
3. SMOOTH AND GEOMETRIC SURFACES
In the introductory lecture we recalled the de…nition of a parameterized surface and introduced
the notion of a di¤erentiable structure on a surface. Here we will mainly be discussing the local
geometric structure of surfaces, so it will be su¢cient to focus on parameterized surfaces, though
we will wish to make sure our de…nitions are not dependent on the choice of parameterization.

De…nition 3.1 Let r(U) be a smooth parameterized surface in R3 and let p = r(u0, v0). The
tangent plane to r(U) at p is the plane through p that is parallel to

ru(u0, v0) and rv(u0, v0).

The tangent space Tp(r(U)) is the vector space spanned by the above two vectors and any
element of Tp(r(U)) is called a tangent vector. It is easy to check that the tangent space at p
consists of all the tangent vectors to all curves in r(U) which pass through p.

Note that a parameterized surface is a surface in R3 with a preferred choice of co-ordinates
from a particular chart r¡1. But r(U) can also be associated with other charts, technically
giving a di¤erent parameterized surface but we would hope that any questions asked of X
(simply as a subspace of R3) such as, ‘what is the area of X?’ and ‘what is the length of a
curve in X?’, will yield the same answers, irrespective of what chart we use. This will be an
important consideration in all future de…nitions, namely that any new de…nitions are chart
independent.

Proposition 3.2 The tangent space is independent of the choice of parameterization.

Proof. Let r(U) = s(X) be two parameterizations

(u, v) 7! r(u, v), (x, y) 7! s(x, y).

If we have r(u, v) = s(x, y) then by the chain rule

ru = xusx + yusy, rv = xvsx + yvsy.

Applying the vector product, we …nd

ru ^ rv = (xuyv ¡ xvyu) sx ^ sy =
∂(x, y)

∂(u, v)
sx ^ sy

are parallel. This is the normal direction to the tangent space which we see is also independent
of the choice of parameterization.

De…nition 3.3 Let r(U) be a smooth parameterized surface in R3. A normal vector to r(U)
at the point p is any (non-zero) vector orthogonal to Tp(r(U)).

The normal vectors are non-zero scalar multiples of ru ^ rv where ^ denotes the vector
product in R3. The two unit vectors

§
ru ^ rv
jru ^ rvj

are the choices of unit normal to r(U) at p.
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De…nition 3.4 The map n from r(U) to S2, the unit sphere, which continuously sends r(u, v)
to a unit normal n(u, v) is called the Gauss map.

The de…nition of the di¤erential of a map f : R2 ! R2 then extends to maps between
parameterized surfaces in an obvious way.

De…nition 3.5 Let X and Y be smooth parameterized surfaces in R3 and let p 2 X. For a
smooth map f : X ! Y (see De…nition 1.10). Then the di¤erential of f at p is the linear
map

dfp : TpX ! Tf(p)Y

de…ned as follows. Let v 2 TpX and let γ : (¡, )! X be a smooth curve such that

γ(0) = p and γ0(0) = v.

Then f ± γ is a smooth curve in Y and as before we de…ne

dfp(v) = dfp(γ
0(0)) = (f ± γ)0(0).

A quick check shows that this de…nition is independent of the choice of curve γ.

Before we discuss any of the theory of surfaces, we should introduce some standard examples.
We have already introduced di¤erentiable atlases for the sphere and real projective plane, but
we introduce two other parameterizations for (most of) the sphere here.

Example 3.6 (Parameterizing the sphere) Consider the map r1 : (¡π, π) £ (0, π) ! R3

(see Figure 3.1) given by

r1 : (u, v) 7! (cosu sin v, sinu sin v, cos v).

It is easy to check that the image of this map is contained in S2, the unit sphere centred at the
origin. In fact the image is the whole sphere save for half a great circle. The parameter u is
the angle between the projection of r1(u, v) onto the xy-plane and the x-axis and v is the angle
between r1(u, v) and the z-axis.

Figure 3.1 – spherical polars Figure 3.2 – stereographic projection

Consider also the map r2 : R2 ! R3 de…ned by

r2 : (u, v) 7!

µ
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 ¡ 1

u2 + v2 + 1

¶

.
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This again is a chart of the unit sphere. The map r2 is in fact stereographic projection (see
Figure 3.2) from the ‘north pole’ N = (0, 0, 1); that is a point of (u, v) 2 R2 is mapped to
the intersection of the sphere with the line joining (u, v, 0) and N . In this case the image of
the sphere is the whole sphere minus N . This map is particularly relevant for setting up the
extended complex plane with the Riemann sphere, a …rst example of a compact Riemann
surface,

Example 3.7 (Graphs) Amongst the simplest examples of parameterized surfaces are graphs.
Let f(x, y) be a smooth function de…ned on an open set U µ R2. Then the graph of f is the
surface z = f(x, y) and may be parameterized by

r(u, v) = (u, v, f(u, v)), (u, v) 2 U.

These graphs seem almost too simple a family of surfaces to be of interest. One point of
importance though is that any smooth surface in R3 is, locally at least, a graph. That is:

² About any point of a smooth surface in R3 there is an open neighbourhood U such that U
is a graph of the form z = f(x, y) or y = f(x, z) or x = f(y, z) for some smooth function
f . (Do Carmo, p.63).

Indeed, for a general smooth surface (x (u, v) , y (u, v) , z(u, v)) , provided the normal is not hor-
izontal or equivalently

∂(x, y)

∂(u, v)
= xuyv ¡ xvyu 6= 0,

then the surface can be locally parameterized as z = f(x, y) for some f.

Example 3.8 (The cone) The punctured cone x2 + y2 = z2, (z > 0) in R3 may be smoothly
parameterized by

r(u, v) = (u, v,
p
u2 + v2), u, v 2 R, u2 + v2 6= 0.

Note that the two sheeted cone x2 + y2 = z2 is not the image of any parameterization as no
neighbourhood of the cone about (0, 0, 0) is homeomorphic to an open subset of R2. (To see this
consider the topological e¤ect of removing the origin.)

Consider now the one sheeted cone C given by x2 + y2 = z2, (z > 0). This certainly is the
image of a parameterization s : R2 ! C, but for no such map is C smooth at the point (0, 0, 0).
To prove this we assume that the cone may be locally parameterized about (0, 0, 0) as the graph
of a smooth function. The only possibility (from z = f(x, y) or y = f(x, z) or x = f(y, z)) is a
graph of the form z = f(x, y) and by the de…nition of C we see that

f(x, y) =
p
x2 + y2.

As f is not di¤erentiable at (0, 0) then (0, 0, 0) is not a smooth point of C for any parameteri-
zation. Such points on a surface are called singular points.
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Example 3.9 (Surfaces of revolution) Surfaces may also be formed by taking a curve in
R3 and using this curve to generate a surface. One such family are the surfaces of revolution.
A surface of revolution is formed by rotating a smooth curve in, say, the xz-plane about the
z-axis. For example, the cylinder in the above exercise is a surface of revolution.

Assume the curve has equation x = f(z) > 0. Then the surface of revolution generated has
equation x2 + y2 = f(z)2. The surface cannot entirely be parameterized with one co-ordinate
system but the map

r(θ, z) = (f(z) cos θ, f(z) sin θ, z), θ 2 (0, 2π), z 2 R

parameterizes all of the surface except for the original generating curve. The curves of the form
θ = const. are called meridians; this includes the original generating curve (where θ = 0).
Those curves with equations z = const. are called parallels.

Figure 3.3 – surface of revolution Figure 3.4 – hyperboloid of one sheet

Example 3.10 (Ruled surfaces) Let γ : I ! R3 be a smooth curve in R3 and let w : I !
R3nf0g be a second non-vanishing vector function on I. Then the parameterized surface given
by

r(u, v) = γ(u) + vw(u) u 2 I, v 2 R

is an example of a ruled surface. The curve γ is known as the directrix and the lines in the
surface given by u = constant are known as rulings.

Note that the parameterization r above need not be a homeomorphism onto its image and
so such a ruled surface may have self-intersections, although these may be avoided by limiting
the domain of the co-ordinate v. For example, the image of the map

r(u, v) = (v cosu, v sinu, v), u 2 (0, 2π), v 2 R,

is all of the two sheeted cone except for two rays (two halves of the line x = z). The map
r is not a parameterization as (0, 0, 0) is a self-intersection. However the restriction of r to
(0, 2π) £ (0,1) is a valid parameterization for the one sheeted cone with the omission of a
single ruling.

Exercise 3.11 Show that the hyperbolic paraboloid z = xy and the hyperboloid of one sheet
x2 + y2 = z2 + 1 in R3 are ruled surfaces.
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3.1 The First Fundamental Form
Let U µ R2 be an open subset of the plane and r : U ! R3 be a parameterization of a smooth
surface X. Let

γ : I ! X be given γ(t) = r(u(t), v(t))

be a smooth curve lying in X.

De…nition 3.12 We de…ne the length of γ to be

L(γ) =

Z

I

¯
¯
¯
¯
dγ

dt

¯
¯
¯
¯ dt. (3.1)

Using the chain rule it is easy to see that the length of γ does not depend on the choice of
parameter t. Now

dγ

dt
=
du

dt

∂r

∂u
+
dv

dt

∂r

∂v
or written more concisely

_γ = _uru + _vrv.

So the length of γ equals Z

I

p
E _u2 + 2F _u _v +G _v2 dt (3.2)

where
E = ru ¢ ru, F = ru ¢ rv, G = rv ¢ rv.

De…nition 3.13 The quadratic form Ip : TpX ! R on the tangent space TpX, de…ned by

I (pαru + βrv) = Eα2 + 2Fαβ +Gβ2

is called the …rst fundamental form of X.

Remark 3.14 What does this actually mean? The …rst fundamental form is the restriction to
TpX of the quadratic form

x 7! jxj2.

Now fru, rvg is a basis for the tangent space and with respect to this basis the …rst fundamental
form has coe¢cients E, 2F and G. Geometrically it can be thought of as the square of the
element of arc length, often conveyed as

ds2 = Edu2 + 2Fdudv +Gdv2.

For X = r(U), a smooth parameterized surface, let

u : r(u, v) 7! u and v : r(u, v) 7! v

denote the co-ordinate maps. For p = r(u0, v0), consider the di¤erentials dup, dvp : TpX ! R.
We de…ne two curves along the co-ordinate curves through p. Set

γ(t) = r(u0 + t, v0), t 2 (¡, ),

¡(t) = r(u0, v0 + t), t 2 (¡, ).
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Note that γ0(0) = ru(p) and ¡0(0) = rv(p). So

dup(ru) = dup(γ
0(0)) = (u ± γ)0(0) = (t 7! u0 + t)0(0) = 1,

dup(rv) = dup(¡
0(0)) = (u ± ¡)0(0) = (t 7! u0)

0(0) = 0.

Similarly dvp(ru) = 0 and dvp(rv) = 1. So dup and dvp are elements of the dual tangent space
TpX; in fact they are the dual basis of fru(p), rv(p)g. So Edu2p + 2Fdupdvp + Gdv2p is the
quadratic form on TpX given by

Ip : αru + βrv 7! Eα2 + 2Fαβ +Gβ2.

However one thinks about the …rst fundamental form, remember that the form is associated
with the surface. When we change co-ordinates the quadratic form does not change, but its
expression will generally look di¤erent in terms of the new co-ordinates.

Example 3.15 Find the …rst fundamental form of the plane using (a) Cartesian co-ordinates
and (b) polar co-ordinates.

Solution. Using Cartesian co-ordinates we …nd

r(u, v) = (u, v), u, v 2 R

and with polar co-ordinates

R(r, θ) = (r cos θ, r sin θ), r > 0, θ 2 (0, 2π).

So
ru = (1, 0) rv = (0, 1),

Rr = (cos θ, sin θ), Rθ = (¡r sin θ, r cos θ).

With respect to the two co-ordinate systems the …rst fundamental form is:

du2 + dv2 and dr2 + r2dθ2.

Remark 3.16 It is always possible to introduce local co-ordinates such that the …rst fundamen-
tal form has certain preferential forms.

² [Do Carmo, p.183] There exists a local parameterization around any point of a surface
such that F = 0. Such a parameterization is called orthogonal.

² [Do Carmo, p.227] There exists a local parameterization around any point of a surface
such that F = 0 and E = G. Such a parameterization is called isothermal. This is equiv-
alent to the parameterization being conformal from the plane; the existence of isothermal
co-ordinates implies all smooth surfaces are locally conformal.

² [Do Carmo, p.287] Using geodesic polar co-ordinates, it is possible to parameterize a
surface locally such that E = 1 and F = 0.
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The following argument was previously given in Prelims Geometry as a de…nition for area.
Let V µ U be an open subset of U ; we wish to calculate the area of r(V ). Consider a small
parallelogram with vertices

r(u, v), r(u+ δu, v), r(u, v + δv), r(u+ δu, v + δv).

Now
r(u+ δu, v)¡ r(u, v) = ru(u, v)δu+O(δu2)

and there is a similar expression for varying v. So the area of the parallelogram is, ignoring
higher order terms,

jru ^ rvj δu δv.

It thus seems reasonable to de…ne:

De…nition 3.17 The area of r(V ) equals
ZZ

V

jru ^ rvjdu dv. (3.3)

Now

jru ^ rvj
2 = (ru ^ rv) ¢ (ru ^ rv)

= (ru ¢ ru)(rv ¢ rv)¡ (ru ¢ rv)(rv ¢ ru)

= EG ¡ F 2.

Thus the expression (3.3) for the area of r(V ) can be rewritten as
ZZ

V

p
EG ¡ F 2 du dv. (3.4)

See Proposition 0.11 for a proof that this de…nition is independent of the choice of co-ordinates.

Example 3.18 Show that the area of a sphere of radius a equals 4πa2.

Solution. We may parameterize the sphere using spherical polar co-ordinates

r(u, v) = (a cosu sin v, a sinu sin v, a cos v), u 2 (¡π, π), v 2 (0, π),

omitting only half a great circle. Then

ru = (¡a sinu sin v, a cosu sin v, 0),

rv = (a cos u cos v, a sinu cos v,¡a sin v).

Thus (with respect to the co-ordinates u and v) the …rst fundamental form is given by

E = a2 sin2 v, F = 0, G = a2

and the area is given by
Z π

0

Z π

¡π

a2j sin vj du dv = 2πa2
Z π

0

sin v dv = 4πa2

as required.
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Example 3.19 The tractoid (see Figure 3.5) is the surface of revolution formed by rotating
the curve

x(t) = ¡(cos t+ log tan
t

2
), y(t) = sin t, t 2 (0, π/2)

(known as the tractrix) about the x-axis.
(a) Show that, when the tractrix is parameterized by arc-length s, the …rst fundamental form of
the tractoid is

ds2 + e¡2sdθ2. (3.5)

(b) Show that the area of the tractoid equals 2π.

Solution. (a) We may parameterize the tractoid by writing

r(t, θ) = (x(t), y(t) cos θ, y(t) sin θ), t 2 (0,1), θ 2 (0, 2π),

omitting only the original tractrix. Di¤erentiating with respect to t and θ we …nd that

rt = (¡ cos t cot t, cos t cos θ, cos t sin θ),

rθ = (0,¡ sin t sin θ, sin t cos θ).

Thus the …rst fundamental form is given by

cot2 t dt2 + sin2 t dθ2. (3.6)

Now
µ
ds

dt

¶2

=

µ
dx

dt

¶2

+

µ
dy

dt

¶2

=

µ
cos2 t

sin t

¶2

+ cos2 t = cot2 t
¡
cos2 t+ sin2 t

¢
= cot2 t.

As s is decreasing with respect to t then ds/dt = ¡ cot t and hence s = ¡ log sin t. Substituting
these expressions into (3.6) we obtain E = 1, F = 0, G = e¡2s as in (3.5).

(b) The area of the tractoid is then given by the integral

Z 1

0

Z 2π

0

e¡s dθ ds = 2π.

Exercise 3.20 Show that the area of the torus in R3, given by

r(u, v) = ((a+ b cos v) cosu, (a+ b cos v) sinu, b sin v)

for u, v 2 (0, 2π) and a > b > 0, equals 4π2ab.

Properties of surfaces which depend solely on the …rst fundamental such as length and area
(and geodesics and Gaussian curvature – see later) are called intrinsic. Maps between surfaces
which preserve the intrinsic geometry are called isometries.

De…nition 3.21 An isometry between two surfaces X and Y is a di¤eomorphism f : X ! Y
which maps curves in X to curves in Y of the same length. X and Y are then said to be
isometric.
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As the …rst fundamental form represents an element of arc length then the following theorem
should be intuitively clear.

Theorem 3.22 Two smooth, parameterized surfaces X and Y are isometric if and only if there
exists an open subset U ½ R2 and parameterizations

r : U ! X, s : U ! Y,

such that the …rst fundamental forms of X and Y are the same.

Proof. Su¢ciency is straightforward. Suppose two such parameterizations r and s exist with
the same fundamental forms – I claim f = sr¡1 : X ! Y is the required isometry. Let C be a
smooth curve in U . The lengths of r(C) and s(C) = f(r(C)) are identical as they are given by
the same integral (3.2).

Conversely, suppose now that f : X ! Y is an isometry of two smooth, parameterized
surfaces and suppose that r : U ! X is a parameterization of X. Let s = fr : U ! Y . We
shall write E, 2F,G and ~E, 2 ~F, ~G for the coe¢cients of the …rst fundamental forms of X and
Y with respect to r and s. As f is an isometry we have that

Z b

a

p
E _u2 + 2F _u _v +G _v2 dt =

Z b

a

p
~E _u2 + 2 ~F _u _v + ~G _v2 dt (3.7)

for all smooth curves (u(t), v(t)), a 6 t 6 b, in U .
As the above is an identity for all b then

p
E _u2 + 2F _u _v +G _v2 =

p
~E _u2 + 2 ~F _u _v + ~G _v2

And choosing part of a co-ordinate curve, namely: u(t) = u0 + t and v(t) = v0 in U, it follows
that E = ~E. By a similar argument using u = const. curves we may conclude that G = ~G.
Finally then F = ~F .

Example 3.23 The catenoid (with a meridian removed) and helicoid are respectively para-
meterized by

r(u, v) = (u, coshu, cos v, cosh u sin v), u 2 R, v 2 (0, 2π) ,

s(~u, ~v) = (~u, ~v cos ~u, ~v sin ~u), ~u 2 R, ~v 2 R.

Show that the catenoid is isometric to part of the helicoid, in such a way that meridians of the
catenoid map to rulings of the helicoid.

Solution. The …rst fundamental form of the catenoid equals

cosh2u du2 + cosh2u dv2

and the …rst fundamental form of the helicoid equals

(1 + ~v2) d~u2 + d~v2. (3.8)
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Now consider the map

r(u, v) 7! s(v, sinhu), for u 2 R, v 2 (0, 2π) (3.9)

between the catenoid and the helicoid. Under the substitution ~u = v and ~v = sinhu then the
form (3.8) becomes

(1 + sinh2u) dv2 + d(sinhu)2 = cosh2u du2 + cosh2udv2

which is the …rst fundamental form of the catenoid. Thus the map (3.9) is indeed an isometry.
The meridians of the catenoid are given by the equations v = constant. Under the above

isometry the meridians map to the curves on the helicoid given by ~u = constant – i.e. the
rulings.

Exercise 3.24 (First part is Sheet 2, Part A, Exercise 1) Two curves on the same smooth
parameterized surface are given parameterically by t 7! (u(t), v(t)) and t 7! (~u(t), ~v(t)). Suppose
that the curves intersect at t = 0. (i.e. u(0) = ~u(0) and v(0) = ~v(0).) Prove that the angle of
intersection θ is given by

cos θ =
E _u _~u+ F ( _u _~v + _~u _v) +G _v _~v

p
E _u2 + 2F _u _v +G _v2

p
E _~u2 + 2F _~u _~v +G _~v2

Deduce that a parameterization is conformal if and only if the …rst fundamental form satis…es
E = G and F = 0 everywhere.

Exercise 3.25 A di¤eomorphism between surfaces X and Y is said to be conformal if the
angle between any two intersecting curves on X equals the angle between their images on Y and
is said to be area-preserving if each subset of X is mapped to a subset of Y of equal area.
Show that a di¤eomorphism is an isometry if and only if it is area-preserving and conformal.

Thus far we have not made any calculations of lengths and areas which couldn’t have
been done as easily with the old expressions (3.1), (3.3) as with the new expressions (3.2),
(3.4) which are in terms of coe¢cients of the …rst fundamental form. The calculations in the
following examples however can only be done using the new de…nitions of length and area.

Example 3.26 The ‡at torus T is the surface in R4 given by

T = f(x, y, z, t) 2 R4 j x2 + y2 = z2 + t2 = 1g.

Show that T is locally isometric to R2 and calculate the area of T.

Solution. We may parameterize (a dense open subset of) T by

r(u, v) = (cosu, sinu, cos v, sin v), u, v 2 (0, 2π).

Then the …rst fundamental form of T is du2 + dv2 and so T is locally isometric to the plane.
T is certainly not globally isometric to R2 since T is compact and R2 is non-compact. (In fact
the ‡at torus is isometric to no surface in R3 – see Sheet 2, Part B, Exercise 4.) The area of T
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is easily seen using (3.4) to equal 4π2 but as the vector product is not de…ned in R4 then our
original de…nition (3.3) is not applicable.

So far we have only considered examples where the metric structure of the surface is precisely
that induced on the surface by the Euclidean space (usually R3) in which the surface lies. There
is no reason why we should limit ourselves to these cases – in fact there are good reasons not
to.

From Example 3.19 the tractoid (with the original tractrix removed) has …rst fundamental
form

ds2 + e¡2s dθ2, s > 0, θ 2 (0, 2π),

when the tractrix is parameterized by arc-length s. The map f from the tractoid to (0, 2π)£
(1,1) which sends the point on the tractoid with co-ordinates (s, θ) to (θ, es) is a di¤eomor-
phism but is not an isometry. We could however ask:

Example 3.27 In terms of the co-ordinates x and y, …nd the …rst fundamental form on
(0, 2π)£ (1,1) for which f is an isometry.

Solution. The co-ordinates x and y are related to s and θ by

x = θ, and y = es.

For f to be an isometry we need to endow (0, 2π)£ (1,1) with the …rst fundamental form

ds2 + e¡2s dθ2 = d(log y)2 +
1

y2
dx2 =

dx2 + dy2

y2
.

Figure 3.5 – tractrix Figure 3.6 – tractoid Figure 3.7 – tractoid as a subset of H

What we have shown above is that the tractoid (without a meridian) is isometric to part of
H, the hyperbolic plane (Figure 3.7).

Example 3.28 (Poincaré’s half plane model of the hyperbolic plane) H is the surface
created by endowing the upper half plane f(x, y) j y > 0g with the …rst fundamental form

dx2 + dy2

y2
. (3.10)

H is of interest because it was the …rst model for a non-Euclidean geometry.
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Whilst the in…nite rectangle (0, 2π)£(1,1) with the …rst fundamental form (3.10) is isomet-
ric to a surface in R3, the hyperbolic plane is not. This is a consequence of Hilbert’s Theorem
(Do Carmo, p. 446). We could isometrically embed H in a higher dimensional Euclidean space,
although the isometry may be a little complicated, but there is no need. From our formulas
(3.2),(3.4) we may …nd the length and area of curves and regions in H without having to be
working in a particular Euclidean space. Indeed we could create a geometric surface by endow-
ing any open subset of R2 with any …rst fundamental form Edx2 + 2Fdxdy + Gdy2 provided
that E,F,G are smooth functions and

E > 0, G > 0, EG ¡ F 2 > 0.

Conversely any parameterized surface which is di¤eomorphic to an open subset of R2 would be
isometric to one of these surfaces.

Example 3.29 Find the length of the curve γ(t) = (0, t) for 1 6 t 6 2 in H.

Solution. We have E = G = y¡2 and F = 0. Substituting these into (3.2) we …nd

L(γ) =

Z 2

1

r
1

t2
dt = [log t]21 = log 2.

Exercise 3.30 Show that the surfaces created by endowing (0, α) £ (0,1) with the …rst fun-
damental form (3.10) are isometric for any α > 0.

De…nition 3.31 A smooth geometric surface or smooth Riemannian 2-manifold is a
Hausdor¤ topological space X together with

(a) homeomorphisms φα : Uα ! Vα between open sets Uα µ X and open sets Vα µ R2,
(b) …rst fundamental forms Eαdx

2+ 2Fαdxdy+Gαdy
2 on Uα where Eα, Fα, Gα are smooth

functions satisfying
Eα > 0, Gα > 0, EαGα ¡ (Fα)

2 > 0,

such that
(a)

S
α Uα = X,

(b) when Uα \ Uβ 6= ; then

(φα) ± φ
¡1
β : (φβ)(Uα \ Uβ) ! (φα)(Uα \ Uβ)

is an isometry.

Example 3.32 (The elliptic plane) Topologically the elliptic plane is the real projective
plane. Geometrically it is the surface endowed with the …rst fundamental form from the unit
sphere.

Let D denote the unit disc f(u, v) j u2 + v2 < 1g. Then r1 : D ! S2, de…ned by

r1(u, v) = (u, v,
p
1¡ u2 ¡ v2),
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is a parameterization of a unit hemisphere, so that s1 = π ± r1 : D ! S2/ f§1g = P is a
parameterization of (a dense open subset of) the real projective plane P. The …rst fundamental
form on r1(D) is

(1¡ v2)du2 + 2uvdudv + (1¡ u2)dv2

1¡ u2 ¡ v2
,

and we can endow s1(D) with this …rst fundamental form to form a geometric surface.
A second parameterization s2 = π± r2 : D ! P arises from the parameterization r2 : D ! S2

given by
r2(U, V ) = (U,

p
1¡ U2 ¡ V 2, V ),

which is endowed with the same …rst fundamental form once u is replaced with U and v with
V. Now the transition map s¡12 ± s1 is given by

U (u, v) = u and V (u, v) =
p
1¡ u2 ¡ v2.

Substituting these values into the …rst fundamental form on s2(D) we note dU = du and

dV =
¡udu ¡ vdv
p
1¡ u2 ¡ v2

and then

(1¡ V 2)dU2 + 2UV dUdV + (1¡ U2)dV 2

1¡ U2 ¡ V 2

=
(u2 + v2)du2 ¡ 2u

p
1¡ u2 ¡ v2du

³
udu+vdvp
1¡u2¡v2

´
+ (1¡ u2)

³
udu+vdvp
1¡u2¡v2

´2

v2

=
(u2 + v2)du2 ¡ 2udu (udu+ vdv) + (1¡u2)

(1¡u2¡v2)
(u2du2 + 2uvdudv + v2dv2)

v2

=
[(v2 ¡ u2) (1¡ u2 ¡ v2) + (1¡ u2)u2] du2 + 2 [¡uv (1¡ u2 ¡ v2) + uv (1¡ u2)] dudv + (1¡ u2) v2dv2

v2 (1¡ u2 ¡ v2)

=
[v2 ¡ v4] du2 + 2 [uv3] dudv + [(1¡ u2) v2] dv2

v2 (1¡ u2 ¡ v2)

=
(1¡ v2)du2 + 2uvdudv + (1¡ u2)dv2

1¡ u2 ¡ v2
.

Hence the transition map is an isometry as required, because one …rst fundamental form trans-
forms in the other.

We can similarly extend the notion of orientability to abstract surfaces by requiring that
transition maps are orientation-preserving as well as di¤eomorphisms. It is even possible to
de…ne the tangent space for a smooth abstract surface, even though the surface is not embedded
in any ambient Euclidean space. On an abstract surface we still have local co-ordinates, so it
still possible to di¤erentiate smooth functions with respect to those co-ordinates.

De…nition 3.33 Let X be a smooth abstract surface and p 2 X. Let Vp denote the vector space
(algebra, in fact) of all functions ϕ : X ! R which are smooth at p. Then the tangent space
at p, written TpX, is the set of all linear maps D : Vp ! R which satisfy the product rule

D(ϕψ) = ϕ(p)Dψ + ψ(p)Dϕ for all ϕ, ψ 2 Vp.
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Such a D is called a derivation. Note TpX is a vector space with addition and scalar multi-
plication de…ned by

(D1 +D2)ϕ = D1ϕ+D2ϕ, (λD)ϕ = λ(Dϕ).

Given a smooth map f : X ! Y between two smooth abstract surfaces X, Y with p 2 X the
di¤erential dfp : TpX ! Tf(p)Y is de…ned by

(dfp (D)) (α) = D(α ± f)

where D 2 TpX and α is a real map α : Y ! R which is smooth at f(p).

Exercise 3.34 TpX is two dimensional and a basis is

(
∂

∂u

¯
¯
¯
¯
p

,
∂

∂v

¯
¯
¯
¯
p

)

where u and v are co-ordinates local to p.

3.2 Curvature and the Weingarten map
Let X be a smooth parameterized surface in R3 described by r : U ! X and let

n =
ru ^ rv
jru ^ rvj

denote a choice of unit normal. When γ(s) is a curve in X, parameterized by arc length then
the curvature κ(s) of γ at the point γ(s) is simply the magnitude of Äγ(s).

When looking at such a curve, the vector Äγ(s) has two natural components, a tangential
component and a normal component. As _γ(s) is a unit vector for all s, its derivative Äγ(s) is
perpendicular to _γ(s). So we may decompose Äγ(s) in the form:

Äγ = knn+ kg(n ^ _γ). (3.11)

De…nition 3.35 We de…ne:
(a) kn(s) is the normal curvature of γ at γ(s).
(b) kg(s) is the geodesic curvature of γ at γ(s).

It follows that κ2 =
¯
¯_t

¯
¯2 = jÄγj2 = k2n + k2g.

(c) A curve in X whose geodesic curvature is everywhere zero is called a geodesic.

We shall consider, for the moment, the normal curvature of curves and we shall use this
to de…ne a second quadratic form on the tangent space of a point of X. We shall see later
(Theorem 4.2 and Sheet 2, Part B, Exercise 3) that the geodesics of a surface and the geodesic
curvature of a curve are intrinsic; that is they depend only on the …rst fundamental form of the
surface and the direction of the curve. This is very much not the case with normal curvature,
which gives information on how a geometric surface has been embedded in R3.

The normal curvature kn of γ equals Äγ ¢ n. By the chain rule we have

_γ = _uru + _vrv,
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and applying the chain rule again we …nd

Äγ = Äuru + Ävrv + _u2ruu + 2 _u _vruv + _v2rvv.

Hence the normal curvature kn = Äγ ¢ n equals

kn = L _u2 + 2M _u _v +N _v2,

where

L = ruu ¢ n = ¡ru ¢ nu,

M = ruv ¢ n = ¡ru ¢ nv = ¡rv ¢ nu, (3.12)

N = rvv ¢ n = ¡rv ¢ nv.

Note that the alternative expressions for L,M,N come from the di¤erentiating the equations

ru ¢ n = 0 = rv ¢ n.

De…nition 3.36 The quadratic form IIp : TpX ! R given by

αru + βrv 7! Lα2 + 2Mαβ +Nβ2

is called the second fundamental form of X. (Note that some authors, including Do Carmo,
use e, f, g instead of L,M,N for the coe¢cients of the second fundamental form.)

The …rst fundamental form describes the intrinsic properties of the surface, whereas the
second fundamental form relates to the surface’s embedding in R3. Although the proof of the
following theorem is far beyond the scope of this course, I include an abridged statement of:

Theorem 3.37 (O¤-syllabus) The Fundamental Theorem of the Local Theory of Sur-
faces.

Let E,F,G, L,M,N be di¤erentiable functions on an open set U ½ R2 which satisfy
(a) E > 0, G > 0, EG ¡ F 2 > 0,
(b) certain compatibility equations (Remark 3.56, Do Carmo p.235).
Then for each p 2 U there is an open set V ½ U containing p and a smooth parameteri-

zation r(V ) of a surface in R3 with E, 2F,G and L, 2M,N as the coe¢cients of the …rst and
second fundamental forms. Further a second surface ~r(V ) in R3 with the same …rst and second
fundamental forms di¤ers from r(V ) only by a rigid motion of R3.

One equation of compatability is the Gauss formula, which we will meet shortly, and which
expresses the Gaussian curvature – ostensibly de…ned in terms of both fundamental forms –
solely in terms of the …rst fundamental form.

Example 3.38 Show that the xy-plane and cylinder x2+y2 = a2 are locally isometric but have
di¤erent second fundamental forms.

Solution. A parameterization of the xy-plane is r(u, v) = (u, v, 0) which leads to

E = 1, F = 0, G = 1, L = 0, M = 0, N = 0.
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The cylinder, except for one meridian, can be parameterized by s(u, v) = (a cos (u/a) , a sin (u/a) , v)
where 0 < u < 2πa and v 2 R. This leads to

E = 1, F = 0, G = 1, L = ¡a¡1, M = 0, N = 0.

Thus the cylinder and plane are locally isometric. They are not globally isometric as they are
not homeomorphic – the cylinder is not simply connected whereas the plane is.

In order to de…ne the curvature of the surface at a point we need to introduce the Weingarten
map or shape operator. The Weingarten map is the di¤erential of the Gauss (normal) map n
and consequently is written as dnp in some texts. Curvature, for a curve, is a measure of how
quickly the tangent is varying. Similarly for a surface we need to investigate how quickly the
tangent plane, or equivalently the normal to the surface is varying. Note that as n ¢n = 1 then

n ¢ nu = 0 = n ¢ nv.

Thus nu and nv are tangents vectors to the surface.

De…nition 3.39 The Weingarten map (or shape operator) at the point p is the linear map
Wp : TpX ! TpX de…ned by

Wpru = nu, Wprv = nv. (3.13)

More generally note that Wp(γ
0(s)) = (n±γ)0(s) and so Wp = dnp is the di¤erential of the Gauss

map.

Proposition 3.40 The Weingarten map Wp : TpX ! TpX is a self-adjoint linear map in-
dependent of the choice of parameters u and v. In particular, as Wp is self-adjoint, it is
diagonalisable.

Proof. Let s(~u, ~v) be a second parameterization for X with s(~u, ~v) = r(u, v). Then by the
chain rule we have

s~u =
∂u

∂~u
ru +

∂v

∂~u
rv, s~v =

∂u

∂~v
ru +

∂v

∂~v
rv.

Hence by the above de…nition of the Weingarten map and the chain rule we have

Wps~u =
∂u

∂~u
nu +

∂v

∂~u
nv = n~u, Wps~v =

∂u

∂~v
nu +

∂v

∂~v
nv = n~v.

It is also easy to check that Wp is a self-adjoint linear map – that is

(Wpx) ¢ y = x ¢ (Wpy) (3.14)

for any two tangent vectors x,y 2 TpX. We note from equation (3.12) that

Wpru ¢ rv = nu ¢ rv = nv ¢ ru =Wprv ¢ ru.

Equation (3.14) then follows for all tangent vectors x,y by linearity.
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As Wp is self-adjoint it is diagonalizable and has real eigenvalues. Let γ be a curve in X
with γ(0) = p. Then

Wp(γ
0(0)) ¢ γ0(0) = n0(γ(0)) ¢ γ0(0)

= ¡n ¢ γ00(0) = ¡kn.

Thus the eigenvalues of Wp are ¡k1 and ¡k2 where k1 and k2 are the extreme values of the
normal curvature, called the principal curvatures of X at p and the eigenvectors of Wp are
the principal directions. The lines of curvature are curves whose tangents are the principal
directions.

We make the following de…nitions:

De…nition 3.41 The Gaussian curvature K(p) at the point p is the product of the principal
curvatures or equivalently the determinant detWp of the Weingarten map.

De…nition 3.42 (O¤-syllabus) The average of the principal curvatures is known as the mean
curvature at p. It is given by the formula

H =
LG ¡ 2MF +NE

2(EG ¡ F 2)
.

The mean curvature is important in the study of minimal surfaces. A minimal surface is a
surface with an area that is a local minimum, such as with soap …lms. A soap …lm – in order
to reduce the surface tension – has minimal area compared with all perturbations of the surface.
This is equivalent to the mean curvature of the surface being zero (Segal, Theorem 9.1).

The tangent vectors ru and rv form a basis for the tangent plane TpX and Wp : TpX ! TpX
is a linear map. We now work out the matrix for Wp with respect to this basis.

Let us suppose that the matrix for Wp with respect to the basis fru, rvg is
µ

A B
C D

¶

.

Then

Wpru = nu = Aru + Crv, (3.15)

Wprv = nv = Bru +Drv. (3.16)

Dotting equation (3.15) with ru and with rv we …nd

¡L = AE + CF, ¡M = AF + CG.

Doing the same for equation (3.16) we obtain

¡M = BE +DF, ¡N = BF +DG.

Putting these equations into matrix form gives

¡

µ
L M
M N

¶

=

µ
E F
F G

¶µ
A B
C D

¶
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and hence with respect to the basis fru, rvg

Wp =
1

EG ¡ F 2

µ
¡G F
F ¡E

¶µ
L M
M N

¶

. (3.17)

Corollary 3.43 The Gaussian curvature K(p) at p, which equals detWp, is given by the for-
mula

K(p) =
LN ¡ M2

EG ¡ F 2
.

Despite the above expression forK, which is in terms of the coe¢cients of the …rst and second
fundamental forms, the Gaussian curvature may be written solely in terms of the coe¢cients of
the …rst fundamental form and is invariant under isometries. This is a theorem due to Gauss
and known as the Theorema Egregium (Theorem 3.48).

Gauss originally did not de…ne K by the above formula but rather as the following more
intuitive limit. Let U be a small open subset of X about the point p. Then if we let the area
of U tend to zero (see Sheet 3, Part B, Exercise 3)

jKj = lim
Area(U)!0

Area(n(U))

Area(U)
.

The more ‘curved’ the surface at a point, the greater the variety in the normal vectors about
the point.

We end this section with two worked examples – we continue with the earlier examples –
the sphere and the tractoid – where we calculated the …rst fundamental form.

Example 3.44 Find the Gaussian curvature of a sphere of radius a.

Solution. In Example 3.18 we parameterized the sphere with

r(u, v) = (a cosu sin v, a sinu sin v, a cos v), u 2 (¡π, π), v 2 (0, π),

omitting only half a great circle and found

E = a2 sin2 v, F = 0, G = a2.

The outward-pointing unit normal equals

n(u, v) = (cosu sin v, sinu sin v, cos v) =
1

a
r(u, v).

So we can avoid further calculation by noting

L = ruu ¢ n = ¡ru ¢ nu = ¡
1

a
ru ¢ ru = ¡

E

a
= ¡a sin2 v;

M = ruv ¢ n = ¡ru ¢ nv = ¡
1

a
ru ¢ rv = ¡

F

a
= 0;

N = rvv ¢ n = ¡rv ¢ nv = ¡
1

a
rv ¢ rv = ¡

G

a
= ¡a.

Hence

K =
LN ¡M2

EG ¡ F 2
=

a2 sin2 v

a4 sin2 v
=
1

a2
.
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Example 3.45 A torus of revolution is formed by rotating the circle with equation

(x¡ b)2 + y2 = a2, (b > a) ,

about the y-axis. Parameterize the torus and …nd its Gaussian curvature.

Solution. We can parametrize (an open dense subset of) the torus as

r (u, v) = ((b+ a sinu) cos v, (b+ a sinu) sin v, a cosu) 0 < u, v < 2π.

We have

ru = (a cosu cos v, a cosu sin v,¡a sinu) , rv = (¡ (b+ a sinu) sin v, (b+ a sinu) cos v, 0)

giving

E = a2 cos2 u
¡
cos2 v + sin2 v

¢
+ a2 sin2 u = a2,

F = a (b+ a sinu) (¡ cosu sin v cos v + cos v cosu sin v) = 0,

G = (b+ a sinu)
¡
sin2 v + cos2 v

¢
= b+ a sinu.

Further

ru ^ rv =

¯
¯
¯
¯
¯
¯

i j k
a cosu cos v a cosu sin v ¡a sinu

¡ (b+ a sin u) sin v (b+ a sinu) cos v 0

¯
¯
¯
¯
¯
¯

= a (b+ a sinu)

¯
¯
¯
¯
¯
¯

i j k
cosu cos v cosu sin v ¡ sinu

¡ sin v cos v 0

¯
¯
¯
¯
¯
¯

= a (b+ a sinu) (sinu cos v, sin y sin v, cosu) ,

giving
n = (sinu cos v, sinu sin v, cosu) .

We then have

ruu = (¡a sinu cos v,¡a sinu sin v,¡a cosu) ,

ruv = (¡a cosu sin v, a cosu cos v, 0) ,

rvv = (¡ (b+ a sinu) cos v,¡ (b+ a sinu) sin v, 0) ,

and so

L = ¡a sin2 u
¡
cos2 v + sin2 v

¢
¡ a cos2 u = ¡a,

M = ¡a cosu sin v sinu cos v + a cosu sin v sinu cos v = 0,

N = ¡ (b+ a sinu) sin u
¡
cos2 v + sin2 v

¢
= ¡ (b+ a sinu) sinu.

Hence

K =
LN ¡ M2

EG ¡ F 2
=

a (b+ a sinu) sinu

a2 (b+ a sinu)
=
1

a
sinu.

Note that K > 0 on the outside of the torus when 0 < u < π and K < 0 when π < u < 2π.
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Remark 3.46 (Parity of Gaussian curvature) The sign of Gaussian curvature can be
readily appreciated. If we choose an outward pointing normal in the example of the torus, on
the outside of the outside of the torus the lines of curvature are both bending away from the
normal, the principal curvatures are negative and their product K is positive. If we had instead
had an inward pointing normal then the principal curvatures would still have had the same sign
and K > 0 would still be true. On the inside of the torus, one line of curvature is around the
hole of the torus and one through the hole of the torus. The principal curvatures have di¤erent
signs and then K < 0.

Exercise 3.47 Find the lines of curvature and the principal curvatures on a surface of revolu-
tion in terms of the distance ρ of the generating curve from the axis. Show that the Gaussian
curvature K equals κ cosφ/ρ where κ is the curvature of the generating curve and φ is the angle
between the axis and the tangent line to the curve.

3.3 Theorema Egregium
Theorem 3.48 (Theorema Egregium, Gauss, 1827) Gaussian curvature is intrinsic, and so
preserved by isometries.

Remark 3.49 Recall that we de…ne Gaussian curvature as

K =
LN ¡ M2

EG ¡ F 2
.

The …rst fundamental form is intrinsic but the second fundamental form is not (as we saw
earlier with Example 3.38). Hence there is no reason to expect that K is intrinsic. The Latin
title ‘Theorema Egregium’ translates as ‘remarkable theorem’.

Proof. Let (u, v) 7! r(u, v) be a parameterization for a patch of surface X in R3. Let n be a
unit normal vector …eld on X and let the …rst and second fundamental forms respectively be

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2.

And recall the Weingarten map W = dn (equation (3.17)) is represented by the matrix

Ã
w11 w12

w21 w22

!

= ¡

Ã
E F

F G

!¡1Ã
L M

M N

!

with respect to the basis fru, rvg for the tangent space.
We introduce now the Christo¤el symbols ¡kij, de…ned by writing

ruu = ¡1
11ru + ¡

2
11rv + Ln,

ruv = ¡1
12ru + ¡

2
12rv +Mn,

rvv = ¡1
22ru + ¡

2
22rv +Nn.

Our aim will be …rst to show that the Christo¤el symbols are intrinsic – that is they depend
only on E,F and G and their derivatives – and then show that the Gaussian curvature can be
written in terms of the Christo¤el symbols.

THEOREMA EGREGIUM 55



Lemma 3.50 The Christo¤el symbols depend only on E,F and G and their derivatives.

Proof. Dotting the equations above with ru and rv we …nd
(
¡1

11E + ¡
2
11F = ruu ¢ ru = 1

2(ru ¢ ru)u
¡1

11F + ¡
2
11G = ruu ¢ rv = (ru ¢ rv)u ¡ 1

2(ru ¢ ru)v(
¡1

12E + ¡
2
12F = ruv ¢ ru = 1

2(ru ¢ ru)v
¡1

12F + ¡
2
12G = ruv ¢ rv = 1

2(rv ¢ rv)u(
¡1

22E + ¡
2
22F = rvv ¢ ru = (ru ¢ rv)v ¡ 1

2(rv ¢ rv)u
¡1

22F + ¡
2
22G = rvv ¢ rv = 1

2(rv ¢ rv)v

= 1
2Eu,

= Fu ¡ 1
2Ev,

= 1
2Ev,

= 1
2Gu,

= Fv ¡ 1
2Gu,

= 1
2Gv.

Each of the braced equations are invertible as the determinant EG¡F 2 is non-zero. Thus each
Christo¤el symbol may be written in terms of E,F,G and their derivatives.

Corollary 3.51 Suppose that the parameterization r is orthogonal, that is F = 0. Then:

¡1
11 = Eu/2E, ¡

1
12 = Ev/2E, ¡

1
22 = ¡Gu/2E,

¡2
11 = ¡Ev/2G, ¡

2
12 = Gu/2G, ¡

2
22 = Gv/2G.

Lemma 3.52 (The Gauss formula)

(¡2
12)u ¡ (¡2

11)v + ¡
1
12¡

2
11 + ¡

2
12¡

2
12 ¡ ¡2

11¡
2
22 ¡ ¡1

11¡
2
12 = ¡EK,

where K denotes the Gaussian curvature.

Proof. Note by the product rule that

(ruu)v = ¡
1
11ruv + (¡

1
11)vru + ¡

2
11rvv + (¡

2
11)vrv + Lnv + Lvn,

and that

(ruv)u = ¡
1
12ruu + (¡

1
12)uru + ¡

2
12ruv + (¡

2
12)urv +Mnu +Mun.

We may write (ruu)v and (ruv)u in terms of the basis fru, rv,ng. By comparing the coe¢cients

of rv in these expressions we obtain

¡1
11¡

2
12 + ¡

2
11¡

2
22 + (¡

2
11)v + Lw22 = ¡

1
12¡

2
11 + ¡

2
12¡

2
12 + (¡

2
12)u +Mw21.

Hence

(¡2
12)u ¡ (¡2

11)v + ¡
1
12¡

2
11 + ¡

2
12¡

2
12 ¡ ¡2

11¡
2
22 ¡ ¡1

11¡
2
12

= Lw22 ¡ Mw21

=
L(FM ¡EN)¡ M(LF ¡ EM)

EG ¡ F 2

= ¡EK.
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These two lemmas prove our claims. The Christo¤el symbols are intrinsic, so by the Gauss
formula K is also intrinsic.

Corollary 3.53 When F = 0 the Gaussian curvature K equals

K =
¡1

2
p
EG

½µ
Evp
EG

¶

v

+

µ
Gup
EG

¶

u

¾

.

Solution. From the Gauss formula, and the above formulae for the Christo¤el symbols when
F = 0, we have that ¡EK equals

µ
Gu

2G

¶

u

+

µ
Ev

2G

¶

v

¡
E2
v

4EG
+

G2
u

4G2
+

EvGv

4G2
¡

EuGu

4EG

=
GGuu ¡ G2

u

2G2
+

GEvv ¡ EvGv

2G2
¡

E2
v

4EG
+

G2
u

4G2
+

EvGv

4G2
¡

EuGu

4EG

=
Guu

2G
+

Evv

2G
¡

E2
v

4EG
¡

G2
u

4G2
¡

EvGv

4G2
¡

EuGu

4EG
.

Hence ¡2
p
EGK equals

µ
Evvp
EG

¡
Ev

2EG
p
EG

(EvG+GvE)

¶

+

µ
Guup
EG

¡
Gu

2EG
p
EG

(GuE + EuG)

¶

.

to give the required result.

Example 3.54 The (Poincaré half-plane model for the) hyperbolic plane is the half-plane
H = f(u, v) 2 R2 : v > 0g with the …rst fundamental form E = G = v¡2 and F = 0. Find the
Gaussian curvature of H.

Solution.

K =
¡v2

2

d

dv

µ
¡2

v

¶

= ¡1.

Example 3.55 Show that there exists no surface r(u, v) with …rst and second fundamental
forms respectively

du2 + dv2 and du2 ¡ dv2.

Solution. On the one hand the surface has Gaussian curvature everywhere ¡1 as E = G =
L = 1, F =M = 0, N = ¡1. On the other the surface is isometric to a subset of the plane and
hence has Gaussian curvature 0.

Remark 3.56 (Equations of compatability) The Gauss formula is a necessary condition
connecting the coe¢cients of the …rst and second fundamental forms – it is one of the equations
of compatability that form part of the fundamental theorem (Theorem 3.37). The other equations
are called the Mainardi-Codazzi equations and they require

Lv ¡Mu = L¡112 +M(¡212 ¡ ¡111)¡N¡211,

Mv ¡ Nu = L¡122 +M(¡222 ¡ ¡112)¡N¡211.
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