C5.2 Elasticity and Plasticity

Introduction

By Peter Howell, with minor modifications by Jim Oliver

oliver@maths.ox.ac.uk

Michaelmas Term

Hooke's Law

In a classical experiment, a solid rod is stretched to a tension T:

After:

Hooke's Law states that tension \propto extension:

$$T = k(\ell - L)$$

where constant of proportionality k measures stiffness of the rod.

Hooke's Law

Empirical observations:

(1) stiffness $k \propto A/L$ so

$$\left(\frac{T}{A}\right) = E\left(\frac{\ell - L}{L}\right)$$

- T/A = stress i.e. force per unit area.
- $(\ell L)/L = strain$ i.e. extension relative to the initial length.
- ightharpoonup E = Young's modulus is constant for any solid material.
- (2) cross-sectional contraction or expansion:

$$\left(\frac{r-R}{R}\right) = -\nu \left(\frac{\ell-L}{L}\right)$$

- ightharpoonup contraction for $\nu > 0$, expansion for $\nu < 0$.
- $\nu = Poisson's ratio$ is constant for any solid material.

E and ν characterize a linear isotropic elastic material.

Hooke's law

- ► Hooke's law underpins linear elasticity.
- ▶ It generally works well for sufficiently small strain but fails at larger strains for *three* main reasons.

(1) Nonlinear elasticity

- Materials like rubber can undergo large strains with nonlinear stress-strain relationship.
- ▶ But most solids are not like rubber elasticity breaks down before nonlinearity becomes important.

(2) Fracture

- ▶ Brittle solids fracture and break under excessive loading.
- Typically fracture occurs while material is still in linear régime.

(3) Plasticity

- Ductile solids undergo irreversible plastic deformation if applied stress exceeds a critical yield stress.
- ▶ When loading is removed, a permanent residual strain remains.

Lecture plan

Lectures	Lecture notes	Sheet
1–2	$\S 1$ Equations of linear elasticity	0-1
3	§2 Elementary steady solutions	1
3-4	$\S 3$ Antiplane strain and torsion	
5	§4 Plane strain	2
6–7	§5 Elastic waves	4
8–9	§6 Models for thin structures	
10–11	§7 Contact	2–3
11–12	§8 Fracture	
13–16	§9 Plasticity	4