θ)).

Thus (x0)2 + (y0)2 = r2
£
(1¡ cos θ)2 + sin2 θ

¤
= 2r2(1¡ cos θ) and so

s =
p
2 r

Z 2π

0

p
1¡ cos θ dθ = 2r

Z 2π

0

¯
¯
¯
¯sin

1

2
θ

¯
¯
¯
¯ dθ = 8r.

Example 0.7 Show that the curvature of a curve is identically zero if and only if the curve is
part of a line.

Solution. For a curve that is part of a line, t is constant and so κ = jdt/dsj = 0. Conversely
if κ is identically zero, then Äγ(s) = 0 and hence γ(s) = as + b for constant vectors a,b. This
is the parameterization of a line.

Example 0.8 (a) Show that a circle of radius a has constant curvature κ = a¡1.
(b) Conversely let γ be a curve in the xy-plane which has constant positive curvature κ.

Show that γ is part of a circle. (There are non-planar curves with constant curvature, such as
helices.)
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Proof. (a) Without loss of generality we can take the circle’s centre to be the origin in the
xy-plane. A parameterization by arc length is

γ(s) =
³
a cos

³s

a

´
, a sin

³s

a

´´
.

Then

κ(s) = Äγ(s) =

¯
¯
¯
¯

µ

¡
1

a
cos

³s

a

´
,¡
1

a
sin

³s

a

´¶¯
¯
¯
¯ =

1

a
.

(b) Asumme now that the curvature κ is constant. We can write

dt

ds
= κn,

where n is a unit vector in the same plane. As t is a unit vector, then t and n are perpen-
dicular. As n is a unit vector then dn/ds is perpendicular to n and so parallel to t. Further,
di¤erentiating t ¢ n = 0 gives

0 =
dt

ds
¢ n+

dn

ds
¢ t = ·+

dn

ds
¢ t,

showing dn/ds = ¡κt.
Now consider the vector

c = γ +
1

κ
n.

Note
dc

ds
= t+

1

κ
(¡κt) = 0.

So c is constant and jγ ¡ cj = 1/κ, showing γ is a circular arc, with centre c and radius κ¡1.

Example 0.9 Let γ be a smooth curve in R3 parameterized by t, which need not be arc length.
Show that

κ =
jγ0 ^ γ00j

jγ0j3
.

Solution. The is left as Exercise 1 on Sheet 0.

0.2 Surface Area
This is largely material from Prelims Geometry.

Let r : U ! R3 be a smooth parameterized surface with

r (u, v) = (x (u, v) , y (u, v) , z (u, v))

and consider the small rectangle of the plane that is bounded by the co-ordinate lines u = u0
and u = u0 + δu and v = v0 and v = v0 + δv. Then r maps this to a small region of the
surface r (U) and we are interested in calculating the surface area of this small region, which is
approximately that of a parallelogram. Note

r (u+ δu, v)¡ r (u, v) ¼
∂r

∂u
(u, v) δu,

r (u, v + δv)¡ r (u, v) ¼
∂r

∂v
(u, v) δv.
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Recall that the area of a parallelogram with sides a and b is ja ^ bj where ^ denotes the vector
product. So the element of surface area we are considering is approximately

¯
¯
¯
¯
∂r

∂u
δu ^

∂r

∂v
δv

¯
¯
¯
¯ =

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ δu δv.

This motivates the following de…nitions.

De…nition 0.10 Let r : U ! R3 be a smooth parameterized surface. Then the surface area
(or simply area) of r (U) is de…ned to be

ZZ

U

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ du dv.

We will often write

dS =

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ dudv

to denote an in…nitesimal part of surface area.

Proposition 0.11 The surface area of r (U) is independent of the choice of parameterization.

Proof. Let § = r (U) = s (W ) be two di¤erent parameterizations of a surface X; take u, v as
the co-ordinates on U and p, q as the co-ordinates on W . Let f = (f1, f2) : U ! W be the
co-ordinate change map; that is for any (u, v) 2 U we have

r (u, v) = s (f (u, v)) = s (f1 (u, v) , f2 (u, v)) .

By the chain rule

∂r

∂u
=

∂s

∂p

∂f1
∂u

+
∂s

∂q

∂f2
∂u

,
∂r

∂v
=

∂s

∂p

∂f1
∂v

+
∂s

∂q

∂f2
∂v

,

giving

∂r

∂u
^
∂r

∂v
=

∂s

∂p

∂f1
∂u

^
∂s

∂q

∂f2
∂v

+
∂s

∂q

∂f2
∂u

^
∂s

∂p

∂f1
∂v

=

µ
∂f1
∂u

∂f2
∂v

¡
∂f1
∂v

∂f2
∂u

¶
∂s

∂p
^
∂s

∂q

=
∂ (p, q)

∂ (u, v)

∂s

∂p
^
∂s

∂q
.

Finally
ZZ

U

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ du dv =

ZZ

U

¯
¯
¯
¯
∂ (p, q)

∂ (u, v)

∂s

∂p
^
∂s

∂q

¯
¯
¯
¯ du dv

=

ZZ

U

¯
¯
¯
¯
∂s

∂p
^
∂s

∂q

¯
¯
¯
¯

¯
¯
¯
¯
∂ (p, q)

∂ (u, v)

¯
¯
¯
¯ du dv

=

ZZ

W

¯
¯
¯
¯
∂s

∂p
^
∂s

∂q

¯
¯
¯
¯ dp dq
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by the two-dimensional substitution rule (Apostol, Mathematical Analysis p.421).

Example 0.12 Find the surface area of the cone

x2 + y2 = z2 cot2 α 0 6 z 6 h.

Solution. We can parameterize the cone as

r(z, θ) = (z cotα cos θ, z cotα sin θ, z), 0 < θ < 2π, 0 < z < h.

We have

rz = (cotα cos θ, cotα sin θ, 1) , rθ = (¡z cotα sin θ, z cotα cos θ, 0),

giving

rz ^ rθ =

¯
¯
¯
¯
¯
¯

i j k
cotα cos θ cotα sin θ 1

¡z cotα sin θ z cotα cos θ 0

¯
¯
¯
¯
¯
¯
=

0

@
¡z cotα cos θ
¡z cotα sin θ

z cot2 α

1

A .

Thus the cone has surface area
Z 2π

θ=0

Z h

z=0

p
z2 cot2 α cos2 θ + z2 cot2 α sin2 θ + z2 cot4 α dz dθ

=

Z 2π

θ=0

Z h

z=0

z cotα
p
1 + cot2 α dz dθ

= 2π

Z h

z=0

z cotα cscα dz

= 2π £
cosα

sin2 α
£

·
z2

2

¸h

0

=
πh2 cosα

sin2 α
.

Note that as α ! 0 this area tends to in…nity as the cone transforms into the plane and the
area tends to zero as α ! π/2.

Proposition 0.13 (Surface area of a graph) Let z = f (x, y) denote the graph of a function
f de…ned on a subset S of the xy-plane. Show that the graph has surface area

ZZ

S

q

1 + (fx)
2 + (fy)

2 dx dy.

Proof. We can parameterize the surface as

r (x, y) = (x, y, f (x, y)) (x, y) 2 S.

Then

rx ^ ry =

¯
¯
¯
¯
¯
¯

i j k
1 0 fx
0 1 fy

¯
¯
¯
¯
¯
¯
= (¡fx,¡fy, 1) .
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Hence the graph has surface area

ZZ

S

jrx ^ ryj dx dy =

ZZ

S

q

1 + (fx)
2 + (fy)

2 dx dy.

Example 0.14 Find the area of the paraboloid z = x2 + y2 that lies below the plane z = 4.

Solution. By Proposition 0.13 the desired area equals

A =

ZZ

R

p
1 + (2x)2 + (2y)2 dA

where R is the disc x2+y2 6 4 in the xy-plane. We can parameterize R using polar co-ordinates

x = r cos θ, y = r sin θ, 0 < r < 2, 0 < θ < 2π,

and then we have that

A =

Z 2π

θ=0

Z 2

r=0

p
1 + (2r cos θ)2 + (2r sin θ)2 r dr dθ

=

Z 2π

θ=0

Z 2

r=0

p
1 + 4r2 r dr dθ

= 2π

Z 2

r=0

p
1 + 4r2 r dr

= 2π £
1

8
£
2

3
£

h¡
1 + 4r2

¢3/2
i2

r=0

=
π

6

£
173/2 ¡ 1

¤
.

Proposition 0.15 (Surfaces of revolution) A surface S is formed by rotating the graph of

y = f(x) a < x < b,

about the x-axis. Here f(x) > 0 for all x. The surface area of S equals

Area(S) = 2π

Z x=b

x=a

f(x)
ds

dx
dx.

Proof. Using the parameterization

r(x, θ) = (x, f(x) cos θ, f(x) sin θ) ¡ π < θ < π, a < x < b

we have

rx ^ rθ =

¯
¯
¯
¯
¯
¯

i j k
1 f 0(x) cos θ f 0(x) sin θ
0 ¡f(x) sin θ f(x) cos θ

¯
¯
¯
¯
¯
¯
=

0

@
f 0(x)f(x)

¡f(x) cos θ
¡f(x) sin θ

1

A .
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So

jrx ^ rθj
2 = f(x)2f 0(x)2 + f(x)2 = f(x)2(1 + f 0(x)2) = f(x)2

µ
ds

dx

¶2

.

The result follows.

Example 0.16 Rederive the area of the paraboloid z = x2+ y2 that lies below the plane z = 4,
by thinking of the paraboloid as a surface of revolution.

Solution. We can consider the paraboloid as a rotation of the curve x =
p
z about the z-axis

where 0 < z < 4. We then have

µ
ds

dz

¶2

= 1 +

µ
dx

dz

¶2

= 1 +

µ
1

2
p
z

¶2

= 1 +
1

4z
.

Hence

A = 2π

Z 4

z=0

x
ds

dz
dz

= 2π

Z 4

z=0

p
z

r

1 +
1

4z
dz

= 2π

Z 4

z=0

r

z +
1

4
dz

= 2π

"
2

3

µ

z +
1

4

¶3/2
#4

0

=
4π

3

"µ
17

4

¶3/2

¡

µ
1

4

¶3/2
#

=
π

6

£
173/2 ¡ 1

¤
.

Proposition 0.17 Isometries preserve area.

Proof. An isometry is a bijection between surfaces which preserves the lengths of curves. Say
that r : U ! R3 is a parameterization of a smooth surface X = r(U) and f : r(U) ! Y is an
isometry from X to another smooth surface Y . Then the map

s = f ± r : U ! Y

is a parameterization of Y also using co-ordinates from U.
Consider a curve

γ(t) = r(u(t), v(t)) a 6 t 6 b

in X. By the chain rule
γ0 = u0ru + v0rv

SURFACE AREA 9



and
jγ0j

2
= E(u0)2 + 2Fu0v0 +G(v0)2

where
E = ru ¢ ru, F = ru ¢ rv, G = rv ¢ rv.

The length of γ equals is

L(γ) =

Z t=b

t=a

jγ0(t)j dt =

Z t=b

t=a

p
E(u0)2 + 2Fu0v0 +G(v0)2 dt.

In a similar fashion the length of the curve f(γ) equals

L(f(γ)) =

Z t=b

t=a

q
~E(u0)2 + 2 ~Fu0v0 + ~G(v0)2 dt

where
~E = su ¢ su, ~F = su ¢ sv, ~G = sv ¢ sv.

As f is an isometry then

Z t=b

t=a

p
E(u0)2 + 2Fu0v0 +G(v0)2 dt =

Z t=b

t=a

q
~E(u0)2 + 2 ~Fu0v0 + ~G(v0)2 dt.

This is true for all b, so it must follow that

E(u0)2 + 2Fu0v0 +G(v0)2 = ~E(u0)2 + 2 ~Fu0v0 + ~G(v0)2

for all values of t and all functions u, v. By choosing u = t, v = 0, we …nd E = ~E and we also
obtain G = ~G by setting u = 0, v = t. It follows then that F = ~F as well.

Now the area of a subset r(V ) of X is given by

ZZ

V

jru ^ rvj du dv.

However, by the quadruple scalar product

jru ^ rvj
2 = (ru ¢ ru) (rv ¢ rv)¡ (ru ¢ rv) (rv ¢ ru) = EG ¡ F 2.

As
jsu ^ svj =

p
~E ~G ¡ ~F 2 =

p
EG ¡ F 2 = jru ^ rvj

then the area of f(r(V )) equals

ZZ

V

jsu ^ svj du dv =

ZZ

V

jru ^ rvj du dv

and we see that isometries preserve areas.

Remark 0.18 As angles between curves can similarly be written in terms of E,F,G, then
isometries also preserve angles.
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0.3 The Real Projective Plane
This is material from Part A Projective Geometry.

The following theorem, Bézout’s theorem, is not actually part of this course, but it is a
clean and general result which readily motivates the worth of projective geometry. For those
interested, the theorem is part of B3.3 Algebraic Curves.

Bézout’s theorem is a …rst signi…cant result in algebraic geometry, which is unsurprisingly
interested in geometric objects that can be described using the language of algebra, and proved
using the theorems of algebra.

So, for example, curves de…ned by polynomials such as x2 + xy + y2 = 1 are of interest to
an algebraic geometer whereas the curve with equation y = ex would not be. Bézout’s theorem
addresses a natural …rst question: how many times do two curves, de…ned by polynomials of
degrees m and n, intersect?

If we begin with m = n = 1 then we are talking about two lines. These typically meet
in a point but we recognize that this wouldn’t be the case if the lines are parallel. If m = 1
and n = 2, so that we’re considering a line and, say, a parabola, then there can be as many
as two intersections. We appreciate that there may be no intersections – with y = 0 and
y = x2 + 1 – but that can be circumvented by working with complex numbers, and we can see
that the answer might be just one – with y = 0 and y = x2 – but we could think of this as
a double contact or repeated root in some sense. But we are still left with cases like y = x
and (y ¡ x)2 = 1 which appear to have no intersection, or y = 0 and y2 = x which has one
‘single contact’ intersection. Think about the m = n = 2 case and you’ll …nd the number of
intersections can be 0, 1, 2, 3, 4.

Perhaps, then, the best we can do is to say that the two curves meet in at most mn points.
Even the use of complex numbers and appreciation of multiple contacts cannot completely
resolve the issue. It turns out, though, that all we are missing is the notion of points at in…nity.
Once we properly introduce the notion of parallel lines meeting at a point at in…nity then
Bézout’s theorem states that the two curves have mn intersections, counting multiple contacts,
using complex numbers, and including points at in…nity.

Figure 0.3 – parallel lines meeting at in…nity

So given two parallel lines, we will agree that they meet at some idealized point at in…nity
(Figure 0.3). As lines should only meet once, this point at in…nity lies in both directions. Given
a third parallel line, it will meet each of these two lines in a point at in…nity, and so in fact at
the same point at in…nity. So to each family of parallel lines there is a single point at in…nity.
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Put another way there is a point at in…nity for each gradient m, that is the lines y = mx + c
all meet in the same point at in…nity. And we need to remember to allow m =1 as a possible
gradient, relating to the family of parallel vertical lines. These points at in…nity make the line
at in…nity.

Note though that these ‘points at in…nity’ aren’t special in any way, or rather we’ve only
made them special by our choice of where to put our a¢ne xy-axes. The family of parallel lines
passing through a point at in…nity, properly judged from in…nity, would look the same as the
family of lines passing through the origin.

If we return to our earlier examples when Bézout’s theorem appeared not to hold:

² y = 0, y2 = x. The parabola and line meet a second time at the point at in…nity at the
‘end’ of the x-axis.

² y = x, (y ¡ x)2 = 1. The two lines y = x § 1 both meet y = x at a point at in…nity in
the same way that y = 0 and y2 = x2 meet at the origin.

We need, then, a rigorous, formal way of introducing these points at in…nity if we are to
prove geometric results involving them. For …xed m the lines y = mx + c all meet at a point
at in…nity. This point at in…nity is where the points (x,mx) move to as x ! §1. So it’s
the ratio of x and y that is important here. Somehow we want to include all the points (x, y)
of the standard a¢ne plane R2 and a line at in…nity including the points (1,m1) where
m 2 R [ f1g.

We cannot make easy meaning of (1,m1) but if we recognize this 1 as the consequence of
some erroneous division by zero, then we can describe our ‘extended’ plane with the introduction
of homogeneous co-ordinates.

De…nition 0.19 Given real x0, x1, x2, not all zero, then we write [x0 : x1 : x2] for the equiva-
lence class of (x0, x1, x2) 2 R3nf0g under the equivalence relation

(x0, x1, x2) » (λx0, λx1, λx2) where λ 6= 0.

How does this help us with the previous discussion? Well if x0 6= 0 then we may divide
by x0 (i.e. set λ = 1/x0) to see that such equivalence classes can be represented as [1 : x : y]
where x = x1/x0 and y = x2/x0. These are ‘most’ of the equivalence classes and [1 : x : y] can
be identi…ed with the point (x, y) 2 R2. And the remaining equivalence classes, when x0 = 0
are [0 : 1 : m] when x1 6= 0 which corresponds to the point at in…nity (1,m1), and …nally
[0 : 0 : 1] which corresponds to ‘m = 1’ the point at in…nity of the vertical lines.

Whilst here, and remembering that x = x1/x0 and y = x2/x0, we can see that the a¢ne
lines y = mx+ c would become

x2 = mx1 + cx0

and that each passes through the point at in…nity [0 : 1 : m]. Further the parabola y2 = x
would become x22 = x0x1. The variables x1/x0 and x2/x0 are known as inhomogeneous co-
ordinates.

So the earlier ‘problematic’ examples we see now that

² y = 0, y2 = x homogeneously become x2 = 0 and x22 = x0x1 so each passes through the
point at in…nity [0 : 1 : 0].
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² y = x, (y ¡ x)2 = 1 homogeneously become x2 = x1 and (x2 ¡ x1)
2 = x20 so each passes

includes the points at in…nity at [0 : 1: 1]. Indeed these two curves in a like manner to
how y = 0 meets with y2 = x2 at the origin.

0.4 Holomorphic branches
This is material from A2 Metric Spaces and Complex analysis we know:

Proposition 0.20 Let z 2 Cn(¡1, 0].
(a) Then z can be written as z = reiθ where r > 0, θ 2 (¡π, π) in a unique fashion.
(b) The function p

z =
p
reiθ/2

is a holomorphic function on the cut plane Cn(¡1, 0] with a sign discontinuity over the cut.

Remark 0.21 If we were to take points z+ and z¡, respectively just above and below the cut
(¡1, 0] then we would have

z+ = reiθ+ where θ+ ¼ π; z¡ = reiθ¡ where θ¡ ¼ ¡π.

So with
p
z as de…ned above we see

p
z+ ¼

p
reiπ/2 = i

p
r;

p
z¡ ¼

p
re¡iπ/2 = ¡i

p
r.

We see this time that there is a sign change as we cross the cut.
The only other holomorphic function on Cn(¡1, 0] which satis…es w2 = z is w = ¡

p
z and

these two functions,
p
z and ¡

p
z are the two holomorphic branches of

p
z on this cut plane.

We see that as we cross the cut we move from one branch’s values to the other’s values.

11 2 1z 1 2 i r

z 1 2 i r

3 2 1 1 2 3
Re

3

2

1

1

2

3

Im

Figure 0.4a:
p
z

11 2 1z 1 2 i r

z 1 2 i r

3 2 1 1 2 3
Re

3

2

1

1

2

3

Im

Figure 04.b: ¡
p
z

Example 0.22 For z in the cut plane Cn(¡1, 1] we will let

θ1 denote the value of arg (z + 1) in the range (¡π, π) ,

θ2 denote the value of arg (z ¡ 1) in the range (¡π, π) ,
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as in the diagram below.

1 2

z

1.0 0.5 0.5 1.0 1.5 2.0
Re

0.2

0.4

0.6

0.8

1.0

Im

Figure 0.5

So we have
(z + 1) (z ¡ 1) = jz + 1j eiθ1 jz ¡ 1j eiθ2

and
w =

p
jz + 1j jz ¡ 1jei(θ1+θ2)/2

is a holomorphic function on Cn(¡1, 1] which satis…es

w2 = z2 ¡ 1.

What about the continuity, or otherwise, of w over the cut? Firstly let r be a real number in
the range ¡1 < r < 1 and let r+ and r¡ be complex numbers just above and just below r in the
complex plane. Then

for r+ we have θ1 ¼ 0 and θ2 ¼ π;

for r+ we have θ1 ¼ 0 and θ2 ¼ ¡π.

So

w+ ¼
p
1¡ r2ei(0+π)/2 = i

p
1¡ r2;

w¡ ¼
p
1¡ r2ei(0¡π)/2 = ¡i

p
1¡ r2.

So we see that we have a sign discontinuity across (¡1, 1).
However if we take r be a real number in the range r < ¡1 and let r+ and r¡ be complex

numbers just above and just below r in the complex plane. Then

for r+ we have θ1 ¼ π and θ2 ¼ π;

for r+ we have θ1 ¼ ¡π and θ2 ¼ ¡π.

So

w+ ¼
p
r2 ¡ 1ei(π+π)/2 = ¡

p
r2 ¡ 1;

w¡ ¼
p
r2 ¡ 1ei(¡π¡π)/2 = ¡

p
r2 ¡ 1.

We see that w is actually continuous across (¡1,¡1) and we can in fact extend w to a
holomorphic function on all of Cn [¡1, 1] .

Note the behaviour of w near the points ¡1 and 1. If z ¼ ¡1 then w ¼
p
2i

p
z + 1 wherep

z + 1 is a standard branch of
p
z + 1 on the cut plane Cn[¡1,1). If z ¼ 1 then w ¼

p
2
p
z ¡ 1

where
p
z ¡ 1 is a standard branch of

p
z ¡ 1 on the cut plane Cn(¡1, 1].
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Remark 0.23 To properly consider the multifunction
p
z2 ¡ 1 (or any similar multi-valued

function) it helps to consider its Riemann surface. In this case the (a¢ne) Riemann surface
is the set of points

§ =
©
(w, z) 2 C2 : w2 = z2 ¡ 1

ª
.

Firstly consider the situation in R2. The curve y2 = x2 ¡ 1 is a hyperbola. Above (1,1) and
(¡1,¡1) sit branches y = §

p
x2 ¡ 1 and these two branches meet at (§1, 0) . So most of the

curve is in one or other of the sets

C+ =
n³

x,
p
x2 ¡ 1

´
j jxj > 1

o
; C¡ =

n³
x,¡

p
x2 ¡ 1

´
j jxj > 1

o
.

In fact C+ [ C¡ excludes only the branch points (§1, 0) and we also see that as we cross the
branch points we move from C+ to C¡ (or vice versa).

In the complex case, for z /2 [¡1, 1] there are two values §w. For z = §1 the only value of
w is 0. The points (z,w) and (z,¡w) have already been described as two di¤erent branches ofp
z2 ¡ 1 but we need to take some care to see how these branches …t together as subset of §. If

we set as above

§+ = f(z,w) j z /2 [¡1, 1]g and §¡ = f(z,¡w) j z /2 [¡1, 1]g .

Then §+[§¡ is most of § missing only those points associated with z 2 [¡1, 1]. We can note,
as with previous branches, that as z crosses the cut [¡1, 1] then (z, w) moves continuously to
the other branch §¡ and likewise (z,¡w) moves continuously to the other branch §+.

11 A
B

Re

Im

Figure 0.6a

11 B
A

Re

Im

Figure 0.6b Figure 0.6c

So §+ and §¡ …t together on § by gluing either side of [¡1, 1] as labelled in Figures 0.6a/b.
We can then see that topologically § is a cylinder in C2 (Figure 0.6c).

Figure 0.7
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Whilst there is only one 1 in the extended complex plane, note that, as z becomes large, then
(z, w) and (z,¡w) are diverging points in C2. So we should introduce two points at in…nity to
§ which at either end of the cylinder to re‡ect this behaviour. Topologically, with these points
included, § is a sphere (in what is called complex projective space).

More rigorously, considering instead § as a subset of the complex projective plane CP2, the
projectivized version of § is

§ =
©
[z0 : z1 : z2] 2 CP2 : z21 = z22 ¡ z20

ª
.

The line at in…nity has equation z0 = 0 and so the two points at in…nity are [0 : 1 : 1] and
[0 : 1 : ¡ 1] .

0.5 Di¤erentiability in Rn

This is material from Part A Multidimenstional Analysis and Geometry.

De…nition 0.24 Let f : Rn ! Rm be a smooth map, (i.e. all partial derivatives of f of all
orders exist everywhere.) Let p,v 2 Rn and let γ : (¡ε, ε)! Rn be a smooth curve in Rn such
that

γ(0) = p and γ0(0) = v.

Then f ±γ is a smooth curve in Rm. The di¤erential of f at p is the linear map dfp : Rn ! Rm

de…ned by
dfp(v) = dfp(γ

0(0)) = (f ± γ)0(0).

Proposition 0.25 dfp(v) is independent of the choice of curve γ.

Proof. For ease of notation we shall consider the case when m = n = 2. Write f =
¡
f1
f2

¢
and

γ =
¡
γ1
γ2

¢
. Then

(f ± γ)0(0) =

µ
(f1 ± γ)0(0)
(f2 ± γ)0(0)

¶

=

Ã
∂f1
∂x
γ01(0) +

∂f1
∂y
γ02(0)

∂f2
∂x
γ01(0) +

∂f2
∂y
γ02(0)

!

=

Ã
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

! µ
v1
v2

¶

.

As the partial derivatives in the above matrix depend only on the function f and the point p
then dfp (which we see has the Jacobian as its matrix) is independent of the choice of γ.

For those meeting multivariable di¤erentials for the …rst time, this de…nition contrasts
markedly with the usual notion of a di¤erential df/dx. Clearly when m = n = 1 then the
two de…nitions agree, but the general di¤erential cannot simply be visualized as a gradient.
Rather dfp is a …rst, linear approximation of the function f at p. Here are two examples to
help motivate this appreciation.
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Example 0.26 By Taylor’s theorem for a smooth function f = (u, v) : R2 ! R2 we have

f

µ
x+ h
y + k

¶

=

µ
u(x+ h, y + k)
v(x+ y, y + k)

¶

=

µ
u(x, y) + hux(x, y) + kuy(x, y) + ¢ ¢ ¢
v(x, y) + hvx(x, y) + kvy(x, y) + ¢ ¢ ¢

¶

=

µ
u(x, y)
v(x, y)

¶

+

µ
ux uy
vx vy

¶µ
h
k

¶

+O
¡
j(h, k)j2

¢
.

This result generalizes naturally to the general m,n case.

Example 0.27 For a holomorphic function f : C ! C and p 2 C, then

dfp =

µ
ux uy
vx vy

¶

,

where u = Re f and v = Im f. By the Cauchy-Riemann equations

dfp =

µ
ux ¡vx
vx ux

¶

= λ

µ
cos θ ¡ sin θ
sin θ cos θ

¶

,

where λ =
p
u2x + v2x = jf 0(p)j and θ = arg z. This shows that when f 0(p) 6= 0, then f is

approximately enlarging by jf 0(p)j and rotating by arg z.
This can be more easily seen using Taylor’s theorem for a holomorphic function in one

complex variable. We then have

f(p+ h) = f(p) + f 0(p)h+O
¡
jhj2

¢
.

At the zeroth degree of approximation then p maps to f(p). When we consider nearby points p+h
to p, then the …rst degree approximation is the map to f(p) + f 0(p)h. The e¤ect of multiplying
by f 0(p) is a scaling by jf 0(p)j and rotation by arg f 0(p).

On occasion we will also …nd the following result useful.

Theorem 0.28 (Inverse function theorem) Let f : Rn ! Rn be a smooth map de…ned near
p. If dfp is invertible then f is a local di¤eomorphism. That is there is a smooth map g de…ned
near f(p) such that g(f(x)) = x and f(g(y)) = y for x near p and y near f(p).

Note that when f = u + iv is holomorphic the determinant jdfpj = u2x + v2x = jf 0(p)j2 and
so f will be a local di¤eomorphism if and only if it is conformal at p.

0.6 Identi…cation Spaces
This is material from Part A Topology.

De…nition 0.29 Let (X, T ) be a topological space and f : X ! Y be a map onto a set Y .
Then the quotient topology on Y is the collection

τ =
©
U µ Y j f¡1(U) 2 T

ª
,

IDENTIFICATION SPACES 17



and (Y, τ ) is called a quotient space.
As pre-image respects unions and intersections then τ is closed under arbitrary unions and

…nite intersections. Further f¡1(?) = ? 2 T and f¡1 (Y ) = X 2 T . Thus τ is a topology.
By de…nition, f : (X, T ) ! (Y, τ ) is continuous. Indeed τ is the …nest topology on Y such

that f is continuous.

De…nition 0.30 Given an equivalence relation » on a topological space (X, T ) then there is a
natural surjective map

π : X ! X/» given by x 7! [x]

which sends an element x to its equivalence class [x]. In this case (X/», τ) is referred to as an
identi…cation space.

Example 0.31 The quotient space of any compact (resp. connected) space is compact (resp.
connected). This is because the continuous image of a compact (resp. connected) space is
compact (resp. connected).

Example 0.32 De…ne » on R by x » y if and only if x ¡ y 2 Z. Show that R/» , which is
also written R/Z, is homeomorphic to the circle S1.

Solution. The bijection R/Z ! S1 de…ned by [x] 7! e2πix is a homeomorphism. It is an easy
check that basic open subsets in the circle correspond to open subsets of R which are unions of
equivalence classes.

Example 0.33 De…ne » on R by x » y if and only if x ¡ y 2 Q. Show that R/ » , which is
also written R/Q, has the trivial topology.

Solution. Let U be a non-empty open set in R/Q. Then U + Q is open in R and is a union
of equivalence classes. But as a non-empty open subset of R contains a representative of each
equivalence class we have U +Q = R and hence U = R/Q.

Example 0.34 De…ne » on C by z1 » z2 if and only if there exists λ > 0 such that z1 = λz2.
Show that C/» is not Hausdor¤.

Solution. In a Hausdor¤ space singleton points are closed. But in C/» the only closed point
is [0]. Note the closure of [1] is [1] [ [0].
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