
2. TOPOLOGICAL SURFACES
Recall from the introductory lecture the de…nition of a topological surface.

A topological surface, or topological 2-manifold, is a Hausdor¤ topological space S such
that for every p 2 S there is an open set U µ S and a homeomorphism ϕ : U ! V where V is

an open subset of R2.

A surface S is called closed if it is compact. In this chapter we discuss the classi…cation
of closed topological surfaces up to homeomorphism. So two topological surfaces are to be
considered the same if they are homeomorphic; the ‘classi…cation’ then means providing a com-
prehensive list of the di¤erent homeomorphism classes with no omissions and no duplications.

This material was discussed at some length in the A5 topology course. The closed surfaces
there were created as identi…cation spaces (or quotient spaces) from closed polygons. Two
examples are given below.

Figure 2.1 – torus Figure 2.2 – Klein bottle

In Figure 2.1 a torus is formed by pairwise identifying the edges of the square [0, 1]2 as
described by the arrows. So (0, y) and (1, y) are identi…ed for 0 6 y 6 1 (the single arrows) and
(x, 0) and (x, 1) are identi…ed for 0 6 x 6 1 (the double arrows). The square is compact and
so the resulting identi…cation space also is. Around each interior point of the square we can
associate an open disc U ; points on the square’s boundary can be associated with a disc split
as two semi-discs as sketched in Figure 2.1.

Similarly, in Figure 2.2 a Klein bottle is formed by pairwise identifying the edges of the
square [0, 1]2 as described by the arrows. So (0, y) and (1, y) are identi…ed for 0 6 y 6 1 (the
single arrows) and (x, 0) and (1¡ x, 1) are identi…ed for 0 6 x 6 1 (the double arrows). The
square is compact and so the resulting identi…cation space also is. Around each interior point of
the square we can associate an open disc U ; points on the square’s boundary can be associated
with a disc split as two semi-discs as sketched in Figure 2.2. Note in the case of a boundary
point on the bottom/top edges the semi-discs are not directly opposite one another because
of the reverse identi…cation. Note further, because of this reversed identi…cation, the shaded
rectangle is in fact a Möbius strip, rather than a cylinder.

Further examples include the
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² torus with g > 0 holes or, equally, sphere with g handles (Figure 1.3);

² sphere with k > 1 cross-caps (Figure 1.4).

Figure 2,3 – torus with g holes Figure 2.4 – sphere with k cross-caps

The torus with zero holes is the sphere. The torus with g > 1 can be formed by pairwise
identifying the edges of a 4g-gon as shown in Figure 2.3. Note that, in each case, the shaded
region connecting identi…ed edges is a cylinder. Consequently the torus with g holes is an
orientable surface. This canonical identi…cation is can be denoted

a1a2a
¡1
1 a¡12 a3a4a

¡1
3 a¡14 ¢ ¢ ¢ a2g¡1a2ga

¡1
2g¡1a

¡1
2g .

Each string aiai+1a
¡1
i a¡1i+1 represents a further hole or handle being attached to the surface. See

Proposition 2.9.
The sphere with k > 1 cross-caps can be formed by pairwise identifying the edges of a

2k-gon as shown in Figure 2.4. Note that, in each case, the shaded bar connecting identi…ed
edges is a Möbius strip. Consequently the sphere with k > 1 cross-caps is an non-orientable
surface. This canonical identi…cation is denoted

a1a1a2a2 ¢ ¢ ¢ akak.

A cross-cap is formed in the sphere by making a cut and identi…ed the cut’s two sides in reverse
orientation. This is the equivalent of sewing a Möbius strip into the sphere, which is what each
string aiai represents. See Proposition 2.9.

Example 2.1 The Klein bottle K is homeomorphic to the sphere with 2 cross-caps.

Solution. These two versions of the Klein bottle can be transformed into one another as shown
below.

Figure 2.5 – equivalent Klein bottles
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This transforms K from the surface in Figure 2.2 to the surface a1a1a2a2, the sphere with two
cross-caps.

In the A5 topology course it was rigorously shown that:

² Every closed topological surface is homeomorphic to one of (a) a torus with g > 0 holes
or (b) a sphere with k > 1 cross-caps.

This is half the classi…cation theorem. The above is a comprehensive list of all closed
topological surfaces up to homeomorphisms. There are no omissions but there may yet be du-
plications. We need one or more topological invariants which can be used to distinguish between
the homeomorphism classes listed above. The two invariants we shall use are orientability and
the Euler characteristic.

We already introduced the notion of orientability in the introductory lecture; a di¤erentiable
surface was orientable if it had an atlas with orientation-preserving transition map. We shall use,
in this chapter, an equivalent criterion for orientability. This second de…nition of orientability
is due to Klein.

Proposition 2.2 A di¤erentiable surface is non-orientable if and only if it contains a Möbius
strip.

Proof. Say that a surface includes a Möbius strip. Then we can take an orientation-reversing
curve along the Möbius strip and consider the co-ordinate patches it passes through (which
can be taken to be …nite by compactness). Each transition map between patches cannot be
orientation-preserving or else the curve would not be orientation-reversing.

Conversely, suppose that the surface contains no Möbius strip and so no orientation-
reversing curve. Make a choice of orientation at a …xed point. Any other point can be connected
by a path to the …xed point and the chosen orientation can be extended consistently to the
second point. Thus the surface is orientable.

So the Klein bottle, and more generally, the spheres with k cross-caps are therefore non-
orientable. As the tori with n holes can be embedded in R3 then they are orientable; we
can consistently associate an outward-pointing normal on the entirety of such a surface. Thus
orientability separates out the closed surfaces into two families, but we need a further invariant
to separate the orientable surfaces from one another and likewise separate out the non-orientable
surfaces. This invariant is the Euler characteristic.

You may well be aware that for the Platonic solids V ¡E+F = 2 where V,E,F respectively
denote the number of vertices, edges and faces on the solid.

surface V E F
tetrahedron 4 6 4
cube 8 12 6
octahedron 6 12 8
dodecahedron 20 30 12
icosahedron 12 30 20
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tetrahedron cube octahedron dodecahedron icosahedron
Figure 2.6 – the Platonic solids

Indeed this relation is true for any polyhedron of the same shape (such as any pyramid or a
cuboid). That is V ¡E+F will equal 2 for any polyhedron that is homeomorphic to a sphere.
So this number 2 is known as the Euler characteristic of the sphere.

Remark 2.3 Euler arrived at his V ¡ E + F = 2 formula for convex polyhedra in 1750 (in
a letter to Goldbach) and this is arguably one of the …rst topological results. It is, in fact,
equivalent to a result of Descartes’ from 1639 but Euler’s formulation of the result was more
obviously topological in nature. The formula had been noted as early as 1537 by Francesco
Maurolico. In 1811 Cauchy gave a semi-rigorous proof of the formula, though it would not be
considered watertight by modern standards.

We need to be a little careful in how we assign vertices, edges and faces to the surface. For
example, were we to assign no vertices and no edges to a sphere and treat the entire surface as
a face then we would arrive at an Euler characteristic of 0¡ 0 + 1 = 1 6= 2, so presumably this
should not be permitted. Likewise a single edge as an equator, no vertices and two hemispherical
faces gives 0¡ 1 + 2 = 1 6= 2 and should again not be admissable. The important point is that
our vertices, edges and faces make a subdivision of the surface.

De…nition 2.4 Let X be a closed topological surface.
(a) An edge on X is the image of a continuous map f : [0, 1] ! X which is 1-1 except

possibly that f(0) = f(1).
(b) A subdivision of X is a …nite set of edges, together with a …nite set of points of X,

called vertices (singular: vertex), such that
(i) each edge begins and ends in a vertex and passes through no other vertices;
(ii) two edges intersect, at most, at their ends;
(iii) if ¡ is the union of the edges then each connected component of Xn¡ is homeomorphic

to R2.
(c) The closure of a connected component of Xn¡ is known as a face.

With the earlier inadmissible examples: we cannot use the entire surface of the sphere as a
face as it is not homeomorphic to R2 invalidating (iii) – if we included a single solitary vertex
on the sphere we would then have a valid subdivision; for the second example the edge does
not begin and end in a vertex invalidating (i) – if we included a vertex on the edge then we
would have a valid subdivision.

For those that did A5 we note the following:
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Example 2.5 If a topological surface is the realisation jKj of a simplicial complex K then the
simplicial complex is a valid subdivision of jKj with the 0-simplices as vertices, the 1-simplices
as edges and the 2-simplices as faces.

The important result – which we shall not prove in this course – is the following:

Theorem 2.6 Let X be a topological surface. Then the number

χ(X) = V ¡ E + F

is the same for any subdivision, where V,E, F are respectively the number of vertices, edges and
faces in the subdivision. The number χ(X) is known as the Euler characteristic of X, and
also sometimes as its Euler number or its Euler-Poincaré characteristic.

Consequently the Euler characteristic is a topological invariant of the surface – that is, it is
preserved by homeomorphisms.

Figure 2.7 – torus Figure 2.8 – Klein bottle

Figure 2.9 – projective plane Figure 2.10 – torus with subdivision

Example 2.7 Find the Euler characteristics of (a) the torus, (b) the Klein bottle, (c) the
projective plane.

Solution. Each of these surfaces begin with a square face, bounded by four edges and four
vertices. The important point is how many vertices and edges remain after the identi…cations
are made. In each case there is just one face, the square itself.

(a) For the torus T (Figure 2.7) the four edges are pairwise identi…ed to leave two edges –
the single arrows and the double arrows. Following the identi…cations around the four vertices
are all identi…ed to become a single vertex P . How these edges and vertices would look on a
torus is drawn in Figure 2.10. This means that the Euler characteristic of the torus is

χ(T) = 1¡ 2 + 1 = 0.
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(b) For the Klein bottle K (Figure 2.8) the four edges are pairwise identi…ed to leave two
edges – the single arrows and the double arrows. Following the identi…cations around the four
vertices are all identi…ed to become a single vertex P . This means that the Euler characteristic
of the Klein bottle is

χ(K) = 1¡ 2 + 1 = 0.

So T and K have the same Euler characteristic despite not being homeomorphic – T is orientable,
whilst K is not.

(c) For the projective plane P (Figure 2.8) the four edges are pairwise identi…ed to leave two
edges – the single arrows and the double arrows. Following the identi…cations around the four
vertices become identi…ed a two vertices, P and Q. This means that the Euler characteristic of
the Klein bottle is

χ(P) = 2¡ 2 + 1 = 1.

It’s apparent from the identi…cation that P is the sphere with 1 cross-cap. Just treat the single
and double arrows as one edge and we see that P is the surface a1a1.

Example 2.8 Find the Euler characteristic of the surface created from the three polygons below.
Is the surface orientable?

Figure 2.11 – a more complicated example

Solution. The surface, as drawn, comes with a natural subdivision. There are 3 faces – the
pentagon, triangle and square – and 6 edges, namely a, b, c, d, e, f. It’s not immediately clear
how the original 12 vertices identify though.

Figure 2.12 – counting the vertices

If we label the vertex at the top of the pentagon as P then, by following around the identi…ca-
tions, we can see what other vertices it is identi…ed with. P is at the front end of a and so we
follow around the identi…cations
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front of a ! front of c ! back of b ! front of a

and we are back where we started. So the three vertices labelled P in Figure 2.12 are identi…ed
together. Labelling another vertex Q we can follow around the identi…cations and see in this
case that the remaining 9 vertices are identi…ed with Q. Thus there are 2 vertices once identi…ed
and we …nd

χ = 2¡ 6 + 3 = ¡1.

We cannot immediately see whether there is a Möbius strip within the surface as each edge
is identi…ed with an edge on a di¤erent face. However if we bring the pentagon and triangle
together as in Figure 2.13

Figure 2.13 – non-orientability

we now see that the senses of the two b-edges are the same or equivalently the shaded region is
a Möbius strip. Thus the surface is non-orientable.

Proposition 2.9 (a) Adding a handle to a surface reduces the Euler characteristic by 2.
(b) Adding a cross-kap to a surface reduces the Euler characteristic by 1.

Proof. (a) As shown in Figure 2.14 a handle can be added to a surface and subdivided with
two further edges. The vertex shown is already part of the original surface’s subdivision. As E
increases by 2 then V ¡ E + F reduces by 2.

(b) As shown in Figure 2.15 a cross-cap can be added to a surface and subdivided using
two new edges and a new vertex. The unlabelled vertex shown is already part of the original
surface’s subdivision. As E increases by 2 and V by 1 then V ¡E +F reduces by 1 overall.

Corollary 2.10 (a) The Euler characteristic of the torus with g > 0 holes equals 2¡ 2g.
(b) The Euler characteristic of the sphere with k > 1 cross-caps equals 2¡ k.

Figure 2.14 – adding a handle Figure 2.15 – adding a cross-cap
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We are now in a position to state the classi…cation theorem as we see that, between them,
orientability and the Euler characteristic are enough to distinguish the homeomorphism classes.

Theorem 2.11 (Classi…cation Theorem for Closed Surfaces) Let X be a closed topolog-
ical surface. Then X is homeomorphic to precisely one of the following.

(a) If X is orientable, then X is homeomorphic to a torus with g > 0 holes. g is called the
genus of X.

(b) If X is non-orientable, then X is homeomorphic to a sphere with k > 1 cross-caps.

Proof. From the A5 result we know that X is homeomorphic to one of these surfaces. None
of the surfaces in list (a) is homeomorphic to a surface in list (b) by orientability. Further the
Euler characteristics of the surfaces in list (a) are distinct, thus separating them topologically.
And the same can be said of the surfaces in list (b).

Remark 2.12 It is worth noting that the early topologists who ‘proved’ the classi…cation theo-
rem did not have available in their time the rigorous de…nitions necessary to prove their results
to modern standards. In 1861 Möbius gave an early sketch proof of the classi…cation for ori-
entable surfaces, and Von Dyck gave a sketch proof for all closed surfaces in 1888. But without
any formal de…nition of what a surface is, these proofs can at best be considered incomplete.
Somewhat di¤erently expressed rigorous versions of the classi…cation theorem would be proved
by Dehn and Heegaard in 1907 and by Brahana in 1921.

Remark 2.13 The above classi…cation theorem relates to closed topological surfaces up to
homeomorphism; we could easily consider instead closed di¤erentiable surfaces up to di¤eomor-
phism and the classi…cation theorem would essentially read the same. The situation is similar
in 3 dimensions but there are topological 4-manifolds which admit no di¤erentiable structure
and others which admit many; indeed there are ‘exotic’ versions of R4 which are homeomorphic
to the standard R4 but not di¤eomorphic to it.

When it comes to ‘complex structures’ on surfaces the situation is very di¤erent and con-
siderably more subtle. Riemann surfaces are necessarily orientable so no complex structure can
be given to a sphere with k cross-caps. Only one structure, up to biholomorphism, can be put
on the sphere but uncountably many can be put on a torus.

Remark 2.14 We now see that the surface created in Example 2.8 is a sphere with 3 cross-
caps. Indeed having worked out that the Euler characteristic equals ¡1 we did not need to
determine the orientability as this is the only surface, up to homeomorphism, with this Euler
characteristic.

Remark 2.15 Euler noted his formula for polyhedra that are topologically a sphere around
1750. The French-Swiss mathematician, Simon Lhuilier, noted in 1812 that V ¡E+F = 2(1¡g)
when a polyhedron has g holes – this number g is called the polyhedron’s genus.

A modern demonstration of the topological invariance of the Euler characteristic usually
appears in an algebraic topology course – see the Part C course of that name. In fact, the Euler
characteristic is a homotopy invariant – homotopy equivalence is a more general notion than
that of being homeomorphic. The Euler characteristic of a surface is the alternating sum of its
Betti numbers.

χ = b0 ¡ b1 + b2.
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For an n-dimensional manifold, Betti numbers b0, b1, . . . , bn can be de…ned which are the ranks
of the manifold’s homology groups which are topological invariants by de…nition. For the torus
with g holes we have

b0 = 1, b1 = 2g, b2 = 1,

giving χ = 2 ¡ 2g. That b0 = 1 signi…es the surface to be connected and that b2 = 1 signi…es
that it has an ‘inside’ or is orientable. b1 equalling 2g represents the loops that go through or
go around each of the g holes. For the sphere with k cross-caps,

b0 = 1, b1 = k ¡ 1, b2 = 0,

giving χ = 2¡ k. That b0 = 1 signi…es connectedness and b2 = 0 signi…es non-orientability. b1
equalling k ¡ 1 represents k ¡ 1 that loops are (in some technical sense) independent. Much of
this early work was due to Poincaré around the end of the nineteenth century and the start of
the twentieth and consequently the Euler characteristic is commonly referred to as the Euler-
Poincaré characteristic.

More complicated surfaces can be created from simpler ones using the connected sum.

De…nition 2.16 Given two closed topological surfaces X1 and X2, their connected sum X1#X2

is created by removing two small discs, one from each surface, and identifying the circumferences
of the two discs.

Note that X1#X2 is orientable if and only if X1 and X2 are both orientable. The Euler
characteristic of the connected sum can be quickly determined – as below – and we can then
see that the torus T and projective plane P can be used as the building blocks for general closed
topological surfaces.

Theorem 2.17 Let X1 and X2 be closed topological surfaces. Then

χ(X1#X2) = χ(X1) + χ(X2)¡ 2.

Corollary 2.18 (a) For g > 0, χ(T#g) = 2¡ 2g.
(b) For k > 1, χ(P#k) = 2¡ k.

Proof. Say that Xi has subdivisions with Vi, Ei, Fi vertices, edges and faces and suppose that
one of the faces in each subdivision is a triangle. When those two triangles are removed, and
their boundaries identi…ed, then 6 vertices become 3, 6 edges become 3 and 2 faces are lost.
Thus

V# = V1 + V2 ¡ 3, E# = E1 + E2 ¡ 3, F# = F1 + F2 ¡ 2

so that

χ(X1#X2) = (V1 + V2 ¡ 3)¡ (E1 + E2 ¡ 3) + (F1 + F2 ¡ 2)

= (V1 ¡E1 + F1) + (V2 ¡ E2 + F2)¡ 2

= χ(X1) + χ(X2)¡ 2.
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The corollaries then follow by induction noting

χ(T#g) = χ(T#g¡1#T) = χ(T#g¡1) + 0¡ 2 = χ(T#g¡1)¡ 2;

χ(P#k) = χ(P#k¡1#P) = χ(P#k¡1) + 1¡ 2 = χ(P#k¡1)¡ 1,

with the initial steps veri…ed by

χ(T#0) = χ
¡
S2

¢
= 2 = 2¡ 2£ 0;

χ(P#1) = χ(P) = 1 = 2¡ 1.

The corollaries are essentially alternative proofs of Proposition 2.9.

We shall see later,in Chapter 5, with the Gauss-Bonnet theorem, the Poincaré-Hopf theorem
and in elements of Morse theory, that the Euler characteristic is a topological obstruction to
the global analysis and geometry of a surface.
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