
4. GEODESICS
We gave in the previous section the de…nition of a geodesic curve. Namely a geodesic is a curve
with zero geodesic curvature or equivalently:

De…nition 4.1 A curve γ : I ! X, parameterized by arc length on a surface X, is a geodesic
if for all s 2 I the vector Äγ(s) is normal to the surface at the point γ(s).

Geodesics are also the curves of shortest length on a surface – at least ‘locally’. This means
that given a geodesic between two points on a surface, varying the geodesic slightly will produce
curves of greater length. For example, given two points on a sphere the great circle containing
these two points is a geodesic. If the points are not antipodal, then there will be a shorter and
longer arc connecting them. However both arcs are geodesics and locally are the shortest paths
between the points.

We will see that geodesics are determined by the …rst fundamental form. Consequently an
isometry between two surfaces will map geodesics in the …rst surface to geodesics in the second.

Theorem 4.2 Let X be a smooth parameterized surface and γ be a smooth curve on X para-
meterized by arc length s. Then γ is a geodesic if and only the parameters (u(s), v(s)) of γ(s)
satisfy
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for all s, where Edu2 + 2Fdudv +Gdv2 is the …rst fundamental form of X.

Proof. As ru and rv are independent tangent vectors then Äγ(s) is normal to the surface if and
only if Äγ(s) ¢ ru = 0 and Äγ(s) ¢ rv = 0. Now

_γ(s) = _uru + _vrv.
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as required. The second geodesic equation follows similarly.

Given two points on a surface there need not be a geodesic connecting the two points. For
example in R2 the geodesics are line segments. So in the punctured plane R2nf0g there is no
geodesic connecting (1, 0) and (¡1, 0). Also if a geodesic exists between two points it need not
be unique (see the examples of the sphere and cylinder below.) However geodesics always exist
locally (Do Carmo p.255):
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Theorem 4.3 Given a point p 2 X and a non-zero vector v 2 TpX then there exists ε > 0
and a unique geodesic γ : (¡ε, ε) ! X parameterized by arc-length such that γ(0) = p and
γ0(0) = v.

The proof of this theorem is beyond this syllabus and in any case largely relates to the
analysis of di¤erential equations. The existence and uniqueness of geodesics, at least locally,
leads to the notion of geodesic polar co-ordinates (mentioned in Remark 3.16). When polar
co-ordinates are used to parameterize the plane, from the origin, we obtain a …rst fundamental
form with E = 1 and F = 0. More generally, we can locally parameterize a surface around a
point p, by assigning co-ordinates r and θ to the point of the surface that is distance r from p
when measured along the geodesic making an angle θ at p with some …xed tangential direction.
When we do this we …nd that E = 1 and F = 0 (Do Carmo p.287).

For many surfaces geodesics are not just locally de…ned but many be extended inde…nitely
– such surfaces are called complete surfaces. Note that this may mean that the geodesic wraps
back on to itself as with a great circle on a sphere. This notion of completeness coincides
with the notion of complete metric spaces. Given a connected surface X it can be shown that,
given two points a, b of the surface, there is a piecewise-smooth curve between the points. The
intrinsic distance d(a, b) between the points can then be de…ned as the in…mum

d(a, b) = inf
γ

L(γ)

where L (γ) is the length of a curve γ and the in…mum is taken over all piecewise smooth curves
γ in X which connect a and b. The function d is a metric on X and the Hopf-Rinow theorem
states that:

Theorem 4.4 (Hopf-Rinow) (O¤-syllabus) For a connected, smooth geometric surface X the
following are equivalent:

(a) (X, d) is a complete metric space.
(b) A geodesic can be inde…nitely extended.

The following examples are left to Sheet 3, Part B, Exercise 1.

Example 4.5 (a) The geodesics on a sphere are arcs of great circles.
(b) The geodesics on a cylinder are the meridians, the latitudes and helices. So between

two points of the cylinder, that do not lie on the same meridian or parallel, there are in…nitely
many geodesics between the points.

Example 4.6 (a) Prove that a meridian on a surface of revolution is a geodesic.
(b) When is a parallel of latitude a geodesic on such a surface?

Solution. Suppose that the surface of revolution is generated by rotating the curve y = f(x)
about the x-axis and parameterize it as

r(x, θ) = (x, f(x) cos θ, f(x) sin θ), x 2 R, θ 2 (¡π, π).

By Sheet 2, Part A, Exercise 2, the …rst fundamental form equals

(1 + f 0(x)2)dx2 + f(x)2dθ2
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and the geodesic equations are

d

ds
((1 + f 0(x)2) _x) = f 0(x)(f 00(x) _x2 + f(x) _θ

2
),

d

ds
(f(x)2 _θ) = 0.

(a) Along a meridian _θ = 0 and _x = (1 + f 0(x)2)¡1/2. The second equation is then trivially
true and substituting into the …rst equation we …nd

d

ds
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d

dx
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1 + f 0(x)2
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as required.
(b) A parallel is given by the equation _x = 0. Thus the two geodesic equations now read as

f(x)f 0(x) _θ
2
= 0 and f(x)2Äθ = 0. As the geodesic is a circle parameterized by arc-length then _θ

is a non-zero constant and Äθ = 0. As f(x) > 0, then the equations hold if and only if f 0(x) = 0.

We now prove an earlier comment on geodesics namely that they are locally curves of least
length. That is, however a geodesic between two points is perturbed, we produce curves of
greater length

Theorem 4.7 Let γ : [a, b] ! X be a smooth geodesic in X. Let γδ, where δ 2 (¡ε, ε), be a
family of smooth curves

γδ : [a, b] ! X

with γ0 = γ and γδ(a) = γ(a), γδ(b) = γ(b) for all δ 2 (¡ε, ε) and let L(δ) = L(γδ). Then
L0(0) = 0.

Proof. (Proof non-examinable) Let R(δ, t) = E _u2+2F _u _v+G _v2 where γδ(t) = r(u(δ, t), v(δ, t))
and the dot denotes di¤erentiation with respect to t. Then
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by di¤erentiation under the integral sign. Now
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As γ = γ0 is a geodesic then substituting in the geodesic equations (4.18)
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We may assume without loss of generality that γ = γ0 is parameterized by arc length so that
R(0, t) = 1. Hence, substituting (4.20) into (4.19),
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However u(δ, a), u(δ, b), v(δ, a) and v(δ, b) are all constant giving ∂u/∂δ = ∂v/∂δ = 0 when
t = a and t = b and hence L0(0) = 0.

Example 4.8 What are the geodesics in the hyperbolic plane H? (See Examples 3.28 and
3.54.)

Solution. Method 1: If we substitute E = G = y¡2 and F = 0 into the geodesic equations
(4.18) then we …nd

d

ds

µ
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¶

= 0,
d

ds
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¶

=
¡( _x2 + _y2)
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.

The …rst equation yields _x = cy2 for some constant c. So the half-lines x = constant are then
geodesics corresponding to c = 0. Assume that c 6= 0. The second equation may be rewritten
as

Äyy ¡ _y2

y2
=

¡ _x2

y2
,

or equivalently
d

ds

µ
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¶
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Integrating we …nd that _y = (b¡ cx)y for some constant b. Now

dy

dx
=
_y

_x
=

b ¡ cx

cy
,

and solving this di¤erential equation gives

1

2
c(x2 + y2)¡ bx = a,

for some constant a, which is the equation of a semicircle in H which cuts the x-axis orthogonally.
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Method 2: Alternatively we could consider what the isometries of H might be and use the
fact that geodesics are mapped to other geodesics by isometries. For ease of notation we now
introduce a complex variable z = x+ iy so that the …rst fundamental form on H is now given
by

¡4jdzj2

(z ¡ ¹z)2
.

Then I claim the map

w : z 7!
az + b

cz + d
,

where a, b, c, d are real numbers satisfying ad ¡ bc = 1, is an isometry of H. From standard
theorems concerning Möbius transformations we can see that w maps the upper half plane
onto the upper half plane; as a, b, c, d are real, the real axis is mapped to the real axis and the
imaginary part of the image of i equals

Im

µ
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¶

=
Im ((ai+ b) (d ¡ ci))

c2 + d2
=

ad¡ bc

c2 + d2
=

1

c2 + d2
> 0.

To check w is an isometry we need to prove that H when parameterized by w and z has the
same …rst fundamental form. Firstly note

dw =
dz

(cz + d)2
.

So

¡4jdwj2

(w ¡ ¹w)2
=

¡4jdzj2
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¡
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¢2 =
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The denominator in the …nal expression above factorises as (ad¡ bc)2(z ¡ ¹z)2 showing that

¡4jdwj2

(w ¡ ¹w)2
=

¡4jdzj2
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and consequently w is an isometry.
Note now that x = 0, y = e¡s is a solution to the geodesic equations for H (Sheet 3, Part

A, Exercise 1) and so the positive imaginary axis is a geodesic. As we show below, there is a
Möbius map of the same form as w which maps any other half line or semicircle orthogonal to
the positive imaginary axis, showing that these too are examples of geodesics. From Theorem
4.3 we know that these are all the geodesics of H.

Given another half-line Re z = k then the Möbius map z 7! z¡k (where a = 1, b = ¡k, c =
0, d = 1 so that ad¡bc = 1) takes the half-line to the positive imaginary axis. For the semicircle
perpendicular to the real axis, meeting at p and q (where p < q), the Möbius map

z 7!
1

p
q ¡ p

µ
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¶

takes the semicircle to the positive imaginary axis. Again we check
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Remark 4.9 (Historical context) The hyperbolic plane H is of interest because it is an
example of a non-Euclidean geometry. A Euclidean geometry is one that satis…es certain axioms
including the parallel postulate which states that:

² given a line l and a point p not on l then there is a unique line through p (known as a
parallel) which does not meet l.

If we read ‘geodesic’ for ‘line’ in the above, then we see that given a line l in H and a point
p not on the line then there are in…nitely many lines through p not meeting l. (In Figure 4.1
M1,M2,M3 are parallels of L through P.)

Figure 4.1 – hyperbolic parallels

For literal centuries, mathematicians had been trying to deduce the axiom of parallels from
Euclid’s other axioms. Instead all they managed to …nd were alternative, equivalent formulations
for the parallel postulate. The above formulation is in fact due to Ludlam (1785) though it is
usually attritbuted to Playfair; other formulations include:

² parallel lines are everywhere equidistant.

² the sum of the angles of a triangle equals two right angles.

² given a triangle, we can construct a similar triangle of any area.

² Pythagoras’ theorem.

² three non-collinear points always lie on a circle.

In the nineteenth century certain mathematicians – notably Bolyai, Lobachevsky and Gauss
– began to suspect that the parallel postulate was independent of the other axioms and proved
alternative theory where more than one parallel existed. Such theory might still have contained
inconsistencies, but this was shown not to be the case when Beltrami, Klein and Poincaré found
models for the hyperbolic plane which showed the new geometry to be every bit as consistent as
Euclidean geometry.

The elliptic plane (Example 3.32) is another example of non-Euclidean geometry, in which
case there are no parallels to a line. The elliptic plane had previously been discounted as a
non-Euclidean geometry as it did not seem to meet another axiom of Euclid that lines can be
extended inde…nitely. But if we permit lines to be extended repeatedly on to themselves then the
elliptic plane is a valid non-Euclidean geometry.
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