
1. INTRODUCTION
De…nition 1.1 A topological surface, or topological 2-manifold, is a Hausdor¤ topolog-
ical space S such that for every p 2 S there is an open set U µ S and a homeomorphism
ϕ : U ! V where V is an open subset of R2. Such a surface is referred to as an abstract
topological surface, the term ‘abstract’ refers to the fact that the surface is not situated (or
‘embedded’) in some Euclidean space.

The map ϕ is called a chart or patch and a collection fϕi : Ui ! Vig such that

[

i

Ui = S

is known as an atlas.
The surface S is called closed if it is compact.

Remark 1.2 In De…nition 1.1 we have de…ned an ‘abstract’ topological surface. The surface
has not been situated in any Euclidean space; the surface’s topology is part of the de…nition,
rather than being inherited as a subspace of some ambient space. This may contrast with
most previous examples you have of surfaces, especially compared with parameterized surfaces
discussed in Prelims Geometry.

As a consequence of Whitney’s embedding theorem, every (separable) topological surface can
be embedded in R3 or R4, so the bene…t of the above de…nition may be even less clear. Here
an embedding is a continuous, injective map which is a homeomorphism between the surface
and its image. However these embeddings can often be complicated functions, in which case it’s
easier to work with an abstract de…nition. For example the Klein bottle, which we will introduce
soon, cannot be embedded in R3; the hyperbolic plane, which is topologically just R2, cannot be
isometrically embedded in R3.

With an atlas we can therefore parameterize the surface S. At this point the atlas provides
no further structure to S, which already has a Hausdor¤ topology. However these parameters
provide a useful means with which to de…ne functions on S. But R2 has (or can have) further
structures – smooth, metric, orientable, complex – and we will in due course see how we can
use atlases to consistently transfer these structures to surfaces.

Example 1.3 (Atlas for the sphere) Let S2 = f(x, y, z) 2 R3 j x2 + y2 + z2 = 1g . As R3 is
Hausdor¤ then so is S2, and as S2 is closed and bounded then it is compact.

The following six maps form an atlas for S2.

U1 =
©
(x, y, z) 2 S2 j z > 0

ª
, ϕ1 (x, y, z) = (x, y) ;

U2 =
©
(x, y, z) 2 S2 j z < 0

ª
, ϕ2 (x, y, z) = (x, y) ;

U3 =
©
(x, y, z) 2 S2 j x > 0

ª
, ϕ3 (x, y, z) = (y, z) ;

U4 =
©
(x, y, z) 2 S2 j x < 0

ª
, ϕ4 (x, y, z) = (y, z) ;

U5 =
©
(x, y, z) 2 S2 j y > 0

ª
, ϕ5 (x, y, z) = (x, z) ;

U6 =
©
(x, y, z) 2 S2 j y < 0

ª
, ϕ6 (x, y, z) = (x, z) .
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In each case Vi = ϕi(Ui) is the open unit disc in R2. As x2 + y2 + z2 = 1 for any (x, y, z) 2 S2

then at least one of the co-ordinates is non-zero, meaning every point of S lies in at least one
patch.

We have thus shown S2 to be a topological surface. Note an atlas for S2 cannot consist of
a single chart ϕ : S2 ! V as S2 is compact and V is not, but it’s not hard to …nd an atlas
consisting of two charts.

Example 1.4 (Bug-eyed plane) The following example shows the necessity of the requirement
that S be Hausdor¤. Consider S = X/» where X = R2 £ f§1g and every point (x, y,¡1) is
identi…ed with (x, y, 1) except when x = y = 0. The space S is then not Hausdor¤ as the two
origins (0, 0,§1) cannot be separated but the two charts ϕ§1(x, y,§1) = (x, y) form an atlas
for S.

Proposition 1.5 Let S be a topological surface with atlas fϕi : Ui ! Vig . Let f : S ! T be
a map to a topological space T. Then f is continuous if and only if each f ± ϕ¡1i : Vi ! T is
continuous.

Proof. If f is continuous then f ±ϕ¡1i is the composition of two continuous maps and therefore
continuous. Conversely suppose all these maps are continuous and take p 2 S. As we have an
atlas then p 2 Ui for some i and then f = f ± ϕ¡1i ± ϕi is continuous at p.

Example 1.6 The real projective plane P = S2/f§1g is the space formed by identifying
antipodal points of the sphere. Find an atlas for P.

Solution. Each equivalence class of points in P = S2/f§1g has a representative in one (or
more) of the domains U1, U3, U5 previously used in Example 1.3 to cover the sphere. Given a
point where z 6= 0, we can assume in fact that z > 0 without loss of generality. Then the maps

ψ1 (x, y, z) = (x, y) , ψ3 (x, y, z) = (y, z) , ψ5 (x, y, z) = (x, z) ,

form an atlas for P.

In the Prelims Geometry course, the de…nition of a parameterized surface was as follows.

De…nition 1.7 A smooth parameterized surface is a map,

r : U ! R3 (u, v) 7! (x(u, v), y(u, v), z(u, v))

from an open subset U µ R2 to R3 such that

² r is smooth i.e. x, y, z have continuous partial derivatives of all orders,

² r : U ! r(U) is a homeomorphism,

² (smoothness condition) at each point of r(U) the vectors

ru =
∂r

∂u
and rv =

∂r

∂v

are linearly independent.
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Comparing this with our earlier de…nition of a topological surface, we note that r¡1 : r(U) !
U is a chart forming an atlas by itself. So parameterized surfaces in R3 are examples of
topological surfaces. However the adjective smooth suggests that we have more structure now
than a topological surface generally has. The independence of the vectors ru and rv means
that the surface has a well-de…ned tangent plane and normal at each point. But it’s currently
unclear how we might generalize this notion to a topological surface S that is not situated in
Euclidean space. Around each point p 2 S we can assign co-ordinates via a chart ϕ : U ! V
and so it might seem reasonable to say that a function f : S ! R is smooth at p if

f ± ϕ¡1 : V ! R

is smooth. Recall that V is an open subset of R2 so this would just mean that f ± ϕ¡1 has
partial derivatives of all orders. The catch is that, when p is in the domain of more than one
chart, f might be deemed to be smooth at p using one chart and not smooth using another
chart. We need to ensure we have consistency across the surface.

De…nition 1.8 Given an atlas fϕi : Ui ! Vig for a topological surface S, if Ui \ Uj 6= ? then

ϕi ± ϕ
¡1
j : ϕj (Ui \ Uj) ! ϕi (Ui \ Uj)

is known as a transition map.

Figure 1.1 – a transition map

For a topological surface the transition maps are always homeomorphisms. So if f ± ϕ¡1i
is continuous then f ± ϕ¡1j automatically is too. But we need to further require the transition
maps to be smooth, to have a consistent notion of smoothness across a surface. Hence we
de…ne:

De…nition 1.9 A di¤erentiable surface, or di¤erentiable 2-manifold, is a topological
surface S with an atlas fϕi : Ui ! Vig such that all the transition maps

ϕi ± ϕ
¡1
j : ϕj (Ui \ Uj) ! ϕi (Ui \ Uj)

are smooth. Such an atlas is called a di¤erentiable structure on S.
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De…nition 1.10 (a) Let S be a di¤erentiable surface with atlas fϕi : Ui ! Vig . We de…ne
f : S ! R to be smooth at p 2 Ui if

f ± ϕ¡1i : Vi ! R

is smooth. A quick check shows there is no possibility of inconsistency.
(b) Let § be a second di¤erentiable surface with atlas fψi : Ai ! Big and let f : S ! § be

a map between the surfaces. Let p 2 S, so that p 2 Ui for some i, and then f(p) 2 Bj for some
j. We de…ne f to be smooth at p if

ψj ± f ± ϕ¡1i

is smooth at ϕi(p). As the transition maps are smooth there is again no chance of inconsistency.

Figure 1.2 – a map between surfaces

Remark 1.11 (Consistency and other structures) Note that a transition map ofr a dif-
ferentiable surface is bijective, is smooth, and its inverse – another transition map – is also
smooth. That is to say that the transition maps are di¤eomorphisms.

We can now see how the previous de…nitions can be generalized to higher dimensions to
de…ne topological manifolds and smooth manifolds. Despite surfaces being the focus of much
study in the eighteenth and nineteenth centuries – by Euler, Lagrange, Monge, Gauss, Riemann,
Möbius, et al. – a formal de…nition of surfaces (and manifolds) did not arise until the 1930s,
variously due to Whitehead, Whitney and Veblen.

The transition maps are the key to assigning structures to a surface beyond the purely
topological. Requiring the transition maps to be smooth means we can consistently de…ne a
smooth structure on the whole surface. But R2 naturally has other structures:

² metric structure – we would then need the transition maps to be isometries;

² orientability – we would then need the transition maps to be orientation-preserving;
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² complex structure – we can identify R2 with C and would then need the transition maps
to be biholomorphic (that is, conformally equivalent).

Note that a single patch of surface can be assigned any of these structures. However for
a general topological surface, it may not be possible to endow a surface globally with certain
structures precisely because of its topology. The real projective plane cannot be consistently
oriented; the sphere cannot be given a metric structure with everywhere ‘negative curvature’.
When we meet Riemann surfaces later we will see there are a great deal of di¤erences between
complex structures and real smooth ones. In higher dimensions, these problems are yet more
complicated and subtle.

We say a little now about how a metric structure can be assigned to a co-ordinate patch of
a surface. We will revisit these ideas in detail in Chapter 3. We have already noted that ru(p)
and rv(p) are independent tangent vectors of a point p in a co-ordinate patch r(U) µ R3. Given
a curve γ(t) = r(u(t), v(t)) where a 6 t 6 b then, by the chain rule,

_γ(t) = _uru + _vrv

and
j _γ(t)j2 = E _u2 + 2F _u _v +G _v2

where
E = ru ¢ ru, F = ru ¢ rv, G = rv ¢ rv.

De…nition 1.12 The quadratic form Ip : Tp ! R,

αru + βrv 7! jαru + βrvj
2 = Eα2 + 2Fαβ +Gβ2

on the tangent space Tp = hru, rvi is known as the …rst fundamental form. Any property of
a surface that can be expressed in terms of the …rst fundamental form is said to be intrinsic.

The …rst fundamental form expresses how the co-ordinate domain has been curved on to the
surface. All metric properties of the surface can be expressed in terms of the …rst fundamental
form. We will need to consider quite what we mean by tangent spaces when we have an
abstract surface, rather than one situated in R3, but we will deal with that in Chapter 3. In
the meantime note that lengths and areas can be expressed in terms of the …rst fundamental
form; importantly these de…nitions apply whatever Euclidean space the surface is situated in.

The length of the above curve γ equals

L(γ) =

Z b

a

j _γ(t)j dt =

Z b

a

p
E _u2 + 2F _u _v +G _v2 dt.

We have also previously de…ned the area of r(U) by

A =

ZZ

U

jru ^ rvj du dv.
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One issue with this de…nition is that the vector product ^ is de…ned in R3 but not generally in
higher dimensions. However, the scalar quadruple product gives

jru ^ rvj
2 = (ru ^ rv) ¢ (ru ^ rv)

= (ru ¢ ru) (rv ¢ rv)¡ (ru ¢ rv) (rv ¢ ru)

= EG ¡ F 2.

Hence we can instead de…ne the area of r(U) as

A =

ZZ

U

p
EG ¡ F 2 dudv,

a de…nition which is well-de…ned whatever Rn the surface is situated in.
Let’s conclude this introduction by considering the transition maps for the atlases we pre-

viously de…ned for the sphere and real projective plane.

Example 1.13 (The sphere reprised.) Consider the two charts

U1 =
©
(x, y, z) 2 S2 j z > 0

ª
, ϕ1 (x, y, z) = (x, y) ;

U3 =
©
(x, y, z) 2 S2 j x > 0

ª
, ϕ3 (x, y, z) = (y, z) .

So U1 \ U3 = f(x, y, z) 2 S2 j x, z > 0g is an open quarter of the sphere and

ϕ1 (U1 \ U3) =
©
(x, y) 2 R2 j x2 + y2 < 1, x > 0

ª

ϕ3 (U1 \ U3) =
©
(x, y) 2 R2 j x2 + y2 < 1, y > 0

ª

and
(u(x, y), v(x, y)) = ϕ1 ± ϕ¡13 (x, y) =

³p
1¡ x2 ¡ y2, x

´
.

Note that the Jacobian of this map equals

¯
¯
¯
¯
ux uy
vx vy

¯
¯
¯
¯ =

¯
¯
¯
¯
¯

¡¡xp
1¡x2¡y2

¡yp
1¡x2¡y2

1 0

¯
¯
¯
¯
¯
=

y
p
1¡ x2 ¡ y2

> 0.

That this is non-zero means that the transition map is smooth. That it is positive means that
the transition map is orientation preserving. As this is true of the other transition maps too,
then we have given the sphere the structure of an oriented di¤erentiable surface.

Example 1.14 (The real projective plane revisited.) Recall the charts

ψ1 (x, y, z) = (x, y) , where z > 0 by assumption WLOG;

ψ5 (x, y, z) = (x, z) , where y > 0 by assumption WLOG.

So U1 \ U5 consists of those [x : y : z] where y 6= 0 6= z and x2 + y2 + z2 = 1. Then

ψ1 (U1 \ U5) =
©
(x, y) 2 R2 j x2 + y2 < 1, y 6= 0

ª
,

ψ5 (U1 \ U5) =
©
(x, z) 2 R2 j x2 + z2 < 1, z 6= 0

ª
,
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so in fact ψ1 (U1 \ U5) = ψ5 (U1 \ U5) . Then

(u(x, y), v(x, y)) = ψ1 ± ψ¡15 (x, y) = (x, y) ,

as

(x, y)
ψ¡157!

h
x :

p
1¡ x2 ¡ y2 : y

i
ψ17!

8
<

:

³
x,

p
1¡ x2 ¡ y2

´
when y > 0;

³
¡x,¡

p
1¡ x2 ¡ y2

´
when y < 0.

The Jacobian of this map when y > 0 equals

¯
¯
¯
¯
ux uy
vx vy

¯
¯
¯
¯ =

¯
¯
¯
¯
¯
¯

1 ¡xp
1¡x2¡y2

0 ¡yp
1¡x2¡y2

¯
¯
¯
¯
¯
¯
=

¡y
p
1¡ x2 ¡ y2

< 0.

That this is non-zero means that the transition map is smooth. That it is negative means that
the transition map is orientation-reversing. As the transition maps are all smooth then we have
endowed P with a di¤erentiable structure. As this particular transition map is orientation-
reversing then we have not endowed P with an oriented structure. It is then a somewhat harder
matter to show that no oriented atlas exists.
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